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In a very recent article, Trautmann et al.1 proposed a modi-
fied gradient computation technique for problems involving con-
ductivity jumps. Referred to as the Flux Conservative Divergence
Theorem (FC-DT), the modified approach computes the face val-
ues of electric potential by accounting for the nonlinear behavior
in cells across which the conductivity jumps occur. The authors
showed that the FC-DT approach could accurately compute the gra-
dients (electric field) and the current density on Cartesian meshes
but led to large errors on distorted meshes when a cross-gradient
was imposed. The goal of this comment is to highlight further short-
comings of the FC-DT approach on arbitrary polygonal meshes by
effecting comparison with the Modified Green Gauss (MGG) recon-
struction, which is also a gradient scheme based on the divergence
theorem and to probe the role of grid quality in this context.

The FC-DT technique computes the face values of electric
potential using conductivity-weighted linear interpolation with a
correction for grid skewness by the following equation:1

ϕf ≙
βσPϕP + (1 − β)σNϕN

βσP + (1 − β)σN + (β∇ϕP + (1 − β)∇ϕN) ⋅ (f − f′).

These face values are used to compute the electric field∇ϕ and hence
the current density j = σ∇ϕ in each cell. On skewed meshes where
f ≠ f′, the FC-DT approach involves an iterative process since the

correction depends on the gradients. The Modified Green Gauss
(MGG) reconstruction, derived from a variant of the divergence
theorem,2 reconstructs the current density at the cell centers for
problems with conductivity jumps by the following equation:3

jP ≙
1

Ω
∑
f

σf (
δϕ

δn
)
f
(f − c)Δsf ,

where f and c are the position vectors of the centers of the face and
cell, respectively; Δsf is the face area; Ω is the cell volume; and the
summation is over all faces of the cell. The conductivity at face σf
is obtained from the values at cells using harmonic averaging,1 while
the normal derivative at the face is computed using Zwart’s approach
with nonorthogonality correction by the following equation:2

(δϕ
δn
)
f
≙ αϕN − ϕP

rNP
+ (nf − αrf ) ⋅ (

∇ϕP +∇ϕN

2
),

where nf is the unit normal to the face, rf is the unit vector along the
line joining P and N, and rNP is the distance between the cell centers
along that line. The value of α = nf ⋅ rf is a measure of nonorthogo-
nality, and it must be emphasized thatMGG reconstruction becomes
iterative on nonorthogonal meshes. The electric field at the cell cen-
ter can be calculated from the reconstructed current density, and this
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FIG. 1. Meshes used in the study: (a) uniform Cartesian triangulated mesh, (b) nonuniform Cartesian triangulated mesh, (c) randomly triangulated mesh, and (d) distorted
structured mesh. The highlighted horizontal line is the interface at y = 1 across which the conductivity jump takes place, and only the zoomed-in view of the meshes are
shown for clarity.

approach has been employed previously for electrohydrodynamic
simulations with property jumps.3

We investigate the role of mesh topology on the performance
of FC-DT and MGG approaches for the two test cases discussed
in the work by Trautmann et al.,1 where a piece-wise linear varia-
tion for the electric potential is considered. Studies are conducted
on four different meshes, as shown in Fig. 1, in addition to a uni-
form Cartesian mesh with a conductivity ratio of 1000. The two test
cases have a constant current density of 10 A/m2 in the vertical direc-
tion (y-direction) with case 1 considering no cross gradient (in the
x-direction), while case 2 has a constant additional cross-gradient
of 10 V/m. The maximum error in current density jy in the domain
obtained for case 1 and case 2 are presented in Table I. It may be
remarked that we employ the same definition of error as employed
in the work by Trautmann et al.1

From Table I, we infer the following:

1. On the uniform Cartesian mesh, which is orthogonal (α = 1)
and nonskewed, it is easy to see that the current density errors
from both approaches are close to machine precision, inde-
pendent of the cross-gradient. This is not surprising because
it is easy to show that the expression for current density using
MGG and FC-DT approaches are identical on this mesh where
the computation is noniterative as well.

2. On the uniform Cartesian triangulated mesh, the FC-DT
approach computes the current density exactly for case 1 but
incurs a significant error for case 2. This mesh, which is
obtained by dividing the uniform Cartesian mesh along the

diagonal in all cells, has no skewness but is nonorthogonal
(f = f′, β = 1/2 and α < 1). One can see with a little effort
that the computed value using the FC-DT approach of the
electric potential at the interface differs from its true value
by an amount proportional to the product of (xP − xN) and
the additional cross-gradient. The cross-gradient is zero for
case 1 and nonzero for case 2, which explains why the FC-DT
approach has no current density errors in the former case but
larger errors in the latter case. The FC-DT approach clearly
fails to preserve constant current density jy, as can be seen
from Fig. 2(a), which also depicts significant errors near the
interface. On the nonuniform Cartesian triangulated mesh, we
observe that the FC-DT approach fails to exactly compute the
current density even when there are no cross-gradients, and
the errors are accentuated when a cross-gradient is imposed.
This is due to the combined effects of skewness and nonorthog-
onality at the interface because of which the correction term
strongly depends on the y-gradients, and the iterative pro-
cess converges quickly (in 6 iterations) to an erroneous electric
field. MGG reconstruction computes the current density accu-
rately for both test cases on uniform [see Fig. 2(a)] as well as
nonuniformCartesian triangulatedmeshes but requires 22 and
135 iterations, respectively.

3. On the randomly triangulated mesh, both the gradient tech-
niques lead to machine precision errors in the current den-
sity for the two test cases. This is attributed to the perfect
symmetry near the interface owing to the construction of the
mesh (which is by reflection about y = 1), resulting in zero

TABLE I. Maximum error in current density on different meshes for case 1 and case 2.

Case 1 Case 2

Mesh FC-DT MGG FC-DT MGG

Uniform Cartesian 6.64 × 10−12 1.42× 10−15 5.73 × 10−12 3.20× 10−13

Uniform Cartesian triangulated 2.66 × 10−11 5.15× 10−15 332.67 2.36× 10−12

Nonuniform Cartesian triangulated 42.36 1.74× 10−14 349.88 3.03× 10−12

Randomly triangulated 2.67 × 10−10 1.03× 10−14 2.64 × 10−10 3.85× 10−12

Distorted structured 7.34 × 10−1 1.74× 10−3 44.86 1.74× 10−3
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FIG. 2. Profiles of current density along
the vertical centerline for case 2: (a) uni-
form Cartesian triangulated mesh and
(b) distorted structured mesh.

skewness and complete orthogonality at the interface although
the mesh is skewed and nonorthogonal elsewhere in the
domain.

4. The distorted structured mesh has asymmetry near the inter-
face, resulting in varying amounts of skewness and nonorthog-
onality along it. While the FC-DT approach which converges
in 6 iterations unsurprisingly fails to preserve the exact cur-
rent density for both test cases (with errors of 70% for case 1
and 4500% for case 2), MGG reconstruction requires 35 iter-
ations to converge but does not result in machine-precision
errors either for both the test cases on this mesh. This is also
reflected in the centerline current density profile shown in
Fig. 2(b) as well as the error contours shown in Fig. 3, which
clearly indicate that the errors are concentrated in the vicin-
ity of the interface. The location of maximum errors depends
upon the nonorthogonality and skewness of the mesh at the
interface. Nevertheless, the errors from MGG reconstruction

are significantly smaller (less than 0.2%) compared to those
from the FC-DT approach and are expectedly unaffected by
the cross-gradient. Interestingly, the errors in current density
jy do not diminish with progressive grid refinement for both
approaches, as shown in Table II. However, the errors in elec-
tric field Ex due to the constant cross-gradient (see Table II)
decrease with increasing grid resolution for MGG recon-
struction, while the FC-DT approach exhibits an inconsistent
behavior.

The FC-DT approach accurately computes the electric field and
current density to machine precision only in cases where the grid
is orthogonal and nonskewed in the vicinity of the interface. The
modification proposed by the authors1 is based on one-dimensional
considerations and does not recognize the tangential jump in the
current density when a constant cross-gradient is imposed on
grids that are skewed and/or nonorthogonal at the vicinity of the

FIG. 3. Contours of errors in current den-
sity jy on the distorted structured mesh
for case 2: (a) FC-DT approach and
(b) MGG reconstruction. The horizontal
line denotes the interface, and only the
part of the domain in the vicinity of the
interface is shown for clarity.
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TABLE II. Electric field and current density errors on the distorted structured mesh for
case 2 with progressive mesh refinement.

Maximum error in Ex Maximum error in jy

Mesh FC-DT MGG FC-DT MGG

15 × 30 7.59× 10−7 5.75× 10−5 44.86 1.74× 10−3

30 × 60 6.31× 10−8 2.92× 10−5 44.86 1.75× 10−3

60 × 120 9.72× 10−8 1.47× 10−5 44.86 1.75× 10−3

conductivity jump. MGG reconstruction, which is a vector inter-
polation based on the divergence theorem, is advantageous because
it directly reconstructs the conserved current density from its nor-
mal component at the faces. The methodology thus remains trans-
parent to the tangential jump at the interface, thereby resulting in
current density estimates with acceptable errors on arbitrary poly-
gonal meshes, independent of the magnitude of the cross-gradient.
However, on Cartesian meshes and those derived from it (trian-
gulated meshes), the electric field and current density errors from
MGG reconstruction are close to machine precision. The ability
of MGG reconstruction to compute the gradients with reasonable

accuracy on arbitrary polygonal meshes necessitates 10–150 itera-
tions depending on the extent of nonorthogonality. Nevertheless,
these computations are inherent to finite volume solvers that involve
time-marching, and it is possible to devise a noniterative variant of
MGG reconstruction that is both inexpensive and accurate in that
context.2

We believe that MGG reconstruction2,3 as well as a recent gra-
dient scheme based on the hyperbolic treatment of diffusion4 could
provide ideas to further improve the FC-DT scheme on generic
unstructured meshes for problems with discontinuous coefficients.
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