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1 Introduction

Recently, chaotic systems have been extensively investigated in the context of AdS/CFT

correspondence. One way to characterize the chaos is the butterfly effect measuring the

sensitivity to the initial condition of a system. In classical system, the butterfly effect is

measured by δq(t)
δq(0) which grows exponentially in time in the chaotic system. In quantum

theories, the out-of-time-ordered correlator (OTOC) has emerged as a new way to quantify

the quantum chaos [1–4]. The exponential growth rate λL of OTOCs, so-called Lyapunov

exponent, is one of the important measurement of chaos, and it can be considered as a

universal characteristic of chaotic system. Unlike classical system, it was shown [5] that

the Lyapunov exponent of a reasonable physical system1 is bounded by 2π
β

where β is the

1e.g., a system with large degrees of freedom (e.g., Large N), unitarity, causality and analyticity of

correlation functions.
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inverse temperature of the system. i.e.,

λL ≦
2π

β
. (1.1)

The bound on chaos provides a natural concept of maximally chaotic system. Even before

this result was known, it was already anticipated that black holes are maximally chaotic (the

fastest scrambler) [6], and it was indeed shown that the black hole has maximal Lyapunov

exponent by various techniques including geodesic distance [1], elastic eikonal approxima-

tion [3, 7], vacuum conformal block [8–10] and the on-shell action [11–16].

In the context of AdS/CFT correspondence, field theory dual to black hole in Einstein

gravity should also be maximally chaotic. Although many interesting models are believed to

be maximally chaotic, it is, in general, difficult to evaluate the OTOCs explicitly. Recently,

quantum mechanical models such as Sachdev-Ye-Kitaev (SYK) models [17–23] and SYK-

like tensor models [24–28] were shown to be maximally chaotic, and they have provide

fruitful playground to investigate the black hole physics holographically. See reviews [29, 30]

and recent interesting development in this direction [31–60].

The low energy dynamics of these maximally chaotic quantum mechanical models is

universally governed by Schwarzian action, which plays an important role in the saturation

of the chaos bound [20]. This Schwarzian action has also been observed as an on-shell

action of the dual 2D gravity [11, 61–64] as well as the dimensional reduction of higher

dimensional black hole [15, 65, 66]. Furthermore, it was found as an on-shell action of 3D

gravity: metric-like formulation [16] and frame-like Chern-Simons formulation [67].

In Chern-Simons gravity [68, 69] with boundary, it is natural to have the Schwarzian

on-shell action. The variational principle of Chern-Simons theory with boundary requires

an appropriate boundary term. When this boundary term breaks the gauge symmetry

on the boundary which corresponds, roughly speaking, to the conformal symmetry on the

boundary, one gets anomaly of the conformal symmetry as an on-shell action.

The Chern-Simons gravity can be generalized into Chern-Simons higher spin grav-

ity [70–72]. The higher spin gravity [73–80] in AdS and its dual CFT [81] have provided

a promising laboratory to test holography [82–89]. The quantum chaos in the higher spin

theories was explored by W vacuum blocks [10] and by Wilson line in the charge shock

wave background [90]. In the Chern-Simons higher spin gravity, the corresponding higher

spin on-shell action will be the anomaly of its asymptotic symmetry, so-called W symmetry.

The form of anomaly, which is the generalization of the Schwarzian derivative, has been

observed in the various literature [91–95].

In this paper, we will show how this anomaly can appear as the on-shell action2 of

the higher spin gravity by choosing a appropriate boundary term and the corresponding

boundary condition in [96]. For this, we consider a constant background like BTZ black

hole and its smooth fluctuations which does not change the holonomy of the connection up

to conjugation. This leads to the quadratic on-shell boundary action I
(2)
on-shell for the smooth

2See [94] for the on-shell action for 2D higher spin BF theory.
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fluctuations ηn and ζn corresponding to spin-2 and spin-3, respectively:

I
(2)
on-shell ∼

2π4ikcs
τ3

∑

n≧2

n2(n2 − 1)η−nηn +
π6ikcs
3τ5

∑

n≧3

n2(n2 − 1)(n2 − 4)ζ−nζn

− (anti-holomorphic) . (1.2)

From the quadratic action, we could read off the propagator of the fluctuations. In addition,

we study gravitationally dressed bi-locals such as (boundary-to-boundary) Wilson line or

master field in the Vasiliev equation. And, we investigate the “soft” mode expansion thereof

which leads to the Ward identity of W-algebra for the bi-locals. Here, “soft” denotes a

smooth infinitesimal residual gauge transformation from the constant background so that

it is not involved with any large gauge transformation. Using the soft mode expansion, we

will analyze the quantum chaos of the higher spin gravity based on the on-shell action.

The outline of this paper is as follows. In section 2, we review the Chern-Simons

higher spin gravity with boundary, and we derive the generalized Schwarzian action as

the on-shell action. In section 3, we consider master field in Vasiliev equation and Wilson

line in the non-constant background, and we study the soft mode expansion thereof. In

addition, based on the null relation in WN minimal model we derive the Ward identity

of W-algebra. We also construct a recursion relation of the soft mode eigenfunction for

general s. In section 4, we evaluate the contribution of higher spin fields to the OTOCs

to read off Lyapunov exponent of higher spin gravity. In section 5, we make concluding

remarks and present the future directions. In appendix B, we propose a conjecture on

the null relation for general spin s generators in WN minimal model. In appendix C, we

provide elaborate on the recursion relations of soft mode eigenfunctions. In appendix D,

we estimate the contribution of spin s soft mode to Lyapunov exponent. In appendix E,

we quickly apply our techniques to 2D higher spin BF theory to evaluate the Lyapunov

exponent. In appendix F, we discuss the relation between charges in SL(3) Chern-Simons

higher spin gravity and the charge in Toda field theory.

2 W-Schwarzian action in higher spin gravity

2.1 Review: Chern-Simons higher spin gravity for Euclidean AdS3

We begin with the review of SL(N,C) Chern-Simons higher spin gauge gravity for Euclidean

AdS3 [70, 71, 97]. Especially, we will use (τ, τ̄) formalism in [96]. Also, since we are

interested in evaluation of the out-of-time-ordered correlator (OTOC) from the on-shell

action via analytic continuation, we consider Euclidean AdS3 (EAdS3).

The three-dimensional pure higher spin gauge theories in EAdS3 can be formulated

by Chern-Simons action with complex Lie algebra SL(N,C):

ICS =
ikcs
4π

∫

M
Tr
[

CS(A)− CS(Ā)
]

, (2.1)

where kcs =
l

4G is Chern-Simons level and CS(A) is defined by

CS(A) = A ∧ dA+
2

3
A ∧A ∧A . (2.2)

– 3 –
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In addition, the trace Tr is defined in term of the trace tr over the fundamental represen-

tation by

Tr (M) =
1

tr (L0L0)
tr (M) , (2.3)

where L0, L±1 are the generator of sl(2) subalgebra of sl(N), and we will consider the

principal embedding of sl(2) into sl(N) in this work. Furthermore, we use convention for

sl(N) generators such that

(L(s)
n )† = (−1)nL

(s)
−n (s = 2, 3, · · · , N) . (2.4)

For the representation for the generators, see appendix A for N = 2, 3 cases.3 Also, in our

convention, the Chern-Simons connection A is related to its conjugation Ā by

Ā = −A† . (2.5)

We use the coordinates (r, z, z̄) given by

z ≡ φ+ i
tE
l
, z̄ ≡ φ− i

tE
l
. (2.6)

The manifold of Chern-Simons gravity for Euclidean AdS3 is a solid torus of which the

modular parameter τ of the boundary torus gives the periodicity of z coordinate:

z ∼ z + 2π ∼ z + τ . (2.7)

For BTZ black hole, the modular parameter τ is given by4

τ = w +
iβ

l
=

2πil(r+ − irE)

r2+ − r2−
=

2πil

r+ + r−
,

τ̄ = w − iβ

l
= −2πil(r+ + irE)

r2+ − r2−
= − 2πil

r+ − r−
. (2.8)

One can fix a gauge [71, 72] such that

A = b−1(d+ azdz + az̄dz̄)b , (2.9)

Ā = b(d+ āzdz + āz̄dz̄)b
−1 , (2.10)

where b(r) is defined by

b = erL0 . (2.11)

In Chern-Simons gravity theories, the asymptotic AdS3 condition with a flat boundary

metric, which is analogous to the Brown-Henneaux asymptotic AdS boundary condition in

the metric-like formulation, is [71, 72]

A−AAdS|∂M ∼ φ(1) , (2.12)

3For sl(N), see [86]. Note that we use the different realization of the sl(3) generators from [96].
4Note that r−− = irE is pure imaginary in Euclidean signature so that we will distinguish them clearly.
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where AAdS is the exact AdS3 solution [71, 72]:

AAdS = b−1

[

d+

(

L1 +
1

4
L−1

)

dz

]

b , ĀAdS = b

[

d+

(

L−1 +
1

4
L1

)

dz̄

]

b−1 . (2.13)

The asymptotic AdS3 condition (2.12) leads to

a = L1dz + · · · , ā = L−1dz̄ + · · · . (2.14)

The variation of the Chern-Simons action without any boundary term5 (2.1) gives

δICS = − ikcs
4π

∫

∂M
Tr
[

A ∧ δA− Ā ∧ δĀ
]

. (2.15)

Hence, we can choose a boundary condition Az̄ = Āz = 0 for consistent variational prin-

ciple. Furthermore, by using residual gauge symmetry, we can fix the highest weight

gauge [71, 72]. For N = 3, the highest weight gauge is given by

az(z)=L1−
2π

kcs
L(z)L−1+

π

2kcs
W(z)W−2=







0
√
2 2π
kcs

L(z) 2π
kcs

W(z)√
2 0

√
2 2π
kcs

L(z)
0

√
2 0






,

āz̄(z̄)=L−1−
2π

kcs
L̄(z̄)L1+

π

2kcs
W̄(z̄)W2=







0 −
√
2 0

−
√
2 2π
kcs

L̄(z̄) 0 −
√
2

− 2π
kcs

W̄(z̄) −
√
2 2π
kcs

L̄(z̄) 0






. (2.16)

To study generic higher spin black hole, we need to consider the variation of the

modular parameter τ as well as chemical potentials for higher spin charges [96–100]. We

will use the (τ, τ̄) formalism in [96] to incorporate the variation of the modular parameters.

Although the formalism works for generic chemical potentials, for simplicity, we turn off

the chemical potential for higher spin charges - if present they become a source of the

spin-s Schwarzian. Hence, in this work, we focus only on BTZ black hole embedded in the

higher spin gravity in which the derivation of on-shell action will formally be parallel to

that of SL(2,C) case [7].

Recall that the modular parameter appears as the periodicity of the coordinates (z, z̄).

Hence, for the variation of the modular parameter, it is useful to fix periodicity. For this,

we introduce a new coordinate (w, w̄) defined by

z =
1− i τ

2π

2
w +

1 + i τ
2π

2
w̄ , (2.17)

and, the coordinates w and w̄ has a fixed periodicity:

w ∼ w + 2π ∼ w + 2πi . (2.18)

By fixing the periodicity of w, w̄, the boundary metric and the boundary volume element

depends on the modular parameter:

ds2 = dzdz̄ =

∣

∣

∣

∣

(

1− i τ
2π

2

)

dw +

(

1 + i τ
2π

2

)

dw̄

∣

∣

∣

∣

2

, (2.19)

idw ∧ dw̄ =
4πdz2

Im(τ)
, (2.20)

5We will choose appropriate boundary term soon in (2.22).
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where dz2 = i
2dz∧dz̄. It was the key point in [96] to keep the boundary volume element w∧

w̄ under the variation of the action. In the variation of the Chern-Simons bulk action (2.1),

it is convenient to use (w, w̄) coordinates because the differential form dw and dw̄ are

not varied under the variation. Then, after varying the action, one can return to (z, z̄)

coordinates where the variation of aw, aw̄ leads to the variation of the modular parameter

τ, τ̄ because the linear transformation from (aw, aw̄) to (az, az̄) depends on τ and τ̄ :

aw =

(

1− i τ
2π

2

)

az +

(

1− i τ̄
2π

2

)

az̄ . (2.21)

With the boundary term chosen in [96]

Ib = −kcs
2π

∫

∂M
d2z Tr ((az − 2L1)az̄)−

kcs
2π

∫

∂M
d2z Tr ((āz̄ − 2L−1)āz) , (2.22)

the variation of the total action Itot ≡ ICS + Ib is

δItot = −ikcs
∫

∂M

d2z

2πIm(τ)
Tr

[

(az − L1)δ ((τ̄ − τ)az̄) +

(

a2z
2

+ azaz̄ −
ā2z
2

)

δτ (2.23)

−(−āz̄ − L−1)δ ((τ̄ − τ)āz) +

(

ā2z̄
2

+ āz̄āz −
a2z̄
2

)

δτ̄

]

.

For consistent boundary condition, we impose a boundary condition

az̄ = āz = 0 , δτ = δτ̄ = 0 . (2.24)

Note that since we turn off the chemical potential for higher spin charges, the variation of

the total action is simpler than that of [96]. Then, using the boundary condition we obtain

the on-shell action of Itot:

Ion-shell =
ikcs
2π

∫

d2z

Im(τ)
Tr
[τ

2
a2z −

τ̄

2
ā2z̄

]

. (2.25)

Note that though [96] mainly analyzed a constant solution a and ā with chemical poten-

tial, they already pointed out that their formulation can be applied to the non-constant

solutions.

2.2 Asymptotic AdS solution and on-shell action

In this section, we will work out the asymptotic AdS solution and the corresponding on-

shell action for the case of SL(3,C) explicitly. Due to the boundary condition in (2.24), by

using residual gauge symmetry, we can fix gauge connection to be

az(z) = L1 −
2π

kcs
L(z)L−1 +

π

2kcs
W(z) =







0
√
2 2π
kcs

L(z) 2π
kcs

W(z)√
2 0

√
2 2π
kcs

L(z)
0

√
2 0






,

āz̄(z̄) = L−1 −
2π

kcs
L̄(z̄)L1 +

π

2kcs
W̄(z̄) =







0 −
√
2 0

−
√
2 2π
kcs

L̄(z̄) 0 −
√
2

− 2π
kcs

W̄(z̄) −
√
2 2π
kcs

L̄(z̄) 0






. (2.26)

– 6 –
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Then, the on-shell action in (2.25) can be written as

Ion-shell = i

∫

d2z

Im(τ)

[

τL(z)− τ̄ L̄(z̄)
]

. (2.27)

In this work, we will study non-constant gauge connection a and ā that are connected to

a fixed constant solution aBTZ (e.g., BTZ black hole embedded in the higher spin gravity)

by smooth gauge transformation. i.e.,

a = h−1aBTZh+ h−1dh , (2.28)

where smooth gauge transformation means that h(z) is a holomorphic residual gauge trans-

formation parameter which can be smoothly connected to identity. We are interested in

the simplest constant connection aBTZ without spin-3 charge:

aBTZ =







0
√
2 2π
kcs

L0 0√
2 0

√
2 2π
kcs

L0

0
√
2 0






, (2.29)

where L0 is a constant. Under the smooth residual gauge transformation, the holonomy is

not changed up to similarity transformation.

HolC(A) ≡ P exp[−
∫

C
A] = b−1h−1e−whb . (2.30)

Note that a holonomy along the contractible cycle of the solid torus should be trivial,

namely, it belong to the center of the SL(N) gauge group [97, 99, 101]. The Euclidean

time circle C is the contractible on in the BTZ black hole, and the smoothness of its

holonomy leads to

w = τaz + τ̄ az̄ = u−1(2πiL0)u , (2.31)

for some matrix u. From this condition, one can find the relation between the constant L0,

constant energy-momentum tensor of the BTZ black hole, and the modular parameter τ :

tr (w2) = tr













0 −2πτL0
kcs

√
2 0√

2τ 0 −2πτL0
kcs

√
2

0
√
2τ 0







2




=

16πτ2L0

kcs
= −8π2 , (2.32)

and, we have

τ = iπ

√

kcs
2πL0

, τ̄ = −iπ
√

kcs
2πL̄0

. (2.33)

Recall that we fix the modular parameter under the variation of the action. This cor-

responds to fixing the constant L0 and L̄0. Therefore, our on-shell action captures the

(fixed) BTZ black hole geometry embedded in higher spin gravity with τ, τ̄ together with

the smooth fluctuation thereof.

Now, we will calculate L(z) in the non-constant connection a(z) in terms of the smooth

residual gauge transformation parameter h(z) which transforms the constant background

– 7 –
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aBTZ to a(z). For arbitrary constant L0, this can be worked out in principle as follow. Using

the Gauss decomposition of the gauge parameter h(z), one can find a generic residual gauge

symmetry parameter which keep the gauge condition that we chose in (2.26). However,

among the generic residual gauge symmetry parameter, it is not easy to distinguish smooth

one from large gauge transformation which will change the holonomy. Unlike SL(2) case

where we know the correct answer for any L0, for now we do not have a guiding principle

to derive the form of L(z) or W(z) for the non-zero L0, and this corresponds to find “the

finite temperature SL(N) Schwarzian derivative”.6

At least, an infinitesimal residual gauge transformation is smooth, and one can obtain

L(z) and W(z) perturbatively. But, unlike SL(2) case, it is not easy to integrate the pertur-

bative expression of L(z) and W(z) to obtain the full higher spin Schwarzian derivative at

finite temperature, either. Nevertheless, for our purpose, it is enough to evaluate L(z) per-
turbatively because the leading contribution of boundary higher spin modes to OTOCs can

be evaluated by quadratic on-shell action. Hence, let us consider an infinitesimal residual

gauge transformation by

h = I+ ǫ λ(1) +
1

2
ǫ2
[

(λ(1))2 + λ(2)
]

+ · · · , (2.34)

where λ(1), λ(2) ∈ sl(3) are parametrized by

λ(1) =







ϕ
(1)
1 e

(1)
−1 e

(1)
−3

e
(1)
1 −ϕ(1)

1 + ϕ
(1)
2 e

(1)
−2

e
(1)
3 e

(1)
2 −ϕ(1)

2






, (2.35)

λ(2) =







ϕ
(2)
1 e

(2)
−1 e

(2)
−3

e
(2)
1 −ϕ(2)

1 + ϕ
(2)
2 e

(2)
−2

e
(2)
3 e

(2)
2 −ϕ(2)

2






. (2.36)

The infinitesimal gauge transformation leads to the expansion of the on-shell action

in (2.27):

Ion-shell = I
(0)
on-shell + ǫ I

(1)
on-shell + ǫ2 I

(2)
on-shell + · · · . (2.37)

We demand that the gauge transformation of the constant connection aBTZ by h(z) keeps

the gauge condition in (2.26) order by order. i.e.,

a = h−1aBTZh+ h−1∂zh ,

= aBTZ + ǫ







0
√
2 2π
kcs

L(1) 2π
kcs

W(1)

0 0
√
2 2π
kcs

L(1)

0 0 0






+ ǫ2







0
√
2 2π
kcs

L(2) 2π
kcs

W(2)

0 0
√
2 2π
kcs

L(2)

0 0 0






+ · · · . (2.38)

In the first order, one can determine ϕ
(1)
1 , ϕ

(1)
2 , e

(1)
2 , e

(1)
−1, e

(1)
−2, e

(1)
−3 as a linear combinations

of e
(1)
1 and e

(1)
3 . Also, by demanding the gauge condition in the second order, one can

6For “zero temperature Schwarzian derivative”, see appendix F and [91, 92, 94, 95]. Note that [94]

proposed a conjecture on the finite temperature SL(3) Schwarzian.
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express ϕ
(2)
1 , ϕ

(2)
2 , e

(2)
2 , e

(2)
−1, e

(2)
−2, e

(2)
−3 in terms of the quadratics of e

(1)
1 and e

(1)
3 and the linear

combinations of e
(2)
1 and e

(2)
3 . As a result, the first order L(1) and W(1) gives the W3 algebra

as asymptotic symmetry with identification c = 6kcs =
3l
2G [71, 72, 102]. By redefining7

ǫ e
(1)
1 (z) = η(z)− 1

2
√
2
ζ ′(z) , (2.39)

ǫ e
(2)
3 (z) = ζ(z) , (2.40)

one can express the second order L(2) and W(2) in terms of η(z) and ζ(z):

ǫ2L(2) =
kcs
16π

(

−
(

2π

τ

)2

[η′]2 + [η′′]2
)

+
kcs
384π

(

4

(

2π

τ

)4

[ζ ′]2 − 5

(

2π

τ

)2

[ζ ′′]2 + [ζ ′′′]3
)

, (2.41)

ǫ2W(2) =
kcs

24
√
2π

(

4

(

2π

τ

)4

η′ζ ′ − 5

(

2π

τ

)2

η′′ζ ′′ + η′′′ζ ′′′
)

. (2.42)

up to total derivatives. Here, we used the relation between the modular parameter τ and L0

in (2.33) derived from the smoothness of holonomy along the contractible cycle. Expanding

η(z) and ζ(z) by

η(z) =
∑

n

ηn e
− 2πinz

τ , ζ(z) =
∑

n

ζn e
− 2πinz

τ , (2.43)

the quadratic on-shell action I
(2)
on-shell in (2.37) becomes

ǫ2 I
(2)
on-shell =

2π4ikcs
τ3

∑

n≧2

n2(n2 − 1)η−nηn +
π6ikcs
3τ5

∑

n≧3

n2(n2 − 1)(n2 − 4)ζ−nζn

− (anti-holomorphic) . (2.44)

Note that the on-shell action for ηn and ζn vanishes for n = 0,±1 and n = 0,±1,±2,

respectively. They are the SL(3,C) isometry of the constant connections. In the higher

spin black hole, SL(3,C) isometry of AdS vacuum is supposed to be broken because of the

periodicity of ϕ. But, because we are working in the covering space of ϕ, we still have

SL(3,C) isometry. Now, one can read off the two point function of boundary soft modes:

〈η−nηn〉 =
κ2

n2(n2 − 1)
(|n| ≧ 2) , (2.45)

〈ζ−nζn〉 =
κ3

n2(n2 − 1)(n2 − 4)
(|n| ≧ 3) . (2.46)

where the coefficient κ2 and κ3 are given by

κ2 ≡
τ3

2π4ikcs
, κ3 ≡

3τ5

π6ikcs
. (2.47)

7Here, we absorbed the infinitesimal parameter ε into η(z) and ζ(z).
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3 Gravitational dressing and soft higher spin expansion

One way to diagnose quantum chaos is by the out-of-time-ordered correlators of matter field

or equivalently by scattering of shock waves in the dual bulk theory. However, the three-

dimensional pure higher spin gauge theory does not contain a matter field. This problem

is more pronounced in Chern-Simons formulation, since being topological, it is not easy to

couple the higher spin fields to matter which is not topological in AdS3. The construction of

an action of interacting higher spin gauge theories with matter is also a challenging problem.

Although it is difficult to construct interaction with matter field, one may consider a

scalar field in the probe limit. And, in a simple background geometry such as BTZ black

hole embedded in higher spin gravity, the boundary-to-boundary propagator of the probe

scalar field is nothing but two point function in CFT2 with suitable conformal dimen-

sion. However, the evaluation of OTOCs from the on-shell action via analytic continuation

requires the W transformation of the two point function, at least, infinitesimally. In con-

trast to the conformal transformation, the W transformation of two point function is not

well-understood due to the non-linearity of WN algebra.

Despite of the above obstacles, we could find ways to deal with those difficulties. For

the evaluation of OTOCs via analytic continuation, we first need to calculate Euclidean

four point function on the boundary. For this, we consider a particular type of four point

function which can be viewed as two point function of bi-local operators Φ(z1, z̄1; z2, z̄2)

and its leading contribution to the four point function (equivalently, two point function of

two bi-locals) is the product of one-point function of each bi-locals.

〈Φ1(z1, z̄1; z2, z̄2)Φ2(z3, z̄3; z4, z̄4)〉 = G1(z12, z̄12)G2(z34, z̄34) + · · · , (3.1)

where Gi(z, z̄) (i = 1, 2) is the one-point function of the bi-local operator corresponding to

a boundary-to-boundary two point function:

Gi(z12, z̄12) ≡ 〈Φi(z1, z̄1; z2, z̄2)〉 (i = 1, 2) . (3.2)

We will consider a gravitationally dressed bi-local field, namely, the bi-local field in the

non-constant background. In particular, for a non-constant background which is connected

to a constant background (e.g., BTZ black hole) by infinitesimal gauge transformation, one

can expand the gravitationally dressed bi-local field with respect to the soft modes.

Φdressed(z1, z̄1; z2, z̄2) = G(z1, z̄1; z2, z̄2) + ǫ G(1)(z1, z̄1; z2, z̄2) + · · · . (3.3)

Recall that an infinitesimal residual gauge transformation induces an infinitesimal W trans-

formation on the boundary. Therefore, the soft mode expansion of the gravitationally

dressed bi-local field, which is generated by an infinitesimal residual gauge transformation

from constant connection to non-constant one, gives the W transformation of the leading

term, namely, W transformation of the boundary two point function.

In [103, 104], the complete set of conformal partial wave functions has been constructed

by correlation function of bi-local operator and spin-s primary operator. In this spirit, one
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can also induce the soft mode eigenfunction by taking correlation function between the

dressed bi-local operator and the soft higher spin mode:

〈ǫ Φdressed(z1, z̄1; z2, z̄2)〉 ∼ G(1)(z1, z̄1; z2, z̄2) + · · · . (3.4)

Recall that the soft mode expansion of the dressed bi-local operator defines G(1) i.e.,

δǫΦ
dressed = G(1). Therefore, (3.4) can be viewed as the Ward identity of W3 algebra.

In the next few sections, we will discuss the form of G(1) using various arguments.

First, we will consider the master field of matter in the Vasiliev equation in section 3.1 and

a Wilson line in section 3.2 as a gravitationally dressed bi-local operator, and we will study

the soft mode expansion thereof. In addition, from the null relation of primary operators

in higher spin AdS3/CFT2 duality to find the Ward identity of W-algebra for its two point

function in section 3.3. We also discuss recursion relations of the soft mode eigenfunctions

in section 3.4.

3.1 Matter master field in Vasiliev equation

Let us consider the WN minimal model at semi-classical limit where ’tHooft coupling

constant λ is taken to be −N in the higher spin AdS3/CFT2 [86, 105, 106]. In the semi-

classical limit, the gauge sector becomes sl(N) × sl(N) Chern-Simons gravity where the

gauge connection A is sl(N) matrix of which equation of motion is given by

dA+A ∧A = 0 . (3.5)

In addition, the propagating scalar field can be described by master field C which is a

N ×N matrix [86]:

dC +AC − CA = 0 . (3.6)

Note that the physical scalar field corresponds to the trace of the master field C, and other

components can be expressed in terms of its derivatives [86, 107]. Note that the equations

of motion are invariant under the gauge transformation

δA = dξ +Aξ − ξA , (3.7)

δC = −ξC + Cξ̄ . (3.8)

As in the previous section, we take into account a constant background and its fluctuation

connected by smooth residual gauge transformation:

Az = b−1(h−1aBTZh+ h−1∂zh)b , Ar = b−1∂rb , (3.9)

where b(r) ≡ erL0 .

The solution of the equation of motion for C in the constant background is easily found

to be [86]

C(r, z, z̄) = b−1(r)e−aBTZzc0e
āBTZz̄b−1(r) , (3.10)

where c0 is a constant matrix. It was proven [86] that tr (C) satisfies the Klein-Gordon

equation for any choice of c0. In particular, for L0 = L̄0 = 0, it satisfies

[∂2r + 2∂r + 4e−2r∂∂̄ − (N2 − 1)]tr (C) = 0 . (3.11)
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Note that with the choice of “the highest weight state” c0

(c0)ij = δi1δj1 , (3.12)

it was also shown that tr (C) gives the boundary-to-bulk propagator [86].

One can also study the master field in a non-stationary background. The solution with

non-constant connection can be written as Wilson line:

C(r1, z1, z̄1; z2, z̄2) , (3.13)

= lim
r2→∞

e2hr2b−1(r1)P exp

[

−
∫ z1

z2

a

]

b(r2)c̃0b(r2)P exp

[

−
∫ z̄2

z̄1

ā

]

b−1(r1) ,

where c̃0 is a constant matrix. Here, one need to choose a reference point z2, r2 corre-

sponding to the other point of Wilson line, and if r2 → ∞, one can interpret the z2 as the

position of source on the boundary. We took limit r2 → ∞ with factor e2hr2 where the

conformal dimension h = h̄ of scalar field is given by

h = h̄ = −N − 1

2
. (3.14)

The negative conformal dimension reflects that the semi-classical limit of higher spin

AdS3/CFT2 is non-unitary [86, 105]. Furthermore, according to the dictionary of the

higher spin AdS3/CFT2 [81, 108], the scalar field in the hs[λ] higher spin gravity has

conformal dimension h = 1+λ
2 . In the semi-classical limit where we perform the analytic

continuation λ→ −N , the conformal dimension of the scalar field becomes

h =
1 + λ

2
=⇒ h = −N − 1

2
. (3.15)

This agrees with the conformal dimension of the master field.

In this prescription with Wilson line for the master field, it is natural to have “the

highest weight state” due to the regularization. i.e.,

c0 ≡ lim
r2→∞

e2hr2b(r2)c̃0b(r2) =⇒ (c0)ij ∼ δi1δj1 . (3.16)

Furthermore, tr (C), represents the bulk-to-boundary propagator, and we also take limit

r1 → ∞ in tr (C), which leads to boundary-to-boundary propagator in the non-constant

background. We take it as our bi-local field:

Φdressed
master (z1, z̄1; z2, z̄2) ≡ lim

r→∞
e2hr1tr [C(r1, z1, z̄1; z2, z̄2)] . (3.17)

Recall that one can consider the soft mode expansion of the non-constant connection around

a constant one. And, the boundary-to-boundary propagator in the non-constant back-

ground can be understood as the gravitationally dressed master field. Using the residual

gauge transformation, we can express the dressed master field as follow.

Cdressed(r1, z1, z̄1; z2, z̄2) , (3.18)

= b−1(r1)h
−1(z1)e

−aBTZ(z1−z2)h(z2)c0h̄(z̄2)e
−āBTZ(z̄2−z̄1)h̄−1(z̄1)b

−1(r1) .
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For the soft mode expansion

Φdressed
master (z1, z̄1; z2, z̄2) = G(z1, z̄1; z2, z̄2) +G(1)(z1, z̄1; z2, z̄2) + · · · , (3.19)

we use the infinitesimal residual gauge transformation in (2.34) parametrized by η(z) and

ζ(z) (See (2.39) and (2.40)). The leading bi-local field G(z1, z̄1; z2, z̄2) is a boundary-to-

boundary propagator in the constant background:

G(z1, z̄1; z2, z̄2) =

[

π2

τ τ̄

sin
(

πz12
τ

)

sin
(

πz̄12
τ̄

)

]2h

. (3.20)

For the sub-leading one, using the mode expansion of η(z) and ζ(z) in (2.43), we have

G(1)(z1, z̄1; z2, z̄2)

G(z1, z̄1; z2, z̄2)
=
∑

|n|≧2

ηnf2,n(z1, z2) +
∑

|n|≧3

ζnf3,n(z1, z2) + (anti-holomorphic) , (3.21)

where soft mode eigenfunction fs,n(z1, z2) (s = 2, 3) is found to be

f2,n ≡ γ2 e
− 2πinχ

τ

[

n cos
2πnσ

τ
− sin 2πnσ

τ

tan 2πσ
τ

]

, (3.22)

f3,n ≡ γ3 e
− 2πinχ

τ

[

2n2 sin
2πnσ

τ
+ 6n

cos 2πnσ
τ

tan 2πσ
τ

− 2
1 + 2 cos2 2πσ

τ

sin2 2πσ
τ

sin
2πnσ

τ

]

, (3.23)

where we defined (χ, σ) in terms of the bi-local coordinates (z1, z2) by

χ =
1

2
(z1 + z2) , σ =

1

2
(z1 − z2) , (3.24)

and the coefficient γs (s = 2, 3) is found to be

γ2 ≡ −4πih

τ
, γ3 ≡

4π2ih(2h+ 1)

τ2
. (3.25)

Also, we used the relation (2.33) derived from the smoothness of holonomy:

L0 = −kcsπ
2τ2

, L̄0 = −kcsπ
2τ̄2

. (3.26)

For propagators in the BTZ background, we need to impose the periodicity of the

angular coordinate φ ∼ φ + 2π, which can be realized by the method of images. This is

also involved with the non-contractible cycle of BTZ black hole. We will discuss this issue

in the next section together with Wilson line.

Remarks on the highest weight prescription. Before ending this section, we make

a remark on the choice of “the highest weight state” (c0)ij ∼ δi1δj1 from the point of view

of the residual gauge transformation. From the solution in (3.10) of the master field in the

constant background, the residual gauge transformation of the connection a and ā induces

the transformation of c0 where the information about the boundary operator (z2, z̄2) is
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encoded. To see this, note that the residual gauge transformation by h will transform the

c0 as follow.

c0 −→ h(z2)c0h̄(z̄2) . (3.27)

For simplicity, let us consider the action of holomorphic gauge transformation, and we work

out explicitly for sl(2) case with L0 = 0:

(I+ ǫ λ(1)(z))

(

(c0)11 (c0)12
(c0)21 (c0)22

)

= c0 + (c0)11

(

−1
2f

′(z) 0

f(z) 0

)

+ (c0)12

(

0 −1
2f

′(z)
0 f(z)

)

+ (c0)21

(

−1
2f

′′(z) 0
1
2f

′(z) 0

)

+ (c0)22

(

0 −1
2f

′′(z)
0 1

2f
′(z)

)

, (3.28)

where we parametrized the infinitesimal residual gauge parameter by

λ(1)(z) =

(

−1
2f

′(z) −1
2f

′′(z)
f(z) 1

2f
′(z)

)

. (3.29)

Recall the conformal transformation of primary φ and its descendant L−1φ = ∂zφ by

infinitesimal variation ǫ(z) is given by:

δǫφ = −ǫ(z)∂zφ− h∂zǫ(z)φ , (3.30)

δǫ∂zφ = −h∂2z ǫ(z)φ− (h+ 1)∂zǫ(z)∂zφ− ǫ(z)∂2zφ , (3.31)

where h is the conformal dimension of φ. Comparing (3.28) with (3.31), the holomorphic

part of (c0)11, (c0)12 modes transform like primaries with h = −1
2 while (c0)21 and (c0)22

components behave like descendants. Also, note that the last term in (3.31) does not

appear in the (3.28). This would be because the operator dual to the matter field in the

semi-classical limit has the conformal dimension h = −1
2 and ∂2φ is a null state for SL(2)

case (See section 3.3). In the same way with anti-holomorphic transformation, one can show

that (c0)11 and (c0)21 modes are primaries while (c0)12 and (c0)22 are descendants. Hence,

(c0)11 mode is the primary operator in both holomorphic and anti-holomorphic sector, and

this is why (c0)11 mode gives the correct bulk-to-boundary correlator. In section 3.3, we

will discuss how a special class of operators (e.g., the primary operator dual to scalar field

in higher spin gravity) behave under W transformation. Based on this observation, one can

see that “the highest state” mode indeed transforms as a primary for the case of N = 3.

3.2 Wilson line

The Wilson line captures interesting physics in gauge theories. In the Chern-Simons gravity

as a gauge theory, the Wilson line plays an important role. In [109–113], the Wilson line

has been investigated in the Chern-Simons (higher spin) gravity to define entanglement

entropy holographically. This proposal is very natural because Wilson line between two

boundary points gives geodesic distance of them, which is equivalent to the Ryu-Takayanagi

prescription [114, 115]. In 2D, the Wilson line was studied in the Schwarzian theory to

evaluate the OTOCs [54, 116, 117]. In previous section, the Wilson line also appears as a

solution of the equation of motion of the master field.
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For Wilson line in Chern-Simons gravity, for fixed end points, one can still consider

various Wilson line objects depending on the choice of states of the Wilson line operator.8

Those were extensively studied from the point of view of Ishibashi states in the dual

CFT2 [113]. In this paper, we will simply consider the following Wilson line [110] between

(r1, z1, z̄1) and (r2, z2, z̄2) as our bi-local field:

ΦWilson(z1, z̄1; z2, z̄2) = lim
r→∞

e4hrtr

[

P exp

(

−
∫ r,z1

r,z2

A

)

P exp

(

−
∫ r,z̄2

r,z̄1

Ā

)]

, (3.32)

where we regularize Wilson line from boundary to boundary symmetrically. Then, this

is equivalent to the definition of the gravitationally dressed master field in (3.17) with

(c0)ij = δij . Hence, under the soft mode expansion, we have the same result.

Φdressed
Wilson (z1, z̄1; z2, z̄2) = G(z1, z̄1; z2, z̄2) +G(1)(z1, z̄1; z2, z̄2) + · · · , (3.33)

where the leading and the sub-leading bi-locals are given by

G(z1, z̄1; z2, z̄2) =

[

π2

τ τ̄

sin
(

πz12
τ

)

sin
(

πz̄12
τ̄

)

]2h

, (3.34)

G(1)(z1, z̄1; z2, z̄2)

G(z1, z̄1; z2, z̄2)
=
∑

n

ηnf2,n(z1, z2) + ζnf3,n(z1, z2) + (anti-holomorphic) , (3.35)

with the same f2,n and f3,n as in the master field as before in (3.22) and (3.23). Though

the mathematical definition of the simple Wilson line in our consideration is the same as

that of the master field solution, the Wilson line can give geometric insights. First of all,

the Wilson line will give the geodesic distance between two boundary points. In 3D, the

geodesic corresponds to the Ryu-Takanayagi surface, and the Wilson line can provide the

entanglement entropy [109, 110]. Following [110], we define the holographic entanglement

entropy (on the constant Euclidean time slice) by

SEE(∆φ) ≡ −kcs
2h

log e4hr0Φdressed
Wilson (z1, z̄1; z2, z̄2)

∣

∣

∣

tE=0,φ=φ1−φ2

, (3.36)

where h is the conformal dimension of the operator at the end points of Wilson line. For

our case, it is given by

h = −1

2
(N − 1) . (3.37)

Also, we retrieved the UV divergence by the radial cutoff r0 (See (3.32)). As pointed out

in [110], this reproduces known entanglement entropy in the various 3D background. In

particular, we are interested in BTZ background where the non-contractible cycle along

φ. For simplicity, we will consider the non-rotating BTZ black hole,9 and the Wilson line

via (3.36) indeed reproduces the entanglement entropy in the BTZ background [110]

SEE(∆φ) =
c

6
log

[

π2β2

l2e−2r0
sinh2

(

πl∆φ

β

)]

. (3.38)

8For instance, as in previous section one can take the trace of Wilson line operator. Or, we can also take

a particular component. In fact, the solution of master field can be viewed as the highest weight state for

(z2, z̄2) when we remove the trace by exchanging the holomorphic and anti-holomorphic part.
9See [7] for rotating BTZ black hole in SL(2) Chern-Simons gravity.
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Here, we used the relation between the central charge c and Chern-Simons level kcs

c = 6kcs , (3.39)

and we also used the modular parameter of the non-rotating black hole:

τ =
2πil

r+
=
iβ

l
, τ̄ = −2πil

r+
= − iβ

l
. (3.40)

The existence of the non-contractible cycle could make Wilson line ambiguous. But, by

considering the covering space of φ, one can incorporate the contribution of horizon into

Wilson line. First, let us consider φ = 2π where one end of the Wilson line rotate around

whole boundary and comes back to the other point. in high temperature β ≫ l, one can

also recover the Bekenstein-Hawking formula for the BTZ black hole

SEE(2π) =
πr+
4G

+ · · · , (3.41)

where we used kcs = l
4G . As the Wilson line winds the horizon further, it is natural to

encode the winding number into bi-local fields like Wilson line as well as master field.

Φdressed
m (z1, z̄1; z2, z̄2) ≡ Φdressed(z1 + 2πm, z̄1 + 2πm; z2, z̄2) (m ∈ Z) . (3.42)

For AdS vacuum where the modular parameter is given by 2π, the holonomy around the φ

cycle is trivial. i.e., Φdressed
m (z1, z̄1; z2, z̄2) = Φdressed(z1, z̄1; z2, z̄2), but it is not true for BTZ

black hole. For non-constant background, one can also take the soft mode expansion of

Φdressed
m :

Φdressed
m (z1, z̄1; z2, z̄2) = Gm(z1, z̄1; z2, z̄2) +G(1)

m (z1, z̄1; z2, z̄2) + · · · . (3.43)

When we evaluate the boundary-to-boundary propagator GBTZ in the BTZ black hole

background, we impose the periodicity in φ by hand by summing up those wound bi-

locals [118, 119]

GBTZ(z1, z̄1; z2, z̄2) =
∑

m

Gm(z1, z̄1; z2, z̄2) =
∑

m∈Z

1

[sin π(z12+2πm)
τ

sin π(z̄12+2πm)
τ̄

]2h
. (3.44)

Now, we will study the sub-leading term of Φdressed
m in the soft mode expansion:

G(1)
m (z1, z̄1;z2, z̄2)=





∑

|n|≧2

ηnf̃2,n;m(z1,z2)+
∑

|n|≧3

ζnf̃3,n;m(z1,z2)



Gm(z1, z̄1;z2, z̄2)

+(anti-holomorphic) , (3.45)

where f̃2,n;m(z1, z2) and f̃3,n;m(z1, z2) is found to be

f̃2,n;m ≡ γ2 e
− 2πinχ

τ

[

n cos
2πnσ

τ
− sin 2πnσ

τ

tan 2π(σ+πm)
τ

]

, (3.46)

f̃3,n;m ≡ γ3 e
− 2πinχ

τ

[

2n2 sin
2πnσ

τ
+ 6n

cos 2πnσ
τ

tan 2π(σ+πm)
τ

− 2
1 + 2 cos2 2π(σ+πm)

τ

sin2 2π(σ+πm)
τ

sin
2πnσ

τ

]

,

(3.47)
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where γ2 and γ3 is given in (3.25). Note that for m 6= 0 we have

f̃2,0,m(χ, σ) = f̃3,0,m(χ, σ) = 0 , (3.48)

while

f̃2,±,m(χ, σ) 6= 0 , f̃3,±1,m(χ, σ) 6= 0 , f̃3,±2,m(χ, σ) 6= 0 . (3.49)

This reflects the well-known fact that in BTZ black hole the global sl(N) isometry is broken

to its Cartan [U(1)]⊕N−1.

3.3 Null relation and Ward identity of W-algebra

In the last two sub-section, we have investigated the bi-local fields in the non-constant

background and the soft mode expansion thereof. As we discussed, the soft mode, which

generates (infinitesimal) residual gauge transformation, will induce the W-transformations

on the boundary. Hence, the soft mode expansion of the gravitationally dressed bi-local field

give theWard identity ofW-algebra on the boundary. In CFT, we know how two point func-

tion of any primary operators transforms under the conformal symmetry, and we have seen

that soft mode expansion indeed reproduce the conformal transformation of two point func-

tion [11–16, 20]. In the previous section, we obtained soft mode expansion for W3 symmetry,

which is related to the W3 transformation of two point function in CFT with W3 symmetry.

However, from the point of view of CFT, this is, in general, difficult to study due to the non-

linearity of W-algebra, and a general formula is not known at least to author’s knowledge.

Though the W3 transformation of a generic primary would be difficult, one might be

able to find it for a special case where non-linearity is suppressed. In this section, we

derive the Ws-transformation (s = 3, 4) of a special primary based on its null relation in

the ’tHooft limit of the WN minimal model [108, 120–122]. Also, in appendix B we make

a conjecture to extend the null relations and we derive the soft mode eigenfunctions for

general spin s.

In WN minimal model, a primary operator can be labelled by two Young tableaux

(Λ+; Λ−) [81, 108]. In particular, a primary operator φ1 ≡ ( ; 0) is dual to the scalar

field in the dual higher spin gravity. It was shown [108] that because of null relation, the

action of generators W
(s)
−n on a primary operator φ1 of conformal dimension h ≡ 1

2(1 + λ)

is proportional to Ln
−1φ1 in large c. For instance, the null relation of φ1 was found to be

W
(3)
0 φ1 = w(3)φ1 , w(3) = −(1 + λ)(2 + λ) , (3.50)

W
(3)
−1 φ1 =

3w(3)

2h
L−1φ1 , (3.51)

W
(3)
−2 φ1 =

3w(3)

h(2h+ 1)
L2
−1φ1 . (3.52)
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And, for its conjugate φ̄1 ≡ ( ; 0), we have

W
(3)
0 φ̄1 = −w(3)φ̄1 , (3.53)

W
(3)
−1 φ̄1 = −3w(3)

2h
L−1φ̄1 , (3.54)

W
(3)
−2 φ̄1 = − 3w(3)

h(2h+ 1)
L2
−1φ̄1 . (3.55)

Note φ1 and φ̄1 have opposite W3 charge. Note that this primary operator corresponds to

the master field and Wilson line in the previous section in the semi-classical limit.

At zero temperature, from the mode expansion of W (s)(z)

W (s)(z) =
∑

n

z−n−sW (s)
n , (3.56)

the OPE of W (s)(z) with the primary field φ1(w) defined via W
(s)
n φ1 = 0, ∀n > 0 gives

− 1

2πi

∮

dz ζ(s)(z)W (s)(z)φ1(w) = − 1

2πi

∑

n

∮

dz
ζ(s)(z)

(z − w)n+s
(W (s)

n φ1)(w) ,

= −
s−1
∑

m=0

1

m!
∂mz ζ

(s)(z)(W
(s)
m−s+1φ1)(w) . (3.57)

Using (3.50)∼(3.55) the Ward identity for W3 symmetry can be written as

δǫ〈φ1(z1)φ̄1(z2)〉 (3.58)

= −w(3)

[

1

2
∂21ζ1 +

3

2h
∂1ζ1∂1 +

3

h(2h+ 1)
ζ1∂

2
1 − (1 → 2)

]

〈φ1(z1)φ̄1(z2)〉 .

where ζi ≡ ζ(zi) and ∂i ≡ ∂
∂zi

(i = 1, 2). Then, inserting the two point function at zero

temperature

〈φ1(z1)φ̄1(z2)〉 =
1

(z1 − z2)2h
, (3.59)

and using parametrization ζ(z) =
∑

n ζnz
n+2, we have the infinitesimal transformation of

two point function under W3 symmetry as:

δǫ〈φ1(z1)φ̄1(z2)〉
〈φ1(z1)φ̄1(z2)〉

(3.60)

= w(3)
∑

n

ζn

[

−1

2
n2(zn1 − zn2 ) +

3

2
n
z1 + z2
z1 − z2

(zn1 + zn2 )−
z21 + 4z1z2 + z22

(z1 − z2)2
(zn1 − zn2 )

]

.

At finite temperature, one can transform the zero temperature result in (3.60) by10

z −→ e−iz , (3.61)

10Here, wee use τ = 2π for simplicity, and, we will recover it if necessary.
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or, one can also use the finite temperature representation of L−1 in (3.57)

L−1 = eiz(∂z + ih) . (3.62)

Then, we can obtain

δǫ〈φ1(z1)φ̄1(z2)〉
〈φ1(z1)φ̄1(z2)〉

(3.63)

=
iw(3)

2

∑

n

ǫne
−in

(

z1+z2
2

)

[

2n2 sin
nz12
2

+ 6n
cos nz12

2

tan z12
2

− 2
1 + 2 cos2 z12

2

sin2 z12
2

sin
nz12
2

]

,

where ǫi ≡ ǫ(zi) and ∂i = ∂zi (i = 1, 2). This agrees with the soft mode eigenfunction

derived from the soft mode expansion of the dressed bi-locals. In the same way, one can

further obtain the transformation of two point function under W (4) symmetry. The null

relations of φ1 are given by [108]

W
(4)
0 φ1 = w(4)φ1 , (3.64)

W
(4)
−1 φ1 =

4w(4)

2h
L−1φ1 , (3.65)

W
(4)
−2 φ1 =

10w(4)

2h(2h+ 1)
L2
−1φ1 , (3.66)

W
(4)
−3 φ1 =

20w(4)

2h(2h+ 1)(2h+ 2)
L3
−1φ1 , (3.67)

where w(4) denotes the W
(4)
0 charge of the operator φ1. This gives

δζ〈φ1(z1)φ̄1(z2)〉

= −w(4)

[

1

6
∂31ζ1 +

2

2h
∂21ζ1∂1 +

10

2h(2h+ 1)
∂1ζ1∂

2
1 +

20

2h(2h+ 1)(2h+ 2)
ζ1∂

3
1

+ (1 → 2)

]

〈φ1(z1)φ̄1(z2)〉 . (3.68)

And, the transformation of two point function at finite temperature is found to be

δζ〈φ1(z1)φ̄1(z2)〉
〈φ1(z1)φ̄1(z2)〉

= −w
(4)

6

∑

n

ζne
−in

(

z1+z2
2

)

×
[

2n3 cos
nz12
2

− 12n2
sin nz12

2

tan z12
2

+ n
(

7− 15 cot2
z12
2

− 15 csc2
z12
2

)

cos
nz12
2

+
(

5 cot3
z12
2

+ 25 cot
z12
2

csc2
z12
2

− 7 cot
z12
2

)

sin
nz12
2

]

. (3.69)

In principle, one can confirm this result from SL(4,C) Chern-Simons gravity although it

would be much more tedious calculation. However, from the null relation for s = 3, 4, we

could find a pattern of the null relations, and we make a conjecture on null relation for

general s in appendix B. Namely, we conjecture that

W
(s)
−nφ1 ∼ Ls

−1φ1 . (3.70)
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From this conjecture, we could obtain the soft mode eigenfunction for arbitrary s. Sur-

prisingly, this result agrees with another conjecture on the recursion relation of those

eigenfunctions. Based on the soft mode eigenfunction for s = 1, 2, [13] conjectured a cri-

teria on the recursion relation to construct the eigenfunction for spin s = n from those of

s = 1, 2, · · · , n− 1. In section 3.4, we complete the conjecture to find a concrete recursion

relation to satisfy the criteria in [13]. And, the resulting eigenfunctions perfectly agree with

those from the null relation. Furthermore, these eigenfunction satisfies a Casimir differ-

ential equation as expected, and we could finally find that those eigenfunctions have been

observed as a basis in the large q limit together with βJ → ∞ limit of SYK model [20].

3.4 Recursion relation of soft mode eigenfunction

In general SL(N,C) Chern-Simon higher spin theory, it is practically difficult to derive

the soft mode eigenfunction for arbitrary spin-s explicitly. But, if there is underlying

mathematical structure of those eigenfunctions, one might be able to derive them without

referring to Chern-Simons higher spin gravity.

We begin with two eigenfunctions for s = 1, 2 [13]:

f1,n(z1, z2) =
e
−in

(

z1+z2
2

)

sin z12
2

sin
nz12
2

, (3.71)

f2,n(z1, z2) =
e
−in

(

z1+z2
2

)

sin z12
2

[

n cos
nz12
2

− sin nz12
2

tan z12
2

]

, (3.72)

where we again use holomorphic sector only and choose the (inverse) temperature to be

τ = 2π for simplicity. Note that we include sin z12
2 in the denominator which comes from

the measure of the SL(2) invariant inner product [20, 123]. It is also convenient to define

the center of coordinate χ and the relative coordinate σ by

χ ≡ 1

2
(z1 + z2) , σ ≡ 1

2
(z1 − z2) . (3.73)

By an abuse of notation, we will also redefine fi,n(χ + σ, χ − σ) → fi,n(χ, σ) only in this

section. We then have a simpler expression

f1,n(χ, σ) = e−inχ sinnσ

sinσ
, (3.74)

f2,n(χ, σ) =
e−inχ

sinσ

[

n cosnσ − sinnσ

tanσ

]

. (3.75)

In the rest of this section we will find the modes fs,n for all s, n by demanding certain

conditions. From the translation symmetry of center of coordinate, which is a part of

bi-local SL(2) symmetry, we expect

fs,n(χ, σ) ≡ e−inχgs,n(σ) , (3.76)

for some gs,n(σ). For our purpose, we need to introduce two ingredients. First one is the

SL(2) invariant inner product on the space of functions fs,n [20, 123]

〈fs,n, fs′,n′〉 = 1

2π

∫ 2π

0
dχ

∫ π

0
dσ f∗s,n(χ, σ)fs′,n′(χ, σ) . (3.77)
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Note that we already absorbed the measure into fs,n. This inner product can be naturally

defined in the SYK model. Due to the translational symmetry of the center of coordinates,

the inner product is diagonal in n-space. On the gs,n(z) function defined via (3.76), this

inner product (for the same n) translates to

〈gs,n, gs′,n〉 =
∫ π

0
dσ g∗s,n(σ)gs′,n(σ) . (3.78)

Another ingredient we need is a recursive way to build the functions gs,n(σ). Based on the

observation that f2,n(χ, σ) = ∂zf1,n(χ, σ), it was conjectured in [13] that a mode fs,n is a

linear combination of differential operators11 ∂σ acting on modes fs′,n for all s′ < s. We

can make a reasonable conjecture that the set of functions gs,n(σ) satisfy the following two

conditions:

I : gs,n(σ) = ∂σgs−1,n(σ) +
s−2
∑

s′=0

Ps,s′,n(∂σ)gs′,n(σ) , (3.79)

II : 〈gs,n, gs′,n〉 ∼ δs,s′ . (3.80)

where Ps,s′,n(∂σ) is a polynomial in ∂σ. For the given g1,n(σ), g2,n(σ) it is easy to find

explicitly such polynomials Ps,s′,n(∂σ) satisfying (3.80) for low spins. For instance, we

found that [13]

g3,n(σ) = ∂zg2,n(σ) +
1

3
(n2 − 1)g1,n(σ) ,

g4,n(z) = ∂zg3,n(σ) +
4

15
(n2 − 4)gs,n(σ) , (3.81)

and so on. Continuing for a few more orders, we could guess that the correct recursion

relation is

gs+2,n = ∂σgs+1,n + Fs,ngs,n , (3.82)

where Fs,n is defined by

Fs,n ≡ s2(n2 − s2)

4s2 − 1
. (3.83)

In addition, the initial data for the recursion relation are given by

g1,n(σ) =
sinnσ

sinσ
, (3.84)

g2,n(σ) =
1

sinσ

[

n cosnσ − sinnσ

tanσ

]

. (3.85)

In appendix C, we show that the solution of the recursion relation in (3.82) is found to be

gs,n(σ) =







[(s−1)!]2

(2s−3)!!
eiπs

sinσ

(

einσPn,−n
s−1 (σ)− e−inσP−n,n

s−1 (σ)
)

for |n| ≧ s

0 for |n| < s
, (3.86)

11From the point of view of bi-local map in the higher spin AdS/CFT, the relative coordinates σ is related

to the spin s as well as radial coordinates of AdS.
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where Pα,β
n is a Jacobi Polynomial. Furthermore, we also show that fs,n’s are a solution of

a second order differential equation:

[

−∂2χ + ∂2σ − s(s− 1)

sin2 σ

]

[fs,n(χ, σ) sinσ] = 0 . (3.87)

Note that this is exactly the same as the differential equation found by [20] for the eigen-

function of the four point kernel in the large q limit with v → 1 of SYK model. Note that

the v → 1 limit corresponds to βJ → ∞ limit in SYK model. In addition, in the zero

temperature limit where sin σ is replaced by σ, such a differential equation is found in [104]

as Casimir differential equation of the bi-local CFTs.

Note the function fs,n diagonalizes the translation generator of center of coordinates.

From (3.87), one can easily show that fs,n are orthogonal. i.e.,

〈fs,n, fs′,n′〉 = Ns,nδs,s′δn,n′ , (3.88)

where we found (See appendix C)

Ns,n ≡ nπ(2s− 1)

[

(s− 1)!

(2s− 1)!!

]2 s−1
∏

j=1

(n2 − j2) . (3.89)

4 OTOC and Lyapunov exponent

The Lyapunov exponent diagnosing the quantum chaos is found to be 2π
β

for the black

hole background in the Einstein gravity. The maximal Lyapunov exponent comes from the

graviton exchanges in the high energy scattering. When the scattering can be mediated by

higher spin field in addition to graviton, the overall Lyapunov exponent could be changed

because one can expect that the Lyapunov exponent by the exchange of the spin s field12

is found to be [10]

λ
(s)
L =

2π(s− 1)

β
. (4.1)

This seemingly violates the chaos bound. It was shown [10] that in hs[λ] higher spin gravity

which contains infinite tower of higher spin fields, the exponential growth coming from all

higher spin fields forms a geometric series, and the overall Lyapunov exponent becomes

zero. Because the hs[λ] higher spin theories are unitary for λ ∈ [0, 1], the Lyapunov

exponent should not exceed 2π
β
. This is also consistent because the system with infinitely

many conserved charge would not be chaotic. On the other hand, the 3D higher spin gravity

in the semi-classical limit, the infinite tower of higher spin fields is truncated, and we have

only a finite number of higher spin fields. Hence, the geometric series will terminate at a

finite spin s, and therefore, it will violate the chaos bound. In fact, this is not surprising

because this theory is not unitary.

For evaluation of the out-of-time-ordered correlator, we will start from Euclidean four

point functions with a particular configuration. As we discussed in section 3, we also

12It was observed in [124] that the “pole-skipping” of W3 current leads to the Lyapunov exponent 4π
β
.
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consider four point function which can be evaluated by two point function of bi-local field

(e.g., master field or Wilson line). In the non-constant background, we consider the two

point function of the gravitationally dressed bi-local fields, and the soft mode expansion

allow us to compute the higher spin contribution to the Euclidean correlator.

F (1,2,3,4)≡〈Φdressed(1,2)Φdressed(3,4)〉=G(1,2)G(3,4)+〈G(1)(1,2)G(1)(3,4)〉+ · · · ,
=G(1,2)G(3,4)+

∑

s,n

〈ζ(s)n ζ
(s)
−n〉[δζ(s)n

G(1,2)] [δ
ζ
(s)
−n

G(3,4)]+ · · · , (4.2)

where ζ
(s)
n is the spin s soft mode. From the on-shell action, one can read off the two

point function of soft modes, which is proportional to 1
kcs

∼ 1
c
. Therefore, compared to the

leading disconnected two point function, the contribution of higher spin field is suppressed

by 1
c
, and this determine the scrambling time to be of order log c.

In BTZ black hole, we also have to take the periodicity of the angle φ into account.

For this, we consider the soft mode expansion of each image of the dressed bi-local field

Φdressed
m (z1, z̄1; z2, z̄2) in (3.42) due to the periodicity of φ ∼ φ + 2π, and we denote it by

f̃n,m. For N = 3 case, we have

f̃2,n;m(χ, σ; χ̄, σ̄) ≡ δηnΦ
dressed
m

= γ2 Gm(z1, z2; z̄1, z̄2)e
− 2πinχ

τ

[

n cos
2πnσ

τ
− sin 2πnσ

τ

tan 2π(σ+πm)
τ

]

, (4.3)

f̃3,n;m(χ, σ; χ̄, σ̄) ≡ δζnΦ
dressed
m

= γ3 Gm(z1, z2; z̄1, z̄2)e
− 2πinχ

τ

[

2n2 sin
2πnσ

τ
+ 6n

cos 2πnσ
τ

tan 2π(σ+πm)
τ

−2
1 + 2 cos2 2π(σ+πm)

τ

sin2 2π(σ+πm)
τ

sin
2πnσ

τ

]

, (4.4)

where γ2 and γ3 are given in (3.25). It is useful to choose a particular configuration

(z1, z̄1; z2, z̄2) = (χ− τ
4 , χ̄− τ̄

4 ;χ+ τ
4 , χ̄+ τ̄

4 ) or equivalently (χ, σ, χ̄, σ̄) = (χ,− τ
4 , χ̄,− τ̄

4 ) in

order to simplify the OTOC calculation [20]. With this choice of configuration, the leading

one-point function of the bi-local becomes

Gm

(

σ = −τ
4
, σ̄ = − τ̄

4

)

=
1

[

cos 2π2m
τ

cos 2π2m
τ̄

]2h
. (4.5)

Note that Gm is independent of χ and χ̄, and we will parametrize it by σ and σ̄. i.e.,

Gm(σ, σ̄). The soft mode eigenfunction f̃s,n,m = (s = 2, 3) can also be simplified as follow.

f̃2,n,m(χ,− τ
4 ; χ̄,− τ̄

4 )

Gm(−τ/4,−τ̄ /4) = γ2 e
− 2πinχ

τ

[

n cos
nπ

2
− sin

nπ

2
tan

2π2m

τ

]

, (4.6)

f̃3,n,m(χ,− τ
4 ; χ̄,− τ̄

4 )

Gm(−τ/4,−τ̄ /4) = γ3 e
− 2πinχ

τ

[

− 2

(

n2 + 2− 3

cos2 2mπ2

τ

)

sin
nπ

2

− 6n cos
nπ

2
tan

2π2m

τ

]

. (4.7)
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Note that the last term in (4.6) and (4.7) is odd in m. Hence, by summing them over m,

those linear terms will be cancelled. But, the m dependence of the first term in (4.7) still

survives unlike s = 2 case. Hence, the soft mode expansion of the dressed bi-locals for

s = 2 mode at σ = − τ
4 can be factorized into a simple form

∑

m

δηnΦ
dressed
m

(

χ− τ

4
, χ̄− τ̄

4
;χ+

τ

4
, χ̄+

τ̄

4

)

= γ2 e
− 2πinχ

τ n cos
nπ

2
GBTZ (−τ/4,−τ̄ /4) ,

(4.8)

while for s = 3 case we have

∑

m

δζnΦ
dressed
m

(

χ− τ

4
, χ̄− τ̄

4
;χ+

τ

4
, χ̄+

τ̄

4

)

= −2γ3 e
− 2πinχ

τ

∑

m

(

n2 + 2− 3 sec2
2mπ2

τ

)

sin
nπ

2
Gm (−τ/4,−τ̄ /4) . (4.9)

We will evaluate the following OTOC which is regularized by thermal density matrix

ρ = e−βH [5, 20]:

F (t, φ) = tr

[

ρ
1
4V (0)ρ

1
4W (t, φ)ρ

1
4V (0)ρ

1
4W (t, φ)

]

. (4.10)

For this, we first evaluate the Euclidean correlator in (4.2) at the following configura-

tion [20]:

(z1, z̄1) =
(

χ− τ

4
, χ̄− τ̄

4

)

, (4.11)

(z2, z̄2) =
(

χ+
τ

4
, χ̄+

τ̄

4

)

, (4.12)

(z3, z̄3) = (0, 0) , (4.13)

(z4, z̄4) =
(τ

2
,
τ̄

2

)

. (4.14)

We evaluate the contribution of each spin-s soft mode to the Euclidean four point function

in (4.2):

Fs(1, 2, 3, 4) ≡
F (1, 2, 3, 4)

GBTZ(1, 2)GBTZ(3, 4)

∣

∣

∣

∣

spin-s

=
∑

n

〈ζ(s)n ζ
(s)
−n〉

δ
ζ
(s)
n
G(1, 2)δ

ζ
(s)
−n

G(3, 4)

GBTZ(1, 2)GBTZ(3, 4)
. (4.15)

Here, we will use the two point function of soft modes from the on-shell action (e.g., (2.45)

and (2.46)).

For the graviton contribution (s = 2), we have

F2(1, 2, 3, 4) = −
∑

|n|=2,4,6,···
γ22κ2

(−1)
n
2

n2 − 1
e−

2πinχ

τ + (anti-holomorphic) ,

= −γ22κ2
1

2πi

∮

C2
dζ

π
2

sin πζ
2

e−
2πiζχ

τ

ζ2 − 1
+ (anti-holomorphic) , (4.16)
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Figure 1. The contour integral for the graviton contribution.

where the summation runs over the even integer due to the special choice of the coordinates.

In the second line, we rewrite the infinite series into a contour integral13 where the contour

C2 is a collection of small counterclockwise circle around ζ = ±2,±4, · · · . Note that the

integrand also has a simple pole at ζ = 0,±1. Hence, by pushing the contour to infinity,

the contour integral becomes the summation of the residue at ζ = −1, 0, 1 (See figure 1):

F2(1, 2, 3, 4) = γ22κ2

[π

4
e−

2πiχ

τ − 1 +
π

4
e

2πiχ

τ

]

+ (anti-holomorphic) . (4.17)

With the Euclidean correlator, we will take the analytic continuation of the Euclidean time

tE into the Lorentzian time t

χ = φ+ i
tE
l

= φ− t

l
, (4.18)

For simplicity, we will consider non-rotating BTZ black hole14 (embedded in higher spin

gravity) where the modular parameter is given by15

τ =
iβ

l
=

2πil

r+
, (4.19)

after the analytic continuation, we have

F2(t, φ) = − 48β

π2lc

[π

4
e

2π
β
(t−lφ) − 1 +

π

4
e
− 2π

β
(t−lφ)

]

+ (anti-holomorphic) , (4.20)

where we used c = 6kcs.

13See [29] for clear explanation on the calculation in [13, 14, 20] by using contour integral.
14See [7] for rotating BTZ black hole in SL(2) Chern-Simons gravity.
15The OTOCs of the rotating BTZ black hole in the Einstein gravity has been studied where one need

“Boyer-Lindquist co-rotating frame” for the analytic continuation to real time [7].
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In contrast to the graviton contribution, the spin-3 field contribution has m dependence

even at the special coordinates that we focus on.

F3(1, 2, 3, 4)

≡ −
∑

m,m′

∑

|n|=3,5,7,···
4iγ23κ3

×
(−1)

n−1
2

(

n2 + 2− 3 sec2 2mπ2

τ

)

Am

(

n2 + 2− 3 sec2 2m′π2

τ

)

Am′

n2(n2 − 1)(n2 − 4)
e−

2πinχ

τ

+ (anti-holomorphic) , (4.21)

where we define

Am ≡ Gm(− τ
4 ,− τ̄

4 )

GBTZ(− τ
4 ,− τ̄

4 )
. (4.22)

For m = 0, it is analogous to s = 2 case where we can rewrite the infinite series as contour

integral:

F3,m=0(1, 2, 3, 4) = −4iγ23κ3
1

2πi

∮

C3
dζ

π
2

cos πζ
2

ζ2 − 1

ζ2(ζ2 − 4)
e−

2πiζχ

τ + (anti-holomorphic) ,

(4.23)

where the contour C3 is a collection of small counterclockwise circle at ζ = ±3,±5, · · · . In
the same way, we move the contour to pick up poles outside of the contour C3. Noting that

the integrand has a simple pole at ζ = ±2 and double pole at ζ = 0, we have

F3,m=0(1, 2, 3, 4) = 4iγ23κ3

[

−3π

32
e−

4πiχ

τ − iπ2

4τ
χ+

3π

32
e

4πiχ

τ

]

+ (anti-holomorphic) . (4.24)

For m 6= 0, one can write the infinite series into a similar contour integral:

F3,m 6=0(1, 2, 3, 4)

= −4iγ23κ3
∑

m,m′

1

2πi

∮

C3
dζ

π
2

cos πζ
2

×

(

ζ2 − 1− 3 tan2 2mπ2

τ

)

Am

(

ζ2 − 1− 3 tan2 2m′π2

τ

)

Am′

ζ2(ζ2 − 1)(ζ2 − 4)
e−

2πiζχ

τ

+ (anti-holomorphic) . (4.25)

Because of the m dependence, the structure of poles could be changed for m 6= 0. We are

interested, for simplicity, in (non-rotating) BTZ black hole where the modular parameter

is pure imaginary. i.e., tan( 2mπ2

τ
) = i tanh(2mπ2l

β
). Then, we have

n2 − 1 ≦ n2 − 1 + 3 tanh2
2mπ2l

β
< n2 + 2 . (4.26)

This implies that the m dependence does not change the simple pole at ζ = 2 which will

lead to the leading exponential growth after analytic continuation.16 Also, by moving the

16For some special m, the ζ = 0 pole could be changed.
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contour, the spin-3 contribution for all m can be written as

F3(1, 2, 3, 4) = 4iγ23κ3

[

−3π

8

(

e−
4πiχ

τ − e
4πiχ

τ

)

A2 + · · ·
]

+ (anti-holomorphic) , (4.27)

where A is defined by

A ≡
∑

m

pmAm where pm ≡ 1

2

(

1− tan2
2mπ2

τ

)

. (4.28)

Here, we present only the contribution from the pole at ζ = ±2. It is also easy to evaluate

the contribution from other poles, but they will give the sub-leading exponential growth.

For (non-rotating) BTZ black hole, the modular parameter τ is pure imaginary17 so

that we have

0 ≦ pm ≦ 1 , (4.29)

and as m becomes larger, pm approaches to 1. Note that A can be viewed as averaged pm
weighted by Gm. Using (4.5), one can easily estimate that A approaches to 1 for h < 0

which is the conformal dimension of our bi-locals. In the contributions of other poles, which

include e±
2πiχ

τ χe±
2πiχ

τ χ, also have a similar m dependence. e.g.,

∑

m

tan2
2mπ2

τ
Am ,

∑

m

sec2
2mπ2

τ
Am ,

∑

m

sec2
2mπ2

τ
tan2

2mπ2

τ
Am . (4.30)

And, they would also become of order 1 or vanish. After analytic continuation, the leading

exponential growth in real time in the spin-3 contribution is

F3(1, 2, 3, 4) =
432iβ

πcl

[

Ae
4π
β
(t−lφ)

+ · · ·
]

+ (anti-holomorphic) . (4.31)

And, the leading Lyapunov exponent is 4π
β
.

5 Conclusion

In this paper, we investigated the quantum chaos in SL(N, C) Chern-Simons higher spin

gravity. With the boundary term and the corresponding boundary condition in [96], we

have derived the quadratic on-shell action of the smooth higher spin modes in SL(N,C)

Chern-Simons higher spin gauge theories in EAdS3. We considered the gravitational dress-

ing of bi-local objects such as the matter master field in SL(N, C) Vasiliev equation and

Wilson line in the non-constant background. From the soft higher spin mode expansion

of the dressed bi-locals, we have obtained the soft mode eigenfunction. In addition, based

on the null relations in WN minimal model, we have shown that the Ward identity of W-

symmetry leads to the same eigenfunction. We have also constructed a recursion relation

of the soft mode eigenfunctions, and we found the form of the eigenfunction for all spin s.

17The AdS vacuum has real modular parameter. i.e., τ = 2π. But, in this case, the angular coordinate

is already periodic, and we don’t have to sum up those images.
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Using the on-shell action and the soft mode eigenfunction, we have evaluated the OTOCs

and have explicitly shown that the Lyapunov exponent of the SL(3) Chern-Simons higher

spin gravity is 4π
β
. In appendix D, we also evaluate OTOCs for the SL(N) case and the

Lyapunov exponent is found to be 2π
β
(N − 1).

For N > 2, the SL(N) Chern-Simons higher spin gravity violates the chaos bound,

which reflect that it is not unitary. The SL(N) higher spin gravity can be considered as

the semi-classical limit of hs[λ] higher spin gravity which is unitary for λ ∈ [0, 1]. The

hs[λ] higher spin gravity has infinite tower of higher spin fields, and it was shown in [10]

that its Lyapunov exponent is zero. In the semi-classical limit (λ → −N), the infinite

tower of higher spin fields is truncated to a finite number of higher spin fields, and at the

same time, it becomes non-unitary. We have observed the non-unitarity in the negative

conformal dimension of the scalar field and the Wilson line discussed in section 3.

It is also interesting to consider a possibility of the higher spin generalization of the

chaos bound. The 2D and 3D gravity can have a finite number of interacting higher spin

fields at the cost of losing unitarity and causality [10]. Therefore, in the proof of the bound

on chaos, the argument based on the unitarity and the causality will not hold, which leads

to the violation of the chaos bound. In spite of the violation of the bound, the presence of a

finite number of higher spin fields seemingly suggest a larger bound on Lyapunov exponent.

It would be interesting to prove a new bound on chaos in the non-unitary field theories18

of which bulk dual has a finite number of higher spin fields.

In this work, we have considered the simplest constant background without spin-3

chemical potential. Therefore, the on-shell action has only the spin-2 charge L. If we

turn on the spin-3 chemical potential, it will generate the spin-3 charge W in the on-shell

action. Then, the quadratic action contains the interaction between the spin-2 and spin-3

soft modes:
∫

dz2

2πIm(τ)
W ∼

∑

n∈Z
n2(n2 − 1)(n2 − 4)f−ngn . (5.1)

This is analogous to the coupling between U(1) and reparametrization modes in complex

SYK model and 2D gravity [125]. It was reported in [90] that the presence of the spin-3

chemical potential can change entanglement entropy negative, which leads to the bound

on spin-3 chemical potential. It will be interesting to investigate the quantum chaos with

the coupling between spin-2 and spin-3 soft mode.

In [124], it was pointed out19 that the “pole-skipping” phenomenon [124, 126–129] of

theW3 higher spin current can capture the Lyapunov exponent 4π
β
. These techniques might

provide alternate ways to understanding the Lyapnov exponent in the context of higher

spin holography.
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A Conventions

In this paper, we use the following representation for the generators of sl(3):

L1 =







0 0 0√
2 0 0

0
√
2 0






, L0 =







1 0 0

0 0 0

0 0 −1






, L−1 =







0 −
√
2 0

0 0 −
√
2

0 0 0






, (A.1)

W2 =







0 0 0

0 0 0

4 0 0






, W1 =







0 0 0√
2 0 0

0 −
√
2 0






, W0 =

2

3







1 0 0

0 −2 0

0 0 1






, (A.2)

W−1 =







0 −
√
2 0

0 0
√
2

0 0 0






, W−2 =







0 0 4

0 0 0

0 0 0






, (A.3)

and, their traces are

tr (LnL−m) =







0 0 −4

0 2 0

−4 0 0






, tr (WnW−m) =















0 0 0 0 16

0 0 0 −4 0

0 0 8
3 0 0

0 −4 0 0 0

16 0 0 0 0















. (A.4)

Note that this trace tr is the summation over the fundamental representation. The nor-

malized trace Tr is defined by

Tr (A) =
1

tr (L0L0)
tr (A) . (A.5)

For SL(2,C) Chern-Simons gravity, the representations of the generators of sl(2) are

L1 =

(

0 0

1 0

)

, L0 =

(

1
2 0

0 −1
2

)

, L−1 =

(

0 −1

0 0

)

. (A.6)
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B Conjecture on null relation and W transformation

In this appendix, we make a conjecture generalizing the null relation discussed in section 3.3.

Based on this conjecture, we derive the infinitesimal transformation of two point function

under the Ws transformation.

In large c limit of WN minimal model, we conjecture that for a primary operator φ,

the action of W
(s)
−n on φ will be proportional to (L−1)

nφ in large c limit:

W
(s)
−nφ ∼ (L−1)

nφ+O(1/c) . (B.1)

Note that in this conjecture we consider special primary operator in WN minimal model

such as ( ; 0), ( ; 0) etc.. But, this conjecture might hold in a large class of primary

operators in WN minimal model (e.g., simple primaries constructed on the Fock space

found in [120–122]). Motivated by the explicit expressions for the low s, we consider the

following ansatz.

W
(s)
−nφ =

anw
(s)

∏n−1
j=0 (2h+ j)

(L−1)
nφ , (B.2)

where h and w(s) denotes the L0 and W
(s)
0 charge of the primary φ, respectively. i.e., we

will choose a0 = 1. Here, we chose To find an, we act L1 on the both sides of (B.2). Using

the commutation relation

[Lm,W
(s)
n ] = ((s− 1)m− n)Wm+n , (B.3)

we have

L1W
(s)
−nφ = (s− 1 + n)W

(s)
−n+1φ =

anw
(s)

∏n−1
j=0 (2h+ j)

L1L
n
−1φ =

nanw
(s)

∏n−2
j=0 (2h+ j)

Ln−1
−1 φ . (B.4)

This leads to recursion relation of an, and we have

an =
s− 1 + n

n
an−1 = · · · = (s− 1 + n)!

n!(s− 1)!
a0 =

(s− 1 + n)!

n!(s− 1)!
. (B.5)

Hence, based on our conjecture, the action of W
(s)
−n on the primary operator φ in large c is

found to be

W
(s)
−nφ =

(s− 1 + n)!

n!(s− 1)!

(2h+ n)w(s)

∏n
j=0(2h+ j)

(L−1)
nφ . (B.6)

Note that for the given Ws charge of φ, the Ws charge of the conjugate φ is given by

W
(s)
0 φ = w(s)φ =⇒ W

(s)
0 φ = (−1)sw(s)φ . (B.7)
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Using the action of W
(s)
−n generators on the primary, one can find the Ws transformation

of two point function at zero temperature as in section 3.3:

δǫ〈φ(z1)φ(z2)〉
〈φ(z1)φ(z2)〉

=−
s−1
∑

m=0

1

(s−1−m)!

(

∂s−1−m
1 ǫ(z1)〈(W (s)

−mφ)(z1)φ(z2)〉+∂s−1−m
2 ǫ(z2)〈φ(z1)(W (s)

−mφ)(z2)〉
)

,

=− w(s)

(s−1)!

∑

n

ǫn

s−1
∑

m=0

(n+s−1)!(s+m−1)!

(n+m)!m!(s−m−1)!
(−1)m

zm+n
1 +(−1)m+szm+n

2

(z1−z2)m
, (B.8)

where we expanded ǫ(z) as

ǫ(z) =
∑

n

zn+s−1ǫn . (B.9)

Using the transformation into finite temperature20

z =⇒ e−iz , (B.10)

we have

δǫ〈φ(z1)φ(z2)〉
〈φ(z1)φ(z2)〉

= − w(s)

(s− 1)!

∑

n

ǫne
−in

z1+z2
2

s−1
∑

m=0

(n+ s− 1)!(s+m− 1)!

(n+m)!m!(s−m− 1)!
(−1)s

×

(

ei(m+n)
z1−z2

2 + (−1)m+se−i(m+n)
z1−z2

2

)

(−2i sin z1−z2
2 )m

, (B.11)

= − w(s)

(s− 1)!

∑

n

ǫne
−inχ (n+ s− 1)!

n!

×
[

(−1)seinσ2F1

(

1− s, s, 1 + n,
eiσ

eiσ − e−iσ

)

+e−inσ
2F1

(

1− s, s, 1 + n,− e−iσ

eiσ − e−iσ

)]

. (B.12)

For s > |n|, the above expression vanishes because

(−1)seinz2F1

(

1−s,s,1+n, eiσ

eiσ−e−iσ

)

+e−inσ
2F1

(

1−s,s,1+n,− e−iσ

eiσ−e−iσ

)

∝
[

(−1)s(−1)
n
2 P−n

s−1(icot[σ])+(−1)−
n
2 P−n

s−1(−icot[σ])
]

=0 . (B.13)

Of course, this is exactly agree with what we expect. Namely, the soft mode eigenfunction

fs,n vanishes when it is involved with global subalgebra i.e., |n| < s. For s ≦ |n|, one can

20In the appendix, we also use τ = 2π unit for simplicity, and, we will recover it if necessary.
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rewrite (B.12) in terms of Jacobi polynomial:

δǫ〈φ(χ+ σ)φ(χ− σ)〉
〈φ(χ+ σ)φ(χ− σ)〉

(B.14)

= − w(s)

(s− 1)!

∑

n

ǫne
−inχ(s− 1)!(−1)s

[

einσPn,−n
s−1 (i cotσ)− e−inσP−n,n

s−1 (i cotσ)
]

.

To see the relation to the eigenfunction in large q limit (together with v → 1 limit) found

in [20], we rewrite them using the transformation of hypergeometric function:

fs,n(χ,σ)= e−inχ (n+s−1)!

n!

[

(−1)seinσ2F1

(

1−s,s,1+n, eiσ

eiσ−e−iσ

)

+e−inσ
2F1

(

1−s,s,1+n,− e−iσ

eiσ−e−iσ

)]

, (B.15)

=
√
πe−inχ(n+s−1)!(−1)se

πin
2
(sinσ)s

sn

×
[

2F1(
s+n
2 , s−n

2 , 12 ,cos
2σ)

Γ(n+s+1
2 )Γ(n−s+2

2 )
−2icosσ

2F1(
s+n+1

2 , s−n+1
2 , 32 ,cos

2σ)

Γ(n+s
2 )Γ(n−s+1

2 )

]

+
√
πe−inχ(n+s−1)!e−

πin
2
(sinσ)s

sn

×
[

2F1(
s+n
2 , s−n

2 , 12 ,cos
2σ)

Γ(n+s+1
2 )Γ(n−s+2

2 )
+2icosσ

2F1(
s+n+1

2 , s−n+1
2 , 32 ,cos

2σ)

Γ(n+s
2 )Γ(n−s+1

2 )

]

. (B.16)

For even s, one can simplify them as

fs,n(χ, σ) = 2
√
πe−inχ(n+ s− 1)!(−1)s

(sinσ)s

sn
(B.17)

×
[

cos
πin

2

2F1(
s+n
2 , s−n

2 , 12 , cos
2 σ)

Γ(n+s+1
2 )Γ(n−s+2

2 )
+ 2 sin

πin

2
cos z

2F1(
s+n+1

2 , s−n+1
2 , 32 , cos

2 σ)

Γ(n+s
2 )Γ(n−s+1

2 )

]

.

For odds, we have

fs,n(χ, σ) = 2
√
πe−inχ(n+ s− 1)!(−1)s

(sinσ)s

sn
(B.18)

×
[

sin
πin

2

2F1(
s+n
2 , s−n

2 , 12 , cos
2 σ)

Γ(n+s+1
2 )Γ(n−s+2

2 )
− 2 cos

πin

2
cosσ

2F1(
s+n+1

2 , s−n+1
2 , 32 , cos

2 σ)

Γ(n+s
2 )Γ(n−s+1

2 )

]

.

C Recursion relation, orthogonality and normalization

In this appendix, we will show that the combination of Jacobi polynomials given in (3.86)

satisfies all the conditions that we demand. i.e., (i) They satisfy the recursion relation

in (3.82) (which, of course, means the condition in (3.79) is satisfied) (ii) They are orthog-

onal to each other (3.80) with respect to the inner product defined in (3.78). We will also

determine the normalization of the modes.

– 32 –



J
H
E
P
0
7
(
2
0
1
9
)
0
4
6

Proof of recursion relation. The Jacobi Functions Pα,β
n (u) for special arguments α =

−β satisfy the following recursion relations (See eq. (2.34) and eq. (2.32) in [130])
(

u(s+ 1) + n− (1− u2)∂u
)

Pn,−n
s (u) = (s+ 1)Pn,−n

s+1 ,

Pn,−n
s+1 (u) =

2s+ 1

s+ 1
uPn,−n

s (u)− (s2 − n2)

s(s+ 1)
Pn,−n
s−1 (u) .

(C.1)

Going to variables u ≡ i cotσ and defining hs,n(σ) ≡
einσP

n,−n
s−1 (i cotσ)

sinσ
and using the above

two recursion relations we get

− (s+ 1)hs+2(σ) = i
(2s+ 1)

s+ 1
∂zhs+1(σ) +

n2 − s2

s+ 1
hs,n(σ) . (C.2)

Defining Hs,n(σ) ≡ (s−1)!(s−1)!
(2s−3)! e

iπs
2 hs,n(σ), the above equation can be seen to be

Hs+2,n(σ) = ∂σHs+1,n(σ) +
s2(n2 − s2)

4s2 − 1
Hs,n(σ) . (C.3)

If the above recursion is true for Hs,n(σ), it is also true for Hs,−n(σ). And therefore it also

holds for the linear combination gs,n(σ) = Hs,n(σ)+Hs,−n(σ) and this completes the proof.

Orthogonality. To show that the functions gs,n(σ) is orthogonal, notice that it follows

from the differential equation satisfied by Jacobi polynmial that the function Gs,n(σ) ≡
einσPn,−n

s−1 (σ)− e−inσP−n,n
s−1 (σ) is a solution of a differential equation

[

n2 + ∂2σ − s(s− 1)

sin2 σ

]

Gs,n(σ) = 0 . (C.4)

Since
∫

dσ
sin2 σ

G∗
s,,n(σ)Gs′,n′(σ) ∝ 〈gs,n|gs′,n〉, we can plug the above relations into the equal-

ity
∫

dσ G∗
s,n(χ, σ)

(

n2 + ∂2σ
)

Gs′,n′(χ, σ) =

∫

dχdσ
(

n2 + ∂2σ
)

G∗
s,n(t, z)Gs′,n′(χ, σ) , (C.5)

to obtain s′(s′ − 1)〈gs,n|gs′,n′〉 = s(s− 1)〈gs,n|gs′,n′〉. Hence, we have

〈gs,n|gs′,n′〉 = 0 ∀s 6= s′ . (C.6)

Normalization. Finally, we can now determine the normalization of the modes Ns,n ≡
〈gs,n|gs,n〉 in a purely algebraic way. Noting that

0 ≡ 〈gs+2,n|gs,n〉 = 〈∂σgs+1,n + Fs,ngs,n|gs,n〉 = −〈gs+1,n|∂σgs,n〉+ Fs,nNs,n

= −〈gs+1,n|gs+1,n − Fs−1,ngs−1,n〉+ Fs,nNs,n

= Ns,nFs,n −Ns+1,n .

(C.7)

This gives

Ns,n = Ns−1,nFs−1,n = Ns−2,nFs−2,nFs−1,n = . . .

= nπ(2s− 1)

[

(s− 1)!

(2s− 1)!!

]2 s−1
∏

j=1

(n2 − j2) , (C.8)

where we used N1,n = nπ.
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D Lyapunov exponent from spin-s soft mode

In this appendix, we will estimate the contribution of spin-s soft mode to the OTOC based

on the soft mode eigenfunctions in appendix B. For simplicity, we do not consider the

non-trivial contribution from non-contractible cycle.21

Recall that the essence of the long time limit of OTOCs lies in the following formula:

Fs ∼
∑

|n|≧s

1
∏s−1

j=0(n
2 − j2)

fs,n(χ, σ)fs,−n(χ
′, σ′) , (D.1)

where fs,n(χ, σ) is the soft mode eigenfunction discussed in appendix B

fs,n(χ, σ) = e−inχgs,n(z) , (D.2)

and

gs,n(σ) = 0 (|n| = 0, 1, · · · , s− 1) . (D.3)

In the calculation of OTOCs, it is useful to choose a special configuration. For this, we

evaluate the soft mode eigenfunction at z1 = χ and z2 = χ+π, or equivalently22 at σ = −π
2 :

δǫ〈φ(0)φ(π)〉
〈φ(0)φ(π)〉

(D.4)

= − w(s)

(s− 1)!

∑

n

ǫne
−inχ

s−1
∑

m=0

(n+ s− 1)!(s+m− 1)!

(n+m)!m!(s−m− 1)!
(−1)s+m

(

e−inπ
2 + (−1)sei

nπ
2

)

2m
.

For even s, this simply becomes

δǫ〈φ(τ1)φ(τ2)〉
〈φ(τ1)φ(τ2)〉

= − w(s)

(s− 1)!

∑

n

ǫne
−in

t1+t2
2 cos

(nπ

2

)

s−1
2
∏

m=1

[n2 − (2m− 1)2] , (D.5)

and, for odd s, we have

δǫ〈φ(τ1)φ(τ2)〉
〈φ(τ1)φ(τ2)〉

= −i w(s)

(s− 1)!

∑

n

ǫne
−in

t1+t2
2 sin

(nπ

2

)

n

s
2
∏

m=2

[n2 − (2m− 2)2] . (D.6)

As in section 4, we will evaluate the Euclidean four point function in (D.1) at the

following points:

(χ, σ;χ′, σ′) =
(

χ,−π
2
;−π

2
,−π

2

)

. (D.7)

One can easily see from (D.5) and (D.6) that gs,n(−π
2 ) vanishes at n− s ≡ 1 (mod 2) i.e.,

gs,n

(

−π
2

)

= 0 for n = ±(s+ 1),±(s+ 3),±(s+ 5), · · · . (D.8)

21We guess that they would not change the Lyapunov exponent, but change the overall coefficient of

exponential growth by order 1.
22If we recover τ , it corresponds to σ = − τ

4
.
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Furthermore, the other non-vanishing functions become

gs,n

(

−π
2

)

∼
{

n(n2 − 22)(n2 − 42)× · · · × [n2 − (s− 2)2] for s : even

(n2 − 1)(n2 − 32)× · · · × [n2 − (s− 2)2] for s : odd
. (D.9)

Here, we omit the numerical coefficients which depend on spin s, but they will not have any

influence on the Lyapunov exponent in our case. For even s, one can express the infinite

series as a contour integral

Fs(χ) ∼
1

2πi

∮

C

π
2

sin πζ
2

(ζ2 − 22)× · · · × [ζ2 − (s− 2)2]

(ζ2 − 1)× · · · × [ζ2 − (s− 1)2]
e−iζχ , (D.10)

where Cs is a sum of counterclockwise circles centered at ζ = ±s,±(s+2),±(s+4), · · · with
small radius. By deforming the contour, it can be changed into a contour integral along C′

which is a collection of clockwise circle centered at simple poles ζ = 0,±1,±3, · · · ,±(s−1).

Hence, evaluating the residues, we have

Fs(χ) ∼
s−1
∑

m=0
n=−s+1+2m

as,ne
−inχ , (D.11)

where as,n is a constant of order O(1/c). For real time OTOC, we take the analytic

continuation

χ =
2π

τ

(

φ+ i
tE
l

)

=⇒ 2π

iβ
(lφ− t) . (D.12)

Here, we retrieve the modular parameter τ = iβ
l
for non-rotating BTZ black hole. Then,

the contribution of spin-s field to OTOC is found to be

Fs(t) ∼
s−1
∑

m=0
n=−s+1+2m

as,ne
− 2π

β
n(lφ−t)

= as,s−1e
2π
β
(s−1)(t−lφ)

+ as,s−3e
2π
β
(s−2)(t−lφ)

+ · · · .

(D.13)

Then, one can easily read off the leading exponential growth, and the Lyapunov exponent

is

λs =
2π(s− 1)

β
. (D.14)

Also, one can repeat the same analysis for odd s, and one can obtain a similar result. That

is, the OTOCs will be written as follow.

Fs(χ) ∼
1

2πi

∮

C′

π
2

cos πζ
2

(ζ2 − 1)× · · · × [ζ2 − (s− 2)2]

ζ2(ζ2 − 22)× · · · × [ζ2 − (s− 1)2]
e−iζτ , (D.15)

where the deformed contour C′ is a collection of clockwise circle centered at s =

0,±2, · · · ,±(s − 1). Note that in contrast to the previous even s, the integrand for odd

s has double pole at ζ = 0, and this would give extra contribution to the OTOCs. After
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analytic continuation to real time, we have

Fs ∼
s−3
2
∑

m=0
n=−s+1+2m

as,ne
− 2π

β
n(lφ−t)

+ as,0
2π

β
(t− lφ) +

s−1
∑

m= s+1
2

n=−s+1+2m

as,ne
− 2π

β
n(lφ−t)

= as,s−1e
2π
β
(s−1)(t−lφ)

+ as,s−2e
2π
β
(s−2)(t−lφ)

+ · · ·+ as,0
2π

β
(t− lφ) + · · · . (D.16)

Note that the linear growth comes from the double pole at ζ = 0. The Lyapunov exponent

is as before

λs =
2π(s− 1)

β
. (D.17)

But, for s = 0, there is no exponential growth, and therefore, the Lyapunov exponent is

zero, but the OTOC grows linearly in time [13, 131].

E OTOC in 2D higher spin gravity

In 2D gravity, BF theory with SL(N,R) can describe 2D higher spin gravity [94, 132, 133],

which is analogous to the three-dimensional Chern-Simons higher spin theory. Unlike

Chern-Simon gravity, BF theory has only one SL(N,R) gauge connection, but it has extra

player, sl(N) Dilaton field Φ. The action of BF theory is given by

SBF =

∫

tr [Φ(dA+A ∧A)] , (E.1)

where A and Φ is gauge connection and dilaton field belonging to sl(N). The equation of

motion is given by

dA+A ∧A = 0 , dΦ+ [A,Φ] = 0 . (E.2)

One can fix a gauge [94] as in the 3D Chern-Simons gravity:

A = b−1(r)(d+ a(τ)dτ)b(r) , (E.3)

where we define

b ≡ erL0 . (E.4)

Like the asymptotic AdS condition for 3D, one can write the asymptotic AdS condition as

a = L1(−1)s
N
∑

s=2

Ws(τ)W
(s)
−s+1 . (E.5)

In BF theory, we are also interested in a fixed constant background aβ and fluctuations

around it. i.e.,

a = h−1(τ)(aβ + ∂τ )h(τ) , (E.6)

where h(τ) is a smooth gauge transformation connected to identity. Since the story about

the gauge connection is almost the same as that of Chern-Simons gravity, let us focus on
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the dilaton field. The equation of motion of dilton with constant background aβ is given

by

∂τϕ+ [aβ , ϕ] = 0 , (E.7)

and, its solution is easily found to be

ϕ = e−aβtceaβt , (E.8)

where c is a constant sl(N) matrix. Now, we consider the dilaton with a non-constant

background a = h−1(aβ + ∂τ )h which is connected to the constant solution aβ by gauge

transformation h:

∂τφ+ [a, φ] = 0 . (E.9)

It is also easy to show that the solution is given by

φ = h−1ϕh = h−1e−aβτ ceaβτh , (E.10)

where c is again a constant sl(N) matrix. Note that the solution of the dilaton can be

thought as infinitesimal isometry of AdS2, and this can be easily seen from the equation

of motion for the dilaton.

The dilaton solutions (or, infinitesimal isometries) are related by similarity transfor-

mation if and only if they have identical Casimirs Cn. Here, we define nth order Casimir of

the dilaton solution φ by

Cn ≡ − 1

n
tr (φn) . (E.11)

On the other hand, for a given dilaton solution φ in (E.10), one can find upper-triangular

matrix B such that [86]

B−1cB =





















0 u2 u3 · · · uN−1 uN
1 0 0 · · · 0 0

0 1 0 · · · 0 0
... · · · ...

...

0 0 0 · · · 0 0

0 0 0 · · · 1 0





















≡ K , (E.12)

where ui’s (or, the matrix K) are defined via

trφn = tr cn = trKn (n = 2, 3, · · · , N) . (E.13)

Here, by rescaling B, one can consider B as constant SL(N) matrix. Hence, for a given

connection a, two dilaton solutions with identical Casimirs can be related to the same

matrix K by similarity transformation, and therefore they are also related by similarity

transformation. i.e.,

φ′ = v−1φv where v = h−1e−aβτ c′ eaβτh , (E.14)

where c′ is a constant SL(N) matrix. Now, for a given uj (j = 2, 3, · · · , N) in (E.12), or

equivalently for given eigenvalues µj of the matrix K (j = 1, 2, · · · , N), we will consider a
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constant dilaton solution in the aβ background. Such a constant dilaton solution should

commute with aβ by the equation of motion:

[aβ , ψ] = 0 . (E.15)

Therefore, one can simultaneously diagonalize aβ and ψ. One can show that ψ is a poly-

nomial of aβ of which coefficients are made of Casimirs and the eigenvalues of aβ which

corresponds to the holonomy. Since ψ is N × N matrix, it is enough to consider the

following polynomial.

ψ =
N−1
∑

j=0

qja
n
β and tr [ψ] = 0 , (E.16)

and, we will determine the coefficient qj ’s. Since one can simultaneously diagonalize ψ and

aβ , (E.16) can be written as follow.

(

q0 q1 · · · qN−1

)

















1 1 · · · 1

λ1 λ2 · · · λN
λ21 λ22 · · · λ2N
...

...
...

λN−1
1 λN−1

2 · · · λN−1
N

















=
(

µ1 µ2 · · · µN
)

, (E.17)

where λj ’s are eigenvalues of aβ and µj ’s are the given eigenvalue of ψ. By inverting the

matrix (M)ij ≡ λji , one can determine qj ’s in terms of λ’s and µ’s.

For a general dilaton solution in a non-constant connection a, the asymptotic AdS

solution that we are interested in is written as

a = h−1(aBTZ + ∂τ )h , (E.18)

φ(τ) = h−1(τ)v−1(τ) ψ v(τ)h(τ) , (E.19)

where v is the isometry of the constant background aβ in (E.8). Then, using the above

argument, one can express ψ in terms of aβ as follow.

ψ =
N−1
∑

j=0

qja
j
β , (E.20)

where qj is a constant depending on Casimir of the dilaton and holonomy of the connection.

Hence, we have

φ(τ) =
N−1
∑

j=0

qj

[

a− h̃−1∂τ h̃
]j

, (E.21)

where we defined h̃ ≡ vh. For these solutions, we need to add appropriate boundary con-

dition to lead a consistent variational principle with suitable boundary condition. Unlike

AdS3, it is not easy to find such a boundary term and boundary condition which is consis-

tent with (E.18), (E.19) and (E.21). If there exists such a boundary term and a boundary

condition, the reasonable guess for the on-shell action might be written as

Son-shell

?
=

∫

dτ C2W(2)(τ) , (E.22)
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where Cs is sth order Casimir. If we consider a dilaton solution of which C2 is the only

non-zero Casimir. i.e., Cs = 0 for (s > 2). For such a solution, the on-shell action can be

written as

Son-shell

?
=

∫

dτ

N
∑

s=2

CsW(s)(τ) . (E.23)

This would be too naive guess. However, it might be to guess that the quadratic on-shell

action would be

Son-shell = c

N
∑

s=2

s−1
∏

j=0

(n2 − j2)ζ
(s)
−nζ

(s)
n . (E.24)

Here, we assume that the background has sl(N) isometry, and we demand that the on-shell

action vanishes for the sl(N) isometry. Then, the two point function of spin-s soft mode

can be read off as

〈ζ(s)n ζ
(s)
−n〉 ∼

1

c

1
∏s−1

j=0(n
2 − j2)

. (E.25)

To evaluate the OTOC in 2D higher spin gravity, one can consider a Wilson line23

between (r1, τ1) and (r2, τ2):

W (r1, τ1; r2, τ2) ≡ P exp

[

−
∫ (r1,τ1)

(r2,τ2)
A

]

= b−1(r)e−aβ(τ1−τ2)b(r2) . (E.26)

And, we define our bi-local field by a particular component of Wilson line:

Φ(τ1, τ2) ≡ lim
r→∞

[e2hrW (r, τ1; r, τ2)]N,1 , (E.27)

where the conformal dimension h is given by h = −1
2(N − 1) like AdS3 case. In the non-

constant background in (E.18), the gravitationally dressed bi-local field can be written as

Φdressed(τ1, τ2) ≡ lim
r→∞

[

e2hrP exp

(

−
∫ (r1,τ1)

(r2,τ2)
A

)]

N,1

= lim
r→∞

[

e2hrb−1(r)h−1(τ1)e
−aβ(τ1−τ2)h(τ2)b(r)

]

N,1
. (E.28)

Then, as in AdS3 case, the soft mode expansion of the dressed bi-local field allows us to

evaluate OTOCs, which is exactly the same as the OTOTC calculation in appendix D.

F Higher spin Schwarzian and connections to Toda theory

In section 2.2 we only worked to quadratic order in fluctuations. In this appendix we will

work out the results for finite fluctuations. For technical reasons we were able to carry

out the calculations only at zero temperature and vanishing higher spin charges. The

calculation which follows is based on [93], but such a form has been observed for a long

time in various literature [91, 92, 94, 95].

23See [54, 116, 117] for OTOC calculation from Wilson line for Schwarzian theory.
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Parametrizing the gauge connection az by

az(z) = L1 +
1

4
T(2)(z)L−1 −

1

4
T(3)(z)W−2 . (F.1)

To compare with the main text, we have to use T(2) = − 8π
κcs

L, T(3) = − 2π
κcs

W. The trans-

formation is given by

az(z) → ã(z) ≡ g(z)−1
(

∂z + a(z)
)

γ(z) = L1 +
1

4
T̃(2)(z)L−1 −

1

4
T̃(3)(z)W−2 . (F.2)

As mentioned in the beginning, we were able to calculate the finite transformations only for

the cases when all the initial charges vanish, i.e T(2) = T(3) = 0, i.e az(z) = L1. Notice that

T̃(2)(z), T̃(3)(z) we read off from (F.2) is the analogue of the schwarzians for the sl(3) case.

First note that we can simplify the equations somewhat if we define g(z) = e−zL1 g̃(z). The

equation we need to solve for then becomes

g̃−1(z)∂z g̃(z) = L1 +
1

4
T̃(2)(z)L−1 −

1

4
T̃(3)(z)W−2 . (F.3)

We will decompose (the normalizations for the fields are chosen so that the equations

turn out to be simple)

g̃(z) = e
1
4
w2(z)W2−

√
2e+(z)E+−

√
2f+(z)F+ e−φ1(z)H1−φ2(z)H2 e

1
4
w−2(z)W−2−

e−(z)E−√
2

− f−(z)F−√
2 ,

(F.4)

where the sl(3) generators are chosen in chevalley basis

H1 =







1 0 0

0 −1 0

0 0 0






, H2 =







0 0 0

0 1 0

0 0 −1






, E+ =







0 0 0

1 0 0

0 0 0






, F+ =







0 0 0

0 0 0

0 1 0







E− =







0 1 0

0 0 0

0 0 0






, F− =







0 0 0

0 0 1

0 0 0






.

(F.5)

We will not need the explicit relation between the Chevally basis and standard basis given

in (A.1)∼(A.3). Demanding (F.3) gives

e′+ = −e2φ1−φ2 , e− = φ′1 , (F.6)

f ′+ = −e2φ2−φ1 , f− = φ′2 , (F.7)

w′
2 = f+∂+e

′
+ − e+∂+f+ , 4w−2 = f ′− − e′− + (φ′1)

2 − (φ′2)
2 . (F.8)

We can solve for f±, e±, w± in terms of φ1, φ2 and finally obtain

T̃2 =
{

φ′′1 − (φ′1)
2 +

1

2
φ′1φ

′
2

}

+ φ1 ↔ φ2 ,

=

{

e′′′+
e′+

− 4

3

(

e′′+
e′+

)2

− 1

6

e′′+
e′+

f ′′+
f ′+

}

+ e+ ↔ f+ ,

2T̃3 =
{

1

2
φ′′′1 − 1

2
φ′′1φ

′
2 − φ′′1φ

′
1 + φ′21 φ

′
2

}

− φ1 ↔ φ2 ,

=

{

1

6

[

e′′′′+

e′+
− 5

e′′′+
e′+

e′′+
e′+

+
40

9

(

e′′+
e′+

)3
]

− 1

6

e′′′+
e′+

f ′′+
f ′+

+
5

18

e′′+
e′+

(

f ′′+
f ′+

)2
}

− e+ ↔ f+ .

(F.9)
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It is obvious that for the case of pure diffeomorphism we must set e+ = f+ or equivalently

φ1 = φ2. At this point, we can connect the above discussion to Toda field theory. The

expression for T(2), T(3) in terms of φ1, φ2 are exactly same as that charges of Toda field

theory (see eq. (3.47) of [93]).
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