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ABSTRACT

We present high-resolution (10243) simulations of super-/hypersonic isothermal hydrodynamic
turbulence inside an interstellar molecular cloud (resolving scales of typically 20–100 au),
including a multidisperse population of dust grains, i.e. a range of grain sizes is considered.
Due to inertia, large grains (typical radius a � 1.0µm) will decouple from the gas flow,
while small grains (a � 0.1µm) will tend to better trace the motions of the gas. We note
that simulations with purely solenoidal forcing show somewhat more pronounced decoupling
and less clustering compared to simulations with purely compressive forcing. Overall, small
and large grains tend to cluster, while intermediate-size grains show essentially a random
isotropic distribution. As a consequence of increased clustering, the grain–grain interaction
rate is locally elevated; but since small and large grains are often not spatially correlated,
it is unclear what effect this clustering would have on the coagulation rate. Due to spatial
separation of dust and gas, a diffuse upper limit to the grain sizes obtained by condensational
growth is also expected, since large (decoupled) grains are not necessarily located where the
growth species in the molecular gas is.

Key words: hydrodynamics – instabilities – turbulence – dust, extinction.

1 IN T RO D U C T I O N

Dust is an important constituent of the interstellar medium (ISM)
of the Galaxy and the main source of opacity and light scattering.
The rarefied gas of the ISM is also highly turbulent, which make
cosmic dust a perfect example of inertial particles in a turbulent
flow; a classical problem in fluid mechanics. A crucial difference is
that in classical fluid dynamics one considers incompressible flows,
while in the ISM compressibility really matters. Regardless of how
interstellar turbulence is induced and maintained, the hypersonic1

nature of interstellar turbulence, evidenced by large non-thermal
line widths (Larson 1981; Solomon et al. 1987), suggests that the
Stokes number, defined as the ratio the time it takes for a stationary
particle to couple to the flow over the characteristic flow time-
scale, is relatively high for cosmic dust grains. This is the case
despite the small sizes of the grains, which is due to the fact that
the Stokes number is proportional to the Mach number (which is

⋆ E-mail: lars.mattsson@su.se
1Hypersonic flow is here defined as a flow with a characteristic Mach
number, i.e. the ratio of the root-mean-square gas velocity and the sound
speed Mrms = urms/cs, which is between 5 and 25.

high). Grains with radii ∼1µm are thus expected to decouple from
the gas and there is plenty of evidence for the existence of such
grains in molecular clouds (MCs) in the ISM (e.g. Pagani et al.
2010; Steinacker et al. 2010, 2015; Ysard et al. 2016; Saajasto,
Juvela & Malinen 2018). Hopkins & Lee (2016) presented a suite
of simulations of the turbulent dynamics of an MC including a
dust phase. Due to the dynamical decoupling between gas and dust
grains (i.e. a relatively long kinetic-drag time-scale), the gas and
dust do not necessarily end up at the same place, which results in
a wide distribution of dust-to-gas ratios, according to Hopkins &
Lee (2016). Similar results have been found in several other studies
(e.g. Padoan et al. 2006; Downes 2012) but see also Tricco, Price &
Laibe (2017). It is well established that turbulence can cause
increased concentrations of dust particles, leading to an increased
rate of particle–particle interactions and thus enable coagulation on
sufficiently short time-scales (Pumir & Wilkinson 2016). But the
spatial separation of dust and gas should also have an effect on
the rate of dust formation by condensation as the number of gas
molecules hitting the surfaces of the dust grains per unit time would
be lower.

Interstellar grain growth by condensation is considered to be
an important dust formation channel, not the least as a necessary
replenishment mechanism to counteract dust destruction in the

C© 2018 The Author(s)
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5624 L. Mattsson et al.

ISM. Indirect support to the interstellar-growth hypothesis comes
from destruction of grains in the ISM, highlighting a need for a
replenishment mechanism (see e.g. McKee 1989; Draine 1990;
Ginolfi et al. 2018) – a need which appears to be even greater
in the early universe (Mattsson 2011; Valiante et al. 2011). The
observed depletion patterns in interstellar gas are also consistent
with dust depletion due condensation in MCs (Savage & Sembach
1996a,b; Jenkins 2009; De Cia et al. 2016). Further indirect evidence
comes from the fact that late-type galaxies seem to have steeper
dust-to-gas gradients than metallicity gradients along the radial
extension of their discs (Mattsson, Andersen & Munkhammar 2012;
Mattsson & Andersen 2012; Mattsson et al. 2014). If gas–dust
separation due to turbulence is as important as it seems to be, there
could very well be a significant damping of the growth rate due
to turbulent gas motions, once the grains have a certain size. At
the same time, the high-density peaks created by turbulence must
increase the condensation rate, at least locally. Dust growth in MCs
may therefore be both limited and boosted by turbulence. The rate
of coagulation (and shattering) is also boosted by turbulence due
to locally increased number densities and relative particle speeds.
Understanding how turbulence shapes the size distribution of dust
grains, and consequently affects the grain temperature distribution,
is important for our general understanding of cosmic dust, not least
because it may have significant effects on the infrared flux-to-mass
ratio (see Mattsson et al. 2015, and references therein).

Interstellar high Mach-number turbulence is undoubtedly forced
turbulence in one way or another. Thus, simulation of the ISM
requires using a forcing scheme. The driving force behind inter-
stellar turbulence is not fully understood, but it is widely assumed
that the kinetic-energy injection by supernovae (SNe) must play
an important role (Elmegreen & Scalo 2004; Schmidt et al. 2009;
Padoan et al. 2016a,b; Pan et al. 2016). The velocity field usually
shows only a weak vorticity component (Elmegreen & Scalo 2004),
which seems natural in case interstellar turbulence is driven by SN
shocks. Moreover, the interstellar gas flow is highly compressible
and must have a very high Reynolds number. But in the coldest
and densest phase of the ISM, the MCs, there may be a significant
vorticity component and it must be considered unclear whether
the energy injection from SN shockwaves can drive the turbulence
on spatial scales of MCs. Very recent work by Seifried et al.
(2018) seem to show that the SN-driven turbulence is in fact a
problematic hypothesis. Although the energy released from SNe has
been demonstrated to be sufficient to drive interstellar turbulence
(Vazquez-Semadeni 1994), and also more recent simulations seem
to support SN-driven turbulence in the diffuse ISM (see e.g. Korpi
et al. 1999; Mee & Brandenburg 2006; Brandenburg, Korpi & Mee
2007; Padoan et al. 2016a; Gent et al. 2013a,b), the impact of the
SN shocks inside MCs may not be that large.

In this paper, we investigate the clustering and dynamic de-
coupling of dust grains expected in an MC (cold ISM) using
direct numerical simulations (DNS) of stochastically forced, super-
/hypersonic isothermal hydrodynamic turbulence. Compared to
many previous studies, our investigation adds the following:

(1) three-dimensional simulations in high resolution (10243);
(2) a multidisperse dust component, i.e. a range of grain sizes is

followed simultaneously;2

2We have chosen to focus to somewhat larger grain than Hopkins & Lee
(2016), because we want to address the conflicting results of their study and
that of Tricco et al. (2017), where the latter is suggesting that only very large
grains decouple from the gas flow.

(3) comparison of particle dynamics in turbulent flows with
compressive and solenoidal (rotational) forcing;

(4) quantitative analysis of the clustering of grains due to turbu-
lent dynamics and velocity decoupling between the gas and dust
phases.

This paper is organized as follows. Section 2 gives a general
background on the method of simulation and underlying physical
theory. In Section 3, we present results and analysis. We also
discuss the implications for clustering and subsequent processes of
grains in MCs. In Section 4, we summarize our findings and future
outlook.

2 TH E O RY A N D BAC K G RO U N D

Incompressible (divergence-free) turbulence is characterized by
how kinetic energy injected on large scales is transferred to
successively smaller and smaller scales down to the viscous scales
where it is dissipated. This kinetic-energy cascade is usually referred
to as the Richardson cascade (Richardson 1922). In case of a
compressible turbulent flow, however, the phenomenology becomes
somewhat more complicated. The total kinetic energy does not
provide a unified picture of compressible turbulence and there are
several ways of accounting for compressibility that yield somewhat
incompatible phenomenologies.

2.1 Governing equations

The basic equations governing the dynamics of the ISM are the
equations of fluid dynamics (a.k.a. Navier–Stokes equations). For
a compressible fluid/gas, the density is given by the continuity
equation,

∂ρ

∂t
+ ∇ · (ρ u) = 0, (1)

where ρ is density and u is the velocity field. The velocity field is
governed by the momentum equation,

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇P + Fvisc + Fforce, (2)

in which P is (gas) pressure, Fvisc = ∇ · (2ν ρ S0) + ∇ · (3ζ C)
represents viscous forces, where ν is the kinematic viscosity,
C = 1

3 (∇·u) I is the compression tensor, S0 = S − C is the rate-
of-strain tensor, and S = 1

2

[

∇u + (∇u)T
]

. The physical viscous
forces are complemented with an artificial (shock) viscosity to
ensure numerical stability. The last term in equation (2), Fforce,
is external forcing, which in the present case represents stochastic
driving of the turbulence.

To obtain closure of the equations above, we must also introduce
a coupling between pressure and density, which is here just the
isothermal condition P = c2

s ρ, with cs the isothermal sound speed.

2.2 Forcing

The last term in equation (2), Fforce, is stochastic forcing term
with both solenoidal (rotational) and compressive components. The
forcing is applied at low wavenumbers in Fourier space, following
standard procedures. More precisely, the forcing is a white-in-time3

stochastic process integrated using the Euler–Maruyama method,
i.e. a stochastic differential equation (in Stratonovich form) is solved

3The stochastic variations represent white noise in the time domain.
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Dust grains in turbulent molecular clouds 5625

within the framework of Itô calculus (Revuz 1994). In this study,
we separate two physically different types of forcing; either purely
compressive or solenoidal forcing (see Table 1) in order to explore if
there will be any qualitative differences in the dust dynamics, since it
is known that the resultant gas-density probability density functions
(PDFs) and the fractal properties of the gas are significantly different
depending on whether the forcing is compressive or solenoidal
(Federrath, Klessen & Schmidt 2009; Federrath et al. 2010).

2.3 Numerics, simulation set-up, and scaling

We aim to model the cold ISM, e.g. the interior of an MC using
a local, three-dimensional periodic-boundary box hydrodynamic
model. That is, as described above, we solve the standard hydro-
dynamic equations (as described in Section 2.1): the momentum
equation, the continuity equation and an isothermal condition added
as a closure relation, with a constant sound speed set to cs = 1. Dust
particles are included as inertial particles in 10 size bins (see Fig. 1 )
with 106 particles in each bin. In this paper, we will focus on three
explicit sizes, however. These three correspond to relatively small
grains (with a typical ISM scaling of the simulations corresponding
to a ∼ 0.1µm), intermediate-size particles (a ∼ 0.5µm), and large
particles (a ∼ 1.5µm) that are expected to decouple from the flow.

To solve the equations of the model, we use the PENCIL CODE,
which is a non-conservative, high-order, finite-difference code
(sixth order in space and third order in time) for compressible
hydrodynamic flows with magnetic fields and particles. For a
more detailed description of the code, see e.g. Brandenburg &
Dobler (2002) and the PENCIL CODE website and GitHub page.4

The simulations are performed in a three-dimensional periodic box
with sides Lx = Ly = Lz = 2π (dimensionless). Applied to the
core of an MC, the physical size of the computational domain is
roughly L = 0.1 − 0.5 pc. That is, the resolution obtained in a 10243

simulation is ∼20−100 au. For the initial state of the gas in the MC,
we take a single thermal phase with constant number density, which
in a real MC would correspond to a mean value between 103 and
105 cm−3, or in mass density, roughly 10−21–10−19 g cm−3.

2.4 Incompressible versus compressible turbulence

Much of the theory of particles in flows is based on studies of incom-
pressible flows/fluids. For small Mach numbers, the incompressible
limit is a good approximation. However, the nature of astrophysical
flows in general, and the dynamics of the ISM in particular, is such
that we expect high Mach numbers and significant turbulence. Thus,
we explore a new regime, for which current theory about particles in
incompressible flows is inadequate to describe what happens with
cosmic dust particles.

2.4.1 Incompressible turbulence

The canonical description of incompressible turbulence in a purely
hydrodynamic (Navier–Stokes) flow is due to Kolmogorov (1941),5

see also Frisch (1995) for a modern introduction. The crucial idea
is that the energy dissipation rate per unit volume, ε, is a constant
even in the limit of zero viscosity. Dimensional arguments show
that for velocity fluctuations across a length-scale ℓ, vℓ ∼ ℓ1/3,

4http://pencil-code.nordita.org, https://github.com/pencil-code
5The original article is in Russian. However, an English translation is now
available (Kolmogorov 1991).

which implies that the shell-averaged energy in Fourier space goes
as E(k) ∼ k−5/3 where E(k) is the energy contained in shell in Fourier
space of radius k. At present, there is a large body of evidence from
observations, experiments, and DNS that supports Kolmogorov’s
result.6

2.4.2 Compressible turbulence

Turbulent gases can be described in terms of the incompressible
Navier–Stokes equations only if the root-mean-square value of the
flow velocity is much smaller than the sound speed, i.e. at very low
Mach numbers. This condition is rarely satisfied in astrophysical
contexts and in particular not in the ISM. In the high Mach
number limit, it is generally accepted (although not rigorously
proven) that the three-dimensional Burgers’ equation provides a
good description of hypersonic turbulence (Elmegreen & Scalo
2004). In such a case, if assuming a small but finite viscosity, it can
be argued that the energy spectrum approaches E(k) ∝ k−2, which
can be shown to derive from the energy spectrum being E(k) ∝ k−2

for a propagating step function (Tran & Dritschel 2010). Since
very high Mach numbers indicate that the flow is shock dominated,
this energy spectrum mainly describes the compressible compo-
nent and provides less information about the rotational structures
(eddies) of a turbulent flow. Therefore, models of compressible
turbulence are usually either a compromise between the low and
high Mach-number limits or distinguish between energy spectra for
the solenoidal and compressible components, respectively.

An attractive compromise is provided by the Fleck (1996) model.
Building upon an idea proposed by von Weizsäcker (1951), the
Fleck model assumes that there exists a self-similar hierarchy of
sizes of cloud structures, which represents the density variations
of a turbulent interstellar gas. This hierarchy is parametrized by
a scaling exponent ε, ρ ∝ ℓε , which is ε = 0 for the low Mach-
number (incompressible) limit and ε = 1 for turbulent structures
with perfect isotropic compression. Fleck (1996) also makes the
assumption that the total rate of viscous dissipation is proportional
to ρ v ℓ−1 in case of a compressible fluid. With this assumption,
the self-similar hierarchy of structures predicts an energy spectrum
of the form E(k) ∝ k−5/3 − 2ε . Obviously, with ε = 0, we obtain a
spectrum of Kolmogorov type, while ε = 1 leads to a very steep
energy spectrum E(k) ∝ k−11/3. Such a steep spectrum may not be
realistic, although the spectrum can in principle be steeper than a
Burgers spectrum (ε = 1/6). The simulations in this study seem to
suggest that compressible turbulence produce a spectrum which is
at least as steep as the Burgers spectrum (see Fig. 2). We will return
to this observation in Section 3.1.

2.4.3 Clustering of particles in compressible turbulence

Since compressible turbulence is expected to have a ‘steeper-than-
Kolmogorov’ energy spectrum, we have reasons to expect that
clustering of particles (dust) embedded in the flow will be different.
Nicolleau, Farhan & Nowakowski (2016) have demonstrated that
changing the power index in a periodic kinematic simulation of
turbulence affects the so-called clustering attractor of the particles.
Established theories (see e.g. Monchaux, Bourgoin & Cartellier
2012, and references therein) for particles in incompressible tur-
bulent flows can therefore not immediately be assumed to hold

6Actually there are intermittency corrections to the Kolmogorov scaling
laws but we ignore such small corrections in this context.
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5626 L. Mattsson et al.

Table 1. Properties and physical parameters of the simulations. All simulations have the mean gas density and isothermal sound speed set to unity, i.e. 〈ρ〉 =
cs = 1.

Simulation f 〈log (ρmin)〉 〈log (ρmax)〉 Mrms Mmax Re Remax Forcing type

Acmp 4.0 − 4.29 ± 0.64 1.51 ± 0.07 3.24 ± 0.15 9.67 ± 0.69 216 ± 10 645 ± 46 Compressive
Bcmp 8.0 − 5.28 ± 0.65 1.77 ± 0.08 5.33 ± 0.23 15.2 ± 1.80 178 ± 7.7 507 ± 60 Compressive
Ccmp 12.0 − 6.03 ± 0.71 1.91 ± 0.09 7.01 ± 0.27 19.9 ± 2.56 156 ± 6 442 ± 57 Compressive

Asol 4.0 − 3.31 ± 0.52 1.31 ± 0.06 3.56 ± 0.10 9.57 ± 0.32 237 ± 6.7 638 ± 21 Solenoidal
Bsol 8.0 − 4.42 ± 0.56 1.55 ± 0.06 5.62 ± 0.17 15.4 ± 1.22 187 ± 5.7 513 ± 41 Solenoidal
Csol 12.0 − 5.29 ± 0.74 1.70 ± 0.06 7.45 ± 0.27 20.5 ± 2.73 166 ± 6 456 ± 61 Solenoidal

also for the highly compressible flows which are relevant for
astrophysics. Thus, it is important to explore clustering of particles
in compressible turbulence by DNS.

2.5 Dust grains in a turbulent flow

Assuming the dust is accelerated by the turbulent gas flow via an
Epstein (1924) drag law, the equation of motion for dust particles
embedded in the gas is

dv

dt
=

u − v

τs
, (3)

where v and u are the velocities of the dust and the gas, respectively,
and τ s is the so-called stopping time, i.e. the time it takes before a
dust grain has accelerated (or decelerated) to same velocity as the
gas flow (in case of a steady laminar flow). The stopping time in the
Epstein limit depends on the size and density of the grain as well
as the gas density and the relative Mach number Ws = |u − v|/cs

(Schaaf 1963). In the limit Ws ≪ 1, we obtain

τs(Ws ≪ 1) =
√

π

8

ρgr

ρ

a

cs
≡ τs, 0, (4)

where a is the grain radius (assuming spherical grains), ρgr is the
bulk material density of the grain, and the isothermal sound speed
cs replaces the thermal mean speed of molecules. The Ws ≪ 1 case
typically corresponds to small sonic Mach numbers, i.e. Ms ≪ 1.
For large Ms, we expect Ws ≫ 1,

τs(Ws ≫ 1) =
4

3

ρgr

ρ

a

|u − v|
. (5)

Combining these two limits, we then obtain a convenient formula
which is sufficiently accurate for our purposes (Kwok 1975;
Draine & Salpeter 1979)

τs = τs, 0

(

1 +
9π

128

|u − v|2

c2
s

)−1/2

(6)

The second term inside the parenthesis can be seen as a correction
for supersonic flow velocities and compression.

If the stopping time is much (several orders of magnitude) shorter
than the characteristic time-scale of the flow, which is the case for
small (typically a � 0.01µm) dust particles in a dense gas (nH ∼
104 g cm−3), it is justified to make the simplification v = u. In
this paper, however, we are interested in the regime where this
approximation does not hold and the dust grains decouple from the
gas according to equation (3).

We do not consider the ‘backreaction’ from dust grains, i.e. the
drag effect an accelerated dust grain may have on the gas flow.
The reason for this is that the dust-to-gas mass ratio and the mean
speed of the dust particles are too small; there is simply not enough

momentum in the dust phase to make a qualitative difference on a
strongly forced turbulent gas flow. In case of radiative forcing on
the grains, however, the situation is quite different and the drag that
the dust exerts on the gas must be taken into account.

2.6 Dimensionless quantities and other parameters

2.6.1 Flow variables

In the isothermal case, the flow of the gas is characterized by two
variables: ρ and u. Because the sound speed cs is constant, it is
natural to use U = u/cs as a dimensionless simulation variable,
and the density ρ can be replaced with s = log (ρ/〈ρ〉). The latter
means that the density variable can be made dimensionless using
an arbitrary reference density, which we chose to be the volumetric
mean density 〈ρ〉. Similarly, we use V i = vi/cs for the velocities of
dust particles with size i, but there is no corresponding dust density
variable since the dust grains are treated as discrete particles. As
our simulations start from a uniform distribution of gas, initially at
rest, it is convenient to choose ρ(0) = 〈ρ〉 as the unit density, i.e.
〈ρ〉 = 1.

With U and s, the dimensionless simulation variables describing
the flow, we only need to set the time and length-scales of our
simulation. The length-scale is most conveniently set to the size
of the simulation box, i.e. length L of one of the sides of the box.
Because we use a periodic-boundary condition, we chose L = 2π .
The time-scale can then be chosen to be the sound-crossing time
τ sc = L/cs. With cs = 1, this means that τ sc = L = 2π .

2.6.2 Mach number

Since we are simulating highly compressible flows, the Mach
number, defined as the ratio of the flow speed and the sound speed,
is an important number to characterize the flow; the higher the
Mach number the higher the degree of compression. In this paper,
we always refer to the root-mean-square of the sonic Mach number

Mrms =
√

〈M2
s 〉 = urms c−1

s unless anything else is stated. Several
other dimensionless quantities, such as the Reynolds number, can
be expressed in terms of Mrms.

2.6.3 Reynolds number and dimensionless viscosity

Astrophysical flows are usually considered to be nearly inviscid
and thus have very high Reynolds numbers (roughly Re >105).
In a simulation of forced turbulence, the Reynolds number can be
estimated from

Re =
ūrms

kf ν
= cs

Mrms

kf ν
, (7)

MNRAS 483, 5623–5641 (2019)
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Dust grains in turbulent molecular clouds 5627

Figure 1. Grain sizes in physical units as a function of the grain-size
parameter α evaluated at different mean gas densities, assuming a physical
size of the simulation box Lx = Ly = Lz = 0.1 pc.

where ūrms is the temporal average of the root-mean-square (rms)
velocity (see time-series of urms; Fig. 3) of the flow after a statistical
steady state has been reached (all simulations rapidly reach a
statistical steady state), kf is the effective forcing wavenumber,
and ν is the kinematic viscosity. The rms Mach number of the
simulations ranges between Mrms = 3.24 and 7.45 (see Table 1)
and the effective forcing wavenumber is kf ≈ 3. The sound speed
is unity, so the Reynolds numbers are given by Re ≈ qs ν−1, where
qs = 1,. . . ,2.5 and ν is given in units of cs. To reach Re >105, we
would then need ν � 10−5, which is, unfortunately, not feasible
for computational reasons. With the relatively strong forcing and
moderate shock/artificial viscosity that we use, our simulations
become stable only if ν ∼ 5 × 10−3 in case of a forcing factor
f = 4, ν ∼ 0.01 for f = 8 and ν ∼ 0.015 for f = 12, which means
that the average Reynolds numbers are around Re ∼ 200 in our
simulations (see Table 1). This is clearly not a realistic value, but
this issue is common for all simulations based on a finite-difference
scheme and a finite Re.

2.6.4 Stokes number, Knudsen number and grain sizes

The extent to which dust grains couple to the gas flow depends on
two time-scales: the time it takes for a grain to couple to the flow
(τ s, i.e. the stopping time described in Section 2.5), and the time
it takes before a given portion of the flow is reversed (a.k.a. the
‘turnover time’ of the flow). The ratio between these time-scales
is a quantity which characterizes the gas–grain interaction and is
basically the definition of the Stokes number, St = τ s/τ ℓ.

The Knudsen number Kn = λmfp/a, where λmfp is the mean-free
path of the gas molecules, determines whether the kinetic drag can
be described in the fluid regime (Kn ≪ 1) or the particle regime (Kn
≫ 1). In the latter, the stopping time has a simplified description
sometimes referred to as ‘Epstein drag’, which is particularly
relevant for in an astrophysical context. Assuming also small relative
Mach numbers, i.e. W ≪ 1, we then have

St(W ≪ 1) ≈
τs, 0

τℓ

=
√

π

8

ρgr

ρ

urms

cs

a

L
=

√

π

8

ρgr

ρ
Mrms

a

L
, (8)

where τ ℓ is the large-eddy turnover time τℓ ≈ Lu−1
rms, and L is the

size of the simulation box. In the opposite limit (W ≫ 1), we have

St(W ≫ 1) ≈
4

3

ρgr

ρ

urms

|u − v|
a

L
=

4

3

ρgr

ρ

Mrms

W

a

L
, (9)

which means St is not a universal number. However, in the case
of fully developed turbulence, τ ℓ is a statistical invariant, and the
Stokes number directly proportional to grain size. In principle,
we could consider the volume-averaged Stokes number 〈St〉 as a
measure of grain size in both limits ofW. But the scaling is different
for different simulation set-ups, because 〈St〉 depends on both W

and the ordinary Mach numberMrms. Still, forW ≪ 1, it is possible
to use 〈St〉/Mrms as a ‘size parameter’, i.e. we may define

α =
ρgr

〈ρ〉
a

L
, (10)

which is the parametrization used by Hopkins & Lee (2016).
However, because the total mass of a simulation box of size L and
the mass of a grain of a given radius a are constants, the quantity α

must also be a constant regardless of characteristics of the simulated
flow. The parameter α is therefore a better dimensionless measure
of grain size than the average Stokes number 〈St〉 for a super-
/hypersonic compressible flow. Following Hopkins & Lee (2016),
the physical size of the grains can then be estimated from

a = 0.4 α

(

L

10 pc

)(

〈ngas〉
10 cm−3

)(

ρgr

2.4 g cm−3

)−1

µm, (11)

where 〈ngas〉 is the average number density of gas particles
(molecules). Fig. 1 shows a few examples of how the physical grain
size scales with α depending on the adopted size of the simulation
box and mean gas density.

2.6.5 Dust-to-gas ratio

As an indicator of dust-gas separation, we may consider another
dimensionless quantity: the dust-to-gas ratio. If gas and dust
is strongly coupled (u ≈ v), this ratio shows very little spatial
variation, while one would expect an anticorrelation with the gas if
gas and dust are dynamically decoupled. Observationally, the dust-
to-gas ratio is usually defined in terms of the dust mass density
ρd instead of number density, i.e. the ratio obtained when the dust
density is weighted by the grain-size distribution ϕ(a) and the bulk
material density of the dust,

ρd, ℓ(a) =
4π

3
ρgr 〈nd, ℓ〉

∫ ∞

0
a3 ϕ(a) da. (12)

For a monodispersed population of dust grains, the expression
simplifies into

ρd, ℓ(a) =
4π

3
ρgr a

3 〈nd, ℓ〉. (13)

Moreover, the observed densities are column densities and observed
dust-to-gas ratios are usually the ratio between the dust column and
the gas column, i.e.

Zd(a) =
�d(a)

�
=

∫ L

0
ρd(a, z) dz

/
∫ L

0
ρ(z) dz, (14)

where L is the column depth (equal to the size of the simulation
box in our case). This is the quantity plotted in Fig. 13, where we
have also normailzed Zd such that the average is 〈Zd(a)〉 = 0.01 in
all cases.

2.6.6 Average nearest-neighbour ratio

The dust-to-gas ratio does not say very much about the clustering
of dust grains due to binning of the data necessary to obtain
it. There are several ways to quantify the clustering (Monchaux
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5628 L. Mattsson et al.

et al. 2012), where one of the more direct approaches is nearest-
neighbour statistics. Therefore, we compute the first nearest-
neighbour distance (1-NND) for each individual particle i in
each one of the simulations. We denote this parameter ℓi, m and
compare its ensemble average 〈ℓi, m〉 to the expected ensemble
average in case of a random isotropic distribution of grains 〈ℓi, e〉,
i.e. the case of no clustering. Then, we calculate the average
nearest neighbour (ANN) ratio, sometimes also called relative NND,
as

RANN =
〈ℓi, m〉
〈ℓi, e〉

= 1.81 ×
n

1/3
j

N

i=N
∑

i=1

ℓi, m, (15)

where nj is the number density of the considered particle species j

and the factor 1.81 comes from the normalization. The ANN ratio is
a dimensionless measure of the clustering (or dispersion) of grains;
if RANN < 1 the grains are clustered, while they can be regarded as
dispersed if RANN > 1. The case RANN = 1 correspond to an exactly
random distribution of grains.

2.6.7 Correlation dimension

Alternatively, we may consider a version of the 1-NND dis-
tribution which is parametrized in terms of the dimension-like
parameter D,

h(D, r) dr = D λ(D) rD−1 g(D, r), (16)

and cumulative distribution

H (D, r) dr =
∫ r

0
h(D, r ′) dr ′, (17)

where λ(D) is a parameter related to the volume of the N-sphere
and g(D, t) is a function with a bounded first derivative for all
r̂ ≥ 0 so that rD dg/dr̂ → 0 as r → 0 for all D > 0. It can be
demonstrated (see Mattsson et al., in preparation) that the parameter
D is equivalent to the so-called correlation dimension d2 of the
particle distribution (see Section 3.4 for further details). In short, the
method relies on the fact that the probability of finding a particle’s
nearest neighbour within a sphere of a radius r̂ with the particle at
its centre, is in fact proportional to the probability of finding any

particle within that sphere. Consequently, one finds

d2 ≡
d ln Nd

d ln r̂
=

d ln H

d ln r̂
=

r̂ h(D, r̂)

H (D, r̂)
≈ D for r̂ → 0. (18)

For the case g(D, r̂) = exp[−λ(D) r̂D], which has been suggested
as an explicit general form for the 1-NND distribution (see e.g.
Torquato, Lu & Rubinstein 1990), one obtains d2 = D exactly. d2 <

d corresponds to clustering in a d-dimensional spatial distribution
of particles. Hence, fitting a power-law function to the left tail of the
histogram of 1-NNDs is therefore a sufficiently reliable estimate7

of the correlation dimension d2, which we will use in addition to
the ANN to quantify clustering.

3 R ESULTS A N D DISCUSSION

3.1 Power spectra

Federrath (2013) has argued that the scaling with the wavenumber

7The correlation dimension can be computed with more direct methods, but
such a procedure requires stacking of a large number of snapshots from a
simulation and is computationally expensive.

Figure 2. Kinetic-energy power spectra E(k), multiplied by k2, for the
six simulations. The simulations with purely compressive forcing (Acmp,
Bcmp, and Ccmp) have spectra which are close to a Burgers spectrum
(E(k) ∝ k−2) for wavenumbers in the range 4 ≤ k ≤ 20. Simulations with
purely solenoidal forcing (Asol, Bsol, and Csol) show slightly steeper spectra
in the same range.

k is steeper with compressive driving than with solenoidal driving.
Hence, is the total ‘classical’ energy spectrum of Kolmogorov or
Burgers type, or something in between? The actual answer seems
to be Burgers or even steeper (see Fig. 2), which is somewhat
unexpected.

According to Kolmogorov’s theory, we would expect that the
rotational (parallel) component of the velocity field should yield
essentially a Kolmogorov spectrum with −5/3 power-low slope.
Similarly, there are reasons to believe that the compressive (transver-
sal) component should be closer to a Burgers spectrum with a −2
slope. But the simulations with purely solenoidal forcing (Asol,
Bsol, and Csol in Table 1) seem to produce power spectra which are
somewhat steeper than a Burgers spectrum and not slightly flatter
spectra.

For the simulations with compressive forcing (Acmp, Bcmp,
and Ccmp), the relatively high Mach numbers mean it is fair
to anticipate a spectrum which is closer to the Burgers than the
Kolmogorov case, at least within the well-resolved part of the
inertial range (approximately 4 ≤ k ≤ 20; cf. red line in Fig. 2).
But it should be noted that strongly rotationally/solenoidally forced
compressible flows are qualitatively different from the regime where
the Kolmogorov theory is valid.

3.2 Density variations

3.2.1 Gas

In the simulations with purely compressive forcing, the gas-density
PDFs for the logarithmic gas-density parameter S = log (�/〈�〉)
is very similar to a normal distribution at high densities, but show
exponential tails for the low-density regime (see Fig. 4 for an
example) in accordance with the results of Federrath, Klessen &
Schmidt (2008) and Federrath et al. (2010).

Turning to the simulations with purely solenoidal forcing (Asol,
Bsol, and Csol), we see two clear differences to the models with
compressive forcing; there is no distinct low-density tail in the
gas PDFs and the variances are smaller. The distribution of gas
densities for the case of solenoidal forcing is also narrower than
that for compressive forcing (see Fig. 4 for an example).
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Dust grains in turbulent molecular clouds 5629

Figure 3. Upper panel: time evolution for the root-mean-square Mach
number (Mrms = urms/cs) for simulations with purely compressive forcing.
Lower panel: the same as the left-hand panel, but for simulations with purely
solenoidal forcing.

Table 2. Resultant fitting parameters, mean, and 1σ deviations from fitting
of analytical the distribution functions to the gas-density PDFs obtained
from simulations Bcmp (compressive forcing, f = 8.0) and Bsol (solenoidal
forcing, f = 8.0).

Compressive Solenoidal

η − 1.652 − 0.363
ξ 0.397 0.039
ω 0.850 0.401
〈S〉 − 0.182 0.070
σ S 0.621 0.386

In more precise mathematical terms, we can describe the PDFs
for S in simulations with compressive forcing as a skewed lognormal
distribution (Azzalini 1985),

p(S) =
1

√
2πω

{

1 + erf

[

η(S − ξ )
√

2 ω

]}

exp

[

−
(S − ξ )2

2 ω2

]

, (19)

where η, ξ , and ω are fitting parameters. With δ = η/
√

1 + η2, we
can write the mean, variance, skewness, and kurtosis as

〈S〉 = ξ + ωδ

√

2

π
, (20)

σ 2
S = ω2

(

1 −
2

π
δ2

)

, (21)

SS =
4 − π

2

(δ
√

2/π)3

(1 − 2/πδ2)3/2
, (22)

KS =
2(π − 3)(δ

√
2/π)4

(1 − 2/πδ2)2
. (23)

For simulations with solenoidal forcing the PDFs can be well fitted
with an ordinary lognormal distribution, i.e.

p(S) =
1

√
2π σS

exp

[

−
(S − 〈S〉)2

2 σ 2
S

]

, (24)

where mean, variance, skewness, and kurtosis follows the usual
moment hierarchy. In Table 2, we list the mean, variance, skewness,
and kurtosis for the two examples (Bcmp and Bsol) in Fig. 4 and
note that these quantities scale with the mean Mach number Mrms,
as expected. However, for the simulations with compressive forcing
the relation between variance and the Mach number is not the
simple one expected when S is normal distributed as in the case
of solenoidal forcing. As the purpose of this paper is not to study
the properties of the gas-density PDF, we will not consider the
scalings with Mrms in any detail.

In Appendix A, we show slices through the simulation box
for logarithmic gas density and the local Mach number. Both
these quantities show large variations and a structural correlation
between them for both types of forcing. It is noteworthy that high
Mach number and low gas density often correlate spatially in the
simulations with compressive forcing, while this effect is not seen in
the simulations with solenoidal forcing. In the latter, there is sooner
a correlation with high gas density.

3.2.2 Dust

As we decrease the size of the binning boxes, the dust-density
PDFs seem to converge to a lognormal form for both types of
forcing and all considered α, as well as all sizes of the binning
box ℓ. In Fig. 5, we show the PDFs for α = 0.1, 0.5, and 1.5,
with ℓ set to 1/16 of the resolution of the simulation box, as well
as cumulative density functions (CDFs) for different binning-box
sizes. The thick red (appears grey in printed version) curves in the
CDF plots show estimates of the lognormal distribution that these
sequences seem to be converging towards (obtained by a rank-order
technique). Estimating the PDF from CDFs is advantageous due to
two unavoidable types of box-size biases. First, if the size of the
binning box is not sufficiently small compared to the simulation
box, small-scale structures are filtered out. Second, if the size of
the binning box is close to the grid scale, we are seeing the effects
of small-number statistics. (A reliable one-point PDF can only be
obtained if a very large number of snapshots of a simulation is
combined.) If the binning box is too large, we may also obtain an
artificial power-law tail at the low-density end.

3.3 Separation of gas and dust

Very small grains essentially behave like tracer particles and follow
the gas flow, i.e. there is almost exact velocity coupling between the
dust and gas phases. As grains grow bigger, and the Stokes number
higher, the grains will tend to decouple more and more from the gas

MNRAS 483, 5623–5641 (2019)
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5630 L. Mattsson et al.

Figure 4. PDFs for the projected gas density in case of compressive forcing (left) and solenoidal forcing (right) with f = 4.0. The green line shows a fit of
a skewed lognormal PDF to the measured PDF of the simulation with compressive forcing. The red line (right-hand panel) is a regular lognormal fit to the
measured PDF of the simulation with solenoidal forcing.

flow. In Figs 6–8, showing the projected densities of gas and dust
grains in the simulations with compressive forcing, one can clearly
see that the smallest grains in our simulations (α = 0.1) tend to end
up more or less where the gas density is high, while larger grains
show a spatial distribution which show little or no resemblance
with the gas distribution and is generally random, isotropic, and
homogeneous. In our simulations with solenoidal forcing (Figs 9–
11), the correlation between dust and gas is generally stronger for the
smallest grains, but also very clearly uncorrelated for large grains.
It seems solenoidal forcing leads to more efficient decoupling and
mixing of dust grains, which can be understood in terms of the

angle between the velocity vector of a gas parcel and the velocity
vector of a dust grain located in it, which is created due to rotational
motion in combination with decoupling. Decoupling from vortices
can lead to strong clustering of grains in between the vortices,
which is probably why the smallest particles (α = 0.1) appear more
clustered than any of the larger particles in the simulations. If shock
compression dominates, on the other hand, the velocity vectors may
be of different magnitude, but the angle between them changes much
less in each forcing ‘kick’, which leads to less efficient mixing of
the dust. These results are qualitatively identical to the findings of
Hopkins & Lee (2016), but in conflict with the results of Tricco

Figure 5. Upper panels: PDFs for the number density of dust for three selected grain sizes (α = 0.1, 0.5, and 1.5) and compressive forcing with a forcing
factor f = 8.0 (left), together with CDFs for α = 0.09 (middle) and α = 10.0 (right), which show that the PDFs for large and small grains indeed approaches
a lognormal form (black lines in the left-hand panel represent lognormal distributions). Lower panels: same as the upper panels, but for the case of purely
solenoidal forcing.

MNRAS 483, 5623–5641 (2019)
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Dust grains in turbulent molecular clouds 5631

Figure 6. Column density of gas (upper left) and dust with α = 0.1 (upper right), α = 0.5 (lower left), and α = 1.5 (lower right), for model Acmp (compressive
forcing, f = 4.0). The projections are calculated from snapshots taken at the end of the simulation.

et al. (2017),8 which show essentially no significant separation for
what appear to be similar α-values.

To quantify the (de)coupling between gas and dust, we intro-
duce the coupling length: �xc = |u − v| τs (a.k.a. ‘free-streaming
length’). This quantity can vary significantly across the simulation
box, so we will consider an approximation of the average,

〈�xc〉 ≈ 0.63 α cs

√

W
2
rms

1 + 0.22W2
rms

, (25)

which measures how far a grain would typically be dislocated from
its parent fluid (gas) element. That is, in Lagrangian coordinates,
once a statistical steady state is reached, �xc is the typical distance
between the parent fluid element of a grain at a given time and its
location at any subsequent point in time. Here, we may note that in
the limit of low relative Mach numbers (Wrms ≪ 1), �xc ∼ αWrms,

8It should be noted that Tricco et al. (2017) base their conclusion on smooth-
particle hydrodynamics simulations, which require a different scheme for
implementing kinetic drag on the dust. Whether this can explain the
difference compared with Hopkins & Lee (2016) and this study is unclear,
however.

while in the opposite limit (Wrms ≫ 1) �xc ∼ α. The dependence on
the mean relative Mach number Wrms indicate a non-linear relation
since Wrms is an increasing function of a, which is what we see for
small α in Fig. 12, where �xc relative to the size of the simulation
box L is plotted as a function of α. From this figure it is evident
that the simulations with solenoidal forcing have somewhat larger
couplings lengths, which is also visible in a comparison of Figs 6–8
with Figs 9–11. Moreover, it is noteworthy that in the size range
α = 0.5,. . . ,1.0, where dust grains start to show an almost random
isotropic spatial distribution, the coupling length is �xc ∼ L, i.e.
similar to the size of the simulation box.

The separation of gas and dust can also be seen in the dust-
to-gas ratio Zd for different α. As shown in Fig. 13, Zd show
less variation for the small grains with α = 0.1. There is also
clear difference between the simulations with compressive forcing
relative to those with solenoidal; the latter show clearly less variation
in Zd, indicating that the dust grains are better coupled to the
gas (which is consistent with the shorter coupling lengths that we
obtain). None the less, all our simulations imply that dust and gas
become increasingly uncorrelated with increasing grain size. This
is expected, and it confirms the results by Hopkins & Lee (2016)
presented in their fig. 3.
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5632 L. Mattsson et al.

Figure 7. Same as Fig. 6, but for model Bcmp (compressive forcing, f = 8.0).

3.4 Clustering of particles

Bec, Cencini & Hillerbrand (2007) adopted a method com-
monly used in molecular physics to measure the clustering
of particles in terms of the correlation dimension, i.e. d2 =
limδr→0 {ln[〈N(δr)〉]/ ln δr}, where N is the expected number of
particles inside a ball of radius δr surrounding a test particle
(Monchaux et al. 2012; Gustavsson, Mehlig & Wilkinson 2015).
Bec et al. (2007) studied the concentrations of particles in simulated
incompressible random/turbulent flows and found that d2 reached a
minimum at a Stokes number around St = 0.7, while approaching
d2 = 3 (no clustering) for large Stokes numbers (for very small
Stokes numbers, the correlation dimension d2 → 3 as well, because
the particles couple to the flow in that limit).

We use the distribution of 1-NND for all particles in our
simulations to estimate d2 as described in Mattsson et al. (in
preparation) and briefly outlined in Section 2.6.6. Furthermore, we
also calculate the ANN ratio RANN to obtain a measure of how
closely packed the particles are. The resultant numbers are given in
Fig. 14. Clearly, there is significant clustering among the smaller
particles (α = 0.1), while the intermediate-size (moderately large)
particles (α = 0.5) are only weakly clustered and large particles
(α = 1.5) are essentially unclustered. The clustering of α = 0.1

particles is likely due to the same small-scale clustering discussed
by Bec et al. (2007), although the expected minimum of d2 will
likely occur at somewhat smaller α values than the ones considered
here, which also means the minimum occurs at a lower α than in
incompressible simulations (e.g. Bhatnagar, Gustavsson & Mitra
2018).

It is natural to attribute the shift of the d2 minimum to the fact that
we are simulating highly compressible flows, while Bec et al. (2007)
studied incompressible flows. In essence, the clustering of particles
in compressible turbulence happens on two different scales. First,
the compression of the gas means that dust particles coupled to the
gas flow will be concentrated where the gas is. Second, on smaller
scales, particles will cluster as a result of turbulent motions in the
compressed gas.

As mentioned above, regarding small grains, the current simula-
tions are not fully covering the expected dip in d2 as a function
of grain size. Scaled to the size and gas density of a typical
molecular-cloud core, the size range where this minimum likely
occurs corresponds to nano dust particles (a = 1−100 nm). The
smallest particles in our simulations (α = 0.1) roughly correspond
to grains of radius a = 100 nm, assuming typical scaling parameters
for the simulations. These grains are quite strongly clustered (d2 =

MNRAS 483, 5623–5641 (2019)
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Dust grains in turbulent molecular clouds 5633

Figure 8. Same as Fig. 6, but for model Ccmp (compressive forcing, f = 12.0).

2.5−2.7), but the minimum in d2 is expected for a < 100 nm (which
we believe is seen in the work of Hopkins & Lee 2016), suggesting
a need for a follow-up study on the clustering of nano dust.

3.5 Implications for gas heating

The result that dust and gas become increasingly uncorrelated with
increasing grain size, and the fact that grains with different sizes
tend to show a spatial displacement may have important effect on
the heating of the ISM which is dominated by the photoelectric
emission from dust grains (Hollenbach & Tielens 1999).

As a matter of fact (see e.g. Weingartner & Draine 2001) the
heating rate provided to the gas depends not only on the grain
composition and charge state, but also on the grain size. More
precisely, the photoelectric yields are enhanced for small grains
(Watson 1972) and therefore the heating efficiency decreases as
the grain size increases. Consequently, aggregation/coagulation
and fragmentation of grains (or any other process that reduces or
increased the abundance of small grains) would affect the efficiency
of gas heating. However, there is one more process to consider; the
small-scale clustering of small dust grains seen in our simulations
can, locally, lead to grain-size distributions biased towards small
grains as well as subregions within a gas structure which are

depleted in small grains. This means that estimates of the total
photoelectric heating rate in a specific region are obviously sensitive
to the grain-size distribution in that specific region. Significant
local variations in the clustering of dust grains of different size,
as resulting from this work (see Figs 6–11), would therefore result
in different heating in the various regions of the MC. Moreover, it
should be noted that the spatial displacement of dust relative to gas
might also affect the re-emission from interstellar dust grains, from
the near-infrared to the microwave regime, as grains with different
sizes have different optical properties.

3.6 Implications for grain growth

3.6.1 Condensation (accretion of molecules)

The growth velocity of a single grain with radius a in a comoving
frame, da/dt, is proportional to the density of the relevant growth
species ρ i. More precisely, if the dust is tightly coupled to the
gas flow, da/dt = (8/π)1/2fs cs ρi/ρgr, where fs is the sticking
probability and ρgr is the bulk density of the grain material.
However, the growth velocity is affected by the separation of gas
and dust. For large grains, which have a long average stopping time
and thus experience more decoupling, condensation must be less

MNRAS 483, 5623–5641 (2019)
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5634 L. Mattsson et al.

Figure 9. Column density of gas (upper left) and dust with grain-size parameter α = 0.1 (upper right), α = 0.5 (lower left), and α = 1.5 (lower right), for
model Asol (solenoidal forcing, f = 4.0). The projections are calculated from snapshots taken at the end of the simulation.

efficient compared to small grains. The latter, on the other hand,
represent much of the total grain-surface area and stay dynamically
coupled to the gas to a much higher degree. The condensation rate
is therefore not reduced by turbulence and the separation of gas
and dust may not necessarily quench or even significantly lower
the overall efficiency of dust condensation in turbulent MCs. But
there exist a diffuse upper limit to sizes of grains grown by
condensation. Once a grain has become large enough to completely
decouple from the gas flow, i.e. when the stropping time τ s becomes
comparable to the large-eddy time-scale, da/dt will decrease (on
average) as the grain may not be located where the molecular gas
density is high; a significant fraction of its lifetime the grain may
reside in voids with very low gas density and therefore grow much
slower.

3.6.2 Coagulation (accretion of smaller grains)

It is known that grain growth by coagulation is enhanced by
turbulent dynamics as the rate of grain–grain interaction Ŵij is
proportional to velocity difference between the interacting particles
of sizes ai and aj. That is, Ŵij ∝ σij ni nj �vij, where �vij = |vi − vj|
and ni and nj are the number densities of particles of the con-

sidered sizes and σ ij is their total cross-section. Clustering of
grains increases the interaction rate and thus the probability for
coagulation irrespective of the dynamics of gas and dust since
the number densities increase locally (Mattsson 2016). Grains
of different sizes α will have different velocity distributions and
show different degrees of clustering. But we have also seen that
small grains and large grains do not seem to necessarily cluster
at the same locations in the simulations, which casts doubt on the
hypothesis that turbulent clustering is the main driving force behind
turbulence-enhanced coagulation rates. The total cross-section σ ij

is small for small particles and the number density of large grains is
orders of magnitude lower than that for small grains, which means
that if small and large grains are too efficiently separated due to
turbulent gas motions and dynamical decoupling between gas and
dust grains, it is highly unclear whether clustering plays the most
important role. This is a complex problem that requires further
study.

3.7 Physics not included in the present simulations

The simulations presented in this paper are merely a first set of
idealized simulations primarily intended to build a foundation for

MNRAS 483, 5623–5641 (2019)
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Dust grains in turbulent molecular clouds 5635

Figure 10. Same as Fig. 9, but for model Bsol (solenoidal forcing, f = 8.0).

further research. The dynamics of particles in isothermal, purely
hydrodynamic stochastically forced turbulence is theoretically quite
well understood, especially in the incompressible limit. We limited
this paper to the study of how super-/hypersonic turbulence arising
from two fundamentally different types of forcing (compressive
versus solenoidal) affect dust particles of various sizes imbedded
in the flow. Building upon these results, we may introduce more
physics and study the effects of, e.g. relaxing the isothermal
condition. A non-exhaustive list of physics needed to be considered
in future work is presented here below.

(i) Self-gravity: the gas-mass densities of MCs are high enough
to have significant self-gravity effects if the ‘physical’ size of the
simulation box is comparable to (or larger than) the Jeans length.
The combination of compressible turbulence and self-gravity is
known to induce rapid clump formation and a high-density tail
in the gas PDF (see e.g. Klessen 2000). The dynamic decoupling
of dust grains is affected by gravity and warrants further study
(Bhatnagar et al. 2018).

(ii) Magnetic fields: the long-standing question of how turbu-
lence amplify, sustain, and shape magnetic fields can be turned
around; what is the effect of magnetic forces on the turbulent
gas dynamics of an interstellar MC? We have not considered the

additional forces by magnetic fields that may be generated due to
turbulence and the consequences it may have on the dynamics of
dust grains. Statistically, however, there should be no major effect on
neutral, non-magnetic grains. But future simulations should address
the problem of electrically charged grains with a magnetic dipole
moments and the qualitatively different dynamics of such grains
due to Coulomb and Lorentz forces acting on the grains in addition
to the kinetic drag force (Draine 2003). Due to charge fluctuations,
i.e. the fact that even if neutral grains represent a significant part of
the charge distribution of grains, those grains do not remain neutral
a very long; charge fluctuations are usually so fast that one can
assume that dust grains always carry a net average charge. Thus,
magnetic fields will play a role under most circumstances and charge
fluctuations should never be completely ignored (Yan, Lazarian &
Draine 2004).

(iii) Shock heating of the gas: in this paper, all simulations assume
an isothermal condition to obtain closure. Since interstellar gas is
always highly compressible, i.e. the Mach numbers are high, any
reasonable equation of state would yield an increase of temperature
as the gas is compressed. Simulations involving heating/cooling
and an entropy equation would be clearly more realistic as they
would include local temperature variations. In this context, we
should also mention that Käpylä et al. (2018) found baroclinicity

MNRAS 483, 5623–5641 (2019)
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5636 L. Mattsson et al.

Figure 11. Same as Fig. 9, but for model Bsol (solenoidal forcing, f = 12.0).

Figure 12. Coupling length (relative to the size of the simulation box)
as a function of the grain-size parameter α for all six simulations. The
simulations are limited to 10 different α values, but the result can easily be
interpolated to any α. For α-values larger than 0.5–1.0 (the range where the
grains decouple from the flow), there is a correspondence with the size of
the simulation box, indicating that the dust has lost its ‘memory’ of its initial
location in the flow.

to be the most efficient vortex generator from SNe (compressive
forcing) such that with cooling processes included we would
expect much more rotational flow even in highly compressible
turbulence.

(iv) Shock-destruction and accretion of molecules: hypersonic
turbulence means strong shocks may form. Such shocks inside an
MC can destroy dust in much the same way as the passage of an
SN shock. Depending on the type of forcing, magnetic fields, and
gas density, the shocks may be dominated by ‘continuous shocks’
(C-type) or ‘jump shocks’ (J-type), which may both destroy dust,
but into slightly different ways (Guillet, Pineau Des Forêts &
Jones 2007; Guillet, Jones & Pineau Des Forêts 2009; Guillet,
Pineau Des Forêts & Jones 2011). From an observational point
of view, it is established that the abundance of certain molecules,
e.g. SiO, could in some environments indicate shock destruction
(Savage & Sembach 1996a). Dust can of course also grow by
accretion of molecules in MCs and including both destruction and
growth/condensation of grains in simulations is important, since the
balance between these two processes can be decisive for how the
dynamics and clustering of grains develop.

(v) Radiation: we have assumed that thermal emission and
absorption has negligible effects without the presence of stars.
However, radiation pressure resulting from associations of hot stars

MNRAS 483, 5623–5641 (2019)
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Dust grains in turbulent molecular clouds 5637

Figure 13. Projected dust-to-gas ratio for selected grain sizes (α). Upper panels show results from simulation Bcmp, i.e. compressive forcing and a forcing
factor f = 8.0. Lower panels show results for the case of solenoidal forcing (Bsol). The average dust-to-gas ratio is normalized to 0.01 in all cases.

Figure 14. Quantitative analysis of grain clustering. Left: average 1-NND (ANN) ratios for three grain sizes (α) for each simulation. Right: estimated
correlation dimensions based on fits to the 1-NND distributions.

forming inside MCs will have a profound effect on the dynamics of
surrounding dust particles.

(vi) Grain–grain interaction: the collisional cross-section of the
dust particles is effectively zero in our simulations. This means
there is no scattering, coagulation or fragmentation due to grain–
grain interaction taking place. But turbulence is expected to increase
the interaction rate due to clustering and increased relative mean
speed between interacting particles. These are highly localized
phenomena and detailed simulations including simultaneous so-
lution of the Smoluchowski (1916) equation are therefore an

important step forward in our understanding of grain processing in
MCs.

(vii) Backreaction on the gas: in this work, we have only
considered hydrodynamics drag on dust particles various sizes. If
the dust mass contained in the gas is high enough, there will also be
a backreaction on the gas. Accelerated grains may exert a drag force
on the gas, which will obviously affect velocity statistics as well
as clustering. Simulations of interstellar dust particles in turbulent
flows are usually based on the assumption that the backreaction
from the particles negligible. This assumption may not be valid in

MNRAS 483, 5623–5641 (2019)
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5638 L. Mattsson et al.

the presence of self-gravity or other mechanisms that may lead to
locally high concentrations of dust grains.

4 SU M M A RY A N D C O N C L U S I O N S

We have performed three-dimensional high-resolution (10243) DNS
of stochastically forced (compressive as well as solenoidal) super-
/hypersonic turbulence with a multi-disperse population of (dust)
particles imbedded in the flow. The resolution of our simulations
is higher compared to many previous studies of this kind and this
study is probably the first that explicitly measures the correlation
dimension of inertial particles in hypersonic turbulence. Moreover,
we have also tested the effects of compressive versus solenoidal
forcing on grain dynamics and clustering. From our simulation
results, we conclude the following.

(i) The kinetic-energy power spectra are marginally consistent
with a Burgers spectrum (E(k) ∝ k−2), where the simulations with
purely compressive forcing are the ones that agree best with the
Burgers case. Simulations with solenoidal forcing appear to be
generally somewhat steeper.

(ii) The gas PDFs of the simulations with solenoidal forcing
is well approximated with a lognormal distributions, which is
consistent with the results from several other authors. In case of
purely compressive forcing, there seems to be low-density tails,
again in agreement with previous work. The variance is also greater
in case of compressive forcing and the PDF is best described with
a relatively wide and skewed lognormal distribution.

(iii) The variation of the dust-to-gas ratio (Zd) depends on grain
size and the type of forcing. Compressive forcing generates overall
larger variance compared to solenoidal forcing. As grains decouple
from the gas flow, variations of Zd is mainly due to variations of the
gas density.

(iv) Due to their longer stopping time, large grains (α � 0.5) will
decouple from the gas flow, while small grains (α � 0.1 or less)
will tend to better trace the motions of the gas. This confirms the
results by Hopkins & Lee (2016), but raises also questions about
the contrasting results by Tricco et al. (2017), which found that
only very large grains show significant dynamic decoupling from
the gas.

(v) Simulations with purely solenoidal (as opposed to purely
compressive) forcing show more dynamic decoupling of the larger
dust grains (α ∼ 1), while the smallest grains in the simulations
(α = 0.1) appear to couple somewhat better to the gas flow
than in the cases of compressive forcing. In general, the grains
need to be smaller than the smallest grains in our simulations (α
� 0.1) in order to couple really well to the turbulent flows we
simulate.

(vi) Numerical determination of the 1-NND distribution shows
that smallest and the largest grains in our simulations display
significant clustering. The correlation dimension d2, used as a
measure of clustering, is measured to be, for small grains (α �

0.1), d2 ∼ 2.5−2.6 in case of compressive forcing and d2 =
2.6−2.7 in case of solenoidal forcing. For large grains (α � 1)
,d2 is approaching the geometrical dimension (d2 ≈ 3) for both
compressive and solenoidal forcing. We have reason to believe that
an expected minimum in d2 as function of α will occur at smaller α

values than we have considered in this study. This warrants further
study.

(vii) Small and large grains are not necessarily spatially corre-
lated, which is why it is unclear whether the measured clustering
will lead to significantly enhanced coagulation, although the grain–

grain interaction rate of grains of similar sizes is locally elevated
well above the average rate. It is also not obvious how growth by
condensation is affected by turbulence in combination with dynamic
decoupling of grains, but we expect there to be a diffuse upper limit
to the grain sizes reached by condensational growth, which is due
to the fact that large grains may not be located where the molecular
gas is.
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APPENDI X A : PRO PERTI ES O F THE GAS

FLOW

In Fig. A1, we present snapshots of x–y slices (one grid cell in
thickness) through the middle of the simulation boxes for the
logarithmic gas-density parameter s (left-hand panels) and the local
sonic Mach number Ms (right-hand panels). High Mach numbers
sometimes correlate with voids and in other cases with density
peaks. The same is true for low Mach numbers. This is expected
in hypersonic turbulence, because density peaks build up only after
a shock has formed. Whether the density is high or low where the
Mach number is high depends on in which stage a shock has been
captured Furthermore, we see arc-like density structures forming as
a consequence of propagating and interacting shocks (see Fig. A1,
left-hand panels). These gas-density structures have in many cases
corresponding structures in the convergence of the velocity field.
Although the dynamics of the gas is clearly shock dominated, there
is a significant rotational part of the flow as well (see Fig. A2, right-
hand panels, showing the projected absolute value of the vorticity).
It is interesting to note that the strength of shocks and rotation of
the flow tend to correlate spatially (compare the left- and right-hand
panels in Fig. A2).

As expected, purely solenoidal forcing generates slightly differ-
ent results compared to compressive forcing. The slice plots of
gas density and Mach numbers show more filamentary structure
and the range of gas densities are generally smaller (Fig. 4) while
slightly higher maximum Mach numbers are seen with solenoidal
forcing, compared to compressive forcing (see Table 1 and Fig. A1,
blue line); the total kinetic energy of the flow must be roughly
the same in both cases. Thus, the larger spread in gas densities
obtained with purely compressive forcing must be compensated
with a smaller range of Mach numbers compared to a case with
purely solenoidal forcing. The shock compression is generally the
same in simulations with the same forcing parameter regardless of
the type forcing (compressive or solenoidal), but the vorticity is
stronger in the simulations with solenoidal forcing (see Fig. A2 for
an example), since ‘stirring’ will obviously generate more rotation.
There is also some difference in how the vorticity is distributed
spatially, which is interesting since in our current understanding of
clustering of particles in turbulence vorticity is essential to explain
the phenomenon9 (see Toschi & Bodenschatz 2009, and references
therein).

9Rotation in the gas is centrifuging of particles away from vortex cores
leading to accumulation of particles in convergence zones in between
vortices.
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5640 L. Mattsson et al.

Figure A1. Left-hand panels: logarithm of gas density in slice of the simulation box taken through the middle of the box for models with purely compressive
forcing (Bcmp; upper panel) and purely solenoidal (Bsol; lower panel). Right-hand panels: the local Mach number (Ms = |u|/cs) in the same slice. Both
simulations assume a forcing parameter of f = 8.0 and the slices are obtained from snapshots taken at the end of the time-series.
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Dust grains in turbulent molecular clouds 5641

Figure A2. Left-hand panels: projected ‘shock density’ (absolute value of the divergence of the velocity field) for simulations Bcmp (upper) and Bsol (lower)
with purely compressive and solenoidal forcing, respectively, and a forcing parameter f = 8.0. Right-hand panels: projected absolute value of vorticity (rotation)
for the same two simulations. The projections are calculated from snapshots taken at the end of the time-series.
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