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CD4+CD25+Foxp3+ regulatory T cells (Treg) have emerged as a

dominant T cell population inhibiting anti-tumor effector T

cells. Initial strategies used for Treg-depletion (cyclophospha-

mide, anti-CD25 mAb…) also targeted activated T cells, as

they share many phenotypic markers. Current, ameliorated

approaches to inhibit Treg aim to either block their function

or their migration to lymph nodes and the tumor micro-

environment. Various drugs originally developed for other

therapeutic indications (anti-angiogenic molecules, tyrosine

kinase inhibitors,etc) have recently been discovered to inhibit

Treg. These approaches are expected to be rapidly translated

to clinical applications for therapeutic use in combination

with immunomodulators.

The concept of immunosuppressive T cells was proposed for the
first time by Gershon R.K at the beginning of the 1970s.1

Gershon described a CD8+ T cell population that inhibits T cell
activation and B cell-induced antibody production.1 At the same
time, Nishikuya and colleagues described a new suppressive
CD4+T cell population.2 They showed that generalized auto-
immunity appeared when three day-old (but not seven day-old)
mice were thymectomized.2 However, the lack of specific markers
prohibited an in-depth study of this T cell population and led to
the disinterest of the scientific community, which largely ignored
the concept of a “suppressive T cell population.”

Phenotype of Regulatory T Cells

In 1982, Sakaguchi and colleagues and, in the 1990s, Powrie
and Mason identified two surface markers, CD5 (Lyt-1) and
CD45RB, which are both expressed at low levels on suppressive
T cells.3 In 1995, the a chain of IL-2R (CD25) was reported
to be constitutively and highly expressed by suppressive CD4+

T cells.4 Suppressive CD4 T cells were renamed “regulatory
T cells” (Treg) because of the skepticism in relation to the first
“suppressive” T cell population described by Gershon.

The real revolution in the phenotype determination of Treg
came in 2003 with the identification of a new gene called foxp3.5

This gene codes for a transcription factor expressed in the nucleus
of Tregs, Foxp3 (forkhead box P3). In humans, absence of this
gene is associated with a generalized autoimmune disorder called
IPEX (immunodysregulation polyendocrinopathy enteropathy
X-linked), which comprises diabetes, eczema and food allergies.
In a “scurfy” mouse model, a spontaneous mutation in foxp3
gene is linked to a very similar disorder.

Foxp3 is a specific marker of Treg in mice but, in humans, it
can be transiently expressed by activated T cells6. In humans,
Foxp3+ regulatory and activated T cells can be distinguished by
the differential expression of CD127 (which is present at high
levels in activated T cells and at low levels in Treg)7 and by
the methylation status of the transcription factor Foxp3 detected
by a Foxp3 methylation-specific PCR assay (with demethylation
in the DNA encoding Foxp3 in Treg but not in activated
T cells).8

Tregs also express effector surface molecules such as CTLA4,
LAG3, CD39 or CD73 and co-stimulation molecules, CD28,
CD80/86, CD40, OX40 or 4–1BB, which appear to be impor-
tant for their peripheral maintenance and functions.9 Integrins
and chemokine receptors such as CD62L, CCR4, CCR7 and
CCR8 are responsible for Treg homing and migration to lymph
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nodes, skin and inflammatory sites and tumor tissues in response
to various molecules or chemokines10.

Other regulatory CD4+T cell (Tr1, TH3) and regulatory
CD8+T cell populations have also been described, but this review
will only focus on the Foxp3+CD4+ Treg.

Origin of Foxp 3+Treg

Two main populations of Foxp3+Treg have been described: a
“natural” (n) population, which differentiates within the thymus
during T cell ontogenesis, and another “induced” (i) population,
which arises in the periphery from conventional CD4+T cells.
Conversion of CD4+T cells into iTreg occurs in response to
various mechanisms, for example, suboptimal antigenic stimu-
lation in the presence of TGFβ11. Dendritic cells (DC) blocked at
an immature stage in the cancer microenvironment, secondary to
the presence of inhibitors (IL-6, IL-10, VEGF, PGE2…) express
membrane TGFβ and promote Treg differentiation.3,11

iTreg differentiation from peripheral naïve CD4+T cells in
periphery was initially described to be strictly opposed to Th1,
Th2 or Th17 differentiation. Nevertheless, recent studies report
that differentiation to a particular phenotype is not definitive and

that iTreg present a real plasticity. For example, it has been shown
that, regulatory T cells can be converted to Th17 cells in presence
of IL-6 or IL-21 and TGFβ12.

Mechanisms of Action of Treg

iTreg and nTreg share various ways to inhibit immune response
(Fig. 1). Both populations use cytokine- dependent mechanisms
and are able to secrete immunosuppressive cytokines (IL-10,
TGFβ) or IL-35 (at least in mice), but also immunosuppressive
metabolites such as adenosine.9,13

Treg may also lyse effector cells by means of granzyme A and
B14 or disrupt the metabolism of effector cells by causing their IL-
2 deprivation.15

nTreg also use contact-dependent mechanisms. They are able
to inhibit DC maturation by means of the interaction of CTLA-4
with CD80/CD86 on DC, which delivers a negative signal to DC
preventing priming of anti-tumor responses. Induction of an
immunosuppressive enzyme, IDO (indoleamine 2,3 dioxygenase),
by CTLA-4 may also participate in inhibition of effector T cells16.
Other surface molecules (Lag3, CD39, Nrp, galectin1…) expres-
sed by Treg may also contribute to their suppressive activity.3

Figure 1. Mechanisms of regulatory T cell inhibition (A) Secretion of immunosuppressive cytokines (IL-10, IL-35 and TGFb) inhibiting effector T cells.

(B) Cytolysis of effector T cells by production of Granzyme A and/or B. (C) Metabolic disruption of effector T cells by IL-2 deprivation. IL-2 is captured by

CD25 expressed by Treg. (D) Inhibition of DC maturation by contact-dependent mechanisms (CTLA-4, CD80-CD86 interaction, Lag3/CMHII interaction)

and effector function by IDO secretion.
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Given these immunosuppressive properties, Treg are therefore
important for peripheral tolerance and confer protection against
autoimmunity and inflammation.

Treg and Cancer

Most tumor-associated antigens are self-proteins, which elicit
weak natural or induced T cell responses after immunotherapy.17

It has been demonstrated that Treg are able to recognize tumor-
associated self-antigens and control T cell responses against
various cancer antigens, which may explain the failure of many
cancer vaccines.18,19 For example, tyrosinase and NY-ESO1-
specific CD4+T cells can expand and become detectable by in
vitro antigenic stimulation of peripheral CD4+T cells only after
depletion of Treg.20 In addition, therapeutic cancer vaccines could
induce tumor-specific Treg that blunt the expansion and function
of anti-tumor T cells18. In line with these results, Treg depletion
or blockade has been shown to enhance tumor immunity elicited
by vaccination.21

Treg are recruited to the tumor bed mainly but not exclu-
sively via chemokine gradients, mainly the CCL22/CCR4
axis, as many tumor cells or myeloid intratumor cells produce
CCL22 (Fig. 2).22,23 Hypoxia also attracts Treg into the tumor,
mostly through induction of the CCL28 chemokine.24

Treg infiltration of tumor and draining lymph node has been
widely described in mouse models and cancer patients. Treg
expansion has been correlated in most cancers (gastric, breast or
ovarian) with a poor prognosis associated with a decrease in the
CD8+ T cell/Treg ratio.25,26 This supports the idea that the
suppressive activity of Treg can inhibit priming of CD8+ T cells
by mature DC in tumor-draining lymph nodes and promote
tumor growth. More recently, it has been shown that intratumor
Treg produce VEGF and promote angiogenesis.24

However, Treg are not always “tumor bodyguards.” Treg
infiltration has also been correlated with good prognosis in
hematological malignancies and in some solid tumors such as
head and neck or colon cancer27,28 that are often associated with
chronic inflammation.29,30 This may be explained by the fact
that Treg negatively control inflammation and that inflammation
plays an important role in disease progression in these cancers.

Why and When Do We Need to Inhibit Treg in Cancer?

Tumor-associated antigens are often self-antigens, which elicit
weak immune responses partly due to the presence of antigen-
specific Treg. This may explain why elimination of Treg improves
induction of CD8+T cells response for priming of anti-tumor
T cells.

Figure 2. Recruitment, proliferation and induction of Treg in the tumor microenvironment. (i) Recruitment of CCR4+ activated Treg by a CCL22 gradient

produced by the tumor. (ii) Tumor expression of VEGF, IL-10 or TGFb blocks DC maturation responsible for Treg induction and proliferation. (iii) TGFb

secreted by the tumor converts conventional CD4+T cells into regulatory T cells.
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In addition, it has been observed that some immunostimula-
tory molecules such as IL-2 and IFNa used in immunotherapy
may be linked to immunosuppressive activities partly due to the
concomitant induction of Treg via Stat5 activation.31,32 Helper
peptides derived from tumor antigens may also increase Treg,
which partially inhibit anti-tumor CD8+T cell induction.33

Anticancer immunotherapies could therefore be improved by
concomitant Treg blockade. Importantly, transient depletion of
Treg during priming of anti-tumor immunity rather than chronic
depletion of Treg should be considered to avoid the development
of autoimmune side effects.

Many strategies are currently used to manipulate Treg,
including Treg depletion, inhibition of Treg function or blockade
of Treg trafficking into lymph nodes or tumors. We will briefly
describe these approaches by emphasizing their potential limitations.

Strategies Currently Used to Block or Inhibit Treg

Treg depletion. Chemotherapy. Some chemotherapies may lead
to immunogenic cell death resulting in activation of DC and
priming of anti-tumor immune responses.34 This promotion of
DC maturation might also explain the capacity of some chemo-
therapies to reduce Treg. In addition, as a higher frequency of
proliferating cells is observed in Treg compared with the non-Treg
compartment, chemotherapy, which mostly destroys proliferating
cells, may tilt the balance from Treg toward effector T cells.
Cyclophosphamide (CTX) is the leading product of this
therapeutic class. Reversal of immunological tolerance by CTX
via inhibition of suppressor cells was reported more than 35 years
ago.35 Selective depletion of Treg induced by CTX or other
chemotherapeutic drugs such as paclitaxel requires the use of these
agents at low, so-called metronomic doses.36,37 Some studies in
humans have shown improvement of T cell effector function
associated with a reduction in Treg numbers after low dose CTX
administration.38 However, “clinical benefit/toxicity (deletion of
effector T cells)” therapeutic index for this kind of drug is low
and no consensus has been reached concerning a robust CTX-
based protocol able to induce significant ablation of Treg
inhibitory functions in patients.

CD25 antibody and Denileukin diftitox (ONTAK). The implica-
tion of Treg in tumor immunity was initially studied by systemic
depletion of CD25+ T cells. Studies in mice demonstrated that in
vivo administration of CD25-specific antibody (PC61) suppressed
growth of progressively growing tumors.39 However CD25 is also
expressed by activated effector T cells, complicating the CD25-
based Treg targeting strategy. In this regard, it was shown that
while administration of anti-CD25 mAb before tumor ino-
culation triggered effective antitumor responses, anti-CD25 mAb
treatment after tumor inoculation was much less effective to
eradicate tumors.39

In humans, an anti-CD25 mAb, daclizumab, has been used to
deplete Treg with contradictory results.8,40 More recently, the
recombinant IL-2 diphtheria toxin conjugate called denileukin
diftitox (ONTAK) was developed to target T cells with high
CD25 expression. Upon internalization, diphtheria toxin irre-
versibly inhibits protein synthesis, ultimately triggering cell death.

Diftitox administration combined with vaccine has demonstrated
some efficacy in renal cell carcinoma (RCC) and melanoma
patients.41 However, recent studies performed in melanoma
patients reported neither a reduction in peripheral Treg numbers
nor any favorable clinical improvement after diftitox treatment.8

This therapeutic failure might be explained by the presence of
CD25lowFoxp3+T cells, which cannot be depleted by diftitox.

Targeting Treg function. One possible strategy to avoid Treg
depletion is to use antibodies that target molecules constitutively
expressed by Treg leading to their functional inhibition.

Anti-CTLA-4. CTLA-4 is expressed on both regulatory and
activated T cells. Early studies have reported that CTLA4
blockade resulted in improved tumor immunity and tumor
regression. However, a recent study elegantly demonstrated that
blockade of CTLA-4 specifically on Treg failed to enhance anti
tumor responses.42 In contrast, concomitant blockade on both
effector T cells and Treg led to a synergistic effect with maximal
anti-tumor activity.42 Surprisingly, anti-CTLA-4 recently
approved for metastatic melanoma patients, induced activated
effector T cells, Foxp3+ Treg as well as IL-10-producing Treg.43

Despite this Treg expansion, anti-CTLA-4 mAb administration
resulted in severe autoimmunity. This might be explained by the
fact that conventional T cells become resistant to the inhibitory
effects of Treg during therapy with anti-CTLA4 mAb.44

Anti-GITR. Like CTLA-4, GITR is constitutively expressed by
Treg, but it is also detected, albeit at lower levels, on CD4+ and
CD8+ effector T cells. Stimulation by agonistic antibodies to
either GITR or GITR ligand has a dual effect leading to
suppression of Treg activity (at least in mice) and enhanced
proliferation of effector T cells and possible resistance to Treg-
mediated suppression. Administration of GITR mAb protected
mice from B16 tumor challenge,45 and induced tumor regression
in mice bearing methylcholanthrene-induced fibrosarcoma.46 The
tumors were infiltrated by large numbers of effector T cells, and
an increase in INFc was observed. Importantly, anti-GITR mAb
therapy was more effective in mice with established tumors than
in prophylactic settings.46 A study performed on GITR-knockout
mice revealed that reversal of suppression by GITR signaling
may be attributed to the costimulatory activity of GITR on
responder CD4+CD25- T cells, which made them resistant to
Treg suppression.47 This indicates that anti-GITR stimulation
enhances the activity and expansion of antigen-primed effector
T cells rather than their generation. Altogether, a direct role of
GITR mAb on Treg cell functions remains elusive.

Anti-OX40. OX40, a costimulatory molecule of the TNF
receptor family, is constitutively expressed on Treg and transiently
expressed on activated T cells. An early study showed that
activation of OX40 signaling by an agonistic anti-OX40 mAb was
able to inhibit the suppressive activity of Treg.48A recent murine
study demonstrated that intratumoral injection of anti-OX40
mAb induced strong inhibition of tumor growth.49 The authors
demonstrated that activation of OX40 signaling has a dual role,
inhibiting Treg suppression while enhancing effector T cells
functions. Further studies are required before translating agonistic
anti-OX40 mAb strategies to patients especially in combination
with conventional therapies.50
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Taken together, targeting CTLA-4, GITR or OX40 may have
a huge therapeutic potential, as recently demonstrated for the
anti-CTLA4 mAb (ipilimumab). However, discrepancies exist in
the literature as to whether Treg functions are indeed affected
by such regimens. Moreover, non-specific co-stimulatory effects
of these mAbs on effectors CD4 and CD8 T cells may lead to
severe systemic inflammation (induction of a cytokine storm)
and multi organ-specific autoimmunity.51

TLR ligands, adenosine inhibitors and peptide inhibitors of Foxp3.
Treg express various TLRs and notably high levels of TLR4,
TLR5, TLR7 and TLR8;52 TLR 8 activation by its natural or
synthetic ligands has been shown to inhibit Treg function and
enhances in vivo tumor immunity.53 Appropriate TLR stimula-
tion might therefore be an important tool for vaccination
strategies, since it could inhibit Treg-mediated tolerance.54

However, this area of research requires further investigation as
many counteracting effects might emerge due to the expression
of TLRs on almost all murine and human normal and tumor
cells.55 In addition, TLR ligands could also induce IL-10-
producing Treg. This unfavorable bystander effect could be
reversed by blocking p38 MAPK signaling.56

Treg produce adenosine via catabolism of adenine nucleotides
(ATP, ADP and AMP) by extracellular ectonucleotidases, CD39
and CD73. Adenosine is a major immunosuppressive factor that
may participate in the immunosuppressive activity of Foxp3+ T
cells.16 Low molecular weight inhibitors and adenosine receptor
antagonists, some of which are already used in clinic settings for
other indications, are available to block adenosine-mediated
immune suppression.57 Inhibition of CD39 with enzymatic
inhibitors blocks Treg function and improve the effects of
chemotherapy.58

A peptide inhibitor of Foxp3 (P60) impairs Treg activity and
improves vaccine efficacy in mice.59 P60 administration to
newborn mice but not in adult mice induced a lymphoprolifera-
tive autoimmune syndrome resembling the reported pathology in
scurfy mice lacking functional Foxp3.59

Disrupting lymph node and tumor homing of Treg. Another
strategy to control Treg function is to target chemokine/
chemokine receptor molecules (i.e. CCL17/CCL22-CCR4 axis)
that are involved in Treg trafficking. It has been shown that Treg
preferentially express CCR4 compared with conventional T cells,
both in mice and humans.10,60 CCR4-expressing Treg mainly
represent activated Treg with potent suppressive activity. The
binding of CCL17 and CCL22 produced by DC in the lymph
node to their CCR4 receptor guides CCR4-expressing Treg
toward DC. This interaction can suppress DC-mediated immune
responses by inhibiting DC maturation and expression of
costimulatory molecules required for effector T cell activation,
as well as by inhibiting stable contact between DC and effector
cells.61 The role of CCR4 in the migration of Treg toward lymph
nodes is also reinforced by studies showing that CCR4-deficient
Tregs fail to traffic to lymph nodes to inhibit pathogenic T cells.62

Tumor cells and their microenvironment also attract Treg by
the secretion of CCL22,22 and a correlation has been reported
between the presence of tumor-infiltrating Treg and CCL22 in
breast cancer.23 In a murine model, it has been shown that

monoclonal antibodies specific for CCL22 significantly reduce the
migration of Treg into ovarian tumors.22

Recently, small molecule antagonists to CCR4, designed in
silico, have been shown to prevent the interaction of CCL22/
CCL17 with their receptor. In vitro experiments in human
showed that these CCR4 antagonists inhibit the recruitment of
Treg mediated by CCL22 and CCL17. Preclinical studies showed
that, when administered in combination with vaccines, CCR4
antagonists increased CD4+ T cell and humoral responses directed
against foreign antigens.63,64 We found that immunization of
mice against relevant tumor-associated self antigens (Her2/neu,
gp100…) failed to reverse the tolerance controlled by Treg. In
contrast, the same vaccines combined with a CCR4 antagonist
led to the induction of effector CD8+ T cells and partial tumor
protection.21 The CCR4 antagonist was more efficient than CTX
to elicit anti-self CD8+ T cells. One of the main advantages of this
CCR4 antagonist is its short lifespan (~24 h)63 allowing transient
inhibition of Treg only during the priming phase and avoiding
the potential autoimmune complications caused by long-term
blockade or depletion of Treg by mAbs (e.g., anti-CD25, anti-
OX40, anti-GITR…) with longer half-lives (2–3 weeks).65 We
found that administration of the CCR4 antagonist did not
lead to induction of biological markers of autoimmunity.21 In
addition, it appears that Treg expressing CCR4 mainly represent
activated Treg with potent suppressive activity.

Other chemokine receptors such as CCR7 and CCR5 may
also play a role in Treg migration. For example, the CCL5/
CCR5 interaction has been shown to be crucial for Treg attrac-
tion in pancreatic adenocarcinoma.66 Disrupting this interaction
by systemic administration of a CCR5 inhibitor reduced Treg
migration into the tumor and led to significant tumor reduc-
tion.66 In some models, CCL5 blockade improved the efficacy
of immunochemotherapy.67 However, it should be noted that,
chemokine/chemokine receptor molecules especially CCL5/
CCR5 and CCL20-CCL21/CCR7 may also be involved in
trafficking of effector T cells, and disruption of these pathways
might therefore be deleterious to killing of tumor cells.

Anti-angiogenic molecules and tyrosine kinase inhibitors.
Accumulating evidence strongly suggests that angiogenesis
inhibition overcomes various immunosuppressive networks
including Treg.68 In mice and human, it has been demonstrated
that sunitinib, an inhibitor of tyrosine kinases involved in
angiogenesis (VEGF-R, PDGF-R, FGF-R…), reduced the
percentage and absolute number of Treg,69-71 which have been
shown to be increased in many tumors.25,27 We more thoroughly
analyzed this decrease in Foxp3+ Tregs in humans and observed
a progressive reduction in circulating Foxp3+ Tregs after each
cycle of sunitinib therapy. This reduction became statistically
significant after the second cycle of therapy. A significant (at
least 20%) reduction in the absolute number of Foxp3+ Treg
occurred in 32% and 40% of patients after the first and second
cycle respectively, and in 70% of patients after the third cycle. We
found a correlation between the number of Foxp3+ Treg at
baseline and the changes in this population during sunitinib-
based therapy. Patients with baseline Treg levels above the median
value were more likely to experience a decrease in this population
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after the second or third cycles of sunitinib-based therapy than
patients with low baseline Treg levels.70 Sunitinib appears to have
an indirect effect on Treg, as sunitinib did not inhibit in vitro
Treg expansion even over a 14 d coincubation period.69 The
impact of anti-angiogenic molecules on Treg has been mainly
demonstrated with sunitinib. The ability of other molecules
(sorafenib, bevacizumab…) to mimic this effect is currently
debated.71-73

Two mechanisms have been proposed to explain the impact
of anti-angiogenic molecules on Treg: (1) at an immature
stage, DC in the presence of TGFβ are able to induce
Foxp3+CD4+CD25hi Treg.74 Pioneering studies showed that
VEGF inhibits DC maturation via a nuclear factor kB (NFkB)-
dependent pathway mediated by VEGFR-1 signaling75 (2) Since
Treg express VEGFR2, a modulation of Treg activity by VEGF
could also be hypothesized.76

Other immunosuppressive cell populations, especially MDSC
(myeloid -derived suppressor cells), could also be blocked by anti-
angiogenic therapy.68

This role of anti-angiogenic molecules on reversal of immuno-
suppression in cancer may explain the synergy observed in
preclinical models between anti-angiogenic molecules and
immunotherapy. Studies are ongoing to address the ability of
these molecules to potentiate immunotherapy in human clinical
trials.77

Other tyrosine kinase inhibitors (imatinib mesylate, dasatinib,
temozolomide) have demonstrated an impact on the decrease
of Treg number or functions.78,79 An elegant study in a mouse
model of gastrointestinal sarcoma (GIST) and in human
GISTs showed that imatinib mesylate induced Treg Suppress
(T(reg) cell) apoptosis within the tumor by reducing tumor-cell

expression of the immunosuppressive enzyme indoleamine 2,3-
dioxygenase.78 Reduction of Treg numbers unleashes NK cell
functions and contribute to NKp30-dependent antitumor effects
in GIST.80

Conclusions and Perspectives

Treg and activated T cells share several common features and
surface markers, which explain the weak selectivity of several
drug candidates to specifically inhibit Treg. New strategies are
designed to inhibit Treg function rather than eliminate Treg,
in order to improve their specificity. This field has recently
benefited from the finding that many drugs (chemotherapies,
anti-angiogenic molecules, tyrosine kinase inhibitors…) exhibit
off-target effects and inhibit Treg, thereby accelerating their
evaluation in clinical trials either as monotherapies or in com-
bination with immunotherapy. In terms of the clinical indica-
tions of these molecules, elimination or inhibition of Treg might
be particularly useful in the context of therapeutic vaccination
against tumor-associated antigens. For this kind of indication,
transient inhibition of Treg during the short window of immune
priming (few days) rather than long-term blockade might be
particularly appropriate to minimize organ-specific or generalized
autoimmune side effects.
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