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Abstract: This paper focuses on test procedures under corrupted data. We assume that the observations

Zi are mismeasured, due to the presence of measurement errors. Thus, instead of Zi for i = 1, . . . , n,

we observe Xi = Zi +
√

δVi, with an unknown parameter δ and an unobservable random variable Vi.

It is assumed that the random variables Zi are i.i.d., as are the Xi and the Vi. The test procedure

aims at deciding between two simple hyptheses pertaining to the density of the variable Zi, namely

f0 and g0. In this setting, the density of the Vi is supposed to be known. The procedure which we

propose aggregates likelihood ratios for a collection of values of δ. A new definition of least-favorable

hypotheses for the aggregate family of tests is presented, and a relation with the Kullback-Leibler

divergence between the sets ( fδ)δ and (gδ)δ is presented. Finite-sample lower bounds for the power

of these tests are presented, both through analytical inequalities and through simulation under the

least-favorable hypotheses. Since no optimality holds for the aggregation of likelihood ratio tests,

a similar procedure is proposed, replacing the individual likelihood ratio by some divergence based

test statistics. It is shown and discussed that the resulting aggregated test may perform better than the

aggregate likelihood ratio procedure.

Keywords: composite hypotheses; corrupted data; least-favorable hypotheses; Neyman Pearson test;

divergence based testing; Chernoff Stein lemma

1. Introduction

A situation which is commonly met in quality control is the following: Some characteristic Z

of an item is supposed to be random, and a decision about its distribution has to be made based

on a sample of such items, each with the same distribution F0 (with density f0) or G0 (with density

g0). The measurement device adds a random noise Vδ to each measurement, mutually independent

and independent of the item, with a common distribution function Hδ and density hδ, where δ is

an unknown scaling parameter. Therefore the density of the measurement X := Z + Vδ is either

fδ := f0 ∗ hδ or gδ := g0 ∗ hδ, where ∗ denotes the convolution operation. We denote Fδ (respectively

Gδ) to be the distribution function with density fδ (respectively gδ).

The problem of interest, studied in [1], is how the measurement errors can affect the conclusion of

the likelihood ratio test with statistics

Ln :=
1

n ∑ log
g0

f0
(Xi).
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For small δ, the result of [2] enables us to estimate the true log-likelihood ratio (true Kullback-

Leibler divergence) even when we only dispose of locally perturbed data by additive measurement

errors. The distribution function H0 of the measurement errors is considered unknown, up to zero

expectation and unit variance. When we use the likelihood ratio test, while ignoring the possible

measurement errors, we can incur a loss in both errors of the first and second kind. However, it is

shown, in [1], that for small δ the original likelihood ratio test (LRT) is still the most powerful, only on

a slightly changed significance level. The test problem leads to a composite of null and alternative

classes H0 or H1 of distributions of random variables Z +Vδ with Vδ :=
√

δV, where V has distribution

H1. If those families are bounded by alternating Choquet capacities of order 2, then the minimax test is

based on the likelihood ratio of the pair of the least-favorable distributions of H0 and H1, respectively

(see Huber and Strassen [3]). Moreover, Eguchi and Copas [4] showed that the overall loss of power

caused by a misspecified alternative equals the Kullback-Leibler divergence between the original and

the corrupted alternatives. Surprisingly, the value of the overall loss is independent of the choice of

null hypothesis. The arguments of [2] and of [5] enable us to approximate the loss of power locally,

for a broad set of alternatives. The asymptotic behavior of the loss of power of the test based on

sampled data is considered in [1], and is supplemented with numerical illustration.

Statement of the Test Problem

Our aim is to propose a class of statistics for testing the composite hypotheses H0 and H1,

extending the optimal Neyman-Pearson LRT between f0 and g0. Unlike in [1], the scaling parameter δ

is not supposed to be small, but merely to belong to some interval bounded away from 0.

We assume that the distribution H of the random variable (r.v.) V is known; indeed, in the tuning

of the offset of a measurement device, it is customary to perform a large number of observations on

the noise under a controlled environment.

Therefore, this first step produces a good basis for the modelling of the distribution of the density

h. Although the distribution of V is known, under operational conditions the distribution of the noise

is modified: For a given δ in [δmin, δmax] with δmin > 0, denote by Vδ a r.v. whose distribution is

obtained through some transformation from the distribution of V, which quantifies the level of the

random noise. A classical example is when Vδ =
√

δV, but at times we have a weaker assumption,

which amounts to some decomposability property with respect to δ: For instance, in the Gaussian case,

we assume that for all δ, η, there exists some r.v. Wδ,η such that Vδ+η =d Vδ + Wδ,η , where Vδ and Wδ,η

are independent.

The test problem can be stated as follows: A batch of i.i.d. measurements Xi := Zi + Vδ,i is

performed, where δ > 0 is unknown, and we consider the family of tests of H0(δ):=[X has density fδ] vs.

H1(δ):=[X has density gδ], with δ ∈ ∆ = [δmin, δmax] . Only the Xi are observed. A class of combined

tests of H0 vs. H1 is proposed, in the spirit of [6–9].

Under every fixed n, we assume that δ is allowed to run over a finite set pn of components of

the vector ∆n := [δmin = δ0,n, ..., δpn ,n = δmax]. The present construction is essentially non-asymptotic,

neither on n nor on δ, in contrast with [1], where δ was supposed to lie in a small neighborhood of 0.

However, with increasing n, it would be useful to consider that the array
(

δj,n

)pn

j=1
is getting dense in

∆ = [δmin, δmax] and that

lim
n→∞

log pn

n
= 0. (1)

For the sake of notational brevity, we denote by ∆ the above grid ∆n, and all suprema or infima

over ∆ are supposed to be over ∆n. For any event B and any δ in ∆ , Fδ(B) (respectively Gδ(B))

designates the probability of B under the distribution Fδ (respectively Gδ). Given a sequence of

levels αn, we consider a sequence of test criteria Tn := Tn (X1, ..., Xn) of H0(δ), and the pertaining

critical regions

Tn (X1, ..., Xn) > An, (2)
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such that

Fδ (Tn (X1, ..., Xn) > An) ≤ αn ∀δ ∈ ∆,

leading to rejection of H0(δ) for at least some δ ∈ ∆.

In an asymptotic context, it is natural to assume that αn converges to 0 as n increases, since an

increase in the sample size allows for a smaller first kind risk. For example, in [8], αn takes the form

αn := exp{−nan} for some sequence an → ∞.

In the sequel, the Kullback-Leibler discrepancy between probability measures Q and P, with

respective densities p and q (with respect to the Lebesgue measure on R), is denoted

K(Q, P) :=
∫

log
q(x)

p(x)
q(x)dx

whenever defined, and takes value +∞ otherwise.

The present paper handles some issues with respect to this context. In Section 2, we consider some

test procedures based on the supremum of Likelihood Ratios (LR) for various values of δ, and define Tn.

The threshold for such a test is obtained for any level αn, and a lower bound for its power is provided.

In Section 3, we develop an asymptotic approach to the Least Favorable Hypotheses (LFH) for these

tests. We prove that asymptotically least-favorable hypotheses are obtained through minimization of

the Kullback-Leibler divergence between the two composite classes H0 and H1 independently upon

the level of the test.

We next consider, in Section 3.3, the performance of the test numerically; indeed, under the

least-favorable pair of hypotheses we compare the power of the test (as obtained through simulation)

with the theoretical lower bound, as obtained in Section 2. We show that the minimal power,

as measured under the LFH, is indeed larger than the theoretical lower bound—this result shows that

the simulation results overperform on theoretical bounds. These results are developed in a number

of examples.

Since no argument plays in favor of any type of optimality for the test based on the supremum of

likelihood ratios for composite testing, we consider substituting those ratios with other kinds of scores

in the family of divergence-based concepts, extending the likelihood ratio in a natural way. Such an

approach has a long history, stemming from the seminal book by Liese and Vajda [10]. Extensions of

the Kullback-Leibler based criterions (such as the likelihood ratio) to power-type criterions have been

proposed for many applications in Physics and in Statistics (see, e.g., [11]). We explore the properties

of those new tests under the pair of hypotheses minimizing the Kullback-Leibler divergence between

the two composite classes H0 and H1. We show that, in some cases, we can build a test procedure

whose properties overperform the above supremum of the LRTs, and we provide an explanation for

this fact. This is the scope of Section 4.

2. An Extension of the Likelihood Ratio Test

For any δ in ∆, let

Tn,δ :=
1

n

n

∑
i=1

log
gδ

fδ
(Xi), (3)

and define

Tn := sup
δ∈∆

Tn,δ.

Consider, for fixed δ, the Likelihood Ratio Test with statistics Tn,δ which is uniformly most

powerful (UMP) within all tests of H0(δ):= pT = fδ vs. H1(δ):= pT = gδ, where pT designates the

distribution of the generic r.v. X. The test procedure to be discussed aims at solving the question: Does

there exist some δ, for which H0(δ) would be rejected vs. H1(δ), for some prescribed value of the first

kind risk?
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Whenever H0(δ) is rejected in favor of H1(δ), for some δ, we reject H0:= f0 = g0 in favor of

H1:= f0 6= g0. A critical region for this test with level αn is defined by

Tn > An,

with

PH0(H1) = sup
δ∈∆

Fδ (Tn > An)

= sup
δ∈∆

Fδ

(

⋃

δ′
Tn,δ′ > An

)

≤ αn.

Since, for any sequence of events B1, . . . , Bpn ,

Fδ

(

pn
⋃

k=1

Bk

)

≤ pn max
1≤k≤pn

Fδ (Bk) ,

it holds that

PH0(H1) ≤ pn max
δ∈∆

max
δ′∈∆

Fδ

(

Tn,δ′ > An

)

. (4)

An upper bound for PH0(H1) can be obtained, making use of the Chernoff inequality for the right

side of (4), providing an upper bound for the risk of first kind for a given An. The correspondence

between An and this risk allows us to define the threshold An accordingly.

Turning to the power of this test, we define the risk of second kind by

PH1
(H0) := sup

η∈∆

Gη (Tn ≤ An) (5)

= sup
η∈∆

Gη

(

sup
δ∈∆

Tn,δ ≤ An

)

= sup
η∈∆

Gη

(

⋂

δ∈∆

Tn,δ ≤ An

)

≤ sup
η∈∆

Gη

(

Tn,η ≤ An

)

,

a crude bound which, in turn, can be bounded from above through the Chernoff inequality, which

yields a lower bound for the power of the test under any hypothesis gη in H1.

Let αn denote a sequence of levels, such that

lim sup
n→∞

αn < 1.

We make use of the following hypothesis:

sup
δ∈∆

sup
δ′∈∆

∫

log
fδ′

gδ′
fδ < 0. (6)

Remark 1. Since
∫

log
fδ′

gδ′
fδ = K (Fδ, Gδ′)− K (Fδ, Fδ′) ,

making use of the Chernoff-Stein Lemma (see Theorem A1 in the Appendix A), Hypothesis (6) means that any

LRT with H0: pT = fδ vs. H1: pT = gδ′ is asymptotically more powerful than any LRT with H0: pT = fδ vs.

H1: pT = fδ′ .



Entropy 2019, 21, 63 5 of 23

Both hypotheses (7) and (8), which are defined below, are used to provide the critical region and

the power of the test.

For all δ, δ′ define

Zδ′ := log
gδ′

fδ′
(X),

and let

ϕδ,δ′(t) := log EFδ
(exp (tZδ′)) = log

∫

(

gδ′(x)

fδ′(x)

)t

fδ(x)dx.

With Nδ,δ′ , the set of all t such that ϕδ,δ′(t) is finite, we assume

Nδ,δ′ is a non void open neighborhood of 0. (7)

Define, further,

Jδ,δ′(x) := sup
t

tx − ϕδ,δ′(t),

and let

J(x) := min
(δ,δ′)∈∆×∆

Jδ,δ′(x).

For any η, let

Wη := − log
gη

fη
(X),

and let

ψη(t) := log EGη

(

exp
(

tWη

))

.

Let Mη be the set of all t such that ψη(t) is finite. Assume

Mη is a non void neighborhood of 0. (8)

Let

Iη(x) := sup
t

tx − log EGη

(

exp
(

tWη

))

, (9)

and

I(x) := inf
η

Iη(x).

We also assume an accessory condition on the support of Zδ′ and Wη , respectively under Fδ and

under Gη (see (A2) and (A5) in the proof of Theorem A1). Suppose the regularity assumptions (7)

and (8) are fulfilled for all δ, δ′ and η. Assume, further, that pn fulfills (1).

The following result holds:

Proposition 2. Whenever (6) holds, for any sequence of levels αn bounded away from 1, defining

An := J−1

(

− 1

n
log

αn

pn

)

,

it holds, for large n, that

PH0 (H1) = sup
δ∈∆

Fδ (Tn > An) ≤ αn

and

PH1 (H1) = sup
δ∈∆

Gδ (Tn > An) ≥ 1 − exp (−nI (An)) .
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3. Minimax Tests under Noisy Data, Least-Favorable Hypotheses

3.1. An Asymptotic Definition for the Least-Favorable Hypotheses

We prove that the above procedure is asymptotically minimax for testing the composite hypothesis

H0 against the composite alternative H1. Indeed, we identify the least-favorable hypotheses, say

Fδ∗ ∈ H0 and Gδ∗ ∈ H1, which lead to minimal power and maximal first kind risk for these tests. This

requires a discussion of the definition and existence of such a least-favourable pair of hypotheses in

an asymptotic context; indeed, for a fixed sample size, the usual definition only leads to an explicit

definition in very specific cases. Unlike in [1], the minimax tests will not be in the sense of Huber and

Strassen. Indeed, on one hand, hypotheses H0 and H1 are not defined in topological neighbourhoods

of F0 and G0, but rather through a convolution under a parametric setting. On the other hand,

the specific test of {H0(δ), δ ∈ ∆} against {H1(δ), δ ∈ ∆} does not require capacities dominating the

corresponding probability measures.

Throughout the subsequent text, we shall assume that there exists δ∗ such that

min
δ∈∆

K (Fδ, Gδ) = K (Fδ∗ , Gδ∗) . (10)

We shall call the pair of distributions
(

Fδ, Gδ

)

least-favorable for the sequence of tests 1 {Tn > An}
if they satisfy

Fδ (Tn ≤ An) ≥ Fδ (Tn ≤ An) (11)

≥Gδ (Tn ≤ An) ≥ Gδ (Tn ≤ An)

for all δ ∈ ∆. The condition of unbiasedness of the test is captured by the central inequality in (11).

Because, for finite n, such a pair can be constructed only in few cases, we should take a recourse

of (11) to the asymptotics n → ∞. We shall show that any pair of distributions (Fδ∗Gδ∗) achieving (10)

are least-favorable. Indeed, it satisfies the inequality (11) asymptotically on the logarithmic scale.

Specifically, we say that
(

Fδ, Gδ

)

is a least-favorable pair of distributions when, for any δ ∈ ∆,

lim inf
n→∞

1

n
log Fδ (Tn ≤ An) ≥ lim

n→∞

1

n
log Gδ (Tn ≤ An) (12)

≥ lim
n→∞

sup
1

n
log Gδ (Tn ≤ An) .

Define the total variation distance

dTV (Fδ, Gδ) := sup
B

|Fδ(B)− Gδ(B)| ,

where the supremum is over all Borel sets B of R. We will assume that, for all n,

αn < 1 − sup
δ∈∆

dTV (Fδ, Gδ) . (13)

We state our main result, whose proof is deferred to the Appendix B.

Theorem 3. For any level αn satisfying (13), the pair (Fδ∗ , Gδ∗) is a least-favorable pair of hypotheses for the

family of tests 1 {Tn ≥ An}, in the sense of (12).

3.2. Identifying the Least-Favorable Hypotheses

We now concentrate on (10).
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For given δ ∈ [δmin, δmax] with δmin > 0, the distribution of the r.v. Vδ is obtained through some

transformation from the known distribution of V. The classical example is Vδ =
√

δV, which is a

scaling, and where
√

δ is the signal to noise ratio. The following results state that the Kullback-Leibler

discrepancy K (Fδ, Gδ) reaches its minimal value when the noise Vδ is “maximal”, under some additivity

property with respect to δ. This result is not surprising: Adding noise deteriorates the ability to

discriminate between the two distributions F0 and G0—this effect is captured in K (Fδ, Gδ), which takes

its minimal value for the maximal δ.

Proposition 4. Assume that, for all δ, η, there exists some r.v. Wδ,η such that Vδ+η =d Vδ + Wδ,η where Vδ

and Wδ,η are independent. Then

δ∗ = δmax.

This result holds as a consequence of Lemma A5 in the Appendix C.

In the Gaussian case, when h is the standard normal density, Proposition 4 holds, since hδ+η =

hδ ∗ hη−δ with hε(x) :=
(

1/
√

ε
)

h
(

x/
√

ε
)

. In order to model symmetric noise, we may consider a

symmetrized Gamma density as follows: Set hδ(x) := (1/2) γ+(1, δ)(x) + (1/2) γ−(1, δ)(x), where

γ+(1, δ) designates the Gamma density with scale parameter 1 and shape parameter δ, and γ−(1, δ) the

Gamma density on R
− with same parameter. Hence a r.v. with density hδ is symmetrically distributed

and has variance 2δ. Clearly, hδ+η(x) = hδ ∗ hη(x), which shows that Proposition 4 also holds in this

case. Note that, except for values of δ less than or equal to 1, the density hδ is bimodal, which does not

play in favour of such densities for modelling the uncertainty, due to the noise. In contrast with the

Gaussian case, hδ cannot be obtained from h1 by any scaling. The centred Cauchy distribution may

help as a description of heavy tailed symmetric noise, and keeps uni-modality through convolution;

it satisfies the requirements of Proposition 4 since fδ ∗ fη(x) = fδ+η(x) where fε(x) := ε/π
(

x2 + ε2
)

.

In this case, δ acts as a scaling, since fδ is the density of δX where X has density f1.

In practice, the interesting case is when δ is the variance of the noise and corresponds to a scaling

of a generic density, as occurs for the Gaussian case or for the Cauchy case. In the examples, which

will be used below, we also consider symmetric, exponentially distributed densities (Laplace densities)

or symmetric Weibull densities with a given shape parameter. The Weibull distribution also fulfills the

condition in Proposition 4, being infinitely divisible (see [12]).

3.3. Numerical Performances of the Minimax Test

As frequently observed, numerical results deduced from theoretical bounds are of poor interest

due to the sub-optimality of the involved inequalities. They may be sharpened on specific cases. This

motivates the need for simulation. We study two cases, which can be considered as benchmarks.

A. In the first case, f0 is a normal density with expectation 0 and variance 1, whereas g0 is a normal

density with expectation 0.3 and variance 1.

B. The second case handles a situation where f0 and g0 belong to different models: f0 is a log-normal

density with location parameter 1 and scale parameter 0.2, whereas g0 is a Weibull density on R
+

with shape parameter 5 and scale parameter 3. Those two densities differ strongly, in terms of

asymptotic decay. They are, however, very close to one another in terms of their symmetrized

Kullback-Leibler divergence (the so-called Jeffrey distance). Indeed, centering on the log-normal

distribution f0, the closest among all Weibull densities is at distance 0.10—the density g0 is at

distance 0.12 from f0.

Both cases are treated, considering four types of distribution for the noise:

a. The noise hδ is a centered normal density with variance δ2;

b. the noise hδ is a centered Laplace density with parameter λ(δ);

c. the noise hδ is a symmetrized Weibull density with shape parameter 1.5 and variable scale

parameter β(δ); and
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d. the noise hδ is Cauchy with density hδ(x) = γ(δ)/π
(

γ(δ)2 + x2
)

.

In order to compare the performances of the test under those four distributions, we have adopted

the following rule: The parameter of the distribution of the noise is tuned such that, for each value δ,

it holds that P
(∣

∣Vδ

∣

∣ > δ
)

= Φ(1) − Φ(−1) ∼ 0.65, where Φ stands for the standard Gaussian

cumulative function. Thus, distributions b to d are scaled with respect to the Gaussian noise with

variance δ2.

In both cases A and B, the range of δ is ∆ = (δmin = 0.1, δmax), and we have selected a number of

possibilities for δmax, ranging from 0.2 to 0.7.

In case A, we selected = δ2
max = 0.5, which has a signal-to-noise ratio equal to 0.7, a commonly

chosen bound in quality control tests.

In case B, the variance of f0 is roughly 0.6 and the variance of g0 is roughly 0.4. The maximal

value of δ2
max is roughly 0.5. This is thus a maximal upper bound for a practical modeling.

We present some power functions, making use of the theoretical bounds together with the

corresponding ones based on simulation runs. As seen, the performances in the theoretical approach is

weak. We have focused on simulation, after some comparison with the theoretical bounds.

3.3.1. Case A: The Shift Problem

In this subsection, we evaluate the quality of the theoretical power bound, defined in the previous

sections. Thus, we compare the theoretical formula to the empirical lower performances obtained

through simulations under the least-favorable hypotheses.

Theoretical Power Bound

While supposedly valid for finite n, the theoretical power bound given by (A8) still assumes some

sort of asymptotics, since a good approximation of the bound implies a fine discretization of ∆ to

compute I(An) = infη∈∆n
Iη(An). Thus, by condition (1), n has to be large. Therefore, in the following,

we will compute this lower bound for n sufficiently large (that is, at least 100 observations), which is

also consistent with industrial applications.

Numerical Power Bound

In order to obtain a minimal bound for the power of the composite test, we compute the power of

the test H0(δ∗) against H1(δ∗), where δ∗ defines the LFH pair (Fδ∗ , Gδ∗).

Following Proposition 4, the LFH for the test defined by Tn when the noise follows a Gaussian,

a Cauchy, or a symmetrized Weibull distribution is achieved for (Fδmax
, Gδmax).

When the noise follows a Laplace distribution, the pair of LFH is the one that satisfies:

(Fδ∗ , Gδ∗) = arg min
(Fδ ,Gδ),δ∈∆n

K(Fδ, Gδ). (14)

In both of the cases A and B, this condition is also satisfied for δ∗ = δmax.

Comparison of the Two Power Curves

As expected, Figures 1–3 show that the theoretical lower bound is always below the empirical

lower bound, when n is high enough to provide a good approximation of I(An). This is also true

when the noise follows a Cauchy distribution, but for a bigger sample size than in the figures above

(n > 250).



Entropy 2019, 21, 63 9 of 23

Figure 1. Theoretical and numerical power bound of the test of case A under Gaussian noise (with

respect to n), for the first kind risk α = 0.05.

Figure 2. Theoretical and numerical power bound of the test of case A under symmetrized Weibull

noise (with respect to n), for the first kind risk α = 0.05.

Figure 3. Theoretical and numerical power bound of the test of case A under a symmetrized Laplacian

noise (with respect to n), for the first kind risk α = 0.05.

In most cases, the theoretical bound tends to largely underestimate the power of the test, when

compared to its minimal performance given by simulations under the least-favorable hypotheses.

The gap between the two also tends to increase as n grows. This result may be explained by the
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large bound provided by (5), while the numerical performances are obtained with respect to the

least-favorable hypotheses.

From a computational perspective, the computational cost of the theoretical bound is far higher

than its numeric counterpart.

3.3.2. Case B: The Tail Thickness Problem

The calculation of the moment-generating function, appearing in the formula of Iη(x) in (9),

is numerically unstable, which renders the computation of the theoretical bound impossible. Thus,

in the following sections, the performances of the test will be evaluated numerically, through Monte

Carlo replications.

4. Some Alternative Statistics for Testing

4.1. A Family of Composite Tests Based on Divergence Distances

This section provides a similar treatment as above, dealing now with some extensions of the LRT

test to the same composite setting. The class of tests is related to the divergence-based approach to

testing, and it includes the cases considered so far. For reasons developed in Section 3.3, we argue

through simulation and do not develop the corresponding large deviation approach.

The statistics Tn can be generalized in a natural way, by defining a family of tests depending on

some parameter γ. For γ 6= 0, 1, let

φγ(x) :=
xγ − γx + γ − 1

γ(γ − 1)

be a function defined on (0, ∞) with values in (0, ∞), setting

φ0(x) := − log x + x − 1

and

φ1(x) := x log x − x + 1.

For γ ≤ 2, this class of functions is instrumental in order to define the so-called power divergences

between probability measures, a class of pseudo-distances widely used in statistical inference (see,

for example, [13]).

Associated to this class, consider the function

ϕγ(x) := − d

dx
φγ(x)

=
1 − xγ−1

γ − 1
for γ 6= 0, 1.

We also consider

ϕ1(x) := − log x

ϕ0(x) :=
1

x
− 1,

from which the statistics

T
γ
n,δ :=

1

n

n

∑
i=1

ϕγ(Xi)

and

T
γ
n := sup

δ

T
γ
n,δ
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are well defined, for all γ ≤ 2. Figure 4 illustrates the functions ϕγ, according to γ.

Figure 4. ϕγ for γ = 0.5, 1, and 2.

Fix a risk of first kind α, and the corresponding power of the LRT pertaining to H0(δ∗) vs. H1(δ∗) by

1 − β := Gδ∗

(

T1
n,δ∗ > sα

)

,

with

sα := inf
{

s : Fδ∗

(

T1
n,δ∗ > s

)

≤ α
}

.

Define, accordingly, the power of the test, based on T
γ
n under the same hypotheses, by

s
γ
α := inf

{

s : Fδ∗
(

T
γ
n > s

)

≤ α
}

and

1 − β′ := Gδ∗
(

T
γ
n > s

γ
α

)

.

First, δ∗ defines the pair of hypotheses (Fδ∗ , Gδ∗), such that the LRT with statistics T1
n,δ∗ has

maximal power among all tests H0(δ∗) vs. H1(δ∗). Furthermore, by Theorem A1, it has minimal

power on the logarithmic scale among all tests H0(δ) vs. H1(δ).

On the other hand, (Fδ∗ , Gδ∗) is the LF pair for the test with statistics T1
n among all pairs (Fδ, Gδ) .

These two facts allow for the definition of the loss of power, making use of T1
n instead of T1

n,δ∗
for testing H0(δ∗) vs. H1(δ∗). This amounts to considering the price of aggregating the local tests

T1
n,δ, a necessity since the true value of δ is unknown. A natural indicator for this loss consists in

the difference

∆1
n := Gδ∗

(

T1
n,δ∗ > sα

)

− Gδ∗

(

T1
n > s1

α

)

≥ 0.

Consider, now, aggregated test statistics T
γ
n . We do not have at hand a similar result, as in

Proposition 2. We, thus, consider the behavior of the test H0(δ∗) vs. H1(δ∗), although (Fδ∗ , Gδ∗) may

not be a LFH for the test statistics T
γ
n . The heuristics, which we propose, makes use of the corresponding

loss of power with respect to the LRT, through

∆
γ
n := Gδ∗

(

T1
n,δ∗ > sα

)

− Gδ∗
(

T
γ
n > s

γ
α

)

.

We will see that it may happen that ∆
γ
n improves over ∆1

n. We define the optimal value of γ, say γ∗,

such that

∆
γ∗
n ≤ ∆

γ
n ,
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for all γ.

In the various figures hereafter, NP corresponds to the LRT defined between the LFH’s (Fδ∗ , Gδ∗) ,

KL to the test with statistics T1
n (hence, as presented Section 2), HELL corresponds to T1/2

n , which is

associated to the Hellinger power divergence, and G = 2 corresponds to γ = 2.

4.2. A Practical Choice for Composite Tests Based on Simulation

We consider the same cases A and B, as described in Section 3.3.

As stated in the previous section, the performances of the different test statistics are compared,

considering the test of H0(δ∗) against H1(δ∗) where δ∗ is defined, as explained in Section 3.3 as the

LFH for the test T1
n . In both cases A and B, this corresponds to δ∗ = δmax.

4.2.1. Case A: The Shift Problem

Overall, the aggregated tests perform well, when the problem consists in identifying a shift in a

distribution. Indeed, for the three values of γ (0.5, 1, and 2), the power remains above 0.7 for any kind

of noise and any value of δ∗. Moreover, the power curves associated to T
γ
n mainly overlap with the

optimal test T1
n,δ∗ .

a. Under Gaussian noise, the power remains mostly stable over the values of δ∗, as shown by

Figure 5. The tests with statistics T1
n and T2

n are equivalently powerful for large values of δ∗, while

the first one achieves higher power when δ∗ is small.

Figure 5. Power of the test of case A under Gaussian noise (with respect to δmax), for the first kind risk

α = 0.05 and sample size n = 100.

b. When the noise follows a Laplace distribution, the three power curves overlap the NP power

curve, and the different test statistics can be indifferently used. Under such a noise, the alternative

hypotheses are extremely well distinguished by the class of tests considered, and this remains

true as δ∗ increases (cf. Figure 6).
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Figure 6. Power of the test of case A under Laplacian noise (with respect to δmax), for the first kind risk

α = 0.05 and sample size n = 100.

c. Under the Weibull hypothesis, T1
n and T2

n perform similarly well, and almost always as well as

T1
n,δ∗ , while the power curve associated to T1/2

n remains below. Figure 7 illustrates that, as δmax

increases, the power does not decrease much.

Figure 7. Power of the test of case A under symmetrized Weibull noise (with respect to δmax), for the

first kind risk α = 0.05 and sample size n = 100.

d. Under a Cauchy assumption, the alternate hypotheses are less distinguishable than under any

other parametric hypothesis on the noise, since the maximal power is about 0.84, while it exceeds

0.9 in cases a, b, and c (cf. Figures 5–8). The capacity of the tests to discriminate between H0(δmax)

and H1(δmax) is almost independent of the value of δmax, and the power curves are mainly flat.
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Figure 8. Power of the test of case A under noise following a Cauchy distribution (with respect to

δmax), for the first kind risk α = 0.05 and sample size n = 100.

4.2.2. Case B: The Tail Thickness Problem

a. With the noise defined by case A (Gaussian noise), for KL (γ = 1), δ∗ = δmax due to Proposition 4

and statistics T1
n provides the best power uniformly upon δmax. Figure 9 shows a net decrease

of the power as δmax increases (recall that the power is evaluated under the least favorable

alternative Gδmax
).

Figure 9. Power of the test of case B under Gaussian noise (with respect to δmax), for the first kind risk

α = 0.05 and sample size n = 100. The NP curve corresponds to the optimal Neyman Pearson test

under δmax. The KL, Hellinger, and G = 2 curves stand respectively for γ = 1, γ = 0.5, and γ = 2 cases.

b. When the noise follows a Laplace distribution, the situation is quite peculiar. For any value of δ

in ∆ , the modes MGδmax
and MFδmax

of the distributions of ( fδ/gδ) (X) under Gδmax
and under Fδmax

are quite separated; both larger than 1. Also, for δ all the values of
∣

∣

∣
φγ

(

MGδmax

)

− φγ

(

MFδmax

)∣

∣

∣

are quite large for large values of γ. We may infer that the distributions of φγ (( fδ/gδ) (X)) under

Gδmax
and under Fδmax

are quite distinct for all δ, which in turn implies that the same fact holds

for the distributions of T
γ
n for large γ. Indeed, simulations presented in Figure 10 show that the

maximal power of the test tends to be achieved when γ = 2.
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Figure 10. Power of the test of case B under Laplacian noise (with respect to δmax), for the first kind

risk α = 0.05 and sample size n = 100.

c. When the noise follows a symmetric Weibull distribution, the power function when γ = 1 is very

close to the power of the LRT between Fδmax
and Gδmax

(cf. Figure 11). Indeed, uniformly on δ,

and on x, the ratio ( fδ/gδ) (x) is close to 1. Therefore, the distribution of T1
n is close to that of

T1
n,δmax

, which plays in favor of the KL composite test.

Figure 11. Power of the test of case B under symmetrized Weibull noise (with respect to δmax), for the

first kind risk α = 0.05 and sample size n = 100.

d. Under a Cauchy distribution, similarly to case A, Figure 12 shows that T
γ
n achieves the maximal

power for γ = 1 and 2, closely followed by γ = 0.5.
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Figure 12. Power of the test of case B under a noise following a Cauchy distribution (with respect to

δmax), for the first kind risk α = 0.05 and sample size n = 100.

5. Conclusions

We have considered a composite testing problem, where simple hypotheses in either H0 and

H1 were paired, due to corruption in the data. The test statistics were defined through aggregation

of simple likelihood ratio tests. The critical region for this test and a lower bound of its power was

produced. We have shown that this test is minimax, evidencing the least-favorable hypotheses.

We have considered the minimal power of the test under such a least favorable hypothesis, both

theoretically and by simulation, and for a number of cases (including corruption by Gaussian,

Laplacian, symmetrized Weibull, and Cauchy noise). Whatever this noise, the actual minimal power,

as measured through simulation, was quite higher than obtained through analytic developments.

Least-favorable hypotheses were defined in an asymptotic sense, and were proved to be the pair

of simple hypotheses in H0 and H1 which are closest, in terms of the Kullback-Leibler divergence;

this holds as a consequence of the Chernoff-Stein Lemma. We, next, considered aggregation of tests

where the likelihood ratio was substituted by a divergence-based statistics. This choice extended the

former one, and may produce aggregate tests with higher power than obtained through aggregation

of the LRTs, as examplified and analysed. Open questions are related to possible extensions of the

Chernoff-Stein Lemma for divergence-based statistics.
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Appendix A. Proof of Proposition 2

Appendix A.1. The Critical Region of the Test

Define

Zδ′ := log
gδ′

fδ′
(X),
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which satisfies

EFδ
(Zδ′) =

∫

log
gδ′

fδ′
(x) fδ(x)dx

=
∫

log
gδ′

fδ
(x) fδ(x)dx +

∫

log
fδ

fδ′
(x) fδ(x)dx

= K (Fδ, Gδ′)− K (Fδ, Gδ′) .

Note that, for all δ,

K (Fδ, Gδ′)− K (Fδ, Gδ′) =
∫

log
gδ′

fδ′
fδ

is negative for δ′ close to δ, assuming that

δ′ 7→
∫

log
gδ′

fδ′
fδ

is a continuous mapping. Assume, therefore, that (6) holds, which means that the classes of distributions

(Gδ) and (Fδ) are somehow well separated. This implies that EFδ
(Zδ′) < 0, for all δ and δ′.

In order to obtain an upper bound for Fδ

(

Tn,δ′ (Xn) > An

)

, for all δ, δ′ in ∆, through the Chernoff

Inequality, consider

ϕδ,δ′(t) := log EFδ
(exp (tZδ′)) = log

∫

(

gδ′(x)

fδ′(x)

)t

gδ(x)dx.

Let

t+
(

Nδ,δ′
)

:= sup
{

t ∈ Nδ,δ′ : ϕδ,δ′(t) < ∞
}

.

The function (δ, δ′, x) 7→ Jδ,δ′(x) is continuous on its domain, and since t 7→ ϕδ,δ′(t) is a strictly

convex function which tends to infinity as t tends to t+
(

Nδ,δ′
)

, it holds that

lim
x→∞

Jδ,δ′(x) = +∞

for all δ, δ′ in ∆n.

We now consider an upper bound for the risk of first kind on a logarithmic scale.

We consider

An > EFδ
(Zδ′) , (A1)

for all δ, δ′ . Then, by the Chernoff inequality

1

n
log Fδ

(

Tn,δ′ (Xn) > An

)

≤ −Jδ,δ′ (An) .

Since An should satisfy

exp
(

−nJδ,δ′ (An)
)

≤ αn,

with αn bounded away from 1, An surely satisfies (A1) for large n.

The mapping mδ,δ′(t) := (d/dt) ϕδ,δ′(t) is a homeomorphism from Nδ,δ′ onto the closure of the

convex hull of the support of the distribution of Zδ′ under Fδ (see, e.g., [14]). Denote

ess sup
δ

Zδ′ := sup {x : for all ǫ > 0, Fδ (Zδ′ ∈ (x − ǫ, x) > 0)} .

We assume that

ess sup
δ

Zδ′ = +∞, (A2)
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which is convenient for our task, and quite common in practical industrial modelling. This assumption

may be weakened, at notational cost mostly. It follows that

lim
t→t+(Nδ,δ′)

mδ,δ′(t) = +∞.

It holds that

Jδ,δ′
(

EFδ
(Zδ′)

)

= 0,

and, as seen previously

lim
x→∞

Jδ,δ′ (x) = +∞.

On the other hand,

mδ,δ′(0) = EFδ
(Zδ′) = K (Fδ, Fδ′)− K (Fδ, Gδ′) < 0.

Let

I :=

(

sup
δ,δ′

EFδ
(Zδ′) , ∞

)

=

(

sup
δ,δ′

K (Fδ, Fδ′)− K (Fδ, Gδ′) , ∞

)

.

By (A2), the interval I is not void.

We now define An such that (4) holds, namely

PH0(H1) ≤ pn max
δ

max
δ′

Fδ

(

Tn,δ′ > An

)

≤ αn

holds for any αn in (0, 1) . Note that

An ≥ max
δ,δ′

EFδ
(Zδ′) = max

(δ,δ′)∈∆×∆
K (Fδ, Fδ′)− K (Fδ, Gδ′) , (A3)

for all n large enough, since αn is bounded away from 1.

The function

J(x) := min
(δ,δ′)∈∆×∆

Jδ,δ′(x)

is continuous and increasing, as it is the infimum of a finite collection of continuous increasing functions

defined on I .

Since

PH0(H1) ≤ pn exp (−nJ(An)) ,

given αn, define

An := J−1

(

− 1

n
log

αn

pn

)

. (A4)

This is well defined for αn ∈ (0, 1), as sup(δ,δ′)∈∆×∆ EFδ
(Zδ′) < 0 and − (1/n) log (αn/pn) > 0.

Appendix A.2. The Power Function

We now evaluate a lower bound for the power of this test, making use of the Chernoff inequality

to get an upper bound for the second risk.

Starting from (5),

PH1
(H0) ≤ sup

η∈∆

Gη

(

Tn,η ≤ An

)

,
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and define

Wη := − log
gη

fη
(x).

It holds that

EGη

(

Wη

)

=
∫

log
fη(x)

gη(x)
gη(x)dx = −K(Gη , Fη),

and

mη(t) := (d/dt) log EGη

(

exp tWη

)

,

which is an increasing homeomorphism from Mη onto the closure of the convex hull of the support of

Wη under Gη . For any η, the mapping

x 7→ Iη(x)

is a strictly increasing function of Kη :=
(

EGη

(

Wη

)

, ∞
)

onto (0,+∞), where the same notation as

above holds for ess supη Wη (here under Gη), and where we assumed

ess sup
η

Wη = ∞ (A5)

for all η.

Assume that An satisfies

An ∈ K :=
⋂

η∈∆

Kη (A6)

namely

An ≥ sup
η∈∆

EGη

(

Wη

)

= − inf
η∈∆

K
(

Gη , Fη

)

. (A7)

Making use of the Chernoff inequality, we get

PH1
(H0) ≤ exp

(

−n inf
η∈∆

Iη(An)

)

.

Each function x 7→ Iη(x) is increasing on (EGη

(

Wη

)

, ∞). Therefore the function

x 7→ I(x) := inf
η∈∆

Iη(x)

is continuous and increasing, as it is the infimum of a finite number of continuous increasing functions

on the same interval K, which is not void due to (A5).

We have proven that, whenever (A7) holds, a lower bound tor the test of H0 vs. H1 is given by

PH1
(H1) ≥ 1 − exp (−nI(An)) (A8)

= 1 − exp

(

−nI

(

J−1

(

− 1

n
log

αn

pn

)))

.

We now collect the above discussion, in order to complete the proof.

Appendix A.3. A Synthetic Result

The function J is one-to-one from I onto K :=
(

J
(

sup(δ,δ′)∈∆×∆ Eδ (Zδ′)
)

, ∞
)

. Since Fδ, Jδ,δ′ (Eδ (Zδ′))

= 0, it follows that J
(

sup(δ,δ′)∈∆×∆ Eδ (Zδ′)
)

≥ 0. Since EFδ
(Zδ′) = K (Fδ, Fδ′)− K (Fδ, Gδ′) < 0,

whenever αn in (0, 1) there exists a unique An ∈
(

− inf(δ,δ′)∈∆×∆ (K (Fδ, Gδ′)− K (Fδ, Fδ′)) , ∞
)

which

defines the critical region with level αn.
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For the lower bound on the power of the test, we have assumed An ∈ K =
(

supη∈∆ Eη

(

Wη

)

, ∞
)

=
(

− infη∈∆ K(Gη, Fη), ∞
)

.

In order to collect our results in a unified setting, it is useful to state some connection between

inf(δ,δ′)∈∆×∆[K(Fδ, Gδ′)− K(Fδ, Fδ′)] and infη∈∆ K(Gη , Fη). See (A3) and (A7).

Since K(Gδ, Fδ) is positive, it follows from (6) that

sup
(δ,δ′)∈∆×∆

∫

log
fδ′

gδ′
fδ < sup

δ∈∆

K(Gδ, Fδ), (A9)

which implies the following fact:

Let αn be bounded away from 1. Then (A3) is fulfilled for large n, and therefore there exists An

such that

sup
δ∈∆

Fδ (Tn > An) ≤ αn.

Furthermore, by (A9), Condition (A7) holds, which yields the lower bound for the power of this

test, as stated in (A8).

Appendix B. Proof of Theorem 3

We will repeatedly make use of the following result (Theorem 3 in [15]), which is an extension of

the Chernoff-Stein Lemma (see [16]).

Theorem A1. [Krafft and Plachky] Let xn, such that

Fδ (Tn,δ > xn) ≤ αn

with limsupn→∞αn < 1. Then

lim
n→∞

1

n
log Gδ (Tn,δ ≤ xn) = −K (Fδ, Gδ) .

Remark A2. The above result indicates that the power of the Neyman-Pearson test only depends on its level on

the second order on the logarithmic scale.

Define An,δ∗ such that

Fδ∗ (Tn ≤ An) = Fδ∗ (Tn,δ∗ ≤ An,δ∗) .

This exists and is uniquely defined, due to the regularity of the distribution of Tn,δ∗ under Fδ∗ .

Since 1 [Tn,δ∗ > An] is the likelihood ratio test of H0(δ∗) against H1(δ∗) of the size αn, it follows,

by unbiasedness of the LRT, that

Fδ∗ (Tn ≤ An) = Fδ∗ (Tn,δ∗ ≤ An,δ∗) ≥ Gδ∗ (Tn,δ∗ ≤ An,δ∗) .

We shall later verify the validity of the conditions of Theorem A1; namely, that

lim sup
n→∞

Fδ∗ (Tn,δ∗ ≤ An,δ∗) < 1. (A10)

Assuming (A10) we get, by Theorem A1,

lim sup
n→∞

1

n
log Fδ∗ (Tn ≤ An) ≥ lim

n→∞

1

n
log Gδ∗ (Tn,δ∗ ≤ An,δ∗) = −K (Fδ∗ , Gδ∗) .

We shall now prove that
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lim
n→∞

1

n
log Gδ∗ (Tn,δ∗ ≤ An,δ∗) = lim

n→∞

1

n
log Gδ∗ (Tn ≤ An) .

Let Bn,δ∗ , such that

Gδ∗ (Tn,δ∗ ≤ Bn,δ∗) = Gδ∗ (Tn ≤ An) .

By regularity of the distribution of Tn,δ∗ under Gδ∗ , such a Bn,δ∗ is defined in a unique way. We will

prove that the condition in Theorem A1 holds, namely

lim sup
n→∞

Fδ∗ (Tn,δ∗ ≤ Bn,δ∗) < 1. (A11)

lim
n→∞

1

n
log Gδ∗ (Tn,δ∗ ≤ An,δ∗) = lim

n→∞

1

n
log Gδ∗ (Tn ≤ An) = −K (Fδ∗ , Gδ∗) .

Incidentally, we have obtained that limn→∞
1
n log Gδ∗ (Tn ≤ An) exists. Therefore we have

proven that

lim sup
n→∞

1

n
log Fδ∗ (Tn ≤ An) ≥ lim

n→∞

1

n
log Gδ∗ (Tn ≤ An) ,

which is a form of unbiasedness. For δ 6= δ∗, let Bn,δ be defined by

Gδ (Tn,δ ≤ Bn,δ) = Gδ (Tn ≤ An) .

As above, Bn,δ is well-defined. Assuming

lim sup
n→∞

Fδ (Tn,δ ≤ Bn,δ) < 1, (A12)

it follows, from Theorem A1, that

lim
n→∞

1

n
log Gδ (Tn ≤ An) = lim

n→∞

1

n
log Gδ (Tn,δ ≤ Bn,δ) = −K (Fδ, Gδ) .

Since K (Fδ∗ , Gδ∗) ≤ K (Fδ, Gδ) , we have proven

lim sup
n→∞

1

n
log Fδ∗ (Tn ≤ An) ≥ lim

n→∞

1

n
log Gδ∗ (Tn ≤ An) ≥ lim

n→∞

1

n
log Gδ (Tn ≤ An) .

It remains to verify the conditions (A10)–(A12). We will only verify (A12), as the two other

conditions differ only by notation. We have

Gδ (Tn,δ > Bn,δ) = Gδ (Tn > An) ≤ Fδ (Tn > An) + dTV (Fδ, Gδ)

≤ αn + dTV (Fδ, Gδ) < 1,

by hypothesis (13). By the law of large numbers, under Gδ

lim
n→∞

Tn,δ = K(Gδ, Fδ) [Gδ − a.s. ].

Therefore, for large n,

lim inf
n→∞

Bn,δ ≥ K(Gδ, Fδ) [Gδ − a.s.].

Since, under Fδ,

lim
n→∞

Tn,δ = −K(Fδ, Gδ) [Fδ − a.s.],

this implies that

lim
n→∞

Fδ (Tn,δ > Bn,δ) < 1.
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Appendix C. Proof of Proposition 4

We now prove the three lemmas that we used.

Lemma A3. Let P, Q, and R denote three distributions with respective continuous and bounded densities p, q,

and r. Then

K(P ∗ R, Q ∗ R) ≤ K(P, Q). (A13)

Proof. Let P := (A1, . . . , AK) be a partition of R and p := (p1, . . . , pK) denote the probabilities of

A1, . . . , AK under P. Set the same definition for q1, . . . , qK and for r1, . . . , rK. Recall that the log-sum

inequality writes
(

∑ ai

)

log
∑ bi

∑ ci
≤ ∑ ai log

bi

ci

for positive vectors (ai)i , (bi)i and (ci)i . By the above inequality, for any i ∈ {1, . . . , K}, denoting

(p ∗ r) to be the convolution of p and r,

(p ∗ r)j log
(p ∗ r)j

(q ∗ r)j

≤
K

∑
i=1

pjri−j log
pjri−j

qjri−j
.

Summing over j ∈ {1, . . . , K} yields

K

∑
j=1

(p ∗ r)j log
(p ∗ r)j

(q ∗ r)j

≤
K

∑
j=1

pj log
pj

qj
,

which is equivalent to

KP (P ∗ R, Q ∗ R) ≤ KP (P, Q),

where KP designates the Kullback-Leibler divergence defined on P . Refine the partition and go to the

limit (Riemann Integrals), to obtain (A13)

We now set a classical general result which states that, when Rδ denotes a family of distributions

with some decomposability property, then the Kullback-Leibler divergence between P ∗ Rδ and Q ∗ Rδ

is a decreasing function of δ.

Lemma A4. Let P and Q satisfy the hypotheses of Lemma A3 and let (Rδ)δ>0 denote a family of p.m.’s on R,

and denote accordingly Vδ to be a r.v. with distribution Rδ. Assume that, for all δ and η, there exists a r.v. Wδ,η ,

independent upon Vδ, such that

Vδ+η =d Vδ + Wδ,η .

Then the function δ 7→ K (P ∗ Rδ, Q ∗ Rδ) is non-increasing.

Proof. Using Lemma A3, it holds that, for positive η,

K
(

P ∗ Rδ+η , Q ∗ Rδ+η

)

= K
(

(P ∗ Rδ) ∗ Wδ,η , (Q ∗ Rδ) ∗ Wδ,η

)

≤ K (P ∗ Rδ, Q ∗ Rδ) ,

which proves the claim.

Lemma A5. Let P, Q, and R be three probability distributions with respective continuous and bounded densities

p, q, and r.Assume that

K(P, Q) ≤ K(Q, P),
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where all involved quantities are assumed to be finite. Then

K(P ∗ R, Q ∗ R) ≤ K(Q ∗ R, P ∗ R).

Proof. We proceed as in Lemma A3, using partitions and denoting by p1, ..., pK the induced probability

of P on P . Then,

KP (P ∗ R, Q ∗ R)− KP (Q ∗ R, P ∗ R) = ∑
i

∑
j

(

pjri−j + qjri−j

)

log
∑j pjri−j

∑j qjri−j

≤ ∑
j

∑
i

(

pjri−j + qjri−j

)

log
pj

qj

= ∑
j

(

pj + qj

)

log
pj

qj

= KP (P, Q)− KP (Q, P) ≤ 0,

where we used the log-sum inequality and the fact that K(P, Q) ≤ K(Q, P) implies KP (P, Q) ≤
KP (Q, P), by the data-processing inequality.
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