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−} | L 〉 terms 38

1 Introduction

The AdS/CFT correspondence [1–3] is a powerful tool used to obtain results both on

strongly coupled field theories and on String theory or gravity. In particular, it has led to a

much better understanding of black holes to the extent that they can be enumerated qual-

itatively in most cases, and precisely in some. We would like to extend our understanding

to additional kinds of black holes, and new phases of String theory which arise at their

near horizon limits.

The claim that we will make in this paper is that certain small fluctuations of Fermi

surface states in the psu(1, 1|2) and fermionic su(1, 1) sectors of N = 4 SYM are governed

by a chiral sector (say, right moving) of the 1+1 “strange metal” [4] gauged model

SU(N)N ⊗ SU(N)N
SU(N)2N

(1.1)

The origin of the numerator will be the fermions in N = 4 SYM. To argue for the gauging,

we will compute, at weak coupling to order g4 at large N(where g is ’t Hooft coupling), the

spectrum of these fluctuations and demonstrate how the gauging comes about dynamically

at low energies. Supersymmetry does not play an essential role in these arguments as the

Fermi surface states are not supersymmetric to start with.1

When taken in conjunction with the conjectured duality [5, 6] between these Fermi

surface states and a specific class of singular degenerations of black holes in AdS5 ×S5 [7–

9] (or more precisely, within a familiar consistent truncation of the latter), we conclude that

the near horizon of these black holes contains a sector governed by a higher spin integrable

CFT. I.e., we can provide a workable example of a higher spin theory (albeit chiral) within

theories that we are familiar with, and a flow which interpolates the latter to the former.

If true, then this construction might shed light on several aspects of black holes physics

and the AdS/CFT duality:

1. Theories with W -symmetries within string theory. The tensionless limit of

string theory has recently emerged as a promising new example of the AdS/CFT corre-

spondence [10]. In this duality, the bulk side contains an infinite tower of massless higher

spin fields which enhance the gauge symmetry, which can then be employed to gain in-

sights into the working of the AdS/CFT duality. In this work we will be interested in 2

dimensional CFTs, which are possibly dual to 3 dimensional bulk higher spin theories. In

the context of two dimensional CFTs these enhanced symmetries are usually termed W

symmetries (see [11]). CFTs which are vector-like (i.e. their central charge is c ∼ N in the

large-N limit) with WN symmetries have been proposed as duals to Vasiliev higher spin

1Although they are close to them in a sense which will be made clear below.
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theories on AdS3 [12, 13]. In this work we encounter CFTs which are matrix like (with

central charge c ∼ N2) with “extended” WN symmetries. Our results suggest that for the

chiral sector of these CFTs the bulk dual is a string theory on Near horizon geometries of

certain fast rotating black holes in an otherwise familiar and benign AdS space. This gives

an explicit realization of theories with W symmetry in CFTs within a known bulk dual.

2. Singular degenerations of black holes. Since we start in a familiar AdS space, in

this case AdS5, we do not have the freedom to tune the string tension to zero. Rather, we

go to the tensionless limit by having some curvature diverge somewhere within the solution,

which is the case for the S = 0 black hole that we have.

These black holes are, however, degenerations of otherwise reasonable black holes, i.e.,

by slightly heating up the system we go to a black hole with S > 0, for which the horizon

is smooth and with low curvature. Reversing the argument, we start with these S > 0

black holes and go to the extremal limit, where S → 0 as well. When this happens the

horizon recedes, shrinks and collapses around a ring of singularities which is now naked.

We will refer to the final configurations as singular degenerations of black holes. Bulk

computations can be carried at S > 0 and then one can try and extrapolate them to the

singular limit, relying on some intuition from the dual field theory to address potential

problems of instability.

Furthermore, such degenerations can be obtained in various dimensions and are in

no way unique to AdS5. Therefore they might teach us new lessons on a larger class of

singularities in string theory.

3. Applying integrability techniques to the study of black holes. Techniques

borrowed from integrable systems have proven to be essential in understanding the string

worldsheet in some AdS spaces, and the spectrum of excited strings. Understanding black

holes is outside the scope of such techniques both because of their different large-N scaling,

and, perhaps more critically, because fast scrambling systems such as black holes are not

described by integrable systems.

This is the case for a general black hole, but it may be better for our specific class

of extremal black holes. The S = 0 black hole is conjectured to be made out of partons

in a specific subsector of N = 4 SYM — the fermionic psu(1, 1) sector, which can be

embedded in the psu(1, 1|2) sector2 [14, 15]. In fact, it is the ground state in this sector

(for a given charge). The corresponding operator is therefore dual to an exact eigenstate of

the dilatation operator [5], and it is an interesting open question whether one can compute

its dimensions to all order in perturbation theory.

In any case, the conjecture that some of the near-horizon fluctuations are given by the

coset in (1.1) implies that the near horizon should have again a familiar large N limit, even

though these are excitations about a state which is far from being a long trace operator.

4. New phases of electronic matter. The AdS/CFT duality has been used to obtain

insight into strongly correlated electron systems in condensed matter systems [16, 17]. For

2These sectors may also be related to the problem of classifying low SUSY operators in N = 4, 2

theories [5, 6].
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example, the duality is very useful in taking into account the dynamics of order parameters

in large N theories across the entire RG flow, and extremal black hole configurations have

proven to be useful in such setups. Since the ground state of most CM systems is non-

degenerate, it is natural to combine the latter with an S → 0 limit, as is the case for our

dual black holes. Such degenerations may exist in other known AdS/CFT pairs and we

expect that the specific model SU(N)N ⊗ SU(N)N/SU(N)2N can be generalized to other

1+1 CFTs. The model, however, is intimately tied to the 1+1 dimensional chiral nature

of the construction, and hence it is not clear if one will be able to generalize it to higher

dimensions or to non-chiral case. What is likely, however, is that any S = 0 degeneration

of an extremal black hole are a natural starting point for applications to CM systems.

5. (S = 0,Ω = 1, J → ∞) black holes and chiral sectors of CFTs. The construc-

tion that we will present is closely tied to the fact that the black holes are fast rotating with

Ω → 1. In the operator language, the field theory dual will contain a restricted number

of “letters” from the field theory dictionary, and only a single derivative ∂11̇. When going

to the picture of states on an S3 × Rt, in radial quantization, these correspond to quanta

moving along a “large circle” of the S3. Consider a general Sd and a state which has large

angular momenta along a fixed two plane which intersects this Sd. Generally, particles

with high momenta along this circle, need not be governed by a local theory on this circle

since (virtual) particles can “make a short cut” from one point of the circle to another via

the rest of the Sd. However, in the limit of very high momenta along this circle we expect

the theory to become local because (1) it started its life a local theory on the sphere, and

(2) at large momenta all emissions are boosted to a very narrow cone around the circle.

I.e., particles are kinematically confined to the “big circle” and do not traverse the sphere

away from it.

The conclusion is that if we take any black hole, in any AdSd, d > 3 space, and spin

it to the limit of Ω → 1 along a two-plane, then the theory will be governed by a chiral

sector of a local 1+1 field theory, i.e., states with conformal dimensions (0, h) in a local

1+1 CFT. If we further truncate to an S = 0 configuration, then we are in the ground

state of such a theory. Operators with dimensions (0, h) are either Virasoro descendants

of the identity operator or else constitute an extended chiral symmetry of some sort, such

as W -symmetry.

The discussion above might also be related to some recent discussion in the literature:

1. Using the psu(1, 1|2) sector of N = 4 SYM is advantageous for our purposes since it is

a non-compact sector, allowing for rich, though still controlled, dynamics. Recently,

a sector with similar symmetry algebra and field content was used in the context of

four dimensional N = 2 SCFTs [18] in order to derive strong restrictions on their

spectrum. In that work, one can find a twisted Virasoro subalgebra in a restricted

2-plane in 4D, which is non-trivial in the full theory, composed of both the SU(2)R
symmetry and a subgroup of the Poincarë symmetry. This maps a subsector of the

four dimensional theory, which has a psu(1, 1|2) algebra to a (non-unitary) 2d SCFT.

The bootstrap approach is then used to obtain bounds on that theory, which can
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be directly translated to the four-dimensional theories. Supersymmetry plays a key

role in that analysis, whereas we are interested in non-SUSY states in general. Also,

the 2D CFTs obtained there are non-unitary, as is manifested in their central charge

and Kac-Moody levels, whereas the theory that we will obtain is unitary. These two

differences lead us to believe that the states that we are interested in are the ones

that are lifted from being 2D in their case once gym 6= 0, in which case one needs

to go to high energies (high Fermi level in our language) to have some measure of

control. It will be interesting to explore whether the W symmetry that they find

there is part of the extended W -symmetry that exists in our suggested realization of

“strange metals”.

2. The extremal black holes dual to the Fermi surface have zero entropy, and are

therefore singular. Such black holes have been dubbed Extremal Vanishing Horizon

(EVH) [19] black holes since the entropy, and thus the area of the horizon, shrinks to

zero size along one of the dimensions for some subset of the solution space. Unlike the

case of Kerr/CFT [20, 21], EVH black holes have an AdS3 near-horizon, and are thus

proposed to be dual to fully (non-chiral) 2d CFTs. Due to the fact that the circle in

the AdS3 has vanishing periodicity at the horizon, it is known as a ‘pinching’ AdS3.

In [19] a conjecture has been made regarding the dual low-energy CFT for such black

holes, which was further developed in [22–24]. The vanishing horizon area means that the

background is singular, and the EVH/CFT proposal gives a prescription, which is different

from ours, for regulating this singularity by rescaling GN to zero in order to obtain a

finite entropy. The entropy can then be reproduced by the Cardy formula for a theory

with central charge c ∝ N2ǫ which must be kept fixed in the large-N limit. The case we

consider, however, does not require us to rescale GN , which would seem unnatural from

the point of view of the duality between type IIB SUGRA and N = 4 SYM.

1.1 Summary of results

In this work we will be interested in finding the low energy effective field theory about a

special class of states in N = 4 SYM theory. This class of states are Fermi surface operators

built out of the partons of the fermionic su(1, 1) sector of the N = 4 theory, denoted by ρak
where a is an index of su(N) and k is the momenta of the parton (or the number of ∂11̇
derivatives acting on ρa in the operator notation), i.e.,

ΠN
2−1

a=1 ΠKk=0ρ
a
k = ΠN

2−1
a=1 ΠKk=0∂

k
11̇
ρa (1.2)

Such operators are ground states in this sector, for appropriate total charge and angular

momenta, and they are exact eigenvectors of the dilatation operator. We will be interested

in the limit of large K, and ǫ = 1/K will emerge as a new small expansion parameter,

which will play a crucial role below.

At tree level, excitations around the Fermi surface are multiparticle states made out

of particles above the Fermi surface and holes below the Fermi surface, with a global gauge
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invariance constraint, i.e, the states of

SU(N)N ⊗ SU(N)N
global SU(N)

(1.3)

We evaluate the corrections to the anomalous dimensions of such excitations to order

g4, and show that the latter theory splits into two sector - one receives no consequential

anomalous dimension, in the largeK limit, and another which receives a positive anomalous

dimension of order 1 times the appropriate power of g. The former, low energy sector, is

that of a chiral sector of the gauged model

SU(N)N ⊗ SU(N)N
SU(N)2N

(1.4)

At order g2 there is a simple expression for the anomalous dimension

δD2 =
∑

k

ρakρ̌
a
k +

1

2N

∑

u>0

1

u
Ja−uJ

a
u (1.5)

where Jau is a Kac-Moody current with level 2N for small u and large K relevant for the

low energy excitations. This clearly shows that a gap (which we show to be O(1)) opens up

between states which are annihilated by Jau for u > 0 which remain light, and those which

are not. The light states are exactly those of (1.4). We show that this persists to order

g4, where the light states receive only corrections which are suppressed by 1/K whereas

“heavy states” receive corrections which are O(1) (times g4). If this persists to strong

coupling we can expect that the states of (1.4) remain light there, whereas the “heavy”

states receive arbitrarily large anomalous dimensions.

1.2 Outline of the paper

The outline of this paper is as follows. Sections 2,3 provide some background material.

Section 2.1 is a quick introduction to the “strange metal” CFT. Section 2.2 provides,

for completeness, a discussion of the dual gravity configuration. Section 3 sets up the

computations that we will do later, by detailing the psu(1, 1|2) and fermionic su(1, 1)

sectors and by introducing the Fermi surface state around which we will expand. Section

4 computes the order g2 anomalous dimension and the origin of the SU(N)2N gauging.

Section 5 carries out the same computation in the limit of large angular momentum, or

large Fermi energy of the Fermi surface. In this limit a new diagrammatic scheme emerges,

which vastly simplifies the computation of the anomalous dimension. In section 6 we check

our conjecture at two loop level using the techniques developed in section 5. In section 7,

we discuss our results and point out future directions.

2 “Strange metals”, Fermi surfaces in N = 4 and degenerate black holes

in AdS5 × S5

2.1 Strange metals in 1+1 dimensions

In this section, we will review the “strange metal” coset models in 1+1 dimensions, follow-

ing [4]. Consider a SU(N) gauge theory in 1+1 dimensions coupled minimally to adjoint

– 5 –
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fermions. The Lagrangian is

L = Tr
[

Ψ̄(iγµDµΨ−m− µγ0)Ψ
]

− 1

2g2YM

TrF 2 (2.1)

In the high density limit µ ≫ m, gYM

√
N , the ground state is just a Fermi surface. The

low energy excitations around this state are Dirac fermions interacting with each other via

gauge fields. The effective Lagrangian relevant at low energies is

Leff = Tr
[

ψ†
R(∂τ − ∂x)ψR + (Aτ +Ax)[ψ

†
R, ψR]

]

+Tr
[

ψ†
L(∂τ + ∂x)ψL + (Aτ −Ax)[ψ

†
L, ψL]

]

− 1

2g2YM

TrF 2 (2.2)

where the fermions ψL(R) are left(right) moving fermions defined from the microscopic Ψ

fermions by linearizing around the Fermi surface. To see the emergence of coset more

clearly, it is useful to trade the Dirac fermions for a pair of Majorana fermions

ψL,R =
1√
2
(ψ1

L,R + iψ2
L,R) (2.3)

Now the Lagrangian becomes

Leff = − 1

2g2YM

TrF 2 (2.4)

+
1

2
Tr [ψaR(∂τ − ∂x)ψ

a
R + (Aτ +Ax)ψ

a
Rψ

a
R + ψaL(∂τ + ∂x)ψ

a
L + (Aτ −Ax)ψ

a
Lψ

a
L]

In the strong coupling limit (gYM → ∞) the gauge fields decouple to give just free fermions

with constraints that the currents JR = ψaRψ
a
R and JL = ψaLψ

a
L vanish. Each Majorana

fermion is equivalent to a SU(N)N WZW model. Also the currents JL, JR that must

vanish obey a SU(N)2N Kac-Moody algebra. Hence the low energy theory is a CFT2
based on coset

SU(N)N ⊗ SU(N)N
SU(N)2N

(2.5)

The above CFT has N = (2, 2) supersymmetry as shown in [25]. The central charge of the

theory is

c =
N2 − 1

3
(2.6)

For the N = 2, 3 case, the full conformal primary operator spectrum was analyzed in [4]

and the operators are constructed explicitly from the fermions. In addition, a partial list

of operators for N ≥ 4 is given (for N = 4, 5, the chiral, in the sense of SUSY, primary

content of the theory has been worked out in [26] using group theoretic techniques).

In this work, we will be interested in the chiral sector of this theory, i.e., all operators

with conformal dimension (0, h).

The coset CFT described above is a special case of the class of CFTs

SU(N)k ⊗ SU(N)l
SU(N)k+l

(2.7)

– 6 –
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having N = (1, 1) supersymmetry. The case with k = N, l = 1 has been well studied. It is

known to have an extended WN symmetry i.e one chiral current for each spin s = 2, 3 . . . N

(see for example [11]). These are vector like models with central charge c ∼ N in large

N limit, which have been proposed [12] (see [13] for a review) to be dual to with Vasiliev

higher spin theories on AdS [27] in the bulk.

In the case we are interested in with k = l = N , there are many additional chiral

currents apart from the WN currents. These form a much larger higher spin algebra whose

consequences have not yet been worked out fully. They are “matrix like” models with

central charge c ∼ N2 in large N limit. In fact, there is a hagedorn growth in the number

of higher spin currents suggesting that the bulk dual must have a much bigger gauge

symmetry than Vasiliev theories, maybe even full string theory.

2.2 Black hole and Fermi surfaces

Most of this work deals with the dynamics of excitations in the fermionic su(1, 1) sector,

and to a lesser extent in the psu(1, 1|2) sector [28], in the weak coupling limit. Our moti-

vation, however, is also in understanding a class black holes in AdS5 × S5, which are their

conjectured duals [5]. For completeness, we provide of brief discussion of these black holes.

The specific black holes are describe within the consistent truncation of type IIB

Supergravity on AdS5 × S5 described in ref. [29]. The field content consists of the metric,

two neutral scalars and three abelian U(1) fields. The bosonic part of the supergravity

action is

S =

∫

d5x
√−g

[

R− 1

2

2
∑

α=1

(∂ϕα)
2 +

3
∑

i=1

(

4l−2X−1
i − 1

4
X−2
i F i

µνF iµν

)

]

+

∫

d5x
1

24
|ǫijk|ǫuvρσλF i

uvF j
ρσA

k
λ. (2.8)

Here, lAdS ≡ l is the AdS radius, Ai are the three U(1) gauge fields, and Xi are

three uncharged scalars, constrained by X1X2X3 = 1 and parameterized by X1 =

e
− 1√

6
φ1− 1√

2
φ2 , X2 = e

− 1√
6
φ1+

1√
2
φ2 , X3 = e

2√
6
φ1 . Black hole solution in this SUGRA model

were found in [8] and generalized in [7]. We follow the latter’s conventions. The most

general known class of solutions, describing a black hole, is parameterized by 5 numbers

(E, Jψ, Jφ, Q1 = Q2, Q3) - the mass, angular momenta along the two independent 2-planes,

and the 3 U(1) charges. In our convention

Jφ = JL + JR, Jψ = JL − JR. Qi =
Q̂i
l
. (2.9)

where the Q̂ are the field theory charges normalized to be dimensionless. The charges Jφ,

Jψ, Q1(= Q2), Q3 and E are then further parameterized, as in [7], by δ1, δ3, m, a, b, which

are the parameters that appear in the SUGRA background. Our l is denoted there by 1/g.

– 7 –
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We will focus on a subset of these solutions given by Q3 = 0 and JL − JR = Jψ = 0,

which is equivalent to setting b = 0 and δ3 = 0. The metric is given by

ds2 = H
2/3
1

{

(

x2 + y2
)

(

dx2

X
+
dy2

Y

)

− X
(

dt− y2dσ
)2

(x2 + y2)H2
1

+
Y
[

dt+
(

x2 + 2ms21
)

dσ
]2

(x2 + y2)H2
1

+ y2x2dχ2

} (2.10)

where we define c1 = cosh(δ1),s1 = sinh(δ1) and Σa = 1 − a2/l2. The functions used in

the metric are

X = −2m+
(

a2 + x2
)

+ l−2
(

a2 + 2ms21 + x2
) (

2ms21 + x2
)

Y =
(

a2 − y2
) (

1− l−2y2
)

H1 = 1 +
2ms21
x2 + y2

.

(2.11)

In addition, the gauge field and scalar backgrounds are

A1 = A2 =
2ms1c1(dt− y2dσ)

(x2 + y2)H1

A3 =
2ms21y

2dχ

(x2 + y2)

X1 = X2 = H
−1/3
1

X3 = H
2/3
1 .

(2.12)

Finally, using the AdS/CFT relation

πl3AdS

4G5
=
N2

2
. (2.13)

the black hole’s global charges can be written as

Jφ =
π

4G5

2ma
(

1 + s21
)

Σa
2 = N2l−3ma

(

1 + s21
)

Σa
2

Q1 = Q2 ≡ Q =
π

4G5

2ms1c1
Σa

= N2l−3ms1c1
Σa

E =
π

4G5

m[(2(l−4a4 +Σa + 1) + l−2a2(Σa − 2))s21 +Σa + 2]

Σ2
a

(2.14)

As explained in [6], the event horizon of the black hole is obtained by changing to the

asymptotically AdS coordinates

x2 = r2 − 4

3
ms21

y2 = a2 cos2 θ
(2.15)

– 8 –
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and solving ∆(r) ≡ X(x)x2 = 0. The extremal limit occurs when X(x) ∝ x2. The

(degenerate) horizon is then at x = 0. For convenience we changed variables to x2 = z.

Now, X(x) = (z − z1)(z − z2) and z2 serves as the off-extremality parameter.

In the limit of large angular momentum, i.e. a → l, with all other parameters fixed,

we have from (2.14) that

Jφ ∝ N2 1
(

1− a
l

)2 (2.16)

Q1 = Q2 ∝ N2 1

1− a
l

. (2.17)

This scaling suggests defining the (finite) ratio

α =
Jφ/N

2

(Q1/N2)2
. (2.18)

At the value α = 2 the extremal black hole satisfies a 1/8th BPS bound

E = Jφ + Jψ +Q1 +Q2 +Q3 = Jφ + 2Q1 (2.19)

and has zero entropy. This can be seen by expressing the remaining parameters in terms

of α and z2, with l = 1 for simplicity

m =

(

a2 + z2
)

(1 + z2)

2
+

2a2

α2
+
a3 + 2az2

α

ms21 =
a

α

z1 = −4a+
(

a2 + 1 + z2
)

α

α
,

(2.20)

where now

S = N2 2π
√
z2
(

a2 + 2a
α + z2

)

Σa

T =

√
z2
(

4a+ α+ a2α+ 2αz2
)

4aπ + 2πα (a2 + z2)
.

(2.21)

Clearly S = T = 0 at z2 = 0.

Massless scalar perturbations in this black hole background have been studied and

exhibit the spectrum of a free fermion bilinear in a 1 + 1 CFT [6], i.e., a chiral current,

which is expected to appear in the spectrum of the Strange Metal [4].

The scaling expressed by a fixed α in (2.18) is similar to that of a one-dimensional

Fermi surface. Suppose we build a Fermi surface of a single free fermion living on a circle

with radius 1, so that the momentum is discretized. When building a Fermi surface, a

fermion at energy level n contributes a single unit to the total charge Q and n units to the

total angular momentum J . Therefore, a Fermi surface with K ≫ 1 states has Q = K and

J ≈ K2, so that J/Q2 ≈ 1. If the fermion is in the adjoint of SU(N), there are N2 − 1

states at every level which one needs to take into account. In the following section we show

how such a fermion can be embedded in N = 4SYM .
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3 Constructing a 1D Fermi surface in N = 4 super Yang-Mills theory

In this section we show how the Fermi surface-like scaling of the black hole can be realized

in N = 4 SYM. We introduce the psu(1, 1|2) and fermionic su(1, 1) sectors, and describe

their ground states, which are conjectured to be dual to the α = 2 black holes, for large

angular momenta.

An explicit computation of the anomalous dimension for these Fermi surface ground

states, carried out in [5], has shown that it is weakly renormalized at two loops, i.e., the

corrections to the conformal dimensions is suppressed by powers of Q/N2 relative to the

classical dimension. Here we study in greater detail excitations around this Fermi surface,

finding evidence that the low-energy excitations about this Fermi surface behave like a

(chiral) Strange Metal in 1 + 1 dimensions.

In section 3.1 we review the N = 4 multiplet and symmetry generators to set up the

notation. In section 3.2 and section 3.3 we discuss the closed subsectors of SYM theory

paying close attention to psu(1, 1|2) and fermionic su(1, 1) sectors. In section 3.4 we discuss

the Fermi surface ground states of these sectors.

3.1 N = 4 SYM notations

Our conventions for the N = 4 multiplet are:3 (1) the gauge field-strength Fαβ and F̄α̇β̇ ,

(2) the gauginos Ψαa and Ψ̄a
α̇ and (3) The complex scalars Φab with the antisymmetry

Φab = −Φba (and (Φab)
† = Φ̄ab = 1

2ǫ
abcdΦcd). The undotted Greek letters (α, β, . . .),

dotted Greek letters (α̇, β̇, . . .) and Latin letters (a, b . . .) stands for SU(2)L, SU(2)R and

SU(4) fundamental indices, respectively. Raising and lowering the SU(4) indices changes

between the fundamental and anti-fundamental representations.

The gauge group is G = SU(N), and all fields transform in the adjoint representation.

When we will need to be specific about the gauge group structure we will write all fields

as W = Wata with a = 1, . . . dimG, and ta are generators of SU(N).4 The covariant

derivative is

Dαα̇W = (σµ)αα̇ (∂µW − i[Aµ,W]) , (3.1)

where W are the partons in the theory W ∈ {DkF, DkΨi, D
kΦij , D

kΨ̄i, DkF̄}. We use,

as in [28], W̌A for functional derivatives with respect to the partons

(W̌)a =
δ

δ(W)
, a = 1, 2 . . . dimG . (3.2)

The generators of the psu(2, 2|4) algebra are:

• The compact bosonic su(2)L × su(2)R × su(4) generators Lαβ , L̄α̇
β̇
, Ra

b.

• The non-compact bosonic translation, dilatation and special conformal generators

Pαα̇, D, Kα̇α.

• The supercharges Qa
α, Q̄α̇a and super-conformal supercharges Sα

a , S̄
α̇a .

3Throughout this paper we follow the notation of [28].
4We use the same letters for gauge group and SU(4) indices, it will be clear to distinguish between them

from the context. After this section only gauge group indices are used.
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3.2 Closed sectors in N = 4 SYM

Below we will expand the anomalous dimension operator δD = D−D0, as well as a subset

of the other operators in psu(2, 2|4) algebra, in an expansion in g2 =
g2ymN

8π2 . I.e.,

δD =
∞
∑

n=2

δDng
n . (3.3)

We will choose a regularization scheme such that operator mixing occurs only between

operators with the same zero-coupling dimension, and where the Poincaré group and R-

symmetry do not receive quantum corrections.

We will focus below on a specific sector of the theory, i.e., a set of states closed under

operator mixing, in this scheme. Such sectors have been classified in [28]. Since N = 4

is a rich theory with complicated dynamics, the sectors offer a significant simplification,

as they allow one to isolate and study the dynamics of a smaller subset of partons. Some

sectors, such as the su(2) sector, in fact contain a finite number of partons. However, these

are too restricting for our purpose as they do not contain the large number of fermions

needed to construct a Fermi surface.

3.3 The psu(1, 1|2) sector and its fermionic subsector

The psu(1, 1|2) sector, however, is much richer. This sector has been studied extensively in

the literature [14, 15, 30], and it is obtained by demanding the following relations between

the charges

∆0 = 2JL + Q̂1 + Q̂2 + Q̂3 = 2JR + Q̂1 + Q̂2 − Q̂3 (3.4)

where ∆0 is the classical scaling dimension, JL and JR are the SU(2) × SU(2) quantum

numbers, and Q̂1, Q̂2 and Q̂3 are the SU(4) R charges spanning the Cartan subalgebra of

SO(6) ∼= SU(4). The above relations allow only states built out of four types of partons

φ1k ≡
1

(k)!
Dk

11̇
φ24 φ2k ≡

1

(k)!
Dk

11̇
φ34

ψk ≡
1

(k + 1)!
Dk

11̇
ψ14 ψ̄k ≡

1

(k + 1)!
Dk

11̇
ψ̄1
1. (3.5)

Here, D11̇ is the covariant derivative Dαα̇ with α = α̇ = 1.

The symmetry inherited by this sector from the full theory is a psu(1, 1|2)× psu(1|1)2
algebra. It includes

• The su(1, 1|2) symmetry, generated by

J0 = − L+ 2D0 + δD R0 =R2
2 −R3

3 (3.6)

J++ =P11̇ J−− =K11̇ (3.7)

R22 =R3
2 R33 =R2

3 (3.8)

Q+i =Qi
1 Q̄+i = Q̄1̇i (3.9)

Q−i = S̄1̇i Q̄−i =S1
i (3.10)

where i = 2, 3, and L is the length (i.e. parton number) operator.
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• The psu(1|1)2 symmetry generated by

I+ = Q̄2̇4 I− =S2
1 (3.11)

Ī+ =Q1
2 Ī− = S̄2̇4 (3.12)

δD L (3.13)

With the relation

δD = 2
{

I+, Ī−
}

= 2
{

I−, Ī+
}

. (3.14)

• In addition, as shown in [15], there is also an SU(2) automorphism which exists only

within the sector, under which both φ1k and φ2k are singlets for all k, while ψk and ψ̄k
are a doublet. We will refer to is as the custodial SU(2)c symmetry.

When constructing a Fermi-surface operator within this sector, one may still worry that

the scalars cause instabilities and produce large mixing effects. It is possible to restrict to

a further closed subsector, namely the fermionic su(1, 1) sector discussed in [15] (there it

is called the fermionic sl(2) sector). This sector consists of the set
{

ψak =
1

(k + 1)!
Dk

11̇
ψ14, k = 1 . . .∞, a = 1 . . . dim(G)

}

. (3.15)

That this is a closed sector can shown directly using the oscillator formalism [15] or by

using the SU(2) automorphism above.

3.4 The Fermi surface ground state

The simplest Fermi surface is constructed using only a single fermion. It contains deriva-

tives of the fermion ranging from 0 to some large K, and is given by (with explicit gauge in-

dices)

O(K) =
K
∏

n=0

dim(G)
∏

n=0

ψan . (3.16)

All fermionic operator are evaluated at the same space point, correspondingly the expres-

sion can be viewed as a state in radial quantization. This operator was studied in ref. [5, 6].

The 1-dim Fermi-surface at zero coupling, large N and large K has the following

charge, dimension and angular momenta:5

(Q̂1, Q̂2, Q̂3) =
1

2

K
∑

n=0

dimG
∑

a=1

(1, 1, 1) ≈
(

N2K

2
,
N2K

2
,
N2K

2

)

, (3.17a)

∆0 =

K
∑

n=0

dimG
∑

a=1

(

3

2
+ n

)

= (N2 − 1)
(K + 3)(K + 1)

2
≈ N2K2

2
, (3.17b)

(JL, JR) =

K
∑

n=0

dimG
∑

a=1

(

n+ 1

2
,
n

2

)

= (N2 − 1)
K(K + 1)

4

(

K + 2

K
, 1

)

≈
(

N2K2

4
,
N2K2

4

)

. (3.17c)

5Details about the definitions of the charges are found in appendix A of [5].
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This operator is the unique ground state in the fermionic sector, with these charges

(or chemical potential). It does not mix with any other operators in the theory and it is

thus an eigenstate of the dilatation operator [5]. Furthermore, it was found in ref. [5] that

the dimension of this operator, to order O(g4), is the classical dimension with corrections

of order of the inverse of the (large) charge. Explicitly, the computation yields

D
∣

∣

∣
O(K)

〉

=(N2 − 1)
(K + 3)(K + 1)

2

[

1 +
4
(

g2 − g4
)

K + 3
+O(g6)

]

∣

∣

∣
O(K)

〉

. (3.18)

It was conjectured there that this O(1/K) suppression survives the strong coupling limit,

so that the Fermi surface has finite anomalous dimensions to all orders in g.

However, the charges of these states do not match the charges of black holes in section 2.

To find states which do have the charges of black holes we can rotate by the custodial

SU(2)c. More precisely, the Fermi surface that we have just constructed is the maximal

Jc,3 vector in a custodial SU(2)c representation with “spin” (N2 − 1) × (K + 1)/2. We

can rotate this state, within the same representation, such that it has 〈Jc,3〉 = 0. Very

qualitatively (assume K to be even for simplicity) we can think about the state as

O(K) = Sym







dim(G)
∏

a,b=1

K
2
−1
∏

j=0

ψaj

K−1
∏

m=K
2

ψ̄bm






(3.19)

where Sym[ ] stands for a symmetrization of the operator with respect to the ψ, ψ̄ fermions,

placing the operator in the highest SU(2) state, with J2 = KN2(KN2 + 1) and Jz = 0.

In any case, however, we will use the description in (3.16) since the two descriptions are

equivalent under SU(2)C .

One can easily compute the charges for such an operator

Q̂1 = Q̂2 ≡ Q̂ =
N2K

2

Q̂3 = 0

JL = N2







K
2
−1
∑

j=0

j + 1

2
+

K−1
∑

m=K
2

m

2






=
N2K2

4

JR = N2







K
2
−1
∑

j=0

j

2
+

K−1
∑

m=K
2

m+ 1

2






=
N2K2

4
= JL

∆0 = 2JR + Q̂1 + Q̂2 =
N2

2
(K2 + 2K) (3.20)

with ∆0 the classical scaling dimension. These charges match the black hole charges given

in section 2.

Although this operator looks quite different from the simpler Fermi surface operator

presented in (3.16), the two are related by a simple rotation in the SU(2) automorphism.
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Hence in all computation in field theory within the sector, the two give the same an-

swer. In particular, we expect the corrections to dimensions are suppressed in this case

too. We also expect same low energy excitations about the Fermi surface in the two

cases. For simplicity, we will use the simple Fermi surface operator given in (3.16) for all

subsequent computations.

4 Emergence of a chiral “strange metal”

4.1 Excitations of the Fermi surface in free field theory

Let us first comment on the free theory, i.e the theory with g = 0. Let the Hilbert space of

small excitations around the 1+1 dimensional Fermi surface be HF . We will give a more

precise definition of HF later. Since each complex fermion can be written in terms of two

majorana fields, the states in HF are governed by a chiral SU(N)N⊗SU(N)N WZW model

(both at the level of enumeration of states, and at the level of their energies). Since only

SU(N) gauge singlet excitations are allowed, there is a global SU(N) constraint. Thus the

free theory is described by6

SU(N)N ⊗ SU(N)N
Global SU(N)

. (4.1)

4.2 1-loop dilatation operator

As a first step it is convenient to define new operators by

ρak =
√
k + 1ψak ρ̌ak =

ψ̌ak√
k + 1

(4.2)

which satisfy (ρak)
† = ρ̌ak and {ρak, ρ̌bq} = δk,qδ

ab.

As mentioned before, the dilatation operator appears as the central extension of the

psu(1, 1)2 algebra and can be written as δD = 2{I+, Ī−}. In particular,

δD2 = 2{I+1 , Ī−1 }. (4.3)

where generally I = g × I1 +O(g3), and, as in [14] and in (3.17) of [5],

I+1 =
1√
2

∑

k,q

√

k + q + 2

(k + 1)(q + 1)
Tr :ρkρqρ̌k+q+1: (4.4)

Ī−1 =
1√
2N

∑

m,n

√
n+m+ 2

√

(n+ 1)(m+ 1)
Tr :ρn+m+1ρ̌nρ̌m: (4.5)

6A way to implement the global constraint is to introduce an SU(N) orbifold in target space, and keep

only those states which are uncharged under this SU(N), see for example [31]. We thank M. Gaberdiel for

an interesting discussion on this point.
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The one-loop dilatation operator δD2 can be written as7

δD2 = 2

∞
∑

k=0

ρakρ̌
a
k +

1

N

∞
∑

q,m=0
u=1

1

u

√

q + 1

q + u+ 1

√

m+ 1

m+ u+ 1
× (4.6)

×[if eabρam+uρ̌
b
m][if

ecdρcqρ̌
d
q+u].

The derivation can be found in appendix A. It is now convenient to group the following

combination of ρ, ρ̌ as

Jan = −ifabc
∞
∑

m=0























√

m+ 1

m+ n+ 1
ρbmρ̌

c
m+n if n > 0

√

m+ 1

m+ |n|+ 1
ρbm+|n|ρ̌

c
m if n < 0.

(4.7)

which satisfies Jan
∣

∣ O(K)
〉

= 0 and (Jan)
† = Ja−n, for all n ≥ 0. Notice that J satisfies (see

appendix A.2 for details) the following commutation relations

[Jam, J
b
n] = ifabcJc(m+n) + 2N mδabδm+n,0 +Residue (4.8)

where the Residue vanishes for mn > 0, whereas for mn < 0 it is of order O(1/K) when

acting on small fluctuations of the Fermi surface provided m,n ≪ K. I.e., it is an SU(N)

Kac-Moody algebra at level 2N acting on fluctuations of the Fermi surface, in the limit of

K → ∞ (and m,n fixed).

With these definitions, δD2 can be put into a suggestive form:

δD2 = g2

{

2Q+
1

N

∑

u=1

1

u
Ja−uJ

a
u

}

. (4.9)

where the number operator Q =
∑∞

k=0 ρ
a
kρ̌
a
k is just the U(1) charge, which we turn on to

populate the Fermi surface.

We immediately see that this opens up a gap of O(g2) between states which are anni-

hilated by Jau with u > 0 and those which are not. Although (4.9) has an explicit factor

of N , it goes away when acting on gauge invariant states. We will come back to this in

next subsection.

4.3 Emergence of SU(N)2N gauging

Before, we focused on HF which are small fluctuations around the Fermi surface of the form
SU(N)N×SU(N)N

global SU(N) . More precisely, we will take HF to be excitations of the Fermi surface

within a band (K − s,K + s) in a fixed s and large K limit. States in HF will be denoted

by | F 〉.
Guided by the form of δD2, we will further divide HF into

• HL which includes light states, which satisfy Jau | L 〉 = 0, for u > 0. These are all

the primaries of the Kac-Moody algebra.

7Our conventions of generators are [ta, tb] = ifabctc, TrFund(t
atb) = δab, TrAdj(t

atb) = 2Nδab. This

results in fabcfabd = δcd2N .
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• HH which is its orthogonal complement. It contains heavy states, for which

Jau | H 〉 6= 0, for u > 0. More precisely, given the hermiticity properties of J ,

HH are all descendants (of states in HL) under the SU(N)2N Kac-Moody symmetry.

It is clear that the states in HL are nothing but the states of the “strange metal”

gauged model
SU(N)× SU(N)

SU(N)2N
(4.10)

For these states the anomalous dimensions δD2 is just proportional to the charge, which

we can shift away by renormalizing the U(1) charge, with the net result that the energy

of these states is the same as the classical energy. The remaining states, i.e. those in HH ,

receive another correction which is proportional to O(g2). This separation of scales allows

us to truncate our theory to HL alone.

The cancellation of δD2 is unusual, but a non-vanishing, order g2 × O(1) correction

is typical of generic operators. We therefore expect that as we increase g2, to go to the

strong coupling limit, states in HH will receive a large anomalous dimension. The rest of

the paper is devoted to the issue of whether HL remains massless, in the large K limit.

We will see that this true also to order g4.

5 Diagrammatics at large K

Our goal is to push the calculations beyond O(g2), which is challenging since the number

of loops increases rapidly, and spin chain techniques are not implementable on the Fermi

surface, at least not naively. We do expect simplification at large K, so we would like to

systematically develop the diagrammatics in this limit. First we take the largeK continuum

limit, and then deduce the rules for diagrammatics. To check our diagrammatics, we

reproduce the δD2 result (at the end of this section). Using these techniques we then

compute the δD4 (in the next section).

5.1 Continuum limit

To go to the large K limit, we scale the quantities above as follows

ρaq →
ρa(x)√
K

, ρ̌aq → ρ̌a(x)√
K

, {ρa(x), ρ̌b(y)} = δ(x− y)δab (5.1)

q = xK,
∑

k

→ K

∫ ∞

0
dx (5.2)

q takes non-negative integer values, where as x is a non-negative real number in the large

K limit.

Before, in δD2 we had an expression
∑∞

u=1
1
uJ

a
−uJ

a
u which in the continuum, as we will

see, goes over to

δD2 ∼
∫

1

z
Ja(−z)Ja(z)dz. (5.3)

We need to be careful about the lower limit of integration, which started its life as the

u = 1 term in δD2. The latter maps to z = u/K → 0, leading to an apparent singularity
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of the integrand at z = 0. In fact, much of our discussion is anchored at such singularities.

Similarly, at some place we will need to distinguish momenta factors like q + 1 from q. To

do so, we introduce

ǫ =
1

K
(5.4)

We will treat ǫ as a cut-off of low momenta of the fermion, and introduce it only when

divergences appear. Note that although from the basic fermion point of view this is an

IR quantity, it will actually be, for the most part, a UV quantity from the point of view

of fluctuations around the Fermi surface. The reason for this is that it is associated with

momenta of fermions and holes very far from the edge of the Fermi surface and hence these

are high energy states as far as states in |F 〉 are concerned.

With these rescaling, the previously defined current J has a finite limit

Ja(x1) = −ifabc
∫

dx2

√

x2
x1 + x2

ρb(x2)ρ̌
c(x1 + x2) (5.5)

Ja(−y1) = −ifabc
∫

dy2

√

y2
y1 + y2

ρb(y1 + y2)ρ̌
c(y2) (5.6)

The I operators also have nice continuum limit:

I+1 =
i

2
√
2
fabc

∫

dx1dx2

√

x1 + x2
x1x2

ρa(x1)ρ
b(x2)ρ̌

c(x1 + x2) (5.7)

Ī−1 =
i

2
√
2N

fdef
∫

dy1dy2

√

y1 + y2
y1y2

ρd(y1 + y2)ρ̌
e(y2)ρ̌

f (y1) (5.8)

and finally, in these terms, the one-loop dilatation operator δD2 is given by

δD2 = g2
(

2

∫ ∞

0
dxρa(x)ρ̌a(x) +

1

N

∫ 1

ǫ

dz

z
Ja(−z)Ja(z) +O(1/K)

)

(5.9)

5.2 Singular and regular operators

Expression (5.9) is made out of two distinct terms. Both are integrals (over momenta)

of some momenta dependent operators. In the 2nd term, however, there is an additional

dependence on the momenta z and, furthermore, this dependence is naively singular at

z = 0 as it goes like 1/z. We will refer to the first term as regular and to the last term

as singular. More generally, as we go to higher loops the Hamiltonian can be written as a

sum over more and more complicated terms of the form

Om,f =

∫

dx1 . . . dx2m δ(x1 + . . .− xm+1 . . .) fm(x1, . . . , x2m)

: ρ(x1) . . . ρ(xm)ρ̌(xm+1) . . . ρ̌(x2m) : . (5.10)

and we can divide the terms into singular or regular depending on whether f has a singu-

larity at some value of the x′s.
Rephrasing the discussion above for δD2, we consider a state in | F 〉 ⊂ HF , with

particles and holes in an interval δ ≪ 1 around the Fermi surface in the largeK convention.8

8I.e., momenta s ≡ δK from the Fermi surface in the discrete convention.
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The energy of a generic fluctuation state | F 〉, as shown by an explicit computation in

appendix A.3, is ∼ g2ym log
(

δ
ǫ

)

. This is what we expect from the 1/z pole, and it is a

contribution which remains finite in the K → ∞. Note that the powers of N cancel. On

the other hand, states in | L 〉 remain at zero energy, up to powers of 1/K. Note that if

we had a contribution of the form, say,
∫

JJ with no 1/z pole in the integrand, then the

result would be of O(δ), and would be zero at the large K limit.

Given this terminology we see that the singular operator in δD2 is responsible

for creating the gap between the states of SU(N)N ⊗ SU(N)N and the gauged model

SU(N)N ⊗ SU(N)N/SU(N)2N . Of course, the term is not really singular, since we cut of

the integral at z > ǫ. The regular term can’t close the gap. In this subsection we argue

that this is the general case - only singular terms can create or close the gap and regular

terms can only bring about small shifts in each band. This simplifies the perturbative

computation considerably since if we want to establish the existence of a gap at higher

order in perturbation theory we need to track only the singular composite operators.

In the following sections we will track the singular pieces in δD4 in the limit K → ∞
and show that they vanish on states in HL. Hence the gap is not closed also at order g4,

and the low energy spectrum is that of the “strange metal”.

To show that only singular terms might close the gap, we go back to the expression for

Om above and consider the different cases in which the fm’s have or don’t have singularities.

The fermionic creation and annihilation operators are only those of excitations close to the

Fermi surface, i.e, all fermion momenta are within the band (1− δ, 1+ δ). We now proceed

to determine the K scaling for each O(m)f , under the assumption that (5.10) does not

contain any explicit K dependence, in the large K limit, and that such a dependence may

show up only via regulating the singularities in the integrand, or when evaluating on states

which contain K in them. The reason that this is true to order δD4 is that δD4, just as

δD2, can be obtained from commutators and anti-commutator of expressions (such as I’s

in equation (5.7)–(5.8)) which are finite in the K → ∞ limit + 1/K corrections.

To analyze O(m)f , we will use x̃ variables defined as x = 1 + δ x̃. To maintain

the canonical commutation relations, this is accompanied by a rescaling δ(x) = δ(x̃)
δ and

ρ(x) = ρ(x̃)√
δ
. The operator O(m)f can be rewritten as

O(m)f = δm−1

∫ 1

−1
dx̃1 . . . dx̃2m δ(x̃1 + . . .− x̃m+1 . . .) fm(1 + δx̃1, . . . , 1 + δx̃2m)

ρ(x̃1) . . . ρ(x̃m) ρ̌(x̃n+1) . . . ρ̌(x̃2m) (5.11)

Let us also assume that the function fm has a Taylor expansion:

fm(x1, . . . x2m) =
∑

ij

cij
(xi − xj)p

+ less singular (5.12)

for some i, j and p with some constants cij . Recall that small momenta divergences will be

cut off by the regulator ǫ. Therefore the net scaling of 〈 F | O(m)f | F 〉 is δm−1

ǫp . Hence

〈 F | O(m)f | F 〉 ∼
(

1

K

)m−1−p
(5.13)
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a, x1

b, x2

c, x1 + x2

−1/2

−1/2

1/2

a, y1

b, y2

c, y1 + y2

Figure 1: Diagrammatic representation of I+ on left and Ī− on right, both proportional

to fabc.

Hence all operators O(m)f , with m − 1 > p, are O(1/K) suppressed and hence vanish in

the large K limit. These terms can not close the O(K0) gap between the light states and

arbitrary fluctuation states, and only terms with m− 1 = p,9 or p > m− 1 are dangerous

and should be tracked. This means for a given operator, characterized by m, only singular

enough integrands can close the gap. For the case of δD2 above the singular term has

m = 2, p = 1 and hence it gives rise to a finite gap.

Note that the above argument shows that a regular two fermion operator do give a

O(1) difference between different | F 〉 states. To maintain the gap, these terms have to be

explicitly subtracted away by a chemical potential for U(1) charge operator Q. For other

m ≥ 2, regular operators (with p = 0), can never close the gap. Henceforth, we will use

the term Regular operator for all operators O(m)f with m− 1 > p.

5.3 A diagrammatic representation for δD2

We now describe a diagrammatic representation for the continuum expressions given in the

last section. Using this diagrammatic expansion it turns out that obtaining the singularity

structure of δD is much simpler than the full explicit calculations. The diagrammatic

representation of I+ and Ī− is given in figure 1.

The expressions for I+, Ī− are given (5.7) and (5.8). The incoming (outgoing) arrow

indicates a ρ (ρ̂) fermion. Each line is accompanied by a number which indicates the power

of momenta that goes along with this line. Additional vertices will be introduced later

when we compute higher orders in g.

We would like to compute δD2 ∼ {I+, Ī−}, which means, nominally, the contraction

of a single line between these two vertices. The expression that we are after, however, is

one in which we have only fermion creation and annihilation operators that have momenta

in the shell (1− δ, 1+ δ). This means that we need to contract additional lines which have

momenta outside this shell. We will therefore obtain 4-fermion terms with a single line

contraction and two-fermion terms with a 2 lines contracted.

There are additional rules in how to tie the different lines, associated with the ordering

of the fermions and of the vertices, and then with how we apply them to the states:

• I+ is to the left of Ī−. This is true just because of the fact that I+ | F 〉 = 0.

9These terms give rise to K independent or log(K) contributions. We will handle them as and when

they appear.
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1/2

−1

−1/2

1/2

Figure 2: Diagrams representing four-fermion operators in δD2.

1/2 1/2

k

p− k

−1

−1

−1/2 −1/2

p+ k

k

1

−1

Figure 3: Diagrams representing two-fermion operators in δD2.

• The left outgoing arrow on the vertex on right (i.e Ī−), always has momenta ≤ 1+ δ.

This is true because ρ̌(x) to the right will annihilate the | F 〉 unless x < 1. A

similar reasoning shows that right ingoing arrow on a vertex on the left will have

momenta ≤ 1.

Using these rules it is a straightforward, if somewhat laborious, to enumerate all the possible

diagrams. The situation simplifies somewhat when we take into account the fact that we

are interested only in singular terms.

Four Fermi terms: first consider those terms in which all four of the fermions have

momenta near the Fermi surface. Diagrams for such terms will have four external legs

which are given in figure 2. The diagram on the right has an internal line with weight

(-1), in which momenta close to zero can flow. Hence it will give a singular contribution.

However, it is clear that in this limit the left hand and right hand vertices will each give a

current algebra generator at the same low momenta. Explicitly, the diagram evaluates to

fabef cde
∫

dx1dx2dx3dx4δ(x1 + x2 − x3 − x4)× (5.14)

×ρb(x2)ρ̌a(x1)ρd(x2)ρ̌c(x3)
1

x1 − x2

√

x3x1
x4x2

∼
∫

du

u
Ja(−u)Ja(u)

which is the singular term in δD2 which we identified before. The diagram on the left is

not singular and therefore does not interest us in the large K limit.
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Two Fermi terms: to get a two fermion operator in δD2, we need one more contraction.

There are two possibilities as given in figure 3. The left diagram evaluates to

N

∫

dpρa(p)ρ̌a(p) p

∫ p−ǫ

ǫ
dk

1

k(p− k)
= 2N

∫

dpρa(p)ρ̌a(p) log
(p

ǫ
− 1
)

= 2N log(K)

∫

dpρa(p)ρ̌a(p) +O(1/K) (5.15)

and the right diagram evaluates to

N

∫

dp

p
ρa(p)ρ̌a(p)

∫ 1

ǫ
dk
p+ k

k
= N

∫

dpρa(p)ρ̌a(p) [log(K) + 1] +O(1/K) (5.16)

where the external momenta are of order 1 and ǫ = 1/K.

These diagrams can be neglected, actually, for multiple reasons, some of which will

generalize to higher loops as we will later on.

• When computing their coefficients more carefully, one sees that the term proportional

to log(K) cancels between the two diagrams.

• Terms which are of the form F (K)
∫

dρρa(p)ρ̌a(p) = F (K)Q can be absorbed into a

renormalization of the chemical potential.

• If the integrand which multiplies ρa(p)ρ̌a(p) has initially a momentum dependence,

as is the case here, then when expanding this momenta around 1, it leads to a term

which is proportional to the charge, as in the item before, up to O(1/K) terms which

we neglect.

For the case of δD2, this is a verification that the large K diagrammatic technique is

useful for rapidly extracting the singular pieces, which are our main interest. In the next

section we will apply the same diagrammatic rules to obtain the singular pieces in δD4.

6 Higher orders in perturbation theory

In this section we consider δD4, the O(g4) correction to the dilatation operator. Again, we

find that the gap between the light states and generic fluctuations persists. We now briefly

summarize the results of this study.

This operator contains six-fermion, four-fermion and two fermion-terms. The six-

fermion diagrams, as we show in 6.3, are non-singular in the sense of the previous section,

and thus do not close the gap. From the four-fermion terms, the only type of singularity

we encounter is (to be made more precise below) of the form

O4f ≈ logK

∫

du
1

u
Ja(−u)Ja(u) (6.1)

so that these terms are consistent with the gap found in δD2. The two fermion terms does

not contain any singular pieces, and, up to 1/K corrections, is proportional to charge, and

can be shifted away by a redefinition of the chemical potential (see appendix C for details).
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In section 6.1 we present the all order ansatz for the psu(1, 1|2) sector and its appli-

cation to the fermionic su(1, 1) sector. Application of this procedure allows us to compute

δD4 in the large K limit. In the process we will need some additional vertices, on top of the

ones that we already discussed, and in section 6.2 we describe their continuum limit and

the resulting Feynman rules. Finally, the diagrams are evaluated in sections 6.4 and 6.3.

6.1 Computation of δD4

In this section we compute δD4, and we would like, eventually, to have an all order proof.

We will therefore describe δD4, after a short digression for the suggested all order ansatz

for this sector described in [32].

First, observe that the Next-to-Leading-Order correction to I+, Ī−, and in fact every

NLO correction to the psu(1, 1|2) generators, is given by the following schematic form

JNLO = ±λ[JLO,X] (6.2)

X =
1

2
ǫab

{

QbLO, [S
a
LO, h]

}

+ h.c. (6.3)

where λ is the ’t Hooft coupling λ = 16π2g2. The sign depends on whether the generator

corresponds to a positive or negative Lie algebra root. Here, h is an axillary generator,

which is just the harmonic generator (6.4) at zeroth order in λ

h =
∞
∑

n=0

1

2
h(n+ 1)

(

Tr :ψ(n)ψ̌(n): +Tr :ψ̄(n)
ˇ̄ψ(n):

)

+

∞
∑

n=0

1

2
h(n)

3
∑

i=2

Tr :φi(n)φ̌
i
(n): . (6.4)

In [32], Zwiebel conjectured that this type of structure continues to all orders. This

can be realized by replacing the above equation by

∂

∂λ
J(λ) = ±λ[J(λ),X(λ)]. (6.5)

where now

X(λ) = ǫab

{

Qa(λ),
[

Sb(λ), h(λ)
]}

+
1

2
[H(λ), h(λ)] (6.6)

with λH(λ) = δD(λ) = 2
{

I+(λ), Ī−(λ)
}

. h(λ) generalizes the harmonic generator. One

can find this generator by solving using equation (3.3) in [32], which must be obeyed in

order to preserve the Lie algebra symmetry constraints. One can now solve these equations

for J(λ) and X(λ) order by order in λ. This proposal has been used to compute δD6, which

passes some non-trivial tests.

Although the iterative procedure outlined in the above section provides a way to com-

pute the anomalous dimensions to any order, in this work we restrict to g4 order in pertur-

bation theory. Whether by using the iterative procedure above, or by a direct computation

in N = 4 SYM as in [14],10 the expression for δD4 is

δD4 = 2
{

Ī−1 ,
[

I+1 ,
{

I−1 ,
[

Ī+1 , h
]}]}

+ 2
{

I+1 ,
[

Ī−1 ,
{

Ī+1 ,
[

I−1 , h
]}]}

. (6.7)

10Conventions of [14] are related to ours by
−→
I ± → I± and

←−
I ± → Ī±.
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where the expressions for I±1 , Ī
±
1 in the full psu(1, 1|2) sector are given in appendix B (B.1).

It is convenient to define

2{Ī+1 , [I−1 , h]} ≡ V (6.8)

2{I−1 , [Ī+1 , h]} ≡ C . (6.9)

With this, δD4 can be rewritten as

δD4 = {Ī−1 , [I+1 , C]}+ {I+1 , [Ī−1 , V ]} = I+1 (C − V )Ī−1 − CI+1 Ī
−
1 + I+1 Ī

−
1 V (6.10)

In going to second line we have dropped I+ (Ī−) acting on right (left). The expressions

for V,C (as computed in the appendix B) are

V =
i

2N

∞
∑

m=0,u=1

Bm,u f
abcρbm+uρ̌

c
m Jau +

∞
∑

m=0

Bmρ
a
mρ̌

a
m = V4f + V2f (6.11)

−C =
i

2N

∞
∑

q=0,u=1

Bq,u J
a
−u f

abcρbqρ̌
c
q+u +

∞
∑

m=0

Bmρ
a
mρ̌

a
m = −C4f − C2f . (6.12)

where

Bm,u =

√

m+ 1

m+ u+ 1

h(m+ u+ 1)− h(m+ 1)− h(u)

u
(6.13)

Bm = h(m+ 1)− 2. (6.14)

In 〈 L | I+1 Ī−1 V | L 〉 ⊃ 〈 L | δD4 | L 〉, only the two fermion part of V contributes. This is

because the four fermion part of V has Ju on the right which annihilates | L 〉. Similarly

one can see that only the two fermion part of C contributes to −CI+1 Ī−1 . It is convenient

to define

U = C − V (6.15)

whose four fermion part will be called U4f and the two fermion part U2f . Since I
+Ī− | L 〉 ∼

Q | L 〉 and Q commutes with the two fermion part of C, V , one can further simply the

expressions for δD4 to get

δD4 = I+(U2f + U4f )Ī
− − U2fI

+Ī− = I+U4f Ī
− + {[I+, U2f ], Ī

−} (6.16)

6.2 δD4 in the continuum limit

We can now take the continuum limit of the above expressions. It is useful to define another

small parameter ǫ̃ which arises in this limit,

ǫ̃ =
1

log(Keγ)
(6.17)
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The continuum limit of the operators C, V are

C =
i

2Nǫ̃

∫

dz2dz3
z3

f ecd
√

z2
z2 + z3

(

1 + ǫ̃ log[
z2z3
z2 + z3

]

)

Je(−z3)ρc(z2)ρ̌d(z2 + z3)

−1

ǫ̃

∫

dxρa(x)ρ̃a(x) [1 + ǫ̃ log(x/2)] (6.18)

V = − i

2Nǫ̃

∫

dz1dz3
z3

f eab
√

z1
z1 + z3

(

1 + ǫ̃ log[
z1z3
z1 + z3

]

)

ρa(z1 + z3)ρ̌
b(z1)J

e(z3)

+
1

ǫ̃

∫

dxρa(x)ρ̃a(x) [1 + ǫ̃ log(x/2)] (6.19)

The two and four fermion parts of U become, to first order in ǫ̃

U2f = −2

ǫ̃

∫

dxρa(x)ρ̃a(x)
(x

2

)ǫ̃
+O(ǫ̃) (6.20)

U4f = − 1

Nǫ̃

∫

dz3

z1−ǫ̃3

J
a(−z3)Ja(z3) +O(ǫ̃) (6.21)

where we have defined a new current

J
e(z) = −i

∫

dz2f
ecd
√

z1+ǫ̃2 ρc(z2)
ρ̌d(z2 + z)
√

(z2 + z)1+ǫ̃
. (6.22)

J and J have almost same action on fluctuations

(Ja(z)− J
a(z)) | F 〉 =

(

− iǫ̃z
2

∫ 1+δ−z

1−δ

dz2f
acd

z2
ρc(z2)ρ̌

d(z2 + z) +O(ǫ̃2z2)

)

| F 〉

≤ O(ǫ̃δ) | F 〉 (6.23)

Since the new current has the same action on fluctuations (up to 1/K corrections), it

provides an equally good definition of light states. To see this more clearly, consider δD2

(as a matrix between fluctuation states) now in terms of J

δD2 = 2

∫

dzρa(z)ρ̌a(z) +
1

N

∫ 2δ

ǫ
dz

[

Ja(−z)Ja(z)
z

+O(ǫ̃)× Regular in z

]

(6.24)

Hence we can also define light states | L 〉 as those which have Ju | L 〉 for u > 0. Henceforth,

we will use this definition for light states.11

A diagrammatic representation of the four fermion part of U4f is given in figure 4. We

will label the two vertices in the diagram as UL, UR as shown in figure.

Consider the expression (6.16) for δD4, and focus on the term 〈 L | I+U4f Ī
− | L 〉 (the

last term {[I+, U2f ], Ī
−} will be dealt with separately later). The following rules can be

applied when evaluating this term

11One might worry, now that 〈 H | δD2 | L 〉 6= 0, whether there could be O(g4) mixing effects when we

attempt to diagonalize δD2, which would then destroy the gap. But one can easily estimate the effect of

this mixing to be O(g4/K2) and hence vanishing at large K.
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(1 + ǫ̃)/2

−(1 + ǫ̃)/2

−(1 − ǫ̃)

(1 + ǫ̃)/2

−(1 + ǫ̃)/2

e, z3

a, z1 + z3

b, z1

c, z2

d, z2 + z3

uL uR

Figure 4: Diagrammatic representation of U4f , proportional to f
abef cde.

• Since U4f ∼
∫

1
uJ(−u)J(u), the expectation value of 〈 L | I+U4f Ī

− | L 〉 is just
∫

du
u 〈 L | [I+, J(−u)], [J(u), Ī−] | L 〉. In terms of diagrammatic representation, this

means that there is at least one contraction between I+, UL and Ī−, UR.

• We can order the diagram so that I+, UL, UR, Ī
−− vertices are in a left to right

order. Then all (except the internal line of U4f ) internal momenta are restricted: All

left outgoing arrow (hence right ingoing arrow) on a vertex have momenta ≤ 1 + δ.

Also all left ingoing arrow (hence right outgoing arrows) on a vertex have momenta

≥ 1− δ.12

6.3 Six fermion diagrams in δD4 between light states

We classify the diagrams according to the number of loops. It is easiest to start with those

diagrams which have no loops. These have all the six fermions close to Fermi surface. In

terms of diagrammatics, they have six external momenta. Also, if any of the diagrams

below have a hermitian conjugate counterpart, we don’t write it down explicitly since it

gives the same contribution.

In figure 5 we list out all possible diagrams consistent with rules given in the last

section. The ǫ̃ corrections to momentum degree is not shown in the diagrams because it

turns out to be irrelevant for the argument below.

As explained in section 5.2, only those terms with a singularity can create a O(1) gap.

But from the figure 5, it is clear that the only line with degree −1 has large momenta ∼ 1

for all the diagrams. Hence these diagrams are regular and do not create a gap.

6.4 Four fermion diagrams in δD4 between light states

Next we consider diagrams with one loop. They have four fermions with momenta of O(1),

i.e four external legs. Before we start computing diagrams, it is useful to investigate the

structure of the answer that we expect.

12In some diagrams, we will not stick to the convention of ordering the vertices in the diagram from right

to left. In this case ordering is assumed to be that Ī−, UR, UL, I
+ acts in a right to left order.

– 25 –



J
H
E
P
0
1
(
2
0
1
5
)
0
0
3

0 -1 0 0 -1 0

0 -1 0

Figure 5: Six-fermion operators in δD4.

6.4.1 Comments on general structure of four fermion terms

It is possible to bring any four fermion term to the following form

O4f =

∫

dx1dx2duf
abg ρ

a(x1 + u)

(x1 + u)
1+ǫ̃
2

x
1+ǫ̃
2

1 ρ̌b(x1) (6.25)

f cdgx
1+ǫ̃
2

2 ρc(x2)
ρ̌d(x2 + u)

(x2 + u)
1+ǫ̃
2

F (x1, x2, u)

for some function F (x1, x2, u).
13 Then the singularity structure of this function determines

whether the relevant diagram can create a gap.

Singularity structure: since the momenta of all the four fermions are O(1), we can

expand F (x1, x2, u) in a Taylor series in x1 − x2, u, x1 + x2 − 2. It is convenient to clas-

sify terms depending on their scaling with K.14 We find that in all cases, possibly after

relabeling the external momenta, the expansion takes the following form15

F (x1, x2, u) = log (Keγ) {G(u) +H(x1, x2, u)} (6.26)

where we have classified terms according to their K scaling into a piece G(u) which scales

like Kp with p ∼ 1 (or scales like ∼ 1
u) and a piece H(x1, x2, u) which scales like Kq with

q ≪ 1. As argued in sec 5.2, the H(x1, x2, u) term does not close the gap and we can drop

this from subsequent discussion.

The crucial point now, is that the part of F (x1, x2, u) whose divergence is O(K) or

worse is independent of x1 − x2, x1 + x2 − 2. This enables us to write

O4f = log (Keγ)

∫

duG(u)Ja(−u)Ja(u) (6.27)

13Fermions can always be ordered in this way, by using anticommutation relations between them (Any

contraction leads to a two fermion term, which we deal separately). Using double line notation, it is also

easy to see that the gauge structure can be reduced to the above form.
14Note that u, x1 − x2, x1 + x2 − 2 scale like as 1

K
. Functions of form x1−x2

u
scale as K0.

15The explicit factor of log(Kγ) is to keep track of explicit factor of 1

ǫ̃
in (6.21).
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Figure 6: Schematic representation of corrections to external legs.

Since light states satisfy Ja(u) | L 〉 = O( 1
K ) | L 〉 for u > 0 and G(u) only scales like K,

〈 L | O4f | L 〉 vanishes.
For all the diagrams, we now explicitly evaluate the functions G(u) and H(x1, x2, u)

and find one of the following behaviors:

G(u) = 0 H(x1, x2, u) ∼ K0 (6.28)

G(u) = 0 H(x1, x2, u) ∼ log(K) (6.29)

G(u) =
log(1 + uK)[1 +O(ǫ̃)]

u1−
ǫ̃
2

H(x1, x2, u) ∼ K0 (6.30)

G(u) =
log(1 + uK)[1 +O(ǫ̃)]

u1−ǫ̃
H(x1, x2, u) ∼ K0 (6.31)

Since in all cases, the worst singularity is G(u) ∼ 1
u , this shows that these diagram cannot

close the gap. Note that any power of log(K) will be considered as weakly K0.

6.4.2 Explicit evaluation of Four fermion diagrams in δD4

We now consider diagrams with four external legs. To get such a diagram, take any of

the two figures in figure 5 and contract any two external legs. It is clear all such resulting

diagrams will have one loop and since only planar diagrams contribute to leading order in

N , they will be accompanied by a factor of N . Note that this cancels the explicit factor of

1/N in (6.21). We study the diagrams in increasing order of complexity.

• External propagator correction: we begin with the simplest case, which is a correction

to the propagator of one of the external legs. Schematically, these are diagrams of

the form shown in figure 6. Using the rules of previous section, this results in a

loop integral
∫ 1

ǫ
dk

k
ǫ̃
2

(k + p)
ǫ̃
2

= 1 +O(ǫ̃) (6.32)

which is of the form given in (6.28).
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Figure 7: Diagrams contributing to internal propagator correction.
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+
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p
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−
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−
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−
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p 1

−
k

p1 p2

p3 p4
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Figure 8: Vertex corrections.

• Internal propagator correction: next we consider diagrams with internal leg correc-

tions. As per rules of section 6.2, there are only two diagrams, given in figure 7. The

loop inside the left diagram with u ∼ ǫ evaluates to16

uǫ̃
∫ 1−u

ǫ

dk

k1−ǫ̃(k + u)1+ǫ̃
=

1

u1−ǫ̃
log
(

1 +
u

ǫ

)

[1 +O(ǫ̃)] + finite (6.33)

This results in functions of the form given by (6.31). The loop in the diagram on the

right evaluates to (for u ≈ 2).

u−ǫ̃
∫ u−1

ǫ

dk(u− k)1+ǫ̃

k1−ǫ̃
= log(K)(finite) (6.34)

which is of the form (6.29)

• 1PI: let us now look at the 1PI four-fermion diagrams. Using the rules of section 6.2,

there are four possible diagrams given in figure 8. The result of the loop integral for

16We first extract the ǫ scaling(in this case u scaling), and then truncate the integral to O(ǫ̃).
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(a), (b), (c) respectively are

∫ 1

ǫ

dk (p1 − k)
ǫ̃
2

(p2 − p4 + k)(p2 + k)
ǫ̃
2k1−ǫ̃

=

log
[

1 + p2−p4
ǫ

]

[1 +O(ǫ̃)]

(p2 − p4)1−ǫ̃
+ finite

u ≡ p2 − p4
x1 ≡ p3
x2 ≡ p1

(6.35)

∫ 1

ǫ

dk

(p2 − p4 + k)(p1 + k)
ǫ̃
2 (p2 + k)

ǫ̃
2k1−ǫ̃

=

log
[

1 + p2−p4
ǫ

]

[1 +O(ǫ̃)]

(p2 − p4)1−ǫ̃
+ finite

u ≡ p2 − p4
x1 ≡ p1
x2 ≡ p3

(6.36)

∫ 1

ǫ

dk (p1 − k)
ǫ̃
2 (p2 − k)

ǫ̃
2

(p4 − p2 + k)k1−ǫ̃
=

log
[

1 + p4−p2
ǫ

]

[1 +O(ǫ̃)]

(p4 − p2)1−ǫ̃
+ finite

u ≡ p4 − p2
x1 ≡ p3
x2 ≡ p1

(6.37)

All of the above expressions are of the form shown in (6.31).

The result for (d) is

∫ 1

ǫ
dk

(p2 − k)
ǫ̃
2 (p1 − k)

ǫ̃
2 (p4 + p2 − k)

k1−ǫ̃
= log(K)× (finite) (6.38)

Correspondingly we get (6.29).

• Vertex corrections: finally, we analyze the one-loop vertex correction. The relevant

diagrams are given in figure (9). The loop integrals for (a) is

∫ p1−ǫ

0
dk

k
ǫ̃
2 (p2 + k)1+

ǫ̃
2

(p1 − k)1−ǫ̃
= log(K)× finite (6.39)

for which we have (6.29). The loop integrals for (b), (c) are respectively

∫ p1−ǫ

0

k
ǫ̃
2dk

(p2 − k)1+
ǫ̃
2 (p1 − k)1−ǫ̃

=

log(1 + p2−p1
ǫ )[1 +O(ǫ̃)]

(p2 − p1)
1− ǫ̃

2

+ finite u ≡ p2 − p1 (6.40)

∫ 1

p1−p2+ǫ

dk

k1+
ǫ̃
2 (k + p2 − p1)1−ǫ̃(k + p2)

ǫ̃
2

=

log(1 + p1−p2
ǫ )[1 +O(ǫ̃)]

(p1 − p2)
1− ǫ̃

2

+ finite u ≡ p1 − p2 (6.41)

Both of them give (6.30).
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Figure 9: Vertex corrections.

7 Summary and future directions

In this paper we studied the emergence of a (chiral) strange metal in 1+1 as the low energy

sector above a large Fermi surface in the fermionic psu(1, 1) sector of N = 4 SYM. We have

shown that, at the two loop level, the constraint of SU(N) gauge invariance develops into

a full-blown SU(N)N⊗SU(N)N
SU(N)2N

gauged coset model. This happens since operators annihilated

by all the Kac-Moody generators Jun>0 have zero anomalous dimension when the Fermi

surface is large, up to corrections of the order of the inverse size of the Fermi surface, and

are gapped from the rest of the states. Assuming their conjectured dual AdS states, we

obtain a higher spin theory at the near horizon of certain black holes.

It would be very nice to prove that the chiral strange metal survives to all orders in

perturbation theory. This would, most likely, require supplementing the large K diagram-

matic techniques developed in this paper by the large K limit of the all-order ansatz for

the dilatation generator given in [32]. Furthermore, one can try to extend this construction

to the full psu(1, 1|2) sector. If one can find other ground states within this setup, it would

be interesting to understand what their dual solutions are. These are possibly hairy black

holes, or black saturn-like configurations.

Working out the spectrum of the strange metal at large N limit would also be useful,

both in guiding the search for an all-order proof, and in using these results within the

context of AdS/CFT. The dual black hole should have, according to this picture, massless

higher-spin excitations arising in the near-horizon limit of the singular black hole degener-

ation, which should reproduce the extended W-symmetry of the chiral strange metal.

A step in this direction would be to compute the quasinormal modes of known SUGRA

and stringy fields in the bulk (assuming their action can be found reliably) and show that
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they match the spectrum of the chiral strange metal. While the black hole background is

far from simple, it is possible that one can apply the methods used to find the quasinormal

modes of the dilaton-axion pair in [6].
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A One loop dilatation in terms of currents

A.1 δD2: an explicit evaluation

In this appendix, we obtain the expression for δD2 given in (4.6) from the definition of

δD2 = 2{I+, Ī−}. To start with, it is convenient to rewrite I+, Ī− given in (4.4), (4.5)

explicitly in terms of structure constants.

I+ =
i

2
√
2
fabc

∞
∑

k,q=0

√

k + q + 2

(k + 1)(q + 1)
ρakρ

b
qρ̌
c
k+q+1 (A.1)

Ī− =
i

2
√
2N

fdef
∞
∑

m,n=0

√

m+ n+ 2

(m+ 1)(n+ 1)
ρdm+n+1ρ̌

e
nρ̌

f
m (A.2)

Now we compute δD2 = 2{I+, Ī−} by anticommuting the fermions. We get

−8N{I+, Ī−} = fabcf cef
∑

k,q=0

k + q + 2
√

(m+ 1)(n+ 1)(k + 1)(q + 1)
δk+q,m+nρ

a
kρ
b
qρ̌
e
nρ̌

f
m

+4fabcfdea
∞
∑

k,n,q=0

1

k + 1

√

(k + q + 2)(k + n+ 2)

(q + 1)(n+ 1)
ρdk+n+1ρ̌

e
nρ

b
qρ̌
c
k+q+1

+2fabcfabd
∞
∑

k,q=0

k + q + 2

(k + 1)(q + 1)
ρdk+q+1ρ̌

c
k+q+1 (A.3)

Let us simplify each of the three terms of this equation

• Second line of (A.3) can be rewritten as

4
∞
∑

k=1

1

k

[

∑

n

√

k + n+ 1

n+ 1
fadeρdk+nρ̌

e
n

][

∑

q

√

k + q + 1

q + 1
fabcρbqρ̌

e
k+q

]

(A.4)

• The last line of (A.3) is easily seen to be

8N
∑

k=0

h(k)ρakρ
a
k (A.5)
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• At last we consider the first line of (A.3). Before we start simplifying this term, it is

convenient to define

fmnkq =
k + q + 2

√

(m+ 1)(n+ 1)(k + 1)(q + 1)
(A.6)

Using this definition and Jacobi Identity for structure constants, we can sim-

plify (A.3) as
(

faecf cbf + fafcf ceb
)

∑

mnkq

fmnkq δk+q,m+nρ
a
kρ
b
qρ̌
e
nρ̌

f
m

= 2faecf cbf
∑

mnkq

( 2θ(m− q) + δq,m ) fmnkq δk+q,m+nρ
a
kρ
b
qρ̌
e
nρ̌

f
m

= −4
∑

mnkq

θ(m− q)fmnkqδk+q,m+nf
aecρakρ̌

e
nf

cbfρbqρ̌
f
m

+4
∑

q,k

θ(k − q)fkqkqf
aecf cefρakρ̌

f
k (A.7)

+2faecf cbf
∑

k,q=0

fqkkqρ
a
kρ
b
qρ̌
e
kρ̌
f
q (A.8)

We analyze each one of the above terms. First term of (A.8) gives

−4
∑

n,q=0,m̃=1

fm̃+q,n,mn+m̃,qf
aecρam̃+nρ̌

e
nf

cbfρbqρ̌
f
m̃+q (A.9)

= −4
∑

n,q=0,m=1

n+m+ q + 2
√

(m+q+1)(n+1)(n+m+1)(q+1)
faecρam+nρ̌

e
nf

cbfρbqρ̌
f
m+q

Note that this combined with (A.4) gives

∑

n,q=0,k=1

1
√

(q + 1)(n+ 1)

[
√

(k + n+ 1)(k + q + 1)

k
− k + n+ q + 2
√

(k + n+ 1)(k + q + 1)

]

×
[

fadeρdk+nρ̌
e
n

] [

fabcρbqρ̌
e
k+q

]

= 4
∑

n,q=0,k=1

√

(n+ 1)(q + 1)

k
√

(k + n+ 1)(k + q + 1)

[

fadeρdk+nρ̌
e
n

] [

fabcρbqρ̌
e
k+q

]

(A.10)

which matches with the four fermion term in (4.6). Meanwhile second term

of (A.8) gives

4

∞
∑

k=0

k−1
∑

q=0

k + q + 2

(k + 1)(q + 1)
(−2N)ρakρ̌

a
k − 8N

∞
∑

k=0

ρakρ̌
a
k

(

h(k) +
k

k + 1

)

(A.11)

It is also useful to use the identity

ρakρ̌
a
k =

1

2N
faecffbc

∞
∑

q=0

ρakρ
b
qρ̌
e
kρ̌
f
q (A.12)
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The last term of (A.8) gives

2faecf cbf
∑

k,q

k + q + 2

(k + 1)(q + 1)
ρakρ

b
qρ̌
e
kρ̌
f
q =

∑

k

4

k + 1
faecf cbf

∑

q

ρakρ
b
qρ̌
e
kρ̌
f
q

= −
∑

k

8N

k + 1
ρakρ̃

a
k (A.13)

Summing all these contributions yields (4.6).

A.2 Current Algebra

In this appendix, we compute the commutation relations of the Jan to show that under

specific limits, it reproduces (4.8) of the current algebra. Consider [Jap , J
b
q ] for p, q > 0.

[Jap , J
b
q ] = −

(

facdf bdh − a↔ b
)

∑

n

√

n+ 1

n+ p+ q + 1
ρcnρ̌

h
n+p+q

= ifabcJcp+q, (A.14)

where in the last step we used the Jacobi identity. Similarly [Ja−p, J
b
−q] = ifabcJc−p−q. Now,

consider [Jap , J
d
−q] for p ≥ q and q > 0

[Jap , J
d
−q] = −fabcfdef

∑

m,n=0

g(m,n)[ρbmρ̌
c
m+p, ρ

e
n+qρ̌

f
n] (A.15)

=

∞
∑

m=q

g(m− q,m− q)fdbcfacfρbmρ̌
f
m+p−q

−
∞
∑

m=0

fabcfdcfg(m,m+ p− q)ρbmρ̌
f
m+p−q

= ifadcJcp−q +
∞
∑

m=0

√

m+ 1

m+ p− q + 1

(

qfabcfdcf

m+ p+ 1
− qfdbcfacf

m+ 1

)

ρbmρ̌
f
m+p−q

+fdbcfacf
q−1
∑

m=0

q − 1−m
√

(m+ p− q + 1)(m+ 1)
ρbmρ̌

f
m+p−q

= ifadcJcp−q −
∞
∑

m=0

√

m+ 1

m+ p− q + 1

(

qfabcfdcf

m+ p+ 1
− qfdbcfacf

m+ 1

)

ρ̌fm+p−qρ
b
m

−fdbcfacf
q−1
∑

m=0

q − 1−m
√

(m+ p− q + 1)(m+ 1)
ρ̌fm+p−qρ

b
m

−2Nδp,qδ
ad

{ ∞
∑

m=0

[

q

m+ q + 1
− q

m+ 1

]

+

q−1
∑

m=0

q − 1−m

m+ 1

}

where g(m,n) =
√

(m+1)(n+1)
(m+q+1)(n+p+1) . If we now act on fluctuation states | F 〉 defined

previously, following simplification occurs. The terms proportional to ρ̌ρ above are nonzero
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only if K + s+ q− p ≥ m ≥ K − s, i.e m ∼ K and hence these two terms are O(1/K) and

can be dropped. Then, we have

[Jap , J
d
−q] = ifadcJcp−q + (2Nq)δabδpq +O(1/K) (A.16)

One can perform a similar computation with p < q. The result can be summarized (again

upto O(1/K) corrections)

[Jap , J
d
−q] = ifadcJcp−q + (2Nq)δabδpq (A.17)

To summarize, we can write

[Jam, J
b
n] = ifabcJcm+n + 2Nm δm+n,0 δ

ab (A.18)

A.3 Computing δD2 on generic fluctuations

In this appendix we work out δD2 for a particle-hole state in the continuum limit. This

computation can be easily carried out without taking the continuum limit, but we shall use

it as an example of the formalism. The computation shows that a typical fluctuation would

have O(1) value for δD2 (after subtracting the contribution of the number operator).

First define the operator | OF 〉 ≡ C
∫

dxdyf(x, y)ρa(1 + x)ρ̌a(1 − y)
∣

∣ O(K)
〉

. The

function f(x, y) satisfies
∫

dxdy|f(x, y)|2 = 1 and C = N2 − 1. Note that for the state to

be a small fluctuation, f(x, y) is nonvanishing only if x, y ∈ (1− δ, 1 + δ).

The two fermion part of δD2 does not contribute to the difference 〈 OF | δD2 | OF 〉−
〈

O(K)
∣

∣ δD2

∣

∣ O(K)
〉

. The only remaining term is

1

N

∫

dz

z
|Ja(z)O(x, y)|2 (A.19)

One can show that

Ja(z) | OF 〉 = −ifabc
∫

dxdyf(x, y)

(

√

1 + x− z

1 + x
ρb(1 + x− z)ρ̌c(1− y)

−
√

1− y

1− y + z
ρb(1 + x)ρ̌c(1 + z − y)

)

(A.20)

Since f(x, y) has support only in a range (1− δ, 1 + δ), the momenta factor can be simpli-

fied to

Ja(z) | OF 〉 = −ifabc
∫

dxdyf(x, y)
[

ρb(1 + x− z)ρ̌c(1− y)

− ρb(1 + x)ρ̌c(1 + z − y)
] ∣

∣

∣ O(K)
〉

+O(1/K) (A.21)

Again the first of the above term is nonzero only if z ≤ x while the second is nonzero only

if z ≤ y. A similar computation as in the discrete case gives

1

N

∫

dz

z
|Ja(z)O(x, y)|2 = 2

∫

dxdy|f(x, y)|2 [log(x/ǫ) + log(y/ǫ)] (A.22)

If f(x, y) is localized around x0, y0, then we can further simplify this to

1

N

∫

dz

z
|Ja(z)O(x, y)|2 = 2 [log(x0/ǫ) + log(y0/ǫ)] (A.23)

Since x0/ǫ is finite, this is a O(1) quantity.
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B Simplifying δD4

In this appendix we will derive the expressions for V,C as given in (6.11), (6.12) from their

definitions given (6.8), (6.9). For completeness, we give below the expressions for all I±, Ī±

to leading order in g (as given in (3.28) of [5])

I+1 =
1√
2

∞
∑

k,q=0

(
√

k + q + 2

(k + 1)(q + 1)
Tr :ρ(k)ρ(q)ρ̌(k+q+1):

+

3
∑

i=2

Tr :
1√
k + 1

[

ρ(k), φ
i
(q)

]

φ̌i(k+q+1):

+

√

q + 1

(k + 1)(k + q + 2)
Tr :

{

ρ(k), ρ̄(q)
}

ˇ̄ρ(k+q+1):

− 1√
k + q + 1

Tr :
[

φ2(k), φ
3
(q)

]

ˇ̄ρ(k+q):

)

(B.1a)

Ī+1 =
1√
2

∞
∑

k,q=0

(
√

k + q + 2

(k + 1)(q + 1)
Tr :ρ̄(k)ρ̄(q) ˇ̄ρ(k+q+1):

+

3
∑

i=2

1√
k + 1

Tr :
[

ρ̄(k), φ
i
(q)

]

φ̌i(k+q+1):

+

√

q + 1

(k + q + 2)(k + 1)
Tr :

{

ρ̄(k), ρ(q)
}

ρ̌(k+q+1):

+
1√

k + q + 1
Tr :

[

φ2(k), φ
3
(q)

]

ρ̌(k+q):

)

(B.1b)

I−1 =
1√
2N

∞
∑

m,n=0

(√

n+m+ 2

(n+ 1)(m+ 1)
Tr :ρ̄(n+m+1) ˇ̄ρ(n) ˇ̄ρ(m):

− 1√
n+m+ 1

Tr :ρ(n+m)

[

φ̌2(n), φ̌
3
(m)

]

:

+

√

m+ 1

(n+m+ 2)(n+ 1)
Tr :ρ(n+m+1)

{

ˇ̄ρ(n), ρ̌(m)

}

:

+
1√
n+ 1

3
∑

i=2

Tr :φi(n+m+1)

[

ˇ̄ρ(n), φ̌
i
(m)

]

:

)

(B.1c)

Ī−1 =
1√
2N

∞
∑

m,n=0

(√

n+m+ 2

(n+ 1)(m+ 1)
Tr :ρ(n+m+1)ρ̌(n)ρ̌(m):

+
1√

n+m+ 1
Tr :ρ̄(n+m)

[

φ̌2(n), φ̌
3
(m)

]

:

+

√

m+ 1

(n+ 1)(n+m+ 2)
Tr :ρ̄(n+m+1)

{

ρ̌(n), ˇ̄ρ(m)

}

:

+
1√
n+ 1

3
∑

i=2

Tr :φi(n+m+1)

[

ρ̌(n), φ̌
i
(m)

]

:

)

. (B.1d)
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Complexity of the calculation is reduced vastly if we use the fact that we are interested

only in states of the form 〈 f | δD4 | f 〉 where | f 〉 belongs to the fermionic su(1, 1) sector.

To see this

• Note that the definition (6.10) of δD4 involves I+, C, Ī−. Since the action of I+, Ī−

closes on fermionic su(1, 1) sector, the only relevant matrix element we need to com-

pute are of the form 〈 f |C | f 〉 and 〈 f |V | f 〉.

• Note that the definition (6.8), (6.9) V,C involve I−, Ī+, h. Since I− (Ī+) acting on

right (left) on state | f 〉 vanishes, the only ordering which survives in 〈 f |C | f 〉
and 〈 f |V | f 〉 is one where I− occurs to left of Ī+. Now since commutation with

h leads to same parton structure (albeit with different coefficients), it is easy to see

that we only need to keep terms in I− (Ī+) which are nonvanishing when acting on

right (left) on state | f 〉.

Thus it is enough to restrict to the following terms in I−, Ī+

√
2NI−1 = ifdef

∞
∑

m,n=0

[√

m+ 1

(n+m+ 2)(n+ 1)
ρdn+m+1

ˇ̄ρenρ̌
f
m

− 1√
n+m+ 1

ρan+mφ̌
2b
n φ̌

3c
m

]

(B.2)

√
2Ī+1 = ifabc

∞
∑

k,q=0

[√

q + 1

(k + q + 2)(k + 1)
ρ̄akρ

b
qρ̌
c
k+q+1

+
1√

k + q + 1
φ2ak φ

3b
q ρ̌

c
k+q

]

(B.3)

h =
∞
∑

n=0

h(n+ 1)

2
[ρanρ̌

a
n + ρ̄an ˇ̄ρ

a
n] +

∞
∑

n=0

h(n)

2

3
∑

i=2

φian φ̌
ia
n (B.4)

where we have opened the trace to show the gauge indices explicitly. Now that we have

simplified various supercharges, we can evaluate the commutators in (6.8), (6.9) keeping

in mind that we are interested only in those terms in C, V which are nonvanishing on the

states of fermionic su(1, 1) sector. After some straight forward algebra we get

V =
i

2N

∞
∑

m=0,u=1

Bm,u f
abcρbm+uρ̌

c
m Jau +

∞
∑

m=0

Bmρ
a
mρ̌

a
m (B.5)

C =
i

2N

∞
∑

q=0,u=1

Bq,u J
a
−u f

abcρbqρ̌
c
q+u +

∞
∑

m=0

Bmρ
a
mρ̌

a
m (B.6)

where Bm,u =
√

m+1
m+u+1

h(m+u+1)−h(m+1)−h(u)
u and Bm = h(m+ 1) − 2 and the current J

is as defined in (4.7).
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Figure 10: Diagram correcting propagator with two disjoint loops.
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Figure 11: 1PI corrections to the propagator from δD4.

C Two fermion diagrams in δD4 between light states

In this appendix we discuss two-fermion terms, which are always of the form

O2f =

∫

dpH(p)ρa(p)ρ̌a(p) (C.1)

Since a finite term in H(p) can be shifted away by a chemical potential for U(1), we do

not need to compute this contribution explicitly. However, for completeness we work it out

explicitly, finding that the result is O(K0).

The only possible non-1PI diagram is given below which just gives H(p) ∼ 1
p2
. The 1PI

diagrams are more nontrivial. They are shown in figure 11 which gives loop contribution17

17Recall δ
ǫ
is finite.
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(in order a,b,c,d,e)

(a) =

∫ 1+δ

ǫ

dq

q1+
ǫ̃
2 (q + p)

ǫ̃
2

∫ q−ǫ

ǫ
dk

(k + p)1+
ǫ̃
2k

ǫ̃
2

(q − k)1−ǫ̃
(C.2)

(b) =

∫ 1

0

dq q
ǫ̃
2

(p− q)1+
ǫ̃
2

∫ p

q
dk

(p− k)
ǫ̃
2

k1+
ǫ̃
2 (k − q)1−ǫ̃

(C.3)

(c) =

∫ 1

0

dq

q1+
ǫ̃
2

∫ 1

1−q
dk

(p− k)
ǫ̃
2

k (q + k − p)1−ǫ̃(q + k)
ǫ̃
2

(C.4)

(d) =

∫ 1

0

dq q
ǫ̃
2

(p− q)1−ǫ̃

∫ 1

1−q
dk

(k + q)(k + q − p)
ǫ̃
2

k1+
ǫ̃
2

(C.5)

(e) =

∫ 1

0

dq q
ǫ̃
2

(p− q)1−ǫ̃

∫ 1

1−q
dk

(k + q)1+
ǫ̃
2

k(p+ k)
ǫ̃
2

(C.6)

Diagram (b) is its own conjugate whereas all the other diagrams have a hermitian conjugate

diagram which we have not written.

These integrals can be evaluated, and yield, in the large K limit, results of the form

c1 log
2K + c2 logK + c3. (C.7)

There is also a second type of 1PI diagram, shown in figure 12. The integrals again

yield results of the form (C.7).

C.1 〈 L | {[I+, U2f ], Ī
−} | L 〉 terms

Recall that

U2f =

∫

dz [c1 − c2 log(zK)] ρd(z)ρ̌d(z) (C.8)

with c1 = −2(γ − log 2), c2 = −2. Let us now compute

[I+, U2f ] =
i

2
√
2
fabc

∫

dx1dx2dz

√

x1 + x2
x1x2

[c1 − c2 log(zK)]

{

δ(x1 + x2 − z)ρa(x1)ρ
b(x2)ρ̌

c(z)− 2δ(x− z)ρa(z)ρb(x2)ρ̌
c(x1 + x2)

}

=
ic2f

abc

2
√
2

∫

dx1dx2

√

x1 + x2
x1x2

×
[

−c1
c2

+ log(K)− log

(

x1 + x2
x1x2

)]

ρa(x1)ρ
b(x2)ρ̌

c(x1 + x2)

=
ic2f

abc

2
√
2ǭ

∫

dx1dx2

(

x1 + x2
x1x2

) 1

2
−ǭ
ρa(x1)ρ

b(x2)ρ̌
c(x1 + x2) +O(ǭ) (C.9)

where ǭ = 1
logK− c1

c2

. Except for ǭ corrections, this is almost same as I+. From now on

the computation is almost the same as that for δD2 ∼ {I+, Ī−}. In particular, we get the

same diagrams as in section 5.3, except that the momentum degree now get ǭ corrections.
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Figure 12: Second type of 1PI corrections to the propagator from δD4.

In particular the diagram on left of figure 2 still is regular. And the contribution for the

diagram on the right is

∼ log(K)

∫

du

u1−ǫ̃
J
a(−u)Ja(u) (C.10)

which obviously do not close the gap. The two fermion diagrams on the left of figure 3

correspond to

N log(K)

∫

dpρa(p)ρ̌a(p) p1−ǭ
∫ p−ǫ

ǫ
dk

1

k1−ǭ(p− k)1−ǭ
. (C.11)

The diagram on the right gives

N log(K)

∫

dpρa(p)ρ̌a(p)
1

p

∫ 1

ǫ
dk

(p+ k)1−ǭ

k1−ǭ
. (C.12)

Both contributions are again of the form (C.7).
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[8] Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black

holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901

[hep-th/0505112] [INSPIRE].
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