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Abstract

Comprehensive modelling of urban freight operations remains a challenge in transportation research. This is partly due to the
diversity of commodities transported, shipment units, vehicle types used, stakeholders’ objectives (e.g. suppliers, carriers,
receivers), and to the limited availability of data. Thus, existing modelling efforts require several assumptions yet have limited
behavioral foundations and minimal interaction between agents. This paper proposes a new agent-based modelling framework,
which considers the heterogeneity of urban freight agents and their interactions. Agents include establishments (suppliers,
carriers, and receivers) and freight vehicle drivers. Agents’ decisions are structured in three temporal resolutions: strategic,
tactical, and operational. A single set of agents is represented throughout all modelling levels ensuring a consistent and sequential
flow of information. At the strategic level, establishments’ characteristics and strategic decisions are modelled. These include
location choices, fleet constitution, annual production/consumption of commodities, and establishment-to-establishment
commodity flows. At the tactical level, shipments are assigned to carriers, who in turn plan their operations in terms of vehicle-
driver-route assignments. Finally, at the operational level, the interactions between daily operational demands and transportation
network supply are simulated. The supply representation has two different resolution levels (micro or meso) allowing for either
detailed or computational efficient simulation. The simulation platform is distinct from previous works, as it explicitly considers
planning horizons, replicates agent decision makings/interactions and involves a structure that allows for the propagation of
influences bottom-up (e.g., prior simulation travel times on future route choice). The paper describes the simulation platform,
constituent models, and illustrates its capabilities using an application of the modelling framework to the city of Singapore.
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1. Introduction

Growing interest from urban planning agencies in freight-sensitive policy interventions has brought to light the
importance of simulation platforms to analyze the impacts of such policies. Developing these platforms has been a
challenge for researchers. The diversity of commodities transported, shipment units parceled, vehicle types used, and
stakeholders’ objectives make urban freight transport system highly heterogeneous, with different stakeholders
responding differently to policies. In addition, data on freight are often unavailable or not widely accessible, which
leads to limited behavioral foundations for the existing modelling approaches (Teo et al., 2015).

In this paper, we present the framework and application of a multi-scale agent-based simulation platform for
urban freight, representing the system’s heterogeneity, agents’ behavior and their interactions. Its usefulness is
justified in testing freight-influencing policy scenarios. For example, how land-use policies impact establishment
relocation, which in turn influences receiver-supplier relationships and, lastly, freight traffic flows. Its development
is timely as large-scale freight data collection efforts such as in Cheah et al. (2016) potentiate the estimation of the
underlying behavioral models. This platform has been developed and implemented as an additional set of models in
SimMobility, an open-source mobility simulation platform (Adnan et al., 2016).

SimMobility represents agents such as households/individuals and their behaviors in multiscale time levels
ranging from seconds to years, using the activity-based modelling paradigm. SimMobility provides an ideal
simulation environment for the proposed freight models. First, freight modelling is commonly performed top-down
in the supply chain (e.g., from commodities flows to vehicle flows), disregarding the influence of lower-level
decisions and outcomes in higher-level decision making processes. The structure of SimMobility allows for such
feedback loops. Second, a considerable part of freight research is devoted to reveal freight impacts, such as
contribution of freight movements to total traffic performance and emissions (Kladeftiras and Antoniou, 2013), or of
freight infrastructure needs in urban freight operations (Aiura and Taniguchi, 2005, Alho, 2017). The parallel and
integrated architecture of SimMobility platform is inherently suitable for modelling freight movements in direct
competition for infrastructure with passenger movements. Next, we provide a brief literature review. Following, we
detail the modelling framework and models’ formulation. Then, the paper elaborates on the framework application to
a case study in Singapore and presents the preliminary results of the model implementation. Finally, we conclude the
paper with conclusions and a future research section.

2. Literature review

Comprehensive freight models are not new and several models go beyond one-dimensional classifications such
as truck-based, commodity-based, or delivery based (Nuzzolo and Comi, 2012). Boerkamps (2000) presents a
conceptual framework of the freight distribution system as the foundation of the GoodTrip model. This model starts
as commodity-based but achieves a tour-based representation of freight vehicle movements. It has been used to
study freight policies in the Netherlands. Wisetjindawat (2007) proposes an improved version of the four-step
approach by considering agents individually. The model, applied to the Tokyo Metropolitan Area, Japan, has four
stages: (a) commodity production/consumption, (b) commodity distribution, (c) conversion of commodity flows to
truck flows, and (d) traffic assignment using vehicle OD matrices. Nuzzolo and Comi (2014) rely on a 3-step
modelling process to achieve quantity OD matrices, delivery OD matrices, and finally vehicle OD matrices. This
model system was applied to the inner-city area of Rome, Italy. To the best of our knowledge, none of these models
clearly delimited the agents’ decision-making process to time-scales. Crainic and Laporte (1997) explore time-scale
definitions from a supply chain perspective; whereas Comi et al. (2012) present a similar perspective of city logistics
policies/measures implementation. Their definitions of the time-scales are described below with additions that
reflect the definitions used in this paper.

o Strategic, or long-term planning can be related to capital investments over an extensive time horizon. This could
be facilities’ location and resource acquisition decisions, e.g. commodities or fleet (Crainic and Laporte, 1997),
or policy implementations such as Urban Distribution Centers (Comi et al., 2012).

o Tactic(al), or medium-term planning decisions refer to those aiming to ensure an efficient and rational allocation
of existing resources including freight terminal work allocation, and design of service networks (e.g., route
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choice and repositioning of empty vehicles) (Crainic and Laporte, 1997) or, policy-wise, shipment sizes/load
requirements or emissions restrictions (Comi et al., 2012).

o Operative/Operational, or short-term planning, pertains choices where time is an essential element in the
decision-making process and can somewhat overlap with the medium-term planning. These include scheduling,
routing and dispatching decisions (Crainic and Laporte, 1997). Comi et al. (2012) list policies such as time-
windows and weight constraints or road/parking pricing decisions.

The definitions of the time scales in this work are in line with those of Crainic and Laporte (1997) and Comi et al.
(2012). However, we suggest that long-term contracts between agents, commodities volumes traded, and shipment
sizes might also be considered strategic decisions. Furthermore, carrier selection and load factor goals by carriers are
medium-term decisions, although the selection of carriers can also be a long-term decision depending on the
dynamics of the market. En-route route choice, parking location choice or re-ordering of planned delivery/pickup
stops can also be considered operational decisions.

3. SimMobility Freight

We propose a core set of models to represent a set of relevant freight agents’ interactions leading to freight
movements. The model represents: (a) the main agents engaged in the process of producing, consuming and
distributing commodities; (b) the interactions between these agents; and (c) the changes in time associated with
system evolution. This paper presents the strategic (Long-term) and tactical (Mid-term) models of the
comprehensive simulation platform that is being developed.

3.1. Framework

The proposed structure follows and builds on the existing SimMobility Passenger implementation (Adnan et al.,
2016), as can be seen in Figure 1. Strategic and Tactical models run respectively in the ‘Long-term’ and ‘Mid-term’
demand simulation modules. The operational models run in the ‘Mid-term’ and ‘Short-term’ supply simulation
modules. With respect to simulation’s spatial and temporal granularity the Mid-term supply simulator is mesoscopic
in nature and the short-term supply simulator is microscopic. Some models — for instance, the model that predicts
establishment population (Le et al., 2016) — are shared from the SimMobility Passenger structure. From a passenger
movement modelling perspective, this model is relevant to predict work/shopping trips for individuals. On the other
hand, from a freight movement modelling perspective, establishments (suppliers/receivers/carriers) are agents with
an active role in the supply chain. Models can also be shared across time-scales, and used for different purposes. For
example, freight route choice models for carriers in Mid-term can also be used to re-assess route options considering
additional information (such as unexpected congestion and new pickup/delivery orders) in Short-term.
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Fig.1 - SimMobility Freight Conceptual Framework.
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3.2. Long-term (strategic) models

Long-term models simulate the strategic decisions that the agents make for a given year. These decisions are
simulated on a synthetic population of establishments, where each individual establishment is generated along with
its relevant attributes. The establishment-synthesis was performed with data and inputs from several sources, using a
multi-step method as described in Le et al. (2016). The outputs of this step are the establishments’ locations,
industry type, employment size, and occupied floor area. In addition to these attributes, each establishments’ fleet
(i.e. freight-vehicle-ownership by vehicle-type) is synthesized, using a disaggregation approach keeping the regional
vehicle-registry as the control.

Estimating annual production and consumption of commodities is commonly done at establishment-level
(Muifiuzuri et al., 2010) and by land-use attributes (Lawson et al. 2012, Sanchez-Diaz et al., 2013). In the specific
application that will be presented later in this paper, we assume production and consumption to be primarily
dependent on the employment and combination of industry type and supply chain function.

To disaggregate the annual flows into different commodity types, the relevant types and their respective shares in
an industry can be inferred from regional economic data. For example, “supply and use” tables reflect the
commodities produced and consumed by establishments from an aggregated perspective of each industry. This
allows creating industry-specific distributions of commodities produced and consumed, and assigning a bundle of
inbound and outbound commodities to each establishment.

Subsequently, the supplier-selection model matches suppliers to receivers, by sequentially running two sets of
discrete choice models. The first set of choice models assume the receivers to perceive the attractiveness of each
zone based on: (a) the zonal quantity of the commodity produced, (b) the zonal number of potential supplier-
establishments, and (c) the distance between the centroids of the supplier’s zone and the receiver’s zone.
Coefficients to the above parameters are considered specific to commodity-type and the receiver’s position in the
supply-chain. Secondly, the utilities of all suppliers in each zone are computed based on the non-allotted quantity as
the simulation progress.

Note that the process is dependent on the sequence of receivers taken in simulation. This sequence can be decided
exogenously. In the application detailed in this paper, we prioritize receivers based on their age. The computed
utilities are employed to generate the conditional probabilities of selecting a supplier, given a zone. The probabilities
of a receiver selecting a shipper for a commodity are clustered using an x-means algorithm to arrive at a cluster of
most probable suppliers. Finally, the quantity of this commodity consumed by the receiver is proportionately
assigned to these suppliers. This model outputs the commodity-wise annual flow between each supplier-receiver
pair.

Following supplier-selection, the shipment-size cum frequency model specifies typical size of a shipment and the
distribution of shipments throughout the year. Typical size of a shipment is dependent on attributes of the supplier,
carrier, receiver and the commodity-type. For instance, an analysis of the shipment microdata from the 2012 US
commodity flow survey led to the identification of commodity type, supplier industry, and carrier type (own/hired)
as influential factors to the shipment-size distributions. The frequency of shipments, and subsequently the
probability of a shipment being moved on a specific day, can be arrived at using these distributions. Thus, these
variables are used to narrow down the set records from which a random frequency value is drawn. The set of models
in the Long-term output the shipment-size (in weight) and frequency for shipments of a given commodity expected
to be moved between the supplier and receiver locations.

3.3. Mid-term models

Mid-term models simulate the tactical decisions that the agents take on a typical day. Given that Long-term
models output shipment information for a given year, a set of shipments relevant to a representative day is to be
selected. This is done in the day-selection model, where a random draw considering the probability of shipping in
each day results in a set of shipment movements to be simulated. This selected set of shipments is then input to the
carrier-selection and carriers’ operations planning models. These models consist of a sequence of heuristics that
assign vehicles to shipments in a two-step process. First, supplier-establishments assign as many of their own
shipments as possible to their own vehicles, based on their fleet capacity. Secondly, unassigned shipments are
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pooled to be potentially outsourced to carrier-establishments. A procedure iterates over this list of shipments,
triggering a series of subroutines up to exhaustion of available vehicle-capacity or shipments.

The subroutines include models such as: (a) vehicle-selection model, (b) shipment-clustering and vehicle loading
model, (c) stop-sequencing model, and (d) stop-time model. The vehicle-selection model takes into account the
vehicle capacity and time availability considering prior utilization of each vehicle. Upon confirmation of capacity
and availability this model assigns a shipment to the vehicle from the list of unassigned shipments. Treating this as a
primary shipment, the shipment-clustering model identifies a subset of other unassigned shipments based on origin
and destination proximity as well as shipment type compatibility. Remaining shipments from this cluster are added
to the vehicle until: (a) any additional shipments would exceed vehicle capacity, or (b) the vehicle’s delivery count
exceeds a threshold number of deliveries per tour. The stop-sequencing model then generates a sequence of delivery
locations for each vehicle, constrained on thresholds on total tour-time. Upon violation of this constraint, shipments
for a given receiver are dropped. These shipments are then considered in the next iteration of the shipment-
clustering and vehicle loading model. For stop-sequencing, a ‘closest-node-next’ heuristic is integrated in the
simulation platform. A more computationally burdensome TSP optimization algorithm that generates stop-
sequences based on carrier-level priorities (time or distance savings) is implemented as an add-on.

Lastly, the tour details (vehicle, driver, shipments/stops, departure time) are passed to the supply simulator which
is capable of outputting, among others, the following traffic performance indicators: (a) vehicle flow on links per
vehicle type and time period, (b) average speed and associated travel time index, (c) tour duration and delay against
planned tour, and (d) route choices.

4. Model application

We present an application of SimMobility Freight to simulate freight movements in Singapore. This section is
intended to better illustrate the process flow in this simulation platform, and also to throw some light on the various
inputs/outputs configurable in it. The synthesized population of establishments represents Singapore as of December
2012. Tt is generated as described in Le et al. (2016), and then extended to include additional establishment
attributes, such as foundation year and fleet ownership.

Singapore being an island city-state, the national economic data is an accrual of activities exactly within the area
to be simulated. The commodity flow is, in the first stages, handled in dollar values. Therefore, the per-employee
production and consumption is estimated such that the industry-level production and consumption matches the total
production and consumption in Input-Output tables for Singapore (Singapore Department of Statistics, 2017). The
Singapore Supply & Use table (Singapore Department of Statistics, 2017) is used to predict commodity types and
quantities. In the process, the symmetric Supply & Use table with 71 commodities and industry-types is transformed
into a version of 12 commodities and 45 industry-types. Commodity types that are produced and attracted are
identified for each industry-type, and commodity-wise productions and attractions are computed.

The Supplier Selection model then pairs the supplier-receiver establishments. In the absence of local data, we use
the coefficients estimated by Wisetjindawat et al. (2006) as seed values. To define shipment size, we use the U.S.
C.F.S. 2012 Microdata, drawing a random record from a subset of the data (intra-urban shipments), subject to
whether a supplier uses own-vehicle, supplier’s industry type, and type of product. Commodity flows are converted
to weight before the application of the shipment size model using the coefficients from the summary table of the
2015 Japan commodity flow survey (Ministry of Land, Infrastructure, Transport and Tourism, 2015).

An establishment that owns at least one freight vehicle is considered an own-account carrier. The following data
is used in the application of the Mid-term demand simulation models, specifically, the Carrier Selection and
Operations Planning model: (a) total stops per tour and vehicle type (Olszewski et al., 2003); (b) delivery stop
durations from Lisbon (Alho and de Abreu e Silva, 2014) and Singapore (Dalla Chiara, 2017); and (c) vehicle
payload usage (% of capacity in weight) from the U.S. Vehicle Inventory and Survey data (United States Census
Bureau, 2002). All mentioned datasets are to be fully replaced with local data from (Cheah et al., 2016) in a near
future. Vehicle payload usage and maximum stops in a tour are drawn as a cumulative distribution function (CDF)
of deliveries per tour per vehicle type. Three vehicle types are considered according to their Maximum Laden
Weight: Light Commodities Vehicle (LGV), Heavy Commodities Vehicle (HGV) (3.5-16 tons), and Very Heavy



André Alho et al. / Transportation Research Procedia 27 (2017) 188-196 193

Commodities Vehicle (VHGV) (> 16 Tons). Stop durations, also from a CDF, are added to each pickup/delivery.
The maximum tour duration is currently set for 8 hours.

Model calibration is performed independently for Long-term and Mid-term models. The scope of the Long-term
calibration is as follows: (a) 90 parameters for production and consumption models (2 parameters x 45 industries);
(b) 1,080 proportions of commodity-wise productions and consumptions (12 commodities x 45 industries x 2
(production or consumption)); and (c) 108 parameters of the commodity-cum-supply-chain-specific supplier-
selection models (12 commodities x 3 supply-chain tiers for receivers X 3 model parameters). The simulation results
are compared with the industry-to-industry flow matrix (Singapore Department of Statistics, 2017). The first two
sets of parameters (a) and (b) are calibrated against the commodity and industry specific productions and
consumptions of the matrix, using a standard optimization algorithm. Calibration of the third set of parameters in the
Long-term models — those of Supplier-selection models — and those of Mid-term models is currently being
performed employing a Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm (Lu et
al., 2015). For the Mid-term, the parameters being calibrated are: (a) the share of vehicles that are not working on a
given day; (b) the CDF parameters for vehicle payload usage (per vehicle type), number of stops per tour (per
vehicle type), and stop duration; (c) the conversion factors from commodity value to weight. Mid-term calibration is
performed against a set of LGV and HGV counts obtained in 2012 from 408 sensors at various locations in
Singapore, with a resolution of 15 minutes.

5. Results

This section focuses on the results of the Long-term model. The calibration of the Mid-term model is currently
ongoing. The Long-term model operates on an establishment population of 172,075 agents and a vehicle population
of 135,134 freight vehicles. In the given year, the total combined production and consumption of the establishments
is around 180 billion Singapore-Dollar (SGD) worth of commodities. The aggregated outputs from the supplier
selection model are presented in Figure 2. The image is a screenshot from an interactive application that visualizes
suppliers of a commodity type to any selected receiver and vice-versa. Another output from the Long-term models is
given in Figure 3. The results allow for a comparison of total commodity flow simulated at receiver and supplier
ends with those obtained from the industry-to-industry flow records.

Zonal Shipping Building-level Shipping

SENBANANG

Zonal Receival Building-level Receival

Fig. 2 — Geographic spread of commodities shipped and received in Singapore.
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Fig. 3 — Industry level aggregation of freight shipped and received by establishments during simulation vs. those observed in
industry-to-industry flow matrix.

6. Discussion and Conclusions

The initial implementation of a novel urban freight simulation platform was presented in this paper. We put
forward that it represents core agents’ decisions and interactions. Further distinguishing this platform from the
existing urban freight models is: (a) the explicit representation of time-scales, and (b) the potential incorporation of
the feedback from the lower-level simulation results to the simulation of higher-level decisions. A parallel effort of
data collection is underway which, when completed, will be used to improve these constituent models. The platform
is currently being improved for use as a decision support system in several policy-related case-studies.

Furthermore, SimMobility Freight is in the process of being expanded with a set of new models, such as
dedicated import-export models, alternative formulations of supplier-selection and carrier-selection models.
Specifications of a stop-sequencing model with time-windows constraints and an overnight parking model to
account explicitly for the first and last legs of the tours are also ongoing.
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