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Abstract

We study projective dimension, a graph parameter (denoted by pd(G) for a graph G), introduced

by Pudlák and Rödl (1992). For a Boolean function f(on n bits), Pudlák and Rödl associated a

bipartite graph Gf and showed that size of the optimal branching program computing f (denoted

by bpsize(f)) is at least pd(Gf ) (also denoted by pd(f)). Hence, proving lower bounds for pd(f)

imply lower bounds for bpsize(f). Despite several attempts (Pudlák and Rödl (1992), Rónyai

et.al, (2000)), proving super-linear lower bounds for projective dimension of explicit families of

graphs has remained elusive.

We observe that there exist a Boolean function f for which the gap between the pd(f) and

bpsize(f)) is 2Ω(n). Motivated by the argument in Pudlák and Rödl (1992), we define two variants

of projective dimension – projective dimension with intersection dimension 1 (denoted by upd(f))

and bitwise decomposable projective dimension (denoted by bpdim(f)). We show the following

results:

(a) We observe that there exist a Boolean function f for which the gap between upd(f) and

bpsize(f) is 2Ω(n). In contrast, we also show that the bitwise decomposable projective

dimension characterizes size of the branching program up to a polynomial factor. That is,

there exists a large constant c > 0 and for any function f ,

bpdim(f)/6 ≤ bpsize(f) ≤ (bpdim(f))c .

(b) We introduce a new candidate function family f for showing super-polynomial lower bounds

for bpdim(f). As our main result, we demonstrate gaps between pd(f) and the above two

new measures for f :

pd(f) = O(
√
n) upd(f) = Ω(n) bpdim(f) = Ω

(

n1.5

logn

)

.

(c) Although not related to branching program lower bounds, we derive exponential lower

bounds for two restricted variants of pd(f) and upd(f) respectively by observing that they

are exactly equal to well-studied graph parameters – bipartite clique cover number and

bipartite partition number respectively.
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1 Introduction

A central question in complexity theory – the P vs L problem – asks if a deterministic Turing

machine that runs in polynomial time can accept any language that cannot be accepted
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by deterministic Turing machines with logarithmic space bound. A stronger version of the

problem asks if P is separate from L/poly (deterministic logarithmic space given polynomial

sized advice). The latter, recast in the language of circuit complexity theory, asks if there

exists an explicit family of functions (f : {0, 1}n → {0, 1}) computable in polynomial time (in

terms of n), such that any family of deterministic branching programs computing them has to

be of size 2Ω(n). However, the best known non-trivial size lower bound against deterministic

branching programs, due to Nechiporuk [11] in 1970s, is Ω( n2

log2 n
).

Pudlák and Rödl [12] described a linear algebraic approach to show size lower bounds

against deterministic branching programs. They introduced a linear algebraic parameter

called projective dimension (denoted by pd
F
(f), over a field F) defined on a natural graph

associated with the Boolean function f . For a Boolean function f : {0, 1}2n → {0, 1}, fix a

partition of the input bits into two parts of size n each, and consider the bipartite graph

Gf (U, V,E) defined on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if

f(uv) = 1. We call Gf as the bipartite realization of f . For a bipartite graph G(U, V,E),

the projective dimension of G over a field F, denoted by pd
F
(G), is defined as the smallest

d for which there is a vector space W of dimension d (over F) and a function φ mapping

vertices in U, V to linear subspaces of W such that for all (u, v) ∈ U × V , (u, v) ∈ E if and

only if φ(u) ∩ φ(v) 6= {0}. We say that φ realizes the graph G.

Pudlák and Rödl [12] showed that if f can be computed by a deterministic branching

program of size s, then pd
F
(f) ≤ s over any field F. Thus, in order to establish size lower

bounds against branching programs, it suffices to prove lower bounds for projective dimension

of explicit family of Boolean functions.

By a counting argument, Pudlák and Rödl in [12] showed that for most Boolean functions

f : {0, 1}n ×{0, 1}n → {0, 1}, pd
R

(f) is Ω(
√

2n

n ). In a subsequent work, the same authors [13]

also established an upper bound pd
R
(f) = O( 2n

n ) for all functions. More recently, Rónyai,

Babai and Ganapathy [15] established the same lower bound over all fields. Over finite

fields F, Pudlák and Rödl [12] also showed (by a counting argument) that there exists a

Boolean function f : {0, 1}n × {0, 1}n → {0, 1} such that pd
F
(f) is Ω(

√
2n). However, till

date, obtaining an explicit family of Boolean functions (equivalently graphs) achieving such

lower bounds remain elusive. The best lower bound for projective dimension for an explicit

family of functions is for the inequality function (on 2n bits, the graph is the bipartite

complement of the perfect matching) where a lower bound of ǫn for an absolute constant

ǫ > 0 is known [12] over R. For a survey on projective dimension and related linear algebraic

techniques, refer [13, 9]. However, the best known size lower bound that was achieved using

this framework is only Ω(n) which is not better than trivial lower bounds.

Our Results: Our starting point is the observation that projective assignment appearing in

the proof of [12] also has the property that the dimension of the intersection of two subspaces

assigned to the vertices is exactly 1, whenever they intersect (See Proposition 2.2(2)). We

denote, for a function f , the variant of projective dimension defined by this property as

upd(f) (see Section 4). From the above discussion, for any Boolean function f , pd(f) ≤
upd(f) ≤ bpsize(f). A natural question is whether this restriction helps in proving better

lower bounds for the branching programs. By observing properties about the measure of

projective dimension, choosing a new candidate function1, we demonstrate that the above

restriction can help by proving the following quadratic gap between the two measures.

1 The candidate function is in NC2 but unlikely to be in NL.
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◮ Theorem 1.1. For any d ≥ 0, for the function SId (on 2d2 variables, see Definition 2.3),

the projective dimension is exactly equal to d, while the projective dimension with intersection

dimension 1 is Ω(d2).

However, this does not directly improve the known branching program size lower bound for

SId, since it leads to only a linear lower bound on upd(SId). We demonstrate the weakness

of this measure by showing the existence of a function (although not explicit) for which

there is an exponential gap between upd over any partition and the branching program

size (Proposition 5.1). This motivates us to look for variants of projective dimension of graphs,

which is closer to the optimal branching program size of the corresponding Boolean function.

We observe more properties (see Proposition 2.2) about the subspace assignment from the

proof of the upper bound from [12]. We call the projective assignments with these properties

bitwise decomposable projective assignment and denote the corresponding dimension2 as

bitpdim(f) (See Definition 5.2). Thus, for any Boolean function f , pd(f) ≤ bitpdim(f). We

also show that bitpdim(f) ≤ 6 · bpsize(f) (Lemma 5.3). To demonstrate the tightness of the

definition, we first argue a converse with respect to this new parameter.

◮ Theorem 1.2. There is an absolute constant c > 0 such that if bitpdim(fn) ≤ d(n) for a

function family {fn}n≥0 on 2n bits, then there is a deterministic branching program of size

(d(n))c computing it.

Thus, super-polynomial size lower bounds for branching programs imply super-polynomial

lower bounds for bitpdim(f). The function SId (on 2d2 input bits – see Definition 2.3) is a

natural candidate for proving bitpdim lower bounds as the corresponding language is hard3

for the complexity class C=L under logspace Turing reductions.

However, the best known lower bound for branching program size for an explicit family

of functions is Ω
(

n2

log2 n

)

by Nechiporuk [11] which uses a counting argument on the number

of sub-functions. By Theorem 1.2 , bitpdim(f) (for the same explicit function) is at least

Ω
(

n2/c

log2/c n

)

. The constant c is large4 and hence implies only weak lower bounds for bitpdim.

Despite this weak connection, by combining the counting strategy with the linear algebraic

structure of bitpdim, we show a super-linear lower bound for SId matching the branching

program size lower bound5.

◮ Theorem 1.3 (Main Result). For any d > 0, bitpdim(SId) is at least Ω
(

d3

log d

)

.

Theorems 1.1 and 1.3 demonstrate gaps between the pd and the new measures considered.

In particular, for n = d2, pd(SId) = O(
√
n), upd(SId) = Ω(n), and bitpdim(SId) = Ω

(

n1.5

log n

)

.

We remark that Theorem 1.3 implies a size lower bound of Ω( n1.5

log n ) for branching programs

computing the function SId (where n = d2). However, note that this can also be derived

from Nechiporuk’s method. For the Element Distinctness function, the above linear algebraic

adaptation of Nechiporuk’s method for bitpdim gives Ω( n2

log2 n
) lower bounds (for bitpdim and

hence for bpsize) which matches with the best lower bound that Nechiporuk’s method can

derive. This shows that our modification of approach in [12] can also achieve the best known

lower bounds for branching program size.

2 We do not use the property that intersection dimension is 1 and hence is incomparable with upd.
3 Assuming C=L 6⊆ L/poly, SId cannot be computed by deterministic branching programs of size poly(d).
4 However, the value of c can be shown to be at most 5. See proof of Theorem 1.2 in Section 5.1.
5 A lower bound of Ω

(

d
3

log d

)

for the branching program size can also be obtained using Nechiporuk’s

method.
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Continuing the quest for better lower bounds for projective dimension, we study two

further restrictions. In these variants of pd and upd, the subspaces assigned to the vertices

must be spanned by standard basis vectors. We denote the corresponding dimensions as

spd(f) and uspd(f) respectively. It is easy to see that for any 2n-bit function, both of these

dimensions are upper bounded by 2n.

We connect these variants to some of the well-studied graph parameters. The bipartite

clique cover number (denoted by bc(G)) is the smallest collection of complete bipartite

subgraphs of G such that every edge in G is present in some graph in the collection. If

we insist that the bipartite graphs in the collection be edge-disjoint, the measure is called

bipartite partition number denoted by bp(G). By definition, bc(G) ≤ bp(G). These graph

parameters are closely connected to communication complexity as well. More precisely,

log(bc(Gf )) is exactly the non-deterministic communication complexity of the function f ,

and log(bp(Gf )) is a lower bound on the deterministic communication complexity of f (see

[6]). In this context, we show the following:

◮ Theorem 1.4. For any Boolean function f , spd(f) = bc(Gf ) and uspd(f) = bp(Gf ).

Thus, if for a function family, the non-deterministic communication complexity is Ω(n), then

we will have spd(f) = 2Ω(n). Thus, both spd(DISJ) and uspd(DISJ) are 2Ω(n).

2 Preliminaries

In this section, we introduce the notations used in the paper. For definitions of basic

complexity classes and computational models, we refer the reader to standard textbooks [6,

16].

Unless otherwise stated we work over the field F2. We remark that our arguments do

generalize to any finite field. All subspaces that we talk about in this work are linear

subspaces. Also ~0 and {0} denote the zero vector, and zero-dimensional space respectively.

For a subspace U ⊆ F
n, we call the ambient dimension of U as n. We denote ei ∈ F

n as the

ith standard basis vector with ith entry being 1 and rest of the entires being zero.

For a graph G(U, V,E), recall the definition of projective dimension of G over a field

F(pd
F
(G)), defined in the introduction. For a Boolean function f : {0, 1}2n → {0, 1}, fix a

partition of the input bits into two parts of size n each, and consider the bipartite graph Gf

defined on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if f(uv) = 1. A

φ is said to realize the function f if it realizes Gf . Unless otherwise mentioned, the partition

is the one specified in the definition of the function. We denote by bpsize(f) the number of

vertices (including accept and reject nodes) in the optimal branching program computing f .

◮ Theorem 2.1 (Pudlák-Rödl Theorem [12]). For a Boolean function f computed by a

deterministic branching program of size s and F being any field, pd
F
(Gf ) ≤ s.

The proof of this result proceeds by producing a subspace assignment for vertices of Gf from

a branching program computing f . We derive the following proposition by a careful analysis

of the aforementioned proof in [12].

◮ Proposition 2.2. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} computed by a

deterministic branching program of size s, there is a collection of subspaces of Fs denoted

C = {Ua
i }i∈[n],a∈{0,1} and D = {V b

j }j∈[n],b∈{0,1}, where we associate the subspace Ua
i with

a bit assignment xi = a and V b
j with yj = b such that if we define the map φ assigning

subspaces from F
s to vertices of Gf (U, V,E) as φ(x) = span

1≤i≤n
{Uxi

i }, φ(y) = span
1≤j≤n

{V yj

j }, for

x ∈ X, y ∈ Y then the following holds true. Let S = {ei − ej | i, j ∈ [s], i 6= j}.
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1. for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if f(u, v) = 1.

2. for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.

3. For any W ∈ C ∪ D, ∃S′ ⊆ S such that W = span {S′}.

We define the following family of functions and family of graphs based on subspaces of a

vector space and their intersections.

◮ Definition 2.3 (SId, Pd). Let F be a finite field. Denote by SId, the Boolean function

defined on F
d×d × F

d×d → {0, 1} as for any A,B ∈ F
d×d SId(A,B) = 1 if and only if

rowspan(A) ∩ rowspan(B) 6= {0}. Note that the row span is over the field F (which, in our

case, is F2). Denote by Pd, the bipartite graph (U, V,E) where U and V are the set of all

subspaces of Fd. And for any (I, J) ∈ U × V , (I, J) ∈ E ⇐⇒ I ∩ J 6= {0}

We collect the definitions of Boolean functions which we deal with in this work. For

(x, y) ∈ {0, 1}n × {0, 1}n
, IPn(x, y) =

∑n
i=1 xiyi mod 2, EQn(x, y) is 1 if ∀i ∈ [n] xi = yi

and is 0 otherwise, INEQn(x, y) = ¬EQn(x, y) and DISJn(x, y) = 1 if ∀i ∈ [n] xi ∧ yi = 0 and

is 0 otherwise. Note that all the functions discussed so far has branching programs of size

O(n) computing them and hence have projective dimension O(n) by Theorem 2.1.

Let m ∈ N and n = 2m logm. The Boolean function, Element Distinctness, denoted EDn

is defined on 2m blocks of 2 logm bits, x1, . . . , xm and y1, . . . , ym bits and it evaluates to 1 if

and only if all the xis and yis take distinct values when interpreted as integers in [m2]. Let

q be a power of prime congruent to 1 modulo 4. Identify elements in {0, 1}n with elements

of F∗
q . For x, y ∈ F

∗
q , the Paley function PALq

n(x, y) = 1 if x− y is a quadratic residue in F
∗
q

and 0 otherwise.

We observe for any induced subgraph H of G, if G is realized in a space of dimension

d, then H can also be realized in a space of dimension d. For any d ∈ N, Pd appears as an

induced subgraph of the bipartite realization of SId. Hence, pd(SId) ≥ pd(Pd).

3 Properties of Projective Dimension

In this section, we observe properties about projective dimension as a measure of graphs and

Boolean functions. We start by proving closure properties of projective dimension under

Boolean operations ∧ and ∨.

◮ Lemma 3.1. Let F be an arbitrary field. For any two functions f1 : {0, 1}2n → {0, 1}, f2 :

{0, 1}2n → {0, 1}, pd
F

(f1 ∨ f2) ≤ pd
F

(f1) + pd
F

(f2) and pd
F

(f1 ∧ f2) ≤ pd
F

(f1) · pd
F

(f2)

The proof is based on direct sum and tensor product of vector spaces. The ∨ part of the

above lemma was also observed (without proof) in [13]. We remark that the construction

for ∨ is tight up to constant factors. Assume n is a multiple of 4. Consider the functions

f(x1, . . . , xn
4
, xn

2
+1, . . . , x 3n

4

) and g(xn
4

+1, . . . , xn
2
, x 3n

4
+1, . . . , xn) each of which performs

inequality check on the first n
4 and the second n

4 variables. It is easy to see that f ∨ g is

the inequality function on n
2 variables x1, . . . , xn

2
and the next n

2 variables xn
2

+1, . . . , xn.

By the fact that they are computed by n size branching programs and using Theorem 2.1

(Pudlák-Rödl theorem) we get that pd(f) ≤ n and pd(g) ≤ n. Hence by Lemma 3.1,

pd(f ∨ g) ≤ pd(f) + pd(g) ≤ 2n. Lower bound on projective dimension of inequality function

comes from [12, Theorem 4], giving pd(f ∨ g) ≥ ǫ.n2 for an absolute constant ǫ. This shows

that pd(f ∨ g) = Θ(n). We also cannot expect a general relation connecting pd
R
(f) and

pd
R
(¬f) since it is known [12] that pd

R
(INEQn) is Ω(n) while pd

R
(EQn) = 2.

We now observe a characterization of bipartite graphs having projective dimension at

most d over F.

FSTTCS 2016
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◮ Lemma 3.2 (Characterization). Let G be a bipartite graph with no two vertices having

same neighborhood, pd(G) ≤ d if and only if G is an induced subgraph of Pd.

It follows that pd(Pd) ≤ d. Observe that, in any projective assignment, the vertices with

different neighborhoods should be assigned different subspaces. For pd(Pd), all vertices on

either partitions have distinct neighborhoods. The number of subspaces of a vector space of

dimension d− 1 is strictly smaller than the number of vertices in Pd. Thus, we conclude the

following theorem.

◮ Theorem 3.3. For any d ∈ N, pd(Pd) = pd(SId) = d.

For an N vertex graph G, the number of vertices of distinct neighborhood can at most be N .

Thus, the observation that we used to show the lower bound for the graph pd(Pd) cannot be

used to obtain more than a
√

logN lower bound for pd(G). Also, for many functions, the

number of vertices of distinct neighborhood can be smaller.

We observe that by incurring an additive factor of 2 logN , any graph G on N vertices can

be transformed into a graph G′ on 2N vertices such that all the neighborhoods of vertices in

one partition are all distinct. Let f : {0, 1}2n → {0, 1} be such that the neighborhoods of

Gf are not necessarily distinct. We consider a new function f ′ whose bipartite realization

will have two copies of Gf namely G1(A1, B1, E1) and G2(A2, B2, E2) where A1, A2, B1, B2

are disjoint and a matching connecting vertices in A1 to B2 and A2 to B1 respectively. Since

the matching edges associated with every vertex is unique, the neighborhoods of all vertices

are bound to be distinct. Applying Lemma 3.1 and observing that matching (i.e, equality

function) has projective dimension at most n, pd(f ′) ≤ 2pd(f) + 2n. This shows that to

show super-linear lower bounds on projective dimension for f where the neighborhoods may

not be distinct, it suffices to show a super-linear lower bound for f ′.

4 Projective Dimension with Intersection Dimension 1

Motivated by the proof of Theorem 2.1, we make the following definition.

◮ Definition 4.1 (Projective Dimension with Intersection Dimension 1). A Boolean function

f : {0, 1}n × {0, 1}n → {0, 1} with the corresponding bipartite graph G(U, V,E) is said to

have projective dimension with intersection dimension 1 (denoted by upd(f)) d over field F,

if d is the smallest possible dimension for which there exists a vector space K of dimension d

over F with a map φ assigning subspaces of K to U ∪ V such that

for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.

for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.

By the properties observed in Proposition 2.2,

◮ Theorem 4.2. For a Boolean function f computed by a deterministic branching program

of size s, upd
F
(f) ≤ s for any field F.

Thus, it suffices to prove lower bounds for upd(f) in order to obtain branching program

size lower bounds. We now proceed to show lower bounds on upd. Our approaches use the

fact that the adjacency matrix of Pd has high rank.

◮ Lemma 4.3. Let M be the bipartite adjacency matrix of Pd, then rank (M) ≥
[

d
d/2

]

q
≥ q

d2

4

Proof. For 0 ≤ i ≤ k ≤ d, and subspace I,K ⊆s F
d
q with dim(I) = i, dim(K) = k, define

matrix Wik over R as Wik(I,K) = 1 if I ∩ K = {0} and 0 otherwise. This matrix has

dimension
[

d
i

]

q
×

[

d
k

]

q
.
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Consider the submatrix Mi of M with rows and columns indexed by subspaces of

dimension exactly i. Observe that Wii = J −Mi where J is an all ones matrix of appropriate

order. These matrices are well-studied (see [5]). Closed form expressions for eigenvalues are

computed in [3, 10] and the eigenvalues are known to be non-zero. Hence for 0 ≤ i ≤ d/2

the matrix Wii has rank
[

d
i

]

q
. Since Wii = J − Mi, rank (Mi) ≥ rank

(

Wii

)

− 1. This

shows that rank (M) ≥ rank (Mi) =
[

d
i

]

q
for all i such that 2i ≤ d. Choosing i = d/2 gives

rank (M) ≥
[

d
d/2

]

q
− 1 ≥ q

d2

4 − 1. ◭

We now present two approaches for showing lower bounds on upd(f) – one using intersec-

tion families of vector spaces and the other using rectangle arguments on Mf .

Lower Bound for upd(Pd) using intersecting families of vector spaces: To prove a lower

bound on upd(Pd) we define a matrix N from a projective assignment with intersection

dimension 1 for Pd, such that it is equal to (q − 1)M . Let D = upd(Pd). We first show

that rank (N) is at most 1 +
[

D
1

]

q
. Then by Lemma 4.3 we get that rank (N) is at least q

d2

4 .

Let G = {G1, . . . , Gm}, H = {H1, . . . ,Hm} be the subspace assignment with intersection

dimension 1 realizing Pd with dimension D.

◮ Lemma 4.4. For any polynomial p in qx of degree s, with matrix N of order |G| × |H|
defined as N [Gr, Ht] = p(dim(Gr ∩Ht)) with Gr ∈ G, Ht ∈ H, then rank (N) ≤ ∑s

i=0

[

D
i

]

q

Proof. This proof is inspired by the proof in [4] of a similar claim where a non-bipartite

version of this lemma is proved. To begin with, note that p is a degree s polynomial in qx,

and hence can be written as a linear combination of polynomials pi =
[

x
i

]

q
, 0 ≤ i ≤ s. Let the

linear combination be given by p(x) =
∑s

i=0 αipi(x). For 0 ≤ i ≤ s define a matrix Ni with

rows and columns indexed respectively by G, H defined as Ni[Gr, Hs] = pi(dimGr ∩Hs). By

definition of Ni, N =
∑

i∈[s] αiNi.

To bound the rank of Ni’s we introduce the following families of inclusion matrices.

For any j ∈ [D], consider two matrices Γj corresponding to G and ∆j corresponding to

H defined as Γj(G, I) = 1 if dim(I) = j,G ∈ G, I ⊆s G and 0 otherwise. ∆j(H, I) = 1 if

dim(I) = j,H ∈ H, I ⊆s H and 0 otherwise. Note that rank of the these matrices are upper

bounded by the number of columns which is
[

D
j

]

q
. We claim that for any i ∈ {0, 1, . . . , s},

rank (Ni) ≤
[

D
i

]

q
. This completes the proof since N =

∑

i∈[s] αiNi.

To prove the claim, let Fi denote the set of all i dimensional subspace of FD
q . We show that

Ni = Γi∆
T
i . Hence rank (Ni) ≤ min {rank (Γi) , rank (∆i)} ≤

[

D
i

]

q
. For (Gr, Ht) ∈ G × H,

Γi∆
T
i (Gr, Ht) =

∑

I∈Fi
Γi(Gr, I)∆

T
i (I,Ht) =

∑

I∈Fi
Γi(Gr, I)∆i(Ht, I) =

∑

I∈Fi
[I ⊆s

Gr] ∧ [I ⊆s Ht] =
∑

I∈Fi
[I ⊆s Gr ∩Ht] =

[

dim(Gr∩Ht)
i

]

q
= Ni(Gr, Ht) ◭

We apply Lemma 4.4 on N defined via p(x) = qx − 1 with s = 1, to get qd2/4 ≤
[

d
d/2

]

q
≤

1 +
[

D
1

]

q
= 1 + (qD − 1)/(q − 1). By definition, rank (N) = rank (M). This gives that

D = Ω(d2) and proves Theorem 1.1.

Lower Bound for upd(Pd) from Rectangle Arguments: We now give an alternate proof

of for Theorem 1.1 using combinatorial rectangle arguments.

◮ Lemma 4.5. For f : {0, 1}n × {0, 1}n → {0, 1} with Mf denoting the bipartite adjacency

matrix of Gf , rankR(Mf ) ≤ qO(upd
F
(f)) where F is a finite field of size q.
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Proof. Let φ be a subspace assignment realizing f of dimension d with intersection dimension

1. Let S(v) for v ∈ F
d
q denote {(a, b) ∈ {0, 1}n × {0, 1}n | φ(a) ∩ φ(b) = span {v}}. Also let

Mv denote the matrix representation of S(v). That is, Mv(a, b) = 1 ⇐⇒ (a, b) ∈ S(v).

Consider all 1 dimensional subspaces which appear as intersection space for some input

(x, y). Fix a basis vector for each space and let T denote the collection of basis vectors of

all the intersection spaces. Note that for any (x, y) ∈ f−1(1), there is a unique v ∈ F
d
q (up

to scalar multiples) such that (x, y) ∈ S(v) for otherwise intersection dimension exceeds

1. Then Mf =
∑

v∈T Mv. Now, rank(Mf ) ≤ ∑

v∈T rank(Mv). Since rank(Mv) = 1,

rank(Mf ) ≤ |T |. The fact that the number of 1 dimensional spaces in F
d can be at most

qd−1
q−1 completes the proof. Note that the rank of Mf can be over any field (we choose R). ◭

We get an immediate corollary. Any function f , such that the adjacency matrix of Mf of the

bipartite graph Gf is of full rank 2n over some field must have upd(f) = Ω(n). There are

several Boolean functions with this property, well-studied in the context of communication

complexity (see textbook [8]). Hence, we have for f ∈ {IPn,EQn, INEQn,DISJn,PALq
n},

upd
F
(f) is Ω(n) for any finite field F.

For arguing about PALq
n, it can be observed that the graph is strongly regular (as q ≡ 1

mod 4) and hence the adjacency matrix has full rank over R [2]. Except for PALq
n, all the

above functions have O(n) sized deterministic branching programs computing them and

hence the Pudlák-Rödl theorem (Theorem 2.1) gives that upd for these functions (except

PALq
n) are O(n) and hence the above lower bound is indeed tight.

From Lemma 4.3, it follows that the function SId also has rank 2Ω(d2). To see this, it

suffices to observe that Pd appears as an induced subgraph in the bipartite realization of

SId. Thus, upd(SId) is Ω(d2). We proved in Theorem 3.3 that pd(SId) = d. This establishes

a quadratic gap between the two parameters. This completes the proof of Theorem 1.1.

Let D(f) denote the deterministic communication complexity of the Boolean function

f . We observe that the rectangle argument used in the proof of Lemma 4.5 is similar to

the matrix rank based lower bound arguments for communication complexity. This yields

the Proposition 4.6. If upd(f) ≤ D, the assignment also gives a partitioning of the 1s in

Mf into at most qD−1
q−1 1-rectangles. However, it is unclear whether this immediately gives a

similar partition of 0s into 0-rectangles as well. Notice that if D(f) ≤ d, there are at most

2d monochromatic rectangles (counting both 0-rectangles and 1-rectangles) that cover the

entire matrix. However, our proof does not exploit this difference.

◮ Proposition 4.6. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and a finite field

F, upd
F
(f) ≤ 2D(f) and D(f) ≤ (pd

F
(f))2 log |F|

Proof. We give a proof of the first inequality. Any deterministic communication protocol

computing f of cost D(f), partitions Mf into k rectangles where k ≤ 2D(f) rectangles.

Define fi : {0, 1}n × {0, 1}n → {0, 1} for each rectangle Ri i ∈ [k], such that fi(x, y) = 1 iff

(x, y) ∈ Ri. Note that upd
F
(fi) = 1 and f = ∨k

i=1fi. For any (x, y) ∈ {0, 1}n × {0, 1}n
if

f(x, y) = 1, there is exactly one i ∈ [k] where fi(x, y) = 1. Hence for each j ∈ [k], j 6= i, the

intersection vector corresponding to the edge (x, y) in the assignment of fj is trivial. Hence the

assignment obtained by applying Lemma 3.1, to f1,∨f2 ∨ . . . fk will have the property that for

any (x, y) with f(x, y) = 1, the intersection dimension is 1. Hence upd
F
(f) ≤ k ≤ 2D(f). To

prove the second inequality, consider the protocol where Alice sends the subspace associated

with her input as a pd
F
(f) × pd

F
(f) matrix. ◭

Note that the first inequality is tight, up to constant factors in the exponent. To see this,

consider the function f : {0, 1}n × {0, 1}n → {0, 1} whose pd
F
(f) = Ω(2n/2) [12, Proposition
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1] and note that D(f) for any f is at most n. Tightness of second inequality is witnessed by

SId since by Lemma 4.3 D(SId) = Ω(d2) while pd(SId) = d.

5 Bitwise Decomposable Projective Dimension

The restriction of intersection dimension being 1, although potentially useful for lower bounds

for branching program size, does not capture the branching program size exactly. We start

the section by demonstrating a function where the gap is exponential. We show the existence

of a Boolean function f such that the size of the optimal branching program computing it is

very high but has a very small projective assignment with intersection dimension 1 for any

balanced partition of the input.

◮ Proposition 5.1 (Implicit in Remark 1.30 of [6]). There exist a function f : {0, 1}n ×{0, 1}n

that requires size Ω( 2n

n ) for any branching program computing f but the upd(f) ≤ O(n) for

any balanced partitioning of the input into two parts.

The above proposition can be shown by adapting the counting argument presented in

Remark 1.30 of [6].

5.1 A Characterization for Branching Program Size

Motivated by strong properties observed in Proposition 2.2, we make the following definition.

◮ Definition 5.2 (Bitwise Decomposable Projective Dimension). Let f be a Boolean function

on 2n bits and Gf be its bipartite realization. The bipartite graph Gf (X,Y,E) is said to

have bit projective dimension, bitpdim(G) ≤ d, if there exists a collection of subspaces of Fd
2

denoted C = {Ua
i }i∈[n],a∈{0,1} and D = {V b

j }j∈[n],b∈{0,1} where a projective assignment φ

is obtained by associating subspace Ua
i with a bit assignment xi = a and V b

j with yj = b

satisfying the conditions listed below.

1. for all (x, y) ∈ {0, 1}n ×{0, 1}n
, φ(x) = span

1≤i≤n
{Uxi

i }, φ(y) = span
1≤j≤n

{V yj

j } and f is realized

by φ.

2. Let S = {ei −ej | i, j ∈ [d], i 6= j}. For any W ∈ C ∪D, ∃S′ ⊆ S such that W = span {S′}.

3. for any S1, S2 ⊆ ([n] × {0, 1}) such that S1 ∩ S2 = φ, span
(i,a)∈S1

{Ua
i } ∩ span

(j,b)∈S2

{U b
j } = {0}.

Same property must hold for subspaces in D.

We show that the new parameter bitwise decomposable projective dimension (bitpdim)

tightly characterizes the branching program size, up to constants in the exponent.

◮ Lemma 5.3. Suppose f : {0, 1}n × {0, 1}n → {0, 1} has deterministic branching program

of size s then bitpdim(f) ≤ 6s

We show that given a bitpdim assignment for a function f , we can construct a branching

program computing f .

◮ Theorem 5.4 (Theorem 1.2 restated). For a Boolean function f : {0, 1}n ×{0, 1}n → {0, 1}
with bitpdim(f) ≤ d, there exists a deterministic branching program computing f of size dc

for some absolute constant c.

Proof. Consider the subspace associated with the variables C,D of the bitpdim assignment

as the advice string. These can be specified by a list of n basis matrices each of size d2. Since

d = bitpdim(f) = poly(n), the advice string is poly(n) sized and depends only on n.
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We construct a deterministic branching program computing f as follows. On input x, y,

from the basis matrices in C,D, construct an undirected graph6 G∗ with all standard basis

vectors in C,D as vertices and add an edge between two vertices u, v if eu − ev ∈ Uxi
i or

eu − ev ∈ V
yj

j for i, j ∈ [n]. For input x, y, f(x, y) = 1 iff G∗ has a cycle. To see this, let

C = C1 ∪ C2 be a cycle in G∗ where C1 consists of edges from basis matrices in C and

C2 contain edges from basis matrices in D. Note that if one of C1 or C2 is empty then

there is a cycle consisting only of vectors from C which implies a linear dependence among

vectors in C. But this contradicts Property 3 of bitpdim assignment. Hence both C1 and C2

are non-empty. Then, it must be that
∑

(u,v)∈C1
eu − ev +

∑

(w,z)∈C2
ew − ez = 0. Hence

∑

(u,v)∈C1
eu − ev = − ∑

(w,z)∈C2
ew − ez. Hence we get a vector in the intersection which

gives f(x, y) = 1. Note that if f(x, y) = 1, then clearly there is a non-zero intersection vector.

If we express this vector in terms of basis, we get a cycle in G∗.

Hence, to check if f evaluates to 1, it suffices check if there is a cycle in G∗ which is

solvable in L using Reingold’s algorithm [14]. The log-space algorithm can also be converted

to an equivalent branching program of size nc for a constant7 c. ◭

Assuming C=L 6⊆ L/poly, the function SId (a language which is hard for C=L under Turing

reductions) cannot be computed by deterministic branching programs of polynomial size.

Thus, using Theorem 1.2, we conclude that the function SId is a candidate function (under

standard complexity theoretic assumptions) for super-polynomial bitpdim lower bounds.

5.2 Lower Bounds for Bitwise Decomposable Projective dimension

From the results of the previous section, it follows that size lower bounds for branching

programs do imply lower bounds for bitwise decomposable projective dimension as well.

As mentioned in the introduction, the lower bounds that Theorem 1.2 can give for bitwise

decomposable projective dimension are only known to be sub-linear.

To prove super-linear lower bounds for bitwise decomposable projective dimension, we

show that Nechiporuk’s method [11] can be adapted to our linear algebraic framework (thus

proving Theorem 1.3 from the introduction). The overall idea is the following: given a

function f and a bitpdim assignment φ, consider the restriction of f denoted fρ where ρ

fixes all variables except the ones in Ti to 0 or 1 where Ti is some subset of variables in the

left partition. For different restrictions ρ, we are guaranteed to get at least ci(f) different

functions. We show that for each restriction ρ, we can obtain an assignment from φ realizing

fρ. Hence the number of different bitpdim assignments for ρ restricted to Ti is at least the

number of sub functions of f which is at least ci(f). Let di be the ambient dimension of the

assignment when restricted to Ti. By using the structure of bitpdim assignment, we count

the number of assignments possible and use this relation to get a lower bound on di. Now

repeating the argument with disjoint Ti, and by observing that the subspaces associated

with Tis are disjoint, we get a lower bound on d as d =
∑

i di.

◮ Theorem 5.5. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} on 2n variables,

let T1, . . . , Tm are partition of variables to m blocks of size ri on the first n variables. Let

ci(f) be the number of distinct sub functions of f when restricted to Ti, then bitpdim(f) ≥
∑m

i=1
log ci(f)

log(log ci(f))

6 Note that this is not a deterministic branching program.
7 Using more space efficient methods than [14], the constant c can be estimated to be at most 5.
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Proof. Let (x, y) denote the 2n input variables of f and ρ : {x1, . . . , xn, y1, . . . , yn} →
{0, 1, ∗} be a map that leaves only variables in Ti unfixed. Let φ be a bitpdim assignment realiz-

ing f and let Gf (X,Y, Z) denote the bipartite realization of f . Let C = {Ua
i }i∈[n],a∈{0,1} ,D =

{V b
j }j∈[n],b∈{0,1} be the associated collection of subspaces. Let ρ be a restriction that does

not make fρ a constant and (x, y) ∈ {0, 1}n × {0, 1}n
which agrees with ρ. We use x, y to

denote both variables as well as assignment. From now on, we fix an i and a partition Ti.

Define L = span
i∈[n],ρ(i) 6=∗

{Uρ(i)
i } and R = span

j∈[n]

{V ρ(n+j)
j }. For any x ∈ {0, 1}n

that agrees

with ρ on the first n bits, define Zx = span
j∈Ti

{Uxi
j } Note that for any (x, y), which agrees with

ρ, has φ(x) = L + Zx and φ(y) = R. For any fρ1
6≡ fρ2

, Gfρ1
6= Gfρ2

. Hence the number

of bitpdim assignments is at least the number of different sub functions. We need to give

a bitpdim assignment for Gfρ
(V1, V2, E) where V1 = {x | x agrees with ρ}, V2 = {y} where

y = ρ[n+1,...,2n] and E = {(x, y)|x ∈ V1, y ∈ V2, f(x, y) = 1}. We use the following property

to come up with such an assignment.

◮ Property 5.6. Let ρ be a restriction which does not make the function f constant and

which fixes all the variables y1, . . . , yn. For all such ρ and ∀x, y ∈ {0, 1}n
which agrees with

ρ, any non-zero w ∈ φ(x) ∩φ(y), where w = u+ v with u ∈ L and v ∈ Zx must satisfy v 6= ~0.

Proof. Let there exists an intersection vector w ∈ (L+ Zx) ∩R with w = u+ v, u ∈ L and

v ∈ Zx and v = ~0. Since ~0 ∈ Z x̂ for any x̂, w = u+~0 is in L+Z x̂ and R. Thus the function

after restriction ρ is a constant. This contradicts the choice of ρ. ◭

The assignment ψρ for Gfρ defined as: ψρ(x) = Zx and ψρ(y) = span
x∈V1

{ΠZx (R ∩ (L+ Zx))}

Note that for (x, y) ∈ V1 × V2, fρ(x) = f(x, y). Following claim shows that ψρ realize fρ.

◮ Claim 5.7. For any (x, y) ∈ V1 × V2, f(x, y) = 1 if and only if ψρ(x) ∩ ψρ(y) 6= {0}.

Proof. For any (x, y) ∈ X×Y , φ(x)∩φ(y) 6= {0} if and only if f(x, y) = 1. Since V1 ⊆ X and

V2 ⊆ Y , it suffices to prove: ∀(x, y) ∈ V1 × V2, ψρ(x) ∩ ψρ(y) 6= {0} ⇐⇒ φ(x) ∩ φ(y) 6= {0}.

We first prove that ψρ(x) ∩ ψρ(y) 6= {0} implies φ(x) ∩ φ(y) 6= {0}. Let v be a non-zero

vector in ψρ(x) ∩ψρ(y). By definition of ψρ(x), v ∈ Zx. By definition of ψρ(y), there exists a

non-empty J ⊆ V1 such that v =
∑

x̂∈J vx̂ where vx̂ ∈ Z x̂. Also for every x̂ ∈ J , there exists

a ux̂ ∈ L such that wx̂ = ux̂ + vx̂ and wx̂ ∈ R. Define u to be
∑

x̂∈J ux̂. Since each ux̂ is in

L, u is also in L. Hence w = u+ v is in L+ Zx. Substituting u with
∑

x̂∈J ux̂ and v with
∑

x̂∈J vx̂ we get that w =
∑

x̂∈J ux̂ + vx̂ =
∑

x̂∈J wx̂. Since each wx̂ ∈ R, w ∈ R. Hence

w ∈ R ∩ (L+ Zx) and w is non-zero as J is non-empty.

Now we prove that φ(x) ∩ φ(y) 6= {0} implies ψρ(x) ∩ ψρ(y) 6= {0}. Let w be non zero

vector in φ(x) ∩ φ(y) with w = u + v where u ∈ L and v ∈ Zx. By Property 5.6 we have

v 6= ~0. By definition v ∈ ψρ(y). Along with v ∈ Zx, we get ψρ(x) ∩ ψρ(y) 6= {0}. ◭

Let Z = span
j∈Ti

{U0
j + U1

j }. We now prove that subspace assignment on the only vertex in the

right partition of Gρ which is span
x∈V1

{ΠZx(R)} is indeed ΠZ(R).

◮ Claim 5.8. ΠZ(R) = span
x∈V1

{ΠZx(R)}.

Proof. We show span
x∈V1

{ΠZx(R)} ⊆ ΠZ(R). Note that span
x∈V1

{ΠZx(R)} = span
x∈V1,w∈R

{ΠZx(w)}.

For an arbitrary x ∈ V1 and w ∈ R, let v = ΠZx(w). By definition of Zx and the fact that
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{

U b
i

}

i∈[n],b∈{0,1}
are disjoint, ΠZx(w) = +i∈[n],ρ(i)=∗ΠU

xi
i

(w). As Z = span
j∈Ti

{U0
j +U1

j }, every

ΠU
xi
i

(w) ∈ ΠZ(R). Hence the span is also in ΠZ(R).

Now we show that ΠZ(R) ⊆ span
x∈V1

{ΠZx(R)}. Let Ti = {i1, . . . , ik}. For 1 ≤ j ≤ k define

xj to be x+ej where x ∈ {0, 1}n
agrees with ρ and for any index i ∈ [n] with ρ(i) = ∗, xi = 0

and ej ∈ {0, 1}n
is 0 at every index other than ij . Note that for any j1 6= j2, j1, j2 ∈ Ti,

Zxj1 ∩Zxj2

= {0} by Property 3 of Definition 5.2) Also note that span
j∈Ti

{Zxj } = span
j∈Ti

{Uxj

j } =

Z. Hence, ΠZ(R) = span
j∈Ti

{ΠZxj (R)}. But span
j∈Ti

{ΠZxj (R)} ⊆ span
x∈V1

{ΠZx(R)}. ◭

For any ρ, which fixes all variables outside Ti, Z is the same. And since there is only one

vertex on the right partition, for different ρ, ρ′, ΠZ(Rρ) = ΠZ(Rρ′) implies ψρ = ψρ′ . Hence

to count the number of different ψρ’s for different fρ’s it is enough to count the number of

different ΠZ(R). To do so, we claim the following property on ΠZ(R).

◮ Property 5.9. Let S = {eu − ev|eu − ev ∈ Z}. Then there exists a subset S′ of S such

that all the vectors in S′ are linearly independent and ΠZ(R) = span {S′}.

Proof. By the property of the bitpdim assignment, ∀i ∈ [n] and ∀b ∈ {0, 1}, V b
i = span

{

F b
i

}

where F b
i is a collection of difference of standard basis vectors. Recall that R = span

j∈[n]

{V ρ(n+j)
j }.

Let F =
{

(eu − ev) | eu − ev ∈ F
ρ(n+j)
j , j ∈ [n]

}

. Since projections are linear maps and the

fact that F
ρ(n+j)
j spans V

ρ(n+j)
j we get that, ΠZ(R) = span

w∈F
{ΠZ(w)}. Since Z is also a span

of difference of standard basis vectors, ΠZ(eu − ev) is one of ~0, eu − ew or ew − ev where ew

is some standard basis vector in Z. Let S′′ = ∪eu−ev∈F ΠZ(eu − ev). Hence S′′ ⊆ S. Clearly,

span
eu−ev∈S′′

{eu − ev} = ΠZ(R). Choose S′ as a linear independent subset of S′′. ◭

Property 5.9 along with the fact that ΠZ(R) is a subspace of Z, gives us that the number of

different ΠZ(R) is upper bounded by number of different subsets S′ of S such that |S′| = di

where di = dim(Z). As S′ is a set of difference of standard basis vectors from Z, |S′| ≤
(

di

2

)

.

Thus the number of different such S′ are at most
∑di

k=0

(

d2

i
k

)

= 2O(di log di).

Hence the number of restrictions ρ (that leaves Ti unfixed) and leading to different

fρ is at most 2O(di log di). But the number of such restrictions ρ is at least ci(f). Hence

2O(di log di) ≥ ci(f) giving di = Ω
(

log ci(f)
log(log ci(f))

)

. Using d =
∑

i di completes the proof. ◭

Theorem 5.5 gives a super linear lower bound for Element Distinctness function. From a

manuscript by Beame et.al, ([1], See also [6], Chapter 1), we have ci(EDn) ≥ 2n/2/n. Hence

applying this count to Theorem 5.5, we get that d ≥ Ω
(

n
log n · n

log n

)

= Ω
(

n2

(log n)2

)

.

Now we apply this to our context. To get a lower bound using framework described above

it is enough to count the number of sub-functions of SId.

◮ Lemma 5.10. For any i ∈ [d], there are 2Ω(d2) different restrictions ρ of SId which fixes

all entries other than ith row of the d× d matrix in the left partition.

Proof. Fix any i ∈ [d]. Let S be a subspace of Fd
2. Define ρS to be SId(A, B) where B is a

matrix whose rowspace is S. And A is the matrix whose all but ith row is 0’s and ith row

consists of variables (xi1
, . . . , xin

). Thus for any v ∈ {0, 1}d
, rowspace of A(x) is span {v}.

We claim that for any S, S′ ⊆S F
d
2 where S 6= S′, (SId)ρS

6≡ (SId)ρ′

S
. By definition

(SId)ρS
≡ SId(A, B) and (SId)ρ′

S
≡ SId(A, B′) where B and B′ are matrices whose rowspaces
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are S and S′ respectively. Since S 6= S′ there is at least one vector v ∈ F
d
2 such that it belongs

to only one of S, S′. Without loss of generality let that subspace be S. Then SId(A(v), B) = 1

as v ∈ S where as SId(A(v), B′) = 0 as v 6∈ S′. Hence the number of different restrictions is

at least number of different subspaces of Fd
2 which is 2Ω(d2). Hence the proof. ◭

This completes the proof of Theorem 1.3 from the introduction. This implies that for SId, the

branching program size lower bound is Ω
(

d2

log d × d
)

= Ω
(

d3

log d

)

= Ω
(

n1.5

log n

)

where n = 2d2

is the number of input bits of SId.

6 Standard Variants of Projective Dimension

In this section, we study two stringent variants of projective dimension for which exponential

lower bounds and exact characterizations can be derived. Although these measure do not

correspond to restrictions on branching programs, they illuminate essential nature of the

general measure. We define the measures and show their characterizations in terms of

well-studied graph theoretic parameters.

◮ Definition 6.1 (Standard Projective Dimension). A Boolean function f : {0, 1}n ×{0, 1}n →
{0, 1} with the corresponding bipartite graph G(U, V,E) is said to have standard projective

dimension (denoted by spd(f)) d over field F, if d is the smallest possible dimension for which

there exists a vector space K of dimension d over F with a map φ assigning subspaces of K

to U ∪ V such that

for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.

u ∈ U ∪ V , φ(u) is spanned by a subset of standard basis vectors in K.

In addition to the above constraints, if the assignment satisfies the property that for all

(u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1, we say that the standard projective dimension is with

intersection dimension 1, denoted by uspd(f).

For N ×N bipartite graph G with m edges, consider the assignment of standard basis

vectors to each of the edges and for any u ∈ U ∪ V , φ(u) is the span of the basis vectors

assigned to the edges incident on u. Moreover, the intersection dimension in this case

is 1. Hence for any G , spd(G) ≤ uspd(G) ≤ m. We show that bc(Gf ) = spd(Gf ) and

uspd(Gf ) = bp(Gf ). We refer the reader to the full version [7] for the details of the proof.

Even though pd(G) ≤ spd(G), there are graphs for which the gap is exponential. For

example, consider the bipartite realization G of EQn with N = 2n. We know pd(G) = θ(logN)

but spd(G) ≥ N since each of the vertices associated with the matched edges cannot share

any basis vector with vertices in other matched edges. Hence dimension must be at least N .

We show that standard projective dimension of bipartite G is equal to biclique cover number.

7 Discussion & Conclusion

In this paper we studied variants of projective dimension of graphs with improved connection

to branching programs. We showed lower bounds for these measures indicating the weakness

and of each of the variants.

An immediate question that arises from our work is whether Ω(d2) lower bound on

upd(Pd) is tight. In this direction, since we have established a gap between upd(Pd) and

pd(Pd), it is natural to study how pd and upd behave under composition of functions, in

order to amplify this gap.

The subspace counting based lower bounds for bitpdim that we proved are tight for

functions like EDn. However, observe that under standard complexity theoretic assumptions
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the bitpdim assignment for Pd is not tight. Hence it might be possible to use the specific

linear algebraic properties of Pd to improve the bitpdim lower bound we obtained for Pd.
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