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Diffusivity anomaly in modified Stillinger-Weber liquids
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By modifying the tetrahedrality (the strength of the three body interactions) in the well-known

Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a func-

tion of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant

temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as

the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pres-

sure at constant temperature. We explore to what extent the structural and thermodynamic changes

accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by

employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas

reference value), and the pair correlation entropy, which provides an approximation to the excess

entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liq-

uids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below,

with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess

entropy and the pair correlation entropy at constant temperature go through maxima as a function

of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic,

and dynamical anomalies in the modified Stillinger-Weber liquids. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862146]

I. INTRODUCTION

Many theoretical approaches aim to relate the dynami-

cal behaviour of liquids to their structural and thermodynamic

properties. Semi-empirical relations like the Rosenfeld,1, 2 the

Dzugutov,3 and the Adam-Gibbs4 relations offer a few ex-

amples. In the absence of a completely satisfactory micro-

scopic theory, such relations serve as guiding principles with

which to rationalize dynamics in the liquid state for differ-

ent substances and conditions, even while the domain of their

applicability continues to be subject to scrutiny. Particularly

stringent tests of the applicability of such relations are of-

fered by cases where dynamical properties of liquids (such

as water and silicon) show anomalous behaviour as func-

tions of control parameters like temperature and pressure. One

such anomaly, relevant to our present study, is the diffusivity

anomaly in water, manifested in the presence of a maximum

in the diffusivity as a function of pressure.

In this paper we study the well-known Stillinger-Weber

(SW) model for silicon and vary the strength (λ) of the three

body interaction in this potential, in addition to the temper-

ature (T) at fixed pressure (P = 0), to obtain the liquid state

properties in a λ − T phase diagram. It has been shown ear-

lier that by tuning λ the model can be turned into a good glass-

former,5 for a range of λ values marked by the competition be-

tween cubic diamond and BCC crystal structures for the most

stable state at low temperatures. Further, the diffusivity at con-

stant temperature and pressure shows a non-monotonic de-

pendence on λ,5 displaying a maximum at intermediate values

of λ where the system is a good glass-former. It is tempting to

seek the explanation of this diffusivity anomaly in the struc-

tural and thermodynamic changes leading to good glass form-

ing behaviour, which we explore, through an analysis of the

relationship between diffusivity, and entropy, via the Rosen-

feld scaling relationship (which we describe below). While

understanding anomalous diffusivity behaviour offers insights

into the properties of a system, it also helps to critically ex-

amine to what extent dynamics can be related to structure and

thermodynamics via Rosenfeld-like scaling relations and con-

sequently how strongly the anomaly in diffusivity reflects the

presence of structural and thermodynamic anomalies in this

model.

Previous studies have indicated that structural, ther-

modynamic, and dynamic anomalies have interesting inter-

relations. In the case of water, Errington and Debenedetti

observed6 that the region of the phase diagram which shows

anomalous behaviour in density is enclosed by the region of

diffusivity anomaly which in turn is surrounded by a region

of structural anomaly. Such nesting of anomalies implies that

the origin of dynamic and thermodynamic anomalies may be

attributed to that of structural anomalies. However, the ques-

tion of whether such behaviour is universal or specific to wa-

ter is still open.7, 8 Anomalies in diffusivity have also been

explained in terms of anomalies in the configurational en-

tropy via the Adam-Gibbs relation, e.g., in water (anomaly as

a function of density)9, 10 and in generalized Lennard-Jones

potentials (anomaly as a function of temperature).11

In this paper we study the anomaly in diffusivity as

a function of the strength of the 3-body interaction in the

Stillinger-Weber potential12, 13 for silicon. The SW poten-

tial is written as a sum of a two-body, isotropic interaction

0021-9606/2014/140(4)/044503/6/$30.00 © 2014 AIP Publishing LLC140, 044503-1



044503-2 Sengupta, Vasisht, and Sastry J. Chem. Phys. 140, 044503 (2014)

u2(rij) and a three-body, anisotropic interaction u3(rij,

rjk, rik) which favours locally tetrahedral geometry: USW

=
∑

pairs u2 + λ
∑

triplets u3. Here λ represents the strength

of the anisotropic interaction. In the original SW model,

λ = 21. While the original SW model is a poor glass-former,

it was shown by Molinero et al.5 that as λ gradually decreases,

there is a domain λ = 17.5−20.25 where the model turns into

a good glass-former. Molinero et al.5 showed that, at zero

pressure, as λ is decreased, the diffusivity along the melt-

ing line undergoes a minimum in the glass-forming region,

around λ = 18.75. On the contrary, Molinero et al.5 pointed

out that the diffusivity at constant temperature as a function

of λ at zero pressure, undergoes a maximum in the range

λ = 17.5−18, i.e., in the glass-forming domain. This be-

haviour of isothermal, isobaric diffusivity as a function of λ

is the focus of the present study.

The (dimensionless) diffusivity (D*) can be related to

the excess entropy (SE) (the total entropy minus the ideal

gas entropy at the same density) via the Rosenfeld scaling

relation: D* = Dρ1/3(kBT/m)−1/2 ≈ Aexp (bSE), where ρ, T,

and m are the density, temperature, and particle mass, re-

spectively, and A, b are the constants. Often, the excess en-

tropy is substituted by the pair correlation entropy (S2) (de-

fined below), which is easier to compute. In the context of the

present work, S2 also offers a way of assessing to what ex-

tent the changes in structure (as accounted for by pair corre-

lations) account for the total change in entropy. In this work,

we thus compute both the excess entropy (SE) and the pair-

correlation entropy (S2) and analyze them as a function of

the 3-body potential strength. If the Rosenfeld scaling rela-

tion between diffusivity and entropy (SE, S2) is obeyed in the

modified SW model (for a general λ), then the excess and the

pair correlation entropy at constant pressure and temperature

should also go through maxima in the same λ range and pro-

vide a rationalization of the observed maximum of isothermal

diffusivity.

The organization of the paper is as follows: In Sec. II

we describe the simulation details. In Sec. III we discuss the

Rosenfeld scaling relation and define the relevant quantities.

In Sec. IV we show the main results. Finally in Sec. V we

summarize the study and present the main conclusions.

II. SIMULATION DETAILS

The interaction potential of the modified Stillinger-

Weber model5, 12 is of the form

USW =
∑
i<j

u2(rij ) + λ
∑

i<j<k

u3(ri, rj , rk), (1)

where u2 is the two-body term and u3 is the three-body term,

and λ represents the strength of the three-body interaction.

The form of the potentials u2 and u3 and the units of mass,

energy, and length are defined in Ref. 12. All the potential

parameters are kept the same as in Ref. 12 except λ which

is varied in the range λ=16–21.5. At each λ, constant pres-

sure and temperature (NPT) molecular dynamics (MD) sim-

ulations were done at zero pressure (P = 0) over a range of

temperatures for N = 512 particles in a cubic box with pe-

riodic boundary conditions using details as in Ref. 14 but

employing an efficient algorithm for the energy and force

calculations15, 16 as well as using the LAMMPS package.17

All results are reported in reduced units, with respect to the

SW model parameters (e.g., densities are reported in units of

σ−3 where σ = 0.20951 nm).

In the reduced units, with units of energy = 209.5 kJ/mol

and of mass = 28.0855 × 10−3 kg/mol, respectively, the in-

tegration time step is dt = 0.005. The Runlength at each state

point is at least 60 × 106 MD steps.

III. DEFINITIONS

A. The Rosenfeld scaling relation

Rosenfeld proposed,1, 2 based on studies in purely repul-

sive inverse power law and Lennard-Jones potentials, that the

diffusivity (D) expressed in a dimensionless form (D*) can be

related by a simple empirical formula to the excess entropy sE

≡ SE/NkB:

D∗ = Dρ1/3(kBT/m)−1/2 ≈ A exp(bsE), (2)

where A and b are constants that can have different values for

different systems.1, 2

B. Diffusivity

The diffusivity is measured from the long time limit of

the mean squared displacements (〈r2〉) using the Einstein re-

lation:

lim
t→∞

〈r2〉 = 6Dt.

C. The excess entropy

The excess entropy at a given temperature and pressure is

the entropy of the liquid in excess over the entropy of an ideal

gas at the same temperature and pressure:

SE = Sliquid − Sideal . (3)

In the present study, the excess entropy is computed by per-

forming thermodynamic integration of derivatives of appro-

priate free energies. First, excess entropy is calculated for the

original SW model (λ = 21). At zero pressure, a high tem-

perature (Tref = 0.33) above the liquid-gas critical point is

chosen as the reference ideal gas state with zero excess en-

tropy. The integration path consists of the following segments:

(a) along the isotherm at Tref, from zero density to a density

ρup = 0.4775 chosen from the P = 0 isobar; (b) then along

the isochore at ρup from Tref to a temperature Th = 0.095 such

that P(ρup, Th) = 0; (c) then along the zero pressure isobar

from Th to the target temperature T. Next, using the excess

entropy at λ = 21 to be the reference, excess entropies for

modified Stillinger-Weber liquids (arbitrary λ) are calculated

by integrating the derivative of Gibbs free energy G with re-

spect to λ at a constant temperature and zero pressure. Since

the interaction potential is of the form U = U2 + λU3, the

derivative ∂G
∂λ

is the (ensemble averaged) three body part U3

of the interaction.
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D. The pair-correlation entropy

The pair-correlation entropy is defined as

S2

NkB

= −2πρ

∫ ∞

0

[g(r) ln g(r) − g(r) + 1]r2dr. (4)

One can quite generally expand the excess entropy in

terms of contributions from n − particle correlation functions

as18–21

SE = S2 + S3 + . . . , (5)

where S2 is the pair correlation entropy, S3 is the three-particle

entropy coming from three-particle correlation function g3(r),

etc. Consequently, SE is often approximated by the first term

in the expansion, i.e., S2 which is computationally cheaper as

it depends only on the pair correlation function g(r).

IV. RESULTS

The range of state points studied, all of which are at zero

pressure, is shown in Fig. 1 in the ρ − T and T − λ planes.

In the upper panel of Fig. 1, we show the well-known den-

sity anomaly of the original SW model (λ = 21) with the

maximum occurring at T = 0.057. The density maximum for

λ = 21 along P = 0 isobar have earlier been located to be at T

= 0.055.22 In the modified SW liquids (arbitrary λ), the work

of Hujo et al.23 has shown that the density anomaly occurs

in the range 20 ≤ λ ≤ 26.4 and vanishes at both lower and

higher values of λ. In Fig. 1 we show that as the strength λ

of the anisotopric part of the SW potential decreases, the tem-

perature of maximum density gradually decreases and finally

the density anomaly disappears for λ < 19.5—at least in the

range of temperatures explored here. Thus the modified SW

model can be turned from an anomalous liquid into a normal

liquid by tuning λ. The lower panel of Fig. 1 shows the T − λ

phase diagram. The vertical lines with symbols show the state

points studied here. The circles and the squares indicate melt-

ing points, respectively, to BCC and cubic diamond crystals,

reported in Ref. 5. The locus of melting temperatures forms a

V-shaped curve where the minimum melting point occurs at

λ = 18.75 which is a triple point for coexistence of liquid, di-

amond cubic, and BCC phases.5 Around the triple point, the

range 17.5 ≤ λ ≤ 20.25 was identified in Ref. 5 to be a good

glass-forming range.

Having described the range of the control parameters ex-

plored in the present study, we next discuss the analysis of

the Rosenfeld scaling relation between diffusivity and excess
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FIG. 1. Upper panel: ρ vs. T phase diagram for the mSW model showing the range of the state points explored in the present study. The lines connecting the

data are guide to eyes. The vertical lines are the melting temperatures reported in Ref. 5 joined by a line representing the locus of the melting temperatures at

different λ’s, demarcating the high T and the supercooled liquids. Lower panel: T vs. λ phase diagram for the mSW model showing the range of the state points

explored in the present study. The circles and the squares represent the melting temperatures reported in Ref. 5. The horizontal lines indicate the representative

temperatures chosen to calculate isothermal diffusivities.
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entropy in the modified Stillinger-Weber liquids in Fig. 2. We

find that above melting temperatures (indicated by vertical

lines), the modified Stillinger-Weber liquids indeed obey the

Rosenfeld relation but there are systematic deviations below

melting temperatures. We have verified that a rescaling of the

entropy and diffusivities does not produce data collapse at low

temperatures. Thus, in addition to the deviations from Rosen-

feld scaling, the behaviour at low T does not conform to any

other universal form. However, we see that as λ decreases, the

extent of deviation from the Rosenfeld relation below melt-

ing temperatures also gradually decreases. Since the Rosen-

feld relation was originally proposed for liquids above melt-

ing temperatures, it is not surprising that there is a systematic

deviation in the supercooled regimes. Rosenfeld himself no-

ticed that the relationship between excess entropy and trans-

port coefficients is not exponential everywhere on the phase

diagram, even in simple liquids, e.g., for dilute gases the form

is a power law.2 For dense fluids, previous studies24–28 have

found that the exponential form holds at moderate to high

temperatures but breaks down upon supercooling (sex < −4

for simple liquids). However, in simple liquids it is generally

found25–28 that while the functional form changes, the relation

between excess entropy and transport coefficients continues to

show a universal behaviour.

Earlier studies have found1, 2, 29 that for isotropic poten-

tials (e.g., hard sphere, Lennard-Jones, inverse 12th power

law, and one-component plasma), the coefficients A and b

in the Rosenfeld relation are approximately independent of

the interaction potentials. In the present study, the anisotropy

of the interaction can be tuned by tuning λ, hence the quasi-

universality of the Rosenfeld relation can be tested. In the in-

set of Fig. 2, we show that in the range 16 ≤ λ ≤ 21.5, the

coefficients A and b vary considerably, although for λ > 18.5

and λ < 18.5, the variation considerably reduces, and A and b

may be considered quasi-universal in these two regimes. Fur-
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FIG. 2. Comparison of the dimensionless isobaric diffusivity D∗

=
ρ1/3

(kBT/m)1/2 D vs. the per particle excess entropy sE = SE/NkB for the

modified SW model at different λ’s. Vertical bars denote melting tem-

peratures. At each λ, data above the melting temperature are fitted to the

Rosenfeld relation: D* = Aexp (bsE). The Rosenfeld scaling relation is

obeyed above the melting point (Tm), but systematic deviations are observed

in the supercooled state, the deviations being stronger for larger λ. Inset: λ

dependence of the coefficients A and b in the Rosenfeld relation.
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FIG. 3. The λ dependence of the pair correlation function g(r) at two repre-

sentative temperatures.

ther, we note that in another model liquid with isotropic in-

teractions, namely, the Kob-Andersen model30 the values of

A and b are lower26 than the values obtained in the present

work. This is consistent with the trend observed in the present

study that the coefficients A and b decrease as the strength of

the anisotropic interaction λ decreases.

Next we test to what extent the pair correlation entropy S2

can be used to approximate the excess entropy SE in the mod-

ified SW liquids. Pair correlation entropies S2 are computed

from the pair correlation functions g(r) which are shown for

different λ’s in Fig. 3, at two representative temperatures. We

see that as λ decreases, the first peak of g(r) gradually shifts

to higher r. We also note that the shoulder between the first

and the second peak of g(r), more prominent at the low tem-

perature, gradually disappears as λ decreases. In Fig. 4 we

compare S2 to SE for different λ and show that indeed for the

original SW model (λ = 21), S2 is approximately proportional

to SE although as the inset of Fig. 4 shows, S2 is clearly not

an overwhelmingly dominant term in the expansion (5). The

inset also shows that in the modified SW liquids (arbitrary

λ), the relative contribution of S2 to SE gradually increases as

the strength λ of the anisotropic interaction decreases which

is expected, since higher order correlation entropies may play

a greater role in determining the total entropy for the more

anisotropic interactions.31, 32 However, Fig. 4 also shows that

the degree to which there is a nearly constant proportional-

ity between S2 and SE also reduces as λ decreases, which is

surprising, and needs to be further investigated. Fig. 5 shows
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the correlation between the reduced diffusivity D* and the

pair-correlation entropy S2 as a function of λ. If the Rosen-

feld relation (Eq. (2)) holds between D* and S2, then ln D*

should be linearly correlated with S2. We see from Fig. 5 that

the linearity of ln D* vs. S2 is reasonably well observed above

the melting temperatures (indicated by vertical lines), albeit

with slopes (coefficient b in Eq. (2)) that are more strongly

dependent on λ than in the case of SE.

The above-mentioned observations taken together imply

that while the diffusivity is well correlated with the excess

as well as the pair correlation entropy at all values of λ, the

Rosenfeld relation describes data better at higher tempera-

tures and lower λ. Consequently, the validity of the Rosen-

feld relation (at least above melting points) immediately sug-

gests that both the excess entropy SE and the pair correlation

entropy S2 at constant temperature and pressure should also

show maxima as functions of λ. We choose four representa-

tive temperatures denoted by horizontal solid lines in Fig. 1 to
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ρ1/3

(kBT/m)1/2 D

vs. the pair correlation entropy S2/NkB for different λ. Vertical lines denote

melting temperatures.
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FIG. 6. (a) The isothermal diffusivity, (b) pair correlation entropy S2/NkB,

and (c) excess entropy SE/NkB vs. λ, go through a maximum at each of the

temperatures shown. Lines through data points are polynomial fits. Vertical

lines indicate positions of maxima of the fit curves (occurring in the range

(a) λ ≈ 17.6−17.8, (b) λ ≈ 19.9−20.9, and (c) λ ≈ 18.8−19.8). The peaks

of excess entropy are closer to those of diffusivity than the peaks of the pair

correlation entropy.

study the λ dependence of isothermal diffusivity, pair correla-

tion, and excess entropies. At the highest (T = 0.069) of the

four temperatures, the system is in liquid phase at all λ except

λ = 21.5 whereas at the lowest (T = 0.039) of the four tem-

peratures, the system is in supercooled liquid phase except in

the range λ ≈ 17.5−19.5. First, we verify (Fig. 6) that at all

the studied temperatures, the isothermal reduced diffusivities
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as a function of λ indeed show maxima. The maxima occur

in the range λ ≈ 17.6−17.8 indicating that the temperature

dependence of the positions of maxima is weak. Next, Fig. 6

shows that at each of the studied temperatures, a maximum is

indeed found for isothermal S2 and isothermal SE as functions

of λ. Thus the diffusivity anomaly indeed also has structural

and thermodynamic counterparts in the modified Stillinger-

Weber model. However, we note that the maxima of isother-

mal S2 occur in the range λ ≈ 19.9−20.9, i.e., at higher values

of λ than that of D*, and the temperature dependence of the

maximum of S2 is stronger than that of D. Compared to the

maxima of S2, the maxima of the isothermal excess entropy

occur relatively closer (λ ≈ 18.8−19.8) to those of isother-

mal diffusivity D*.

V. SUMMARY AND CONCLUSIONS

We have studied Rosenfeld-like relations between dif-

fusivity and excess as well as pair correlation entropies by

tuning the tetrahedrality of interaction in liquids modeled by

modified Stillinger-Weber potentials, with the aim of under-

standing (a) the extent to which structural and thermodynamic

changes in these model liquids can help rationalize the diffu-

sivity anomalies observed, and (b) the range in temperature

and anisotropy of interactions over which the relationship be-

tween diffusivity and entropy is valid. The ability to ratio-

nalize anomalous behaviour offers a stringent test for the ap-

plicability of semi-empirical relations such as the Rosenfeld

relation. We find that, in terms of both the excess and the pair

correlation entropy, the Rosenfeld relation describes data bet-

ter above melting temperature and for more isotropic inter-

actions in the modified Stillinger-Weber liquids. Further we

find that the excess and the pair correlation entropies at the

same temperatures indeed go through maxima as functions

of the interaction potential as expected if the Rosenfeld rela-

tion is valid. Below the melting temperatures, the linear de-

pendence of log D* on SE (or S2) breaks down. In the high

temperature regime, the Rosenfeld scaling relation is valid

more convincingly with SE than S2, with the coefficient b in

the relationship (Eq. (2)) having a modest dependence on the

tetrahedrality of interaction λ. Given the fact that the interac-

tion potentials are anisotropic, and the degree of anisotropy

is a variable in our study, it is not surprising that S2 proves

to be a poor substitute for excess entropy. Nevertheless, both

SE and S2 exhibit anomalous dependence on the tetrahedrality

of interaction, and thus show qualitative consistency with the

presence of the diffusivity anomaly. In view of the deviations

from Rosenfeld scaling below the melting temperature, and

the considerable body of work that has explored the validity

of the Adam-Gibbs relation in glass forming liquids, it will be

interesting to test whether the Adam-Gibbs relation between

the diffusivity and the configurational entropy yields a better

organization of data as a function of interaction potentials at

low temperatures.
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