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ABSTRACT

A novel diffuse interface immersed boundary (IB) approach in the finite volume framework is developed for non-Boussinesq flows with
heat transfer. These flows are characterized by variable density, large temperature differences, nonzero velocity divergence, and low Mach
numbers. The present IB methodology assumes that the solid body immersed in the domain is filled with a “virtual” fluid and constructs a
unified momentum equation that is solved everywhere in the domain. The unified momentum equation is obtained as a convex combination
of the Navier-Stokes equation and the no-slip boundary condition employing the solid volume fraction. The hydrodynamic pressure (p) that
drives the flow is obtained by the solution of a variable density Poisson equation that is constructed by assuming that the velocity field inside
the solid always remains solenoidal although the velocity divergence is nonzero in the fluid domain. The unified Poisson equation is also
solved everywhere in the domain and has source terms that depend on the solid volume fraction, temperature gradients, and the spatially
invariant thermodynamic pressure (P) that vanish in the Boussinesq limit. The thermodynamic pressure in closed domains follows from
the principle of global mass conservation and is used to determine the density field everywhere in the domain except inside the solid where
the density remains constant. Numerical simulations are carried out for natural and mixed convective flows in enclosures with stationary and
moving heated bodies encompassing both Boussinesq and strongly non-Boussinesq flow regimes. The results of these investigations show that
the local Nusselt number distribution over the body surface is oscillatory particularly when grid lines are not aligned with the surface of the
body. However, the proposed approach can reasonably accurately compute the average heat transfer in both Boussinesq and non-Boussinesq
flows. Investigations show that the heat transfer is significantly enhanced in the non-Boussinesq regime as compared to the Boussinesq
regime. A comparison of results from the present approach with those obtained using a body-fitted finite volume solver for stationary bodies
demonstrates that the proposed IB approach can compute the flow dynamics quite accurately even on Cartesian meshes that do not conform
to the geometry. The IB approach presented herein is a generic approach for quasi-incompressible flows and may be applied to other low
Mach number flows such as mixing and reacting flows.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100963., s

I. INTRODUCTION

The use of Boussinesq approximation in fluid flows with heat
transfer is widespread and allows the density to be treated as con-
stant except in the buoyancy term in the momentum equation where
changes in density are replaced by changes in temperature. The
fluid flow however remains incompressible with the velocity satis-
fying a zero divergence constraint, and the temperature transport

is described by an unsteady convection-diffusion equation. In such
cases, the conventional numerical approaches to solve incompress-
ible fluid flows can be applied directly except for the need to handle
the equation for temperature (or thermal energy) in addition to the
momentum equations. There have been several studies on natu-
ral convective flows1,2 where the temperature differences are small
in which case the Boussinesq approximation holds good. Usman
and co-workers3–6 have employed the Boussinesq approximation to
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study nanofluid flows in the presence of magnetic field with a focus
on analyzing the heat transfer rate and flow physics. However, in
problems where there are large temperature gradients, the Boussi-
nesq approximation is inaccurate and can lead to solutions that are
not physically meaningful. This is indeed the case in applications
such as electronic cooling and industrial furnaces where radiative
heat transfer would also play a dominant role. Importantly, the inva-
lidity of the Boussinesq approximation means that the velocity field
is no longer solenoidal and hence these flows are also referred to
as quasi-incompressible flows. These flows are characterized by low
Mach numbers similar to incompressible flows but have a nonzero
velocity divergence akin to compressible flows. The governing equa-
tions for these non-Boussinesq flows can therefore be derived from
the Navier-Stokes equations using a low Mach number formula-
tion7–9 leading to a set of conservation laws where one can distin-
guish the hydrodynamic pressure from the thermodynamic pres-
sure. The thermodynamic pressure is defined by the equation of state
(EOS) and remains spatially invariant in low Mach number flows,
while the hydrodynamic pressure which does not have an evolution
equation is responsible for driving the flow. Evidently, numerical
methods to solve quasi-incompressible flows need to account for
the presence of “twin” pressures and the nonzero velocity diver-
gence, and there have been relatively fewer efforts to study lowMach
number flows with heat transfer in the open literature.

The earliest numerical studies in non-Boussinesq convection
are due to Quéré et al.10 using pseudospectral approaches. There
have been subsequent efforts using finite volume11 and finite ele-
ment approaches12 to handle large temperature difference ther-
mobuoyant flows. While the work of Dick and Vierendeels11

employed the density-based solver with low Mach number precon-
ditioning, the investigations of Darbandi and co-workers extended
the pressure-based SIMPLE approach to solve non-Boussinesq nat-
ural convective flows. There have also been recent efforts employ-
ing the low Mach formulation for laminar convective-radiative heat
transfer problems on unstructured meshes13 as well as turbulent
high temperature convection on structured grids.14 The low Mach
number approach has also been widely employed to study react-
ing flows by many authors.15 All these studies in non-Boussinesq
heat transfer have employed conventional body-fitted meshes in
conjunction with staggered or collocated grid frameworks to solve
the conservation laws. However, in problems wherein the geometry
could be complex (such as in electronic packaging) and in scenar-
ios requiring studies on several designs (for instance, in building
energy simulations16), the use of conformal meshes demand user
expertise in mesh generation and the need to regenerate meshes for
similar-looking geometries would add to computational cost.

The emergence of Cartesian immersed boundary (IB) frame-
works has been motivated by the need to have a simple, easy,
and automated mesh generation process. A good overview of these
approaches can be found in the work of Mittal and Iaccarino,17

and IB approaches have been broadly divided as sharp and diffuse
interface immersed boundary approaches. The methods that fall in
the category of sharp interface IB approaches enforce the boundary
conditions directly on the geometric interface and include, among
others, the ghost cell IBmethod18 andHybrid Cartesian IBmethod19

which have been extensively used in problems ranging from aquatic
locomotion to compressible flows. The diffuse interface IB meth-
ods constitute all techniques that do not preserve the interface of

the geometry sharp and a large class of techniques such as the fic-
titious domain method,20 Brinkman penalization approach,21,22 and
the volume-of-solid immersed boundary method23 fall in this cat-
egory. It must be pointed out that while IB approaches have been
extensively used for incompressible fluid flows, there have been a
lesser number of studies that have tackled flows with heat trans-
fer. The studies in Refs. 24–27 have all employed different class
of IB techniques for Boussinesq heat transfer. Wang et al.24 have
proposed a boundary condition enforced immersed boundary lat-
tice Boltzmann flux solver, while De27 has proposed a diffuse inter-
face IB approach to simulate fluid flows with heat transfer in the
Boussinesq limit. The only known efforts, to the best of authors’
knowledge, that have employed IB approaches in low Mach flows
are the studies targeted at understanding human phonation and flow
induced noise,28 those on turbulent multiphase and reacting flows29

and studies for fully resolved reacting gas-particulate flows.30 While
the latter work employed the fictitious domain approach, the other
studies employed a sharp interface IB methodology with only one of
these three studies accounting for heat transfer as well. The choice
of sharp interface IB methods is owing to their ability to sharply
represent the geometric interface, but recent studies27,31 have shown
that diffuse IB approaches, despite diffusing the interface over a few
cell widths, perform equally well as the sharp interface counterparts.
Moreover, sharp interface IB methods are not free of issues and the
problem of spurious force oscillations (SFOs) in simulations with
moving boundaries is well-documented.32 Investigations in Ref. 31
have shown that diffuse interface approaches can dampen out SFOs
without unduly affecting the solution accuracy. A very recent study
using sharp interface IB approaches33 has also found that the lack
of discrete energy conservation, inherent to this class of methods, is
responsible for underprediction of heat flux in hypersonic laminar
flows.

The lack of studies involving non-Boussinesq heat transfer in
closed domains which can have practical applications in electronic
cooling and building design motivates the present study. We choose
to pursue the diffuse interface IB approach in Ref. 23 since these
have been shown to perform as well as sharp-interface IB methods,
exhibit lesser SFOs, and are discretely conservative. The simplicity
and ease of implementation of the approach in existing finite vol-
ume frameworks are added advantages as well. It must be remarked
that the development and implementation of the diffuse interface IB
method for quasi-incompressible flows in enclosures is a nontriv-
ial proposition. While the thermodynamic pressure has no role to
play in genuinely incompressible flows, it is dictated by the equation
of state (EOS) and remains always constant in low Mach number
flows in open domains (such as those in combustion). However, for
thermobuoyant flows in enclosures, the thermodynamic pressure is
only spatially constant and its time derivative influences the energy
equation as well as the calculation of hydrodynamic pressure which
in turn drives the flow. The coupling between the thermodynamic
and hydrodynamic pressure in the evolution equation for the latter
therefore needs to be accounted properly in the diffuse interface IB
framework, and there have been no studies that have explored this
aspect until date. The novelty of present work may be summarized
as follows.

● The development of a volume-of-solid based diffuse inter-
face IB method to compute non-Boussinesq flows in natural
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and mixed convection regimes and to assess its performance
in computing the flow and thermal patterns as well as heat
transfer.● Low Mach number finite volume (FV) solver is combined
with a diffuse interface immersed boundary approach to
devise a novel IB-FV solver for non-Boussinesq flows where
“unified” equations are solved in the entire computational
domain for momentum and energy conservation.● Generalizes the IB approach to handle variable density
quasi-incompressible flows and highlight the strengths and
weaknesses of the IB-FV solver by carrying out detailed
investigations of free and mixed convective heat transfer
problems.● Proposed methodology provides a single framework to solve
Boussinesq and non-Boussinesq flows and a pathway to
devise such approaches for fully compressible flow.

The remainder of the manuscript is organized as follows. Sections II
and III discuss the low Mach number formulation and the finite
volume discretization of the governing equations, respectively. The
diffuse interface IB approach is discussed in detail with specific
emphasis on its implementation for generic low Mach flows with
heat transfer in Sec. IV. A number of test cases including stationary
andmoving geometries, both in the Boussinesq and non-Boussinesq
regimes, are described in Sec. V. Some discussions on the viability
and versatility of the proposed IB approach and directions for future
research constitute Sec. VI.

II. LOW MACH NUMBER FORMULATION

The governing equations for genuinely compressible fluid
flows with constant thermophysical properties are the Navier-Stokes
equations. The conservation laws34 for mass, momentum, and
energy read

∂ρ

∂t
+∇ ⋅ (ρu) ≙ 0, (1)

∂(ρu)
∂t

+∇ ⋅ (ρuu) ≙ −∇p +∇ ⋅ τ + (ρ∞ − ρ)gêy, (2)

∂(ρθ)
∂t

+∇ ⋅ (ρθu) ≙ k

Cp
∇2

θ +
1

Cp

Dp

Dt
+

1

Cp
τ∶ ∇u, (3)

where

τ ≙ μ(∇u + (∇u)T − 2

3
(∇ ⋅ u)I).

The ideal gas equation of state is assumed in this study

p ≙ ρRθ. (4)

The nondimensionalization of these equations is carried out by
choosing speed of sound (Co) as the velocity scale, while the scales
for pressure and density are the initial thermodynamic pressure and
density inside the enclosure. The temperature reference scale is cho-
sen as the mean temperature of the enclosure, while the reference
time scale is L

U
, where L is the characteristic length scale, γ is the

ratio of specific heats, and U is the characteristic fluid velocity. The
dimensionless conservative laws are given by

∂ρ

∂t
+

1

Ma
∇ ⋅ (ρu) ≙ 0, (5)

∂(ρu)
∂t

+
1

Ma
∇ ⋅ (ρuu) ≙ − 1

γMa
∇p+ 1

Re
∇ ⋅ τ+ Ma

Fr
(ρ∞ −ρ)gêy, (6)

∂(ρθ)
∂t

+
1

Ma
∇ ⋅ (ρθu) ≙ k

Cp

⎧⎪⎪⎨⎪⎪⎩
1

RePr
∇2

θ +
γ − 1
γ
(∂ρ
∂t

+
1

Ma
u ⋅ ∇p)

+
γ − 1
Re

τ∶ ∇u⎫⎪⎪⎬⎪⎪⎭, (7)

where the nondimensional numbers appearing in the equations are
the Froude number Fr, Mach number Ma, Prandtl number Pr, and
Reynolds number Re and are defined as

Fr ≙ U2

goL
, Ma ≙ U

Co
, Pr ≙ ν

α
, γ ≙ Cp

Cv
, Re ≙ U∞L

ν
.

The low Mach number flows with heat transfer discussed in
this work are referred to as quasi-incompressible and are charac-
terized by Mach numbers of 10−3 or lesser. One can arrive at the
low Mach number equations35 by expanding the velocities as well as
thermodynamic variables in a small parameterMa as follows:

u ≙Ma[u(0) +Ma
2
u
(1)

+ o(Ma
2)], (8)

θ ≙ θ(0) +Ma
2
θ
(1)

+ o(Ma
2), (9)

p ≙ P(0) +Ma
2
p
(1)

+ o(Ma
2), (10)

ρ ≙ ρ(0) +Ma
2
ρ
(1)

+ o(Ma
2). (11)

One can see that P(0) appearing in the asymptotic expansion for pres-
sure is essentially the background pressure which is also referred to

as the thermodynamic pressure. The second order perturbation p(1)

appearing in the asymptotic expansion represents the hydrodynamic
pressure, and its gradient drives the flow. We denote the thermo-
dynamic and hydrodynamic pressure as P and p, respectively, and
the superscripts are dropped for sake of convenience. The lowMach
number equations may be obtained by comparing terms ofO(1) and
O(Ma2), and one may refer to work of Paolucci35 for the details of
these equations. The dimensional form of the low Mach number
equations is given as follows:

∂ρ

∂t
+∇ ⋅ (ρu) ≙ 0, (12)

∂(ρu)
∂t

+∇ ⋅ (ρuu) ≙ −∇p +∇ ⋅ τ + (1 − ρ)êy, (13)

∂(ρθ)
∂t

+∇ ⋅ (ρuθ) ≙ k

Cp
∇2

θ +
1

Cp
(dP
dt
), (14)

P ≙ ρrθ. (15)

One can clearly see that the low Mach number equations have two
distinct pressure fields, the hydrodynamic pressure p(x, t) and the
thermodynamic pressure P(t). It must be remarked that the latter
depends on the equation of state (EOS) and is only a function of
time. The thermodynamic pressure thus remains constant (at any
given time instant) everywhere in space, while the hydrodynamic
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pressure varies both in space and time. We consider the nondimen-
sionalization of the lowMach conservation laws by choosing suitable

reference scales. The velocity scale is chosen as
√
gβLΔθ for natural

convection flows, while it is U∞ (which is imposed) for mixed con-

vection flows. The temperature is nondimensionalized as θ∗ ≙ θ−θo
θh−θc

,

where θh and θc are the temperatures of hot and cold walls and θo
is a simple average of these values. The hydrodynamic pressure is

nondimensionalized, akin to incompressible flows as, p∗ ≙ p−Po
ρ
∞
U2
∞

,

where Po is the reference scale for thermodynamic pressure and the
velocity scale is different for free and mixed convection flows. The
dimensionless time scale is L

U
∞

. The final system of dimensionless

conservation laws in the low Mach number limit (dropping ∗ for
convenience) is

∂ρ

∂t
+∇ ⋅ (ρu) ≙ 0, (16)

∂(ρu)
∂t

+∇ ⋅ (ρuu) ≙ −∇p + C1(∇ ⋅ τ) + C2(1 − ρ)êy, (17)

∂(ρθ)
∂t

+∇ ⋅ (ρuθ) ≙ C3∇2
θ + C4(dP

dt
), (18)

P ≙ (1 +Gaθ)ρ, (19)

where the dimensionless numbers appearing in coefficients C1, C2,
C3, and C4 (shown in Table I) include the Rayleigh number Ra, the
Richardson number Ri, and the Gay–Lussac number Ga which are
defined as

Ga ≙ β(θh − θc), Ra ≙ gβ L3(θh − θc)
αν

, Ri ≙ Ra

PrRe2
.

We assume that the fluid has constant viscosity and ther-
mal conductivity in our studies although a generalization for vari-
able fluid/thermal properties is a relatively straightforward affair.
An important aspect of the numerical solution to the low Mach
conservation laws is the computation of thermodynamic (P) and
hydrodynamic pressures. The latter which drives the flow does not
have a natural evolution equation, and we defer its discussion to
Sec. IV. The thermodynamic pressure P is constant in both space
and time for open systems, but for closed systems considered in this
work, the thermodynamic pressure is only spatially invariant and we
obtain an expression for the time dependent thermodynamic pres-
sure from the principle of global mass conservation. Realizing that
the total mass of a closed system remains invariant with time, we
have

P ≙ mo +Ga ∫Ωd
(ρθ)dΩ

∫Ωd
dΩ

, (20)

TABLE I. The nondimensional coefficients of governing equations.

C1 C2 C3 C4

Natural convection
√

Pr
Ra

1
Ga

√
1

PrRa

γ−1
γGa

Mixed convection 1
Re

Ri
Ga

1
RePr

γ−1
γGa

where m0 is the initial mass in the enclosure and Ωd is the total
volume of the enclosure. The velocity field in quasi-incompressible
flows is nondivergent, and an expression for velocity divergence can
be easily derived. Rearranging the thermal energy equation Eq. (18)
and employing the continuity equation gives

∇ ⋅ u ≙ 1

P

⎡⎢⎢⎢⎢⎣C3Ga∇2
θ − 1

γ

dP

dt

⎤⎥⎥⎥⎥⎦. (21)

Realizing that
dP

dt
is constant everywhere in the domain and that all

boundaries are impermeable leads to

dP

dt
≙ γC3Ga

Ωd
∫
δΩd

∇2
θ dΩ, (22)

where δΩd is the boundary of the computational domain Ωd that
is occupied by fluid. It is easy to see that in the Boussinesq limit,
Ga → 0, and we recover the zero velocity divergence constraint.
Consequently, the thermodynamic pressure P becomes spatially and
temporally invariant. The low Mach formulation therefore encom-
passes genuinely incompressible flows and allows for a unified
treatment of Boussinesq and non-Boussinesq flows with a single
algorithm.

III. HYBRID STAGGERED/NONSTAGGERED FINITE
VOLUME APPROACH

We briefly describe in this section finite volume discretization
of the low Mach number equations presented in Sec. II. We employ
a novel hybrid staggered/nonstaggered framework as also described
in Ref. 7 to solve the conservative laws. The key idea of the proposed
framework is that we solve the scalar momentum equation at the cell
faces as opposed to the collocated framework. Therefore, indepen-
dent of the dimensionality of the problem, we solve a single scalar
equation for the normal momentum equation which is obtained by
projecting the momentum equation (17) along the normal direction
to the face (see Fig. 1). Employing a fractional-step approach akin
to incompressible flows leads to the following discrete equation for
normal momentum:

3(ρU)∗f − 4(ρU)mf + (ρU)m−1f

2Δt
≙ − 1

Ω
C(U∗f ,u∗) − δpm

δn
∣
f

+
1

Ω
C1D(U∗f ,u∗) + C2(1 − ρmf )ny,f ,

(23)

where

C(U∗f ,u∗) ≙ [ ∑
e∈E(Ω)

ρeu
∗
e U
∗
e ΔSe] ⋅ nf ,

D(U∗f ,u∗) ≙ [ ∑
e∈E(Ω)

(∇ue + (∇ue)T − 2

3
(∇ ⋅ u)I)⋅ne ΔSe] ⋅ nf ,

where ΔSe and ne refer to the surface area and outward unit normal
of the edge “e”, respectively. It must be remarked that Ω repre-
sents the union of two cells sharing the face “f,” where the normal
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FIG. 1. The control volume for normal momentum combines the two adjacent cells
i and j (Ω = Ωi ∪Ωj ).

momentum ρU f is computed and the “∗” denotes the auxiliary or
provisional momentum values which are subsequently corrected.
Although the solution to the momentum at the faces is similar
to staggered mesh approaches, the convective and diffusive fluxes
appearing in Eq. (23) are calculated in the same manner as in a non-
staggered framework. Therefore, the viscous fluxes computed using
central differencing while the convective fluxes are calculated using
a second-order bounded upwind-biased scheme with the hydrody-
namic pressure appear as a normal derivative in the momentum
equation. It must be noted that the summation in Eq. (23) is over
all faces of the combined control volume Ω. The energy equation
that defines the temperature field (which is scalar) is solved at the
cell center (see Fig. 2) like in a collocated framework. The treatment
of convective and diffusive fluxes for the energy equation is similar
to those for momentum described previously and the discrete energy
equation reads

FIG. 2. The control volume (Ωc) for solution of scalar variables like energy (ρθ)
and pressure correction (Φ).

Ωc
3(ρθ)m+1

c − 4(ρθ)mc + (ρθ)m−1c

2Δt
+ ∑

e∈E(Ωc)

(ρθ)m+1
e U

m+1
e ΔSe

≙ C3 ∑
e∈E(Ωc)

δθ

δn
∣m+1

e
ΔSe + C4

dPm+1

dt
Ωc, (24)

where Ωc is the volume of the cell at which the temperature is com-
puted and the summation is over all the faces of this cell. It must
be realized that the temperature discretization is also second-order
accurate and employs three-point backward differencing (BDF2)
which needs to be “started” using first-order Euler time stepping.
This however does not affect the overall second-order temporal
accuracy of the solver. The construction of the discrete equation for
the evolution of hydrodynamic pressure “p” is a critical aspect of the
solution procedure. The hydrodynamic pressure drives the flow but
does not have a natural evolution equation. Following the fractional
step approach, we subtract the normal momentum equations at “∗”
and (m + 1)-th time levels which gives

Um+1
f −U∗f

Δt
≙ − 2

3ρm+1

δΦ

δn

RRRRRRRRRRRf , (25)

where Φ = pm+1 − pm is the correction to hydrodynamic pressure. It
must be remarked that Eq. (25) is only an approximation since the
differences of the convective and diffusive flux contributions have
been neglected which introduces second-order errors. Summing up
Eq. (25) overall faces of a cell gives

2

3
Δt ∑

e∈E(Ωc)

1

ρm+1
e

δΦ

δn
∣
e
ΔSe ≙ − ∑

e∈E(Ωc)

U
m+1
e ΔSe + ∑

e∈E(Ωc)

U
∗
e ΔSe, (26)

which may be interpreted as the discrete Poisson equation
for hydrodynamic pressure correction. It must be realized that∑
e∈E(Ωc)

Um+1
e ΔSe represents the discrete divergence constraint at

(m + 1)-th time level which follows from Eq. (21) as

∑
e∈E(Ωc)

U
m+1
e ΔSe ≙ 1

P

⎡⎢⎢⎢⎢⎣C3Ga ∑
e∈E(Ωc)

δθ

δn
∣
e
ΔSe − C4

dP

dt
Ωc

⎤⎥⎥⎥⎥⎦. (27)

One can clearly see that asGa→ 0, the incompressibility constraint is
recovered. The normal derivative for “p” (in the momentum equa-
tion) and Φ (in the Poisson equation) is obtained using standard
central differencing which for the pressure correction reads

δΦ

δn
∣
f
≈ Φj −Φi

Δn
, (28)

where the subscripts j and i refer to the centroids of cells sharing the
face f and Δn refers to the distance between centroids of i and j cells.
It must be realized that unlike the hydrodynamic pressure, the ther-
modynamic pressure P is defined by EOS. Importantly, P remains
constant everywhere in a closed domain for any given time instant.
The value of Pm+1 follows from the discrete analog of Eq. (20) and
reads

P
m+1 ≙ mo +Ga∑(ρθ)m+1

c Ωc

∑Ωc
, (29)

where m0 ≙ ∑ ρ
(0)
c Ωc is the total initial mass in the enclosure and

the summation in Eq. (29) is over all cells. We stress that the solution
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approach also requires the time derivative of thermodynamic pres-

sure dP
dt
which appears as a source term, both in the Poisson equation

Eq. (26) as well as the energy Eq. (24). This may be determined from
a discrete analog of Eq. (22) as

dP

dt
=

γ

Ωd

C3Ga ∑
e∈(δΩd)

δθ

δn
∣
e
Δse. (30)

The discretization of the normal derivative of θ is similar to that ofΦ
and p and employs central differencing.Wemust remark herein that

the quantity dP
dt

is treated implicitly in the solution of energy equa-
tion which leads to a more robust solution approach particularly for
large values of Ga. The computation of density follows from EOS as

ρ
m+1
= P

m+1 −Ga(ρθ)m+1
, (31)

where the quantities in the RHS of Eq. (31) are obtained from the
discrete global mass preservation condition Eq. (29) and the solution
to the energy equation Eq. (24). The normal momentum and hydro-
dynamic pressure at (m + 1)-th time level are obtained through a
correction step that reads

p
m+1
= p

m
+Φ, (ρU)m+1

f = (ρU)∗f − 2

3
Δt

δΦ

δn
∣
f
. (32)

The centroidal velocities um+1 and vm+1 are recovered through a
vector interpolation strategy36 and are given by

u
m+1
c =

1

Ωc
∑

e∈E(Ωc)

U
m+1
e (xf − xc)ΔSe, (33)

where xf and xc are the position vector of face and cell center, respec-
tively, while Ωc represents the cell volume. Summarizing the strat-
egy, we stress that while the normal momentum equation is solved
for at the faces as in a staggered framework, the energy and Poisson
equations are solved at the cell centers like in a collocated frame-
work. This unique hybrid staggered/nonstaggered framework has
been previously employed for incompressible flows where its accu-
racy and conservation properties have been studied.37,38 We also
remark that the implicit nonlinear equation for normal momen-
tum is solved using the Newton-Krylov solver with help of PetSc
libraries,39 while the linear systems of equations arising from the dis-
crete equations for energy and hydrodynamic pressure correction
are solved using GMRES/BiCGSTAB solvers with SAAMG pre-
conditioning implemented using LiS libraries.40 A summary of the
numerical methodology (see Algorithm 1) pertaining to the FV
framework in the present study is presented below.

We can consider the genuinely incompressible flows as a limit-
ing case of quasi-incompressible flows discussed here when Ga→ 0.
In this limit, the thermodynamic pressure becomes constant both in
space and time [see Eq. (29)] and its temporal derivative in Eq. (30)
vanishes identically. As a result, the discrete divergence condition
in Eq. (27) reduces to the familiar constraint of a solenoidal veloc-
ity field and the thermal energy equation Eq. (24) is devoid of the
source term that otherwise needs an implicit treatment. The low
Mach number finite volume solver is therefore a generalization that
considers a nonsolenoidal velocity divergence, and the presence of a
time-dependent pressure for large values of Ga along with a variable
density field makes the treatment of the energy and Poisson equa-
tions different from those for standard incompressible solvers. These

ALGORITHM 1. Solution methodology of hybrid staggered/nonstaggered framework.

1. Initialize all conserved and primitive quantities in the domain.

2. Solve the energy equation Eq. (24) for temperature (θm+1) using
ρm.

3. Determine thermodynamic pressure (Pm+1) using Eq. (29).

4. Calculate density (ρm+1) from θm+1 and Pm+1, using Eq. (31).
5. Solve the scalar normal momentum equation [(ρU)∗f ] using

Eq. (23).
6. Solve the pressure correction equation (Φ) using Eq. (26).

7. Obtain the (ρU)m+1
f and Pm+1 from Eq. (32).

8. Obtain the centroidal velocities (um+1, vm+1) from Eq. (33).
9. Go to step 2 and reiterate the process until convergence criterion

is satisfied.

complexities also pose challenges when devising the diffuse interface
immersed boundary method which is described in greater detail in
Sec. IV.

IV. DIFFUSE INTERFACE IMMERSED BOUNDARY
METHOD

This section is devoted to the description of the diffuse
interface immersed boundary (IB) method in the hybrid stag-
gered/nonstaggered finite volume framework discussed in Sec. III.
The diffuse interface IB methodology is based on the work of Pan23

which employs an indicator function to construct a “unified” equa-
tion that is solved everywhere in the domain. This approach has been
previously extended for solving flows with heat transfer27 as well as
multiphase flows31 in the incompressible flow regime. We attempt
to exploit the diffuse interface IB approach to construct a unique
IB-FV framework that is capable of solving both Boussinesq and
non-Boussinesq flows, thereby extending the approach to handle
quasi-incompressible flows. We now highlight the major differences
between the proposed IB-FV solver and its incompressible counter-
parts23,27,31 to highlight the challenges for the development of such a
framework.

1. All previous studies that employ the volume-of-solid
approach23,27,31 have dealt with incompressible flows. De27

considered single phase flows, while the diffuse interface IB
approach was employed for multiphase flows in the investi-
gations of Patel and Natarajan.31 However, low Mach number
flows discussed in this work are quasi-incompressible which
means that the zero velocity divergence constraint no longer
holds good.

2. Previous studies27,31 have considered a single pressure field for
hydrodynamic pressure only. Low Mach number flows have
two distinct pressure fields which must be accounted for by the
numerical framework. Specifically, for flows in enclosures, the
thermodynamic pressure is spatially constant but temporally
varying, in general.

3. Non-Boussinesq flows studied herein are variable density sin-
gle phase flows. Earlier investigations23 have considered con-
stant density single phase flows and two-phase flows31 where
the density of each phase is necessarily constant.
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FIG. 3. Schematic of the node classification algorithm.

These salient differences show that the construction of a dif-
fuse interface IB-FV solver for low Mach numbers is a nontrivial
proposition. Nevertheless, the basic philosophy behind such a
framework remains unaltered—to treat the solid analogous to the
fluid so that “unified” conservation laws may be devised. These “uni-
fied” governing equations are dependent on the solid volume frac-
tion (also referred to as solid fraction) and are constructed to satisfy
the Navier-Stokes equations in the fluid regions and the relevant
boundary condition within the solid. We elucidate the computa-
tion of the solid fraction ϕB (Sec. IV A) and the construction of the
unified governing equation in Sec. IV B.

A. Computation of solid fraction

The solid fraction ϕB is an indicator function that denotes the
fraction of solid occupying a given cell. The body is assumed to be
composed of a finite number of Lagrangian marker points and is
then “immersed” into the underlying Cartesian mesh. We first iden-
tify the nodes inside the body (solid nodes denoted S) and outside of
it (fluid nodes denoted F), as shown in Fig. 3. The node classification
algorithm is summarized (see Algorithm 2).

The node classification algorithm is applied only to nodes
inside a “bounding box”41 containing the solid body. All nodes out-
side of the box are fluid nodes, and this reduces the total cost the
classification algorithm. Furthermore, the nearest face is also deter-
mined in a computationally efficient manner as also described in

ALGORITHM 2. Node classification.

1. For each node, we identify the nearest face on the body.
2. Calculate the vector d = xnf − x, where x and xnf are the posi-
tion vectors of the node and the centroid of the nearest face,
respectively.

3. Evaluate the scalar product d⋅nnf where nnf is the unit outward
normal to the face.

4. If the scalar product is positive, then the node is a solid node, else
it is a fluid node.

ALGORITHM 3. Solid fraction computation.

1. Divide every “I” cell into a “virtual” N × N sub-grid consisting of
N2 sub-cells.

2. Apply the “node classification” algorithm to the cell-centers of
those sub-cells. Let the number of sub-cells classified as being solid
be equal to Nv.

3. The solid fraction of the cell is ϕB ≙ Nv

N2 .

Ref. 42. It is now possible to classify all the cells in the mesh into
three categories. A cell for which all nodes are solid nodes is a solid
cell (“S”). The fluid cells (“F”) are those for which all nodes are
fluid nodes. All cells that do not fall in these two categories are the
immersed (“I”) cells. One can easily recognize that “I” cells are those
cells that necessarily contain some part of the solid geometry and
therefore 0 < ϕB < 1 in these cells. By definition, ϕB = 1 in “S” cells
and ϕB = 0 in “F” cells. The algorithm to obtain the true volume
fraction each “I” cell is described (see Algorithm 3).

The algorithm is a simple reuse of the node classification
approach to virtual subcells and gives a reasonable accurate estimate
of the solid fraction if sufficient number of subcells are considered.
In studies herein, we use N = 5 or 6 (which corresponds to 25 or 36
subcells per “I” cell). Figure 4 shows an illustration of this approach
which has been found to be quite accurate in computing the solid
fraction in the test cases discussed herein.

B. Unified momentum and energy equation

The key principle behind the diffuse interface IB approach is
to solve “unified” conservation laws everywhere in the domain. The
“unified” equations must satisfy the following conditions.

1. It must reduce to the governing equations for the fluid flow in
the “F” cells (ϕB = 0).

2. It must reduce to the boundary conditions in the “S” cells
(ϕB = 1).

3. It must be a weighted combination of the governing equations
and the boundary conditions in the “I” cells (0 < ϕB < 1).

FIG. 4. Illustration of volume fraction computation for “I” cells. In this case,
ϕB =

22
36

.
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We consider herein viscous flows with isothermal walls and there-
fore the unified normal momentum equation reads

(1 − ϕB)⎡⎢⎢⎢⎢⎣
3(ρU)∗f − 4(ρU)mf + (ρU)m−1f

2Δt
+

1

Ω
C(U∗f ,u∗) + δp

δn
∣m
f

− 1

Ω
D(U∗f ,u∗) − C2(1 − ρmf )ny,f ⎤⎥⎥⎥⎥⎦ ≙ −ϕB[

ρUm+1
f − 3(ρU)B

2Δt
],

(34)

where UB refers to the normal velocity of the body surface that is
also imposed within the solid thereby enforcing the no-slip condi-
tion. This value is identically zero for stationary bodies while in case
of moving bodies may either be imposed to a nonzero value or com-
puted from ancillary equations. In a similar vein, the unified energy
equation reads

(1 − ϕB)[Ωc
3(ρθ)m+1

c − 4(ρθ)mc + (ρθ)m−1c

2Δt
+ ∑

e∈E(Ωc)

(ρθ)m+1
e U

m+1
e ΔSe

−C3 ∑
e∈E(Ωc)

δθ

δn
∣m+1

e
ΔSe − C4

dPm+1

dt
Ωc

⎤⎥⎥⎥⎥⎦
≙ −ϕB[3(ρθ)m+1

c − 3(ρθ)B
2Δt

]Ωc, (35)

where θB refers to the constant temperature imposed on the surface
of the solid. It must be remarked that the “unified”momentum equa-
tion can be recast as a nonlinear scalar equation, while the “unified”
energy equation leads to a system of linear algebraic equations. The
reasoning of a “unified” equation is based on the assumption that the
solid is filled with a virtual fluid which allows the solid region to be
treated as if it were a fluid, in conjunction with the correct bound-
ary conditions. The single phase flows in Refs. 23 and 27 considered
the same fluid both inside and outside the solid, while the “virtual”
fluid was the densest (and most viscous) of all fluids in a multiphase
context.31 The choice of the “virtual” fluid for variable density single
phase flows considered in this work remains to be addressed and is
discussed in Sec. IV C.

C. Choice of virtual fluid

The basic philosophy of the diffuse interface IB approach, as
discussed in Sec. IV, is to construct and solve “unified” governing
equations for the momentum and energy. This treatment is made
possible because we assume that the solid body is filled with a “vir-
tual” fluid. While the studies that deal with constant density incom-
pressible flows23 consider the same fluid both inside and outside the
body, two-phase investigations31 choose a “virtual” fluid with high-
est density and viscosity. However, these studies consider genuinely
incompressible flows unlike in the present work where the flow is
quasi-incompressible. This raises the pertinent question: how does
one choose the properties of the fluid that is assumed to occupy the
solid? The strategy to choose the “virtual” fluid is surprisingly sim-
ple though and is based on the principle that the fluid flow inside
the bodymust satisfy the incompressibility constraint. This demands
that the density within the solid region remain constant at all times
so that the overall continuity equation is still satisfied. Consequently,

we choose the “virtual” fluid as a constant density fluid whose den-
sity is chosen equal to the initial density of the “real” fluid (at
t = 0) although any other constant value is also admissible. The ther-
mophysical properties (μ and K) are kept constant and equal to the
corresponding values of the “real” fluid which are independent of
temperature in the present study. However, if the “real” fluid has
variable thermophysical properties, we merely choose to assign their
initial values at (t = 0) to the “virtual” fluid. One can also appreciate
the choice of a constant density for the “virtual” fluid from a physical
perspective as well since the incompressible fluid flow is analogous
to a rigid solid. We can therefore see that the density of the “vir-
tual” fluid is a free parameter and may be enforced to any realizable
constant value within the solid. This was also recognized by Boiron
and co-workers,43 albeit for high Mach number studies. This obser-
vation is also true for studies with genuinely incompressible single
phase flows23,27 which however make the most obvious choice for
the “virtual” fluid.

D. Computation of P and dP
dt
in immersed boundary

approach

One of the critical aspects for the low Mach number IB
approach is the calculation of thermodynamic pressure and its

derivative dP
dt
. While Eqs. (29) and (30) in Sec. III discuss the compu-

tation of these quantities without the IB approach, we now detail its
calculations in the framework of the diffuse IB methodology. We see
from Eq. (29) that P is computed using the principle of global mass
preservation; however, this only applies to the “real” fluid occupy-
ing the domain. Subsequently, we compute the spatially invariant
thermodynamic pressure as

P
m+1 ≙ mo +Ga∑(1 − ϕB)c(ρθ)m+1

c Ωc

∑(1 − ϕB)cΩc
, (36)

where θm+1
c ≙ (ρθ)m+1

c

ρm+1
c

is the temperature in the cell and the sum-

mation in Eq. (36) is over all cells in the domain. However, it is easy
to see that cells that lie completely in the solid do not contribute to
the calculation of P. It must be remarked that the thermodynamic
pressure does not obey the EOS in the solid region. The computa-

tion of the temporal derivative dP
dt

adopts a similar approach to that
for computing P. We know from Eq. (30) that

dP

dt
≙ γ

Ωd

C3Ga ∑
e∈(δΩd)

δθ

δn
∣
e
Δse. (37)

One can cast this in the IB-FV framework using the solid fraction by
realizing that Eq. (37) is discrete analog of the following equation:

dP

dt
≙ γC3Ga

Ωd
∫
Ωd

∇ ⋅ ∇θ dΩ, (38)

where Ωd is the volume of the domain occupied by the “real” fluid
(which is the volume of the entire computational domain minus
solid volume) and δΩd represents the surface bounding this domain.
We therefore have

Ωd ≙ ∑(1 − ϕB)cΩc, (39)

where Ωc is the volume of a cell and the summation is over all cells
in the domain. The volume integral in Eq. (38) which is also over the
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region occupied by the “real” fluid can be evaluated in an analogous
manner. The integral can be evaluated as the sum of several subinte-
grals over all nonoverlapping individual cells that contain the “real”
fluid in (1 − ϕB) of their volume. This gives

∫
Ωd

∇2
θ dΩ ≈∑(1 − ϕB)c ∫

Ωc

∇2
θ dΩ,

≈∑[(1 − ϕB)c ∑
e∈E(Ωc)

δθ

δn
∣
e
Δse], (40)

where the outer summation in Eq. (40) is over all cells in the com-
putational domain. One can clearly see again that the solid cells do
not contribute to the integral and the solid fraction plays a dominant
role in the immersed cells to account for the presence of the body in
the computation of the temporal derivative of the thermodynamic
pressure.

It must be remarked here that dP
dt

appears both as a source
term in the energy equation as well as the Poisson equation. The
latter equation in the IB framework will be dealt with in detail in
Sec. IV E, but we remark that dP

dt
is necessarily treated in an implicit

manner in the energy equation [see Eq. (35)]. This means that the
latest available values of temperature are employed and the term is
considered as a lagged source term to enable the construction of a
system of linear algebraic equations. Subsequently, the linear system
for the energy equation is solved several times in each time step—8–
10 outer iterations per time step suffice for accurate solutions in the
present studies.

E. Unified Poisson equation

The greatest challenge in implementing the diffuse interface IB
approach for low Mach flows is arguably the Poisson equation. In
the incremental fractional step approach adopted in this work, we
solve a Poisson equation for pressure correction. Like with momen-
tum and energy equation, the Poisson equation must also be solved
everywhere in the domain, including inside the solid. A close look
at the Poisson equation in earlier studies with the diffuse interface
IB approach23,27,31 show that the elliptic partial differential equation
(PDE) solved everywhere in the domain is independent of the solid
fraction ϕB. This is not surprising since these studies considered
flows that were incompressible, both inside and outside of the solid.
On the contrary, the present work considers the flow to be quasi-
incompressible (in general) outside the solid, while it is assumed to
remain incompressible inside of it. Therefore, the unified Poisson
equation must seamlessly transition from the nonzero divergence
constraint applicable in the fluid region to the incompressibility con-
straint within the solid body. Recall that the “unified” momentum
and energy equations transition from the Navier-Stokes equations
outside of solid to Dirichlet boundary condition (isothermal wall
for θ, no-slip boundary condition for U f ) inside it. The “unified”
equations consider that the Dirichlet conditions that strictly apply
on the surface may be “extended” into the solid domain. We there-
fore devise the unified Poisson equation from the understanding that
the discrete velocity divergence in any cell may be calculated as

(DIV)c ≙ (1 − ϕB)c(DIV)(c,f ) + ϕB(DIV)(c,s), (41)

where “DIV” is the discrete divergence and the subscripts (c, f )
and (c, s) denote the respective expressions for the velocity diver-
gence corresponding to the purely fluid and solid regions. It is easy

to see that (DIV)(c,s) ≙ 0 by virtue of incompressibility constraint
enforced inside the solid. We therefore have, using Eq. (27),

∑
e∈E(Ωc)

U
m+1
e ΔSe ≙ (1 − ϕB)c

P
C3Ga

×⎡⎢⎢⎢⎢⎣ ∑e∈E(Ωc)

δθ

δn
∣
e
−, Ωc

Ωd
∑

e∈(δΩd)

δθ

δn
∣
e

⎤⎥⎥⎥⎥⎦ΔSe, (42)

which indicates that only the fluid volume must be accounted while
handling the quasi-incompressibility constraint on velocity diver-
gence. Following the same approach detailed in Sec. III gives the
discrete Poisson equation that reads

2

3
Δt ∑

e∈E(Ωc)

1

ρe

δΦ

δn
∣
e
ΔSe ≙ (1 − ϕB)

P
C3Ga

×⎡⎢⎢⎢⎢⎣ ∑e∈E(Ωc)

δθ

δn
∣
e
− Ωc

Ωd
∑

e∈(δΩd)

δθ

δn
∣
e

⎤⎥⎥⎥⎥⎦ΔSe− ∑
e∈E(Ωc)

U
∗
e ΔSe. (43)

It must be mentioned that the quantity δΩd in Eqs. (42) and (43)
now refers to the bounding surface of the entire computational
domain and not just the region containing the “real” fluid, with
the presence of the solid surface felt through the (1 − ϕB) term in
these equations. We therefore see that the Poisson equation solved
in the IB framework Eq. (43) is evidently dependent on ϕB like
the momentum and energy equations. This is unlike fully incom-
pressible flows23 where ϕB does not appear in the Poisson equation.

Notice that the quantity dP
dt

appears as a source term in the Poisson
equation but is independent of the hydrodynamic pressure correc-
tion that is solved for and the resulting system of linear equations
is solved just once in every time step. It must be remarked that
the density at the faces is obtained from the centroidal values using
the volume-weighted interpolation in this work although one can
employ harmonic averaging as well.

The unified Poisson equation becomes completely independent
of ϕB in the limit as Ga→ 0 which is consistent with previous stud-
ies,23,27,31 and this makes the proposed approach generic in nature.
It must be noted that while a similar approach was used to tackle a
combination of incompressible and compressible flows,44 the result-
ing equation for pressure therein is a Helmholtz equation unlike the
variable coefficient Poisson equation in the present study. The uni-
fied equation presented in this work and the associated IB-FV solver
is perhaps the first known instance of an immersed boundary frame-
work for low Mach number quasi-incompressible flow with heat
transfer in closed domains.

F. Calculation of density

The calculation of density in each cell in the IB-FV framework
is important since it appears in the momentum, energy, and Poisson
equations. While the EOS is used to obtain the density in the fluid
(“F”) cells, its value is maintained constant in all solid (“S”) cells.
One can therefore write a generic expression for the density in any
cell as

ρ
m+1
c ≙ (1 − ϕB)c(Pm+1 −Ga(ρθ)m+1

c ) + (ϕB)cρ0, (44)
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where ρ0 is the constant density enforced within the solid. It must
be emphasized that the density is not obtained using the EOS within
the solid region which is occupied by a “virtual” fluid.

G. Calculation of Nusselt number

The surface averaged Nusselt number is defined as

Nuavg =
1

C ∫SNuds, (45)

where S refers to the surface bounding the solid and C is the area of
this surface. For two-dimensional problems considered in this work,
C is merely the perimeter of the solid boundary. In the diffuse IB
framework, this solid boundary does not conform to the underlying
Cartesian mesh and therefore the evaluation of the integral is not
trivial. We assume for this purpose that the bodymay be represented
by “stair-step” approximated domain comprising faces shared by the
immersed “I” and solid “S” cells. We therefore have

Nuavg =
1

C
∑NueΔSe, (46)

where summation is over all edges of the stair-step boundary that
approximates the solid surface. The local Nusselt number on each
edge (or face) may then be estimated as

Nue =
θI − θS
Δn

, (47)

where θI is the value of the temperature in the immersed cell temper-
ature and θS is the constant temperature imposed in the solid andΔn
is the distance along the face normal direction between the centroids
of the “S” and “I” cells sharing the face that constitutes the stair-step
approximated domain.

V. NUMERICAL STUDIES

We now consider a collection of test problems involving low
Mach number flows with heat transfer to highlight the efficacy of
the proposed diffuse interface IB/FV framework. We must assert
that there are no well-known test cases involving stationary and
moving bodies in the non-Boussinesq regime which makes compar-
ative studies of the proposed solver with the existing literature quite
difficult. Nevertheless, for stationary body problems, we make com-
parison with a previously validated body-fitted finite volume (FV)
and for moving geometries validation studies are carried out in the
Boussinesq limit. The investigations consider both free and mixed
convective flows in enclosures.

A. Natural convection in Boussinesq limit

We consider the natural convection in a square enclosure of
side L with a heated cylinder of a diameter D = 0.2L placed at the
center. The walls of the enclosure are all kept at the same nondi-
mensional temperature of θc = −0.5, while the heated cylinder is
maintained at θh = 0.5. To simulate the Boussinesq convection, we
use Ga = 0.02 and studies are carried out for three different Rayleigh
numbers, viz., Ra = 104, Ra = 105, and Ra = 106. We have numer-
ically computed the solutions on four different uniform Cartesian
meshes with grid resolutions Δx = Δy = 0.02, 0.01, 0.0066, and 0.005
into which cylinder having 200 points is immersed. Following the

FIG. 5. The centerline velocity and temperature profiles on different Cartesian
meshes at Ga = 0.02; (a) along the horizontal X-axis and (b) along the vertical
Y-axis.

discussion in Sec. IV C, we set the initial density equal to unity inside
the solid at all times. The computations employ a constant time step
Δt = 0.005 and converge to steady state. One can see from Fig. 5 that
the centerline line velocity and temperature profiles are not very dif-
ferent on the four meshes. However, a comparison of the averaged
Nusselt number on the cylinder surface presented in Table II shows
that the numerical solutions are grid independent for mesh reso-
lution of Δx = 0.005. Furthermore, the computed surface Nusselt
number for this mesh also agrees well with the results reported in
the literature45,46 for all Rayleigh numbers. This test may therefore
be construed both as a primary validation study and a grid inde-
pendence study. In view of the results obtained for this test case, we
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TABLE II. Comparison of the averaged Nusselt number (Nuavg) with other benchmark
solutions.

Grid Ra = 104 Ra = 105 Ra = 106

50 × 50 1.57 2.75 5.02
100 × 100 1.81 3.38 5.88
150 × 150 2.02 3.80 6.10
200 × 200 2.02 3.81 6.11

Shu et al.45 2.08 3.78 6.10

Moukalled and Archarya46 2.07 3.82 6.10

carry out all computations in the test cases to follow on a 200 × 200
Cartesian mesh.

B. Mixed convection in Boussinesq limit

We now consider the case of mixed convection in the enclo-
sure which is affected by rotating a circular cylinder of D = 0.4L
at a constant angular velocity. We choose Ga = 0.02, and compu-
tations are carried out at two different Richardson numbers, Ri = 1
and 10 for a fixed value of Ra = 106. The cylinder is immersed in a
200 × 200 Cartesian mesh, and the dimensionless angular velocity
is equal to 5. It must be remarked that the Reynolds number fol-
lows from the chosen value of Ra, Ri, and Pr. The time averaged
values of the surface Nusselt number from present studies are com-
pared with the computation of Cui et al.47 and Liao and Lin48 in
Table III. The depictions of the flow dynamics and temperature dis-
tribution in the cavity using streamlines and isotherms are presented
in Figs. 6 and 7. It is evident that the flow physics as well as the Nus-
selt number estimates are in excellent agreement with those reported
in the literature. These studies underline the ability of the low Mach
IB-FV solver in accurately computing convective flows in the Boussi-
nesq limit and also provide validation of the approach for problems
with stationary and moving bodies. We now assess the ability of the
solver in computing genuinely non-Boussinesq flows both in free
and mixed convection regimes.

C. Non-Boussinesq natural convection with stationary
cylinders

We consider the natural convection in enclosure with non-
moving solids at Ga = 1.2. This corresponds to large tempera-
ture differences between the heated cylinder and cold walls. The
dimensionless temperature of the cylinder surface and enclosure

TABLE III. Time averaged Nusselt number (Nu) on the surface of a circular heated
cylinder with other benchmark solutions.

Ra = 104 Ra = 105 Ra = 106

Ri = 1 Ri = 10 Ri = 1 Ri = 10 Ri = 1 Ri = 10

Present 6.25 6.32 6.29 8.97 6.55 15.01

Cui et al.47 . . . 6.40 . . . 9.01 . . . 15.18

Liao and Lin48 6.41 6.41 6.51 9.0 6.61 15.2

FIG. 6. Isotherms (a) present IB-FV and (b) the numerical photograph of Liao and
Lin at Ra = 106. Reproduced with permission from C.-C. Liao and C.-A. Lin, “Mixed
convection of a heated rotating cylinder in a square enclosure,” Int. J. Heat Mass
Transfer 72, 9–22 (2014). Copyright 2014 Elsevier.

boundary are 0.5 and −0.5, respectively. We reiterate that the ther-
mophysical properties are assumed constant and the square enclo-
sure is discretized by a uniform Cartesian mesh. Numerical inves-
tigations are carried out using three different geometric configu-
rations shown in Fig. 8 at Ra = 106. The triangular and circular
cylinder geometries do not conform to the underlying mesh, and
the former configuration has sharp corners, all of which are a test
of the IB-FV flow solver in addition to the complexities associated
with non-Boussinesq convection. A 200 × 200 mesh is employed for
these studies except in the triangular cylinder case where the grid
used has 250 points in each direction. The steady numerical solu-
tions computed for all three cases are presented using isotherms
in Fig. 9 where results corresponding to the Boussinesq regime are
also presented. We must remark that there are no reported stud-
ies of non-Boussinesq convection with solid bodies in enclosures
and therefore adopt the strategy of comparing the results from the
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FIG. 7. Streamlines (a) present IB-FV and (b) the numerical photograph of Liao
and Lin at Ra = 106. Reproduced with permission from C.-C. Liao and C.-A. Lin,
“Mixed convection of a heated rotating cylinder in a square enclosure,” Int. J. Heat
Mass Transfer 72, 9–22 (2014). Copyright 2014 Elsevier.

IB-FV solver with those obtained using a finite volume solver on
unstructured meshes. This flow solver has been previously vali-
dated for non-Boussinesq flows7 although no immersed bodies were
considered therein. The unstructured finite volume solver employs
triangulated meshes that conform to the cylinder geometry in all
three cases. One can see from Fig. 9 that there are no discernible

FIG. 9. Isotherms of Boussinesq (left at Ga = 0.02) and non-Boussinesq (right at
Ga = 1.2) flows for different shapes of heated cylinder: [(a) and (b)] circular cylinder,
[(c) and (d)] square cylinder, and [(e) and (f)] triangular cylinder. Solid line: IB-FV;
dashed line: FV on body-fitted mesh.

differences in flow and temperature patterns computed using FV
and IB-FV approaches. The centerline temperature and velocity pro-
files obtained with the immersed boundary approach also agree
reasonably well with those computed on unstructured conformal

FIG. 8. Schematic diagram of the heated cylinder placed in
a square cavity: (a) circular, (b) square, and (c) triangular.
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FIG. 10. The centerline velocity and temperature profiles of Boussinesq (left at Ga = 0.02) and non-Boussinesq (right at Ga = 0.8) flows for different shapes of heated cylinder:
[(a) and (b)] circular cylinder, [(c) and (d)] square cylinder, and [(e) and (f)] triangular cylinder.
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meshes, as evident from Fig. 10. It can therefore be concluded on the
basis of these results that the diffuse-interface immersed boundary
approach can compute the flow and thermal fields in the enclosure
quite accurately despite some diffusion of the geometric interface
including singular corners.

The comparative study of specific interest is the local Nusselt
distribution over the cylinder surface. The surface distribution of

the dimensionless heat flux is smooth and agrees well with those
obtained with body-fitted mesh only in the case of a square cylin-
der. This may be attributed to the fact that while the Cartesian mesh
does not conform to the square cylinder, the geometry is aligned
with the grid lines and thus leads to a smooth surface distribution
of the Nusselt number, as shown in Figs. 11(c) and 11(d). On the
contrary, the variation of the Nusselt number along the surface of

FIG. 11. The comparison of the local
Nusselt number distribution for Boussi-
nesq (left at Ga = 0.02) and non-
Boussinesq (right at Ga = 0.8) flows for
different shapes of heated cylinder: [(a)
and (b)] circular cylinder, [(c) and (d)]
square cylinder, and [(e) and (f)] triangu-
lar cylinder.
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TABLE IV. The averaged Nusselt number (Nuavg) on the surface of different heated cylinders.

Circular Square Triangular

Ga = 0.02 Ga = 0.8 Ga = 0.02 Ga = 0.8 Ga = 0.02 Ga = 0.8

IB-FV 17.42 17.01 21.08 20.38 16.94 15.98
FV (conformal mesh) 18.21 17.82 21.12 20.47 17.41 16.43

TABLE V. Time averaged Nusselt number Nu on the surface of a triangular heated cylinder at Ri = 10.

Ra = 104 Ra = 105 Ra = 106

Ga = 0.02 Ga = 1.2 Ga = 0.02 Ga = 1.2 Ga = 0.02 Ga = 1.2

Present 4.63 5.10 7.12 8.26 11.79 16.65

circular and triangular cylinders, while qualitatively correct, show
appreciable high frequency oscillations, as seen in Figs. 11(a), 11(b),
11(e), and 11(f). These spurious oscillations may be attributed to
the use of an “approximated domain” approach to calculate local
gradient quantities. Importantly, these oscillations persist even in
the Boussinesq regime as well and show only a weak dependence
on Ga. The local heat flux distribution obtained from the IB-FV

FIG. 12. Isotherms [(a) and (b)] and streamlines [(c) and (d)] for Boussinesq
(left at Ga = 0.02) and non-Boussinesq (right at Ga = 1.2) at Ra = 106 and
Ri = 10.

FIG. 13. Temporal history of the surface averaged Nusselt number Nu at Ri = 10.
(a) Ra = 105, (b) Ra = 106.
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FIG. 14. Temporal history of the volume error for an oscillatory cylinder at Ra = 106.

solver has discernible differences from those obtained using the
conformal FV solver on unstructured meshes for the case of circu-
lar and triangular cylinders. However, the surface-averaged Nusselt
number reported in Table IV for the circular and triangular cylin-
ders shows that the estimates using the IB-FV solver on the Carte-
sian grid, while lesser than those obtained using the unstructured
FV solver on the body-fitted mesh, are fairly close to each other.
This apparent contradiction can be explained by realizing that for
both these geometries, the local Nusselt number distribution is only
shown for a part of the boundary (top half of the circular cylin-
der and slanted edges of the triangular cylinder), while the surface-
averaged Nusselt number takes the local heat fluxes over the entire

boundary into account. Although not shown herein, the Nusselt
number distribution and its estimates for the circular and triangu-
lar cylinders is expected to improve with further grid refinement
although the oscillations appearing in the surface heat flux distribu-
tion using the diffuse IB approach are unlikely to diminish on finer
meshes.

D. Non-Boussinesq mixed convection: Rotating
triangular cylinder

To investigate the capability of the low Mach IB-FV solver for
moving body problems, we simulate the flow in a cavity with a
heated rotating triangular cylinder. The cylinder of side D = 0.4L
kept at θh = 0.5 is immersed into the square computational domain
whose boundaries are maintained at θc = −0.5. The domain is dis-
cretized using a 200 × 200 uniform and a constant dimension-
less angular velocity equal to 5 is imposed on the cylinder. Com-
putations are carried out for two different Rayleigh Numbers at
Ga = 1.2 and Ri = 10 with Δt = 0.001. The time-averaged Nusselt
number is shown in Table V for different values of Ga with the
estimates using the IB-FV solver on the Cartesian grid. The instanta-
neous streamlines and isotherms shown in Fig. 12 at t = 28.2 indicate
that the flow patterns change significantly as Ga increases and this is
also reflected in the temporal history of the surface averaged Nus-
selt number shown in Fig. 13. One can notice that the time histories
of the Nusselt number are oscillatory (akin to spurious force oscilla-
tions seen in histories of aerodynamic coefficients when computed
with a sharp interface IB approach) and a comparison of these his-
tories at the Boussinesq limit with those in a non-Boussinesq regime
for the same Ra (see Fig. 13) reveal that the oscillations are higher
in the non-Boussinesq regime. These oscillations which now appear
in the diffuse IB framework for the mean Nusselt number (which is
an integrated quantity) may be referred to as SHOs (spurious heat
flux oscillations). It may be noted, however, that their origin is not
the fresh cell/dead cell problem that leads to SFOs in sharp interface
IB methods and a deeper investigation on mitigating the SHOs is
necessary, which is however beyond the scope of the present work.

FIG. 15. Instantaneous isotherms (top)
and streamlines (bottom) during a cycle
of vertical motion at Ga = 0.02 and Ra
= 106.
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FIG. 16. Instantaneous isotherms (top)
and streamlines (bottom) during a cycle
of vertical motion at Ga = 1.2 and Ra
= 106.

E. Non-Boussinesq mixed convection: Transverse
oscillation of circular cylinder

As final test case to assess the utility of the low Mach IB-FV
solver, we consider another mixed convection problem in a square
enclosure. The details of the computational mesh are the same as
those in Sec. V B except that we consider a circular cylinder of diam-
eter D = 0.2L and the motion is oscillatory in the direction parallel
to gravity. The transverse motion of the cylinder is described by the
dimensionless vertical velocity variation defined by U = 0.1 cos(1t)
and calculations are carried out with Δt = 0.001 at Ra = 106 both
in Boussinesq (Ga = 0.02) and non-Boussinesq regimes (Ga = 1.2).
Figure 14 shows the error in computed cylinder volume which indi-
cates that although the geometric interface is diffused over one cell
width, the shape of rigid solid is quite accurately preserved. The
isotherms and streamline patterns at four instants during one cycle
of oscillation are depicted in Figs. 15 and 16 for both values of Ga.
The flow pattern and temperature distributions in the Boussinesq
regime agree closely with those computed by Chern et al.49 (not
shown here for brevity) and are clearly different from that obtained
for large temperature difference convection although one can iden-
tify a left-right symmetry for both velocities and temperature in
both Boussinesq and non-Boussinesq regimes. The time-averaged
Nusselt number (Nu) for the Boussinesq regime is tabulated in
Table VI and agrees well with the computations of Chern et al.49

but is smaller than that predicted for the non-Boussinesq regime. It
is interesting to note that the temporal histories of the Nusselt num-
ber that employ a similar diffuse interface approach49 for Boussinesq
flows show no oscillations, which we believe is a consequence of

TABLE VI. Comparison of the time averaged Nusselt number Nu on the surface of a
cylinder with benchmark solution.

Ga = 0.02 Ga = 1.2

Present 5.41 6.45

Chern et al.49 5.62 . . .

smoothing the histories. Similar to the observations for the rotating
triangular cylinder in Sec. V D, one can also notice SHOs in the tem-
poral histories for the both regimes shown in Fig. 17. Interestingly,
the oscillations are of comparable magnitude for low and high values
of Ga for this test case, which point to the fact that the SHOs show
weak to moderate dependence on Ga depending on the geometry as
well as the imposed motion.

These test problems lend credence to the ability of the novel
diffuse interface IB approach to compute low Mach number flows
with heat transfer. The numerical investigations clearly highlight
that the low Mach IB-FV solver can quite accurately compute the
flow dynamics and heat transfer in enclosures with moving geome-
tries at small and large temperature differences although the local
Nusselt number distribution and temporal history of the Nusselt

FIG. 17. Temporal history of the averaged Nusselt number at Ra = 106.
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number are plagued by spurious oscillations. However, the surface
and time averaged Nusselt numbers are predicted with reasonable
accuracy, with the heat transfer enhanced in the non-Boussinesq
regime compared to the Boussinesq regime. Mitigating the SHOs
is however important from the numerical standpoint and shall be
investigated in a future study.

VI. SUMMARY AND DISCUSSIONS

The diffuse interface IB approach described in the present work
extends the philosophy proposed for incompressible flows23,27 to
compute genuinely non-Boussinesq flows with heat transfer. The IB-
FV solver may therefore be viewed as a generic approach to solve low
Mach number flows with heat transfer. The lack of test problems
in the non-Boussinesq regime is an impediment to solver valida-
tion which has therefore been carried out largely in the Boussinesq
limit. The test problems involving moving solids and high temper-
ature difference free/mixed convection in this work possibly qualify
as benchmark cases for validation in the future. The salient features
of the proposed IB-FV solver andmajor findings from the numerical
investigations are summarized below.

1. The diffuse interface IB-FV solver for low Mach flows com-
bines the low Mach number formulation for non-Boussinesq
flows with the volume-of-solid based immersed boundary
technique. In particular, we solve “unified” equations for the
conservation laws everywhere that reduce to boundary condi-
tions within the solid and governing equations in the fluid.

2. The proposed IB-FV solver generalizes the philosophy pro-
posed for incompressible flows23,27 to compute both Boussi-
nesq and non-Boussinesq flows in a unified manner. This
generic approach, which is the highlight of the present study,
is distinct from previous studies23,27 for two reasons. First,
it accounts for the time dependent thermodynamic pressure
and its derivative, with the latter influencing both the energy
and Poisson equations. Second, the variable coefficient Pois-
son equation for hydrodynamic pressure is dependent on the
solid fraction unlike earlier studies where only a single pressure
is solved for using a Poisson equation devoid of solid fraction.
The principle contribution of the methodology detailed in this
work is that it recognizes the nature of twin pressures pertinent
to low Mach number flows and seamlessly incorporates this
aspect into the numerical framework by assuming a constant
density incompressible flow inside the rigid solid.

3. The numerical investigations using a low Mach IB-FV solver
show that it can reproduce the Boussinesq results at lowGa val-
ues. For higher values of Ga, comparisons have been affected
with an unstructured FV solver, at least for stationary bodies,
which has been validated previously. Studies with rotating and
oscillating cylinders at Ga = 1.2 reveal differences in the flow
dynamics and temperature patterns when compared to the Ga
→ 0 limit. These are the first such computations in the non-
Boussinesq regime to the best of our knowledge and therefore
could become benchmark problems owing to unavailability of
test cases for validation.

4. The surface distribution of the local Nusselt number is found
to be oscillatory even in steady flows involving stationary com-
plex geometries. In case of unsteady flows with moving bodies,

this reflects as spurious oscillations in the time history of the
surface averaged Nusselt number (SHOs). The diffuse interface
IB approach fails to obtain relatively smooth distribution of
gradient quantities although themeanNusselt Number (Nuavg)
is predicted quite accurately. The time-averaged Nusselt num-
ber is greater in the no-Boussinesq regime than in the Boussi-
nesq regime for the same geometry which indicates that the
heat transfer is enhanced. One can also observe the spurious
oscillations in temporal history in the studies of forced con-
vective flow due to moving cylinders as well.27 This drawback
of the diffuse interface IB approach has not been previously
reported and needs to be addressed in the future.

The IB-FV approach for low Mach number flows with heat
transfer considers only free and mixed convective flows within
enclosures in this work. In open domains, the thermodynamic pres-
sure P is assumed everywhere constant and this simplifies the veloc-
ity divergence constraint, the energy equation, and the discrete Pois-

son equation since dP
dt
≙ 0. Such scenarios are typical of react-

ing flows where the divergence of the velocity field would still be
nonzero although it would be independent of the thermodynamic
pressure. While the present work does not investigate low Mach
flows in open domains, it is evident that the methodology described
herein may be applied to tackle such flows with ease. The phi-
losophy of the diffuse interface IB method proposed in this work
may also allow the development of such an approach for compress-
ible viscous flows. The development of a diffuse interface IB-FV
solver that can compute compressible flows assumes relevance in
light of the failure of sharp interface IB approaches to accurately
predict heat loads in high Reynolds number hypersonic flows.33

These recent studies have shown that the use of a “nonconservative”
approach of solution reconstruction near boundaries is responsible
for under prediction of heat transfer. The idea of evolving a unified
treatment for disparate flows in the same domain (incompressible
within solid but quasi-incompressible outside of it) may therefore
be employed to handle genuinely compressible flows in a quasi-
conservative manner, and efforts in this direction are currently
underway.

VII. CONCLUSIONS

A novel immersed boundary approach for computing non-
Boussinesq flows with rigid solids is proposed in this work. Cat-
egorized as a diffuse interface IB approach, the methodology con-
structs hybrid conservation laws based on the solid volume fraction
which are solved everywhere in the domain. This philosophy is
combined with a low Mach number formulation in a finite volume
framework to devise an immersed boundary finite volume (IB-FV)
solver for low Mach number flows with heat transfer. This flow
solver has been employed to solve problems in the Boussinesq and
genuinely non-Boussinesq regime which involve natural and mixed
convection. Numerical investigations considering rotating and oscil-
lating heated cylinders in square enclosures highlight the differences
between Boussinesq and non-Boussinesq flows while also underlin-
ing the ability of the low Mach IB-FV solver to seamlessly transition
across the regimes. The ideas propounded in this work may also
be extended to low Mach number reacting flows and compressible
viscous flows in future studies.
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APPENDIX A: DERIVATION OF EQ. (21)

The nondimensional form of equation of state Eq. (19) can be
written as

ρθ =
P − ρ
Ga

. (A1)

We substitute Eq. (A1) in the energy equation(18) which gives

∂

∂t
(P − ρ

Ga
) +∇ ⋅ (uP − ρ

Ga
) = C3∇2

θ + C4(dP
dt
). (A2)

Since the thermodynamic pressure remains constant (at any given
time instant) everywhere in space, Eq. (A2) simplifies as

1

Ga

dP

dt
− 1

Ga

∂ρ

∂t
+

P

Ga
∇ ⋅ u− 1

Ga
∇ ⋅ (ρu) = C3∇2

θ+C4(dP
dt
). (A3)

Rearranging Eq. (A3) gives

1

Ga
{dP
dt

+P∇ ⋅ u}− 1

Ga
{∂ρ
∂t

+∇ ⋅ (ρu)} = C3∇2
θ+C4(dP

dt
). (A4)

Employing the continuity equation (16) in Eq. (A4) gives

∇ ⋅ u = 1

P

⎡⎢⎢⎢⎢⎣C3Ga∇2
θ − 1

γ

dP

dt

⎤⎥⎥⎥⎥⎦.
This is the expression for velocity divergence given by Eq. (21).

APPENDIX B: DERIVATION OF NORMAL MOMENTUM
EQUATION EQ. (23)

The normal momentum equation is obtained by integrating the
momentum equation [Eq. (17)] over the finite control volume (see
Fig. 1) and projecting along the normal direction to the face. This
may be written as

∫
Ω

∂(ρu)
∂t

⋅ nf dΩ + ∫
Ω
∇ ⋅ (ρuu) ⋅ nf dΩ

= −∫
Ω
∇p ⋅ nf dΩ + C1 ∫

Ω
∇ ⋅ ((∇u +∇uT)

− 2

3
(∇ ⋅ u)I) ⋅ nf dΩ + C2 ∫

Ω
(1 − ρ)êy) ⋅ nf dΩ. (B1)

We approximate the first term by assuming that ρU f is an aver-
aged value for the normal momentum (over the control volume Ω)
lumped at the face center (see Fig. 1). The volumetric averaging of
centroidal values is used for the calculation of face density ρf ,

∫
Ω

∂(ρu)
∂t

⋅ nf dΩ ≈
d(ρfUf )

dt
Ω. (B2)

The convective and diffusive fluxes appearing in Eq. (B1) are com-
puted in a manner similar to the collocated grid. The second term

(convective flux) of Eq. (B1) is simplified using Gauss divergence
theorem and reads

∫
Ω
∇ ⋅ (ρuu) ⋅ nf dΩ =[ ∑

e∈E(Ω)

(ρeueUe)Δse] ⋅ nf

=

⎡⎢⎢⎢⎢⎣ ∑e∈E(Ω)(
ρeueUe

ρeveUe
)Δse⎤⎥⎥⎥⎥⎦ ⋅ (nx,f ny,f), (B3)

where ue and ve represent the components of velocity at the edge
center e and Ue denotes normal velocity at the edge e. nx ,f and ny ,f
represent the Cartesian components of outward unit normal vector
nf at the face “f ” (see Fig. 1), and the velocity of Cartesian com-
ponents at the edge center (ue, ve) are obtained from the centroidal
velocities using a high-resolution convection scheme. The third term
(pressure gradient) can be easily approximated as

∫
Ω
∇p ⋅ nf dΩ =

δpm

δn
∣
f
Ω. (B4)

The fourth term (diffusive flux) of Eq. (B1) is simplified using
Gauss divergence theorem and reads

C1 ∫
Ω
∇ ⋅ ((∇u +∇uT) − 2

3
(∇ ⋅ u)I) ⋅ nf dΩ

= C1

⎡⎢⎢⎢⎢⎣ ∑e∈E(Ω)((∇ue +∇u
T
e − 2

3
(∇ ⋅ u)I) ⋅ ne)Δse⎤⎥⎥⎥⎥⎦ ⋅ nf

= C1

⎡⎢⎢⎢⎢⎣ ∑e∈E(Ω)
⎛⎝
τxx∣enx,e + τxy∣eny,e
τyx∣enx,e + τyy∣eny,e

⎞⎠Δse
⎤⎥⎥⎥⎥⎦ ⋅ (nx,f ny,f ), (B5)

where nx ,e and ny ,e represent the Cartesian components of outward
unit normal vector ne and components of the deviatoric stress tensor
at the edge “e” reads

τxx∣e = 2δuδx ∣
e

− 2

3
(δu
δx
∣
e

+
δv

δy
∣
e

), τxy∣e = (δuδy ∣
e

+
δv

δx
∣
e

),
τyx∣e = (δuδy ∣

e

+
δv

δx
∣
e

), τyy∣e = 2 δvδx ∣
e

− 2

3
(δu
δx
∣
e
+
δv

δy
∣
e

).
The last term of Eq. (B1) may be simplified as

C2 ∫
Ω
(1 − ρ)êy) ⋅ nf dΩ = C2(1 − ρmf )ny,f Ω. (B6)

Combining the discrete expressions from Eqs. (B2)–(B6), we obtain
the discrete normal momentum equation Eq. (23).

APPENDIX C: ORDER OF ACCURACY

We study the order of accuracy of the IB-FV solver by using a
manufactured solution to the Navier-Stokes equations. The analyti-
cal solution given below satisfies the mass, momentum, and energy
equations for a constant density and constant viscosity incompress-
ible flow
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u = − cos(2πx) sin(2πy)e −8π2 tRe , (C1)

v = sin(2πx) cos(2πy)e −8π2 tRe , (C2)

p =
−(cos(4πx) + cos(4πy))

4
e
−16π2 t

Re , (C3)

θ = (cos(4πx) + cos(4πy))e −8π2 tRePr . (C4)

We consider a 0.5 × 0.5 domain into which a circular cylinder
of diameter 0.2 is centrally immersed. For the purpose of study,
we do not consider the cylinder as a solid but rather as a region
where the exact solution given by Eqs. (C1)–(C4) is prescribed at
all times. The numerical solution is computed in all cells outside
of the cylinder (including those cut by it) using the IB-FV solver.
Since the analytical solution is known, it is possible to compute the
discretization error both in space and time. For studies of spatial
discretization error, we consider four progressively refined meshes
starting from a 40 × 40 grid with constant Δt = 0.001. The tem-
poral discretization error is computed by carrying out simulations
on the finest mesh resolutions Δx = 0.003 128 at four different time
steps (Δt = 0.01, 0.005, 0.0025, 0.001 25). The simulations are car-
ried at up to t = 0.1 at Re = 100 and Pr = 0.7 in all cases. Figures 18
and 19 show the variation of L∞ norm of error with spatial and
temporal step sizes, respectively. The error is computed as the dif-
ference between the exact solution and the numerical solution in
each cell. It is easy to see that the solver preserves the expected
second-order accuracy both in space and time even when the inter-
face is treated using the IB approach. This study proves that the
IB-FV solver is nominally second-order accurate both in space
and time, which suffice for most problems in fluid flow and heat
transfer.

FIG. 18. Spatial accuracy study.

FIG. 19. Temporal accuracy study.
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