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Abstract

The Midwestern “Corn- Belt” in the United States is the most productive agricul-

tural region on the planet despite being predominantly rainfed. In this region, 

global climate change is driving precipitation patterns toward wetter springs and 

drier mid-  to late- summers, a trend that is likely to intensify in the future. The lack 

of precipitation can lead to crop water limitations that ultimately impact growth 

and yields. Young plants exposed to water stress will often invest more resources 

into their root systems, possibly priming the crop for any subsequent mid-  or late- 

season drought. The trend toward wetter springs, however, suggests that oppor-

tunities for crop priming may lessen in the future. Here, we test the hypothesis 

that early season dry conditions lead to drought priming in field- grown crops 

and this response will protect crops against growth and yield losses from late- 

season droughts. This hypothesis was tested for the two major Midwestern crop, 

maize and soybean, using high- resolution daily weather data, satellite- derived 

phenological metrics, field yield data, and ecosystem- scale model (Agricultural 

Production System Simulator) simulations. The results from this study showed 

that priming mitigated yield losses from a late season drought of up to 4.0% and 

7.0% for maize and soybean compared with unprimed crops experiencing a late 

season drought. These results suggest that if the trend toward wet springs with 

drier summers continues, the relative impact of droughts on crop productivity 

is likely to worsen. Alternatively, identifying opportunities to breed or geneti-

cally modify pre- primed crop species may provide improved resilience to future 

climate change.
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1  |  INTRODUCTION

Between 1960 and 2018, the United States, on average, ac-

counted for 35% of global maize production and almost 

50% of soybean production (FAO, 2019) with ca. 90% and 

75% of maize and soybean, respectively, produced in the 

Midwest where irrigation is scarce (McGrath et al., 2015; 

USDA, 2017). These maize and soybean production levels 

are partly ascribed to the steady increase in crop yield since 

the 1960s driven by improvements in genetics, agronomy- 

including the implementation of soil conservation mea-

sures, and favorable growing conditions (Grassini et al., 

2013; Long et al., 2015). However, increase in crop yield 

over time is a nonlinear process (Ciais et al., 2005) and is 

subject to stochastic factors such as pest and disease out-

breaks and weather (Carvajal- Yepes et al., 2019; Schlenker 

& Roberts, 2009). Among these factors, drought has been 

the major cause of loss in the rainfed “Corn- Belt” over the 

last few decades, and water is projected to become increas-

ingly limiting to further potential yield increases (Ort & 

Long, 2014).

Despite a trend toward a wetter Midwest, how pre-

cipitation is distributed over time is changing with wet-

ter springs and drier summers and early fall (Andresen 

et al., 2012; S. Dai et al., 2016; Neri et al., 2020). This al-

tered precipitation pattern leads to drier conditions at the 

peak of leaf area and when crop water demand is greatest. 

Climate projections show that this trend of wetter springs 

and drier mid-  to late- season conditions in the Midwest 

will intensify with climate change (USGCRP, 2018), and 

thus yield losses to drought will likely increase. Recent ev-

idence suggests that stressful growth environments during 

early vegetative growth stages has little impact on crop 

yields; however, stress during reproductive development 

drives reductions in yields (Siebers et al., 2015, 2017). 

Studies from greenhouse experiments show that a “prim-

ing effect” can occur whereby an early- season drought 

can minimize impacts on crop growth and yield of a late- 

season drought relative to a late- season drought without 

an early- season drought (Balmer et al., 2015; Martinez- 

Medina et al., 2016; Wang et al., 2017). Drought primed 

crops that experience a second drought potentially show 

a loss of productivity but are generally more resilient in 

growth and productivity relative to nonprimed crops that 

experience a drought later in the growing season (Figure 

1). Drought primed crops therefore possess the capacity to 

partly mitigate yield losses relative to nondrought primed 

crops. Drought priming effects on crops, however, have 

been tested predominately on plants grown in artificial 

growth environments at selective crop stages (Mendanha 

et al., 2020; Wang et al., 2018). Thus, it remains a question 

as to whether priming occurs under field conditions where 

greater rooting volumes and other weather variables have 

significant impacts on crop yield (Chenu et al., 2013; 

Zhao et al., 2017). If drought priming occurs under field 

conditions, the current trend toward wetter early grow-

ing seasons and drier late growing seasons, minimizing 

the potential for drought priming, may contribute to the 

observed increased sensitivity of crop growth to drought 

in the U.S. Midwest (Lobell et al., 2014). As such, an im-

proved understanding of the priming effect on crops over 

large spatial extent is necessary, which may help lead to 

development of more resilient crop cultivars (Balmer 

et al., 2015; Wang et al., 2018).

Warm- season temperatures in the Midwest are in-

creasing and are projected to continue rising (USGCRP, 

2018). Such a temperature rise, coupled with precipita-

tion change, can cause more surface moisture to be lost 

through evaporation (Wuebbles et al., 2017). Since in-

creased temperature can also induce high vapor pressure 

deficit (VPD) that can aggregate drought stress on crops 

and lead to yield losses in the Midwest (Lobell et al., 2014; 

Zhao et al., 2017), drought priming effect needs to be dif-

ferentiated from the potential for a temperature priming 

effect. This differentiation would further help under-

stand the impacts of temperature and drought on crop 

production.

Long- term time series data sets of crop yields coupled 

with environmental variables have revealed insights into 

drivers of variability in crop yields (Lobell et al., 2011; 

F I G U R E  1  Conceptual illustration of positive response 

in plants to drought priming and stress. During the drought 

priming, a plant reacts with altered levels of various metabolites, 

enzymes, hormones, and other molecules, enabling faster and 

stronger response/adaption (a) in a drought stress than a plant 

without priming (b) in a way that can partly mitigate yield losses 

than nonprimed crops. Altered levels of metabolites, enzymes, 

hormones, and other molecules may also induce changes in plant 

traits such as root length, leaf area index, and specific leaf nitrogen 

as specific phenotypes for drought priming
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McGrath et al., 2015). Reported drought conditions in the 

United States, for example, by the United States Drought 

Monitor (USDM), provides opportunity to use historic 

data to quantify the potential for drought priming to 

impact crop yield. In this study, satellite images, high- 

resolution daily weather observations, county- level crop 

yield data, and process- based crop modeling were used to 

discern the impacts of drought, with and without a prim-

ing response, on crop yield losses. Specifically, satellite 

time series images were acquired between 2000 and 2018 

to derive four key phenological stages for both maize and 

soybean using a hybrid approach involving a pre- defined 

geometric shape fitting (known as shape model fitting, 

SMF) (Sakamoto et al., 2010) and a threshold method 

(Zhu et al., 2018). These phenological stages provide the 

basis to quantify the drought to wet conditions using ei-

ther the Palmer Drought Severity Index (PDSI) or stan-

dardized precipitation anomaly (SPA). Two approaches 

were used to identify whether the drought priming effect 

impacted yields, one that relies on a panel regression anal-

ysis of actual yield variability by factoring in variables in-

cluding solar radiation, temperature, precipitation, VPD, 

and crop phenological stages, and the other that relies on 

the Agricultural Production System sImulator (APSIM) 

model (Holzworth et al., 2014) with inputs of selected 

high- resolution weather data. The same data were also 

utilized to identify the temperature priming effect follow-

ing the approaches used to discern the drought priming ef-

fect. The study region consists of three Midwestern states, 

Illinois, Indiana, and Iowa, in which maize and soybean 

production are mainly rainfed.

2  |  MATERIALS AND METHODS

2.1 | Identification of crop phenological 
stages

The MODIS Version 6 time series reflectance data from 

Terra and Aqua satellite platforms, that is, MOD09Q1 

(2000– 2018) and MYD09Q1 (2002– 2018), were used to 

identify crop (soybean and maize) phenological stages. 

The product provides 8- day maximum composite surface 

reflectance at 250 m for MODIS bands 1 (red band) and 2 

(near infrared band) that have been corrected for atmos-

pheric conditions such as aerosols and Rayleigh scatter-

ing. The MODIS images covering the study area including 

Illinois, Indiana, and Iowa were mosaicked, re- projected 

(WGS84 coordinate system), and then downloaded 

through the Application for Extracting and Exploring 

Analysis Ready Samples (AρρEEARS) portal. A hybrid 

approach involving the shape model fitting (Sakamoto 

et al., 2010) and the threshold method (Zhu et al., 2018) 

was used to identify four phenological stages for both soy-

bean and maize (as illustrated in Figure 2). Specifically, 

the four phenological stages identified for maize include 

Emergence (VE), Silking stage (R1), Dent stage (R5), and 

Maturity (R6), and for soybean include Emergence (VE), 

Beginning seed (R5), Full seed (R6), and Beginning ma-

turity (R7). The shape model fitting was used to identify 

R1 and R5 for maize and R5 and R6 for soybean, while 

the threshold method was applied to characterize VE and 

R6 for maize and VE and R7 for soybean. Although the 

shape model has the capacity to characterize all four criti-

cal phenological stages for maize and soybean, it has been 

reported that the linear scaling of the shape model cannot 

help accurately discern patterns and trends in emergence 

and maturity dates (Zeng et al., 2016; Zhu et al., 2018). 

Thus, a hybrid approach was used in this study.

Both the shape model fitting and the threshold method 

were implemented with the scaled Wide Dynamic Range 

Vegetation Index (WDRVI) (Gitelson, 2004) computed in 

equation 1:

where Refb1 and Refb2 refer to the MODIS surface reflectance 

values for bands 1 and 2, and α is a weighting coefficient 

set as 0.1. The calculation of the WDRVI was on a per- pixel 

basis and only reflectance values with the highest quality 

flag were retained for WDRVI calculation. Before the shape 

model fitting and the threshold method application, the 

WDRVI curve for each year was smoothed using a spline 

function to remove any noise from and fill the data gap in 

(1)WDRVI =
(

� ∗ Refb2 − Refb1
)

∕
(

� ∗ Refb2 + Refb1
)

F I G U R E  2  Illustration for the identification of four critical 

phenological stages using the shape model fitting and threshold 

method. Data were taken from a soybean pixel. The four stages 

included emergence (dot green line), beginning seed (light green 

solid line), full seed (blue solid line), and beginning maturity (dark 

yellow dash dot line)
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the original time series. This smoothing procedure also in-

terpolated the original 8- day time series into daily smoothed 

observations.

The reference shape models for maize and soybean 

were defined by averaging smoothed WDRVI over multi-

ple years (2001– 2010) that were acquired over two irrigated 

field sites at Mead, Nebraska operated by the University of 

Nebraska Agricultural Research and Development Center 

(Sakamoto et al., 2010). To identify crop phenological 

stages, these predefined shape models were scaled and 

fitted to interpolated daily time series WDRVI data using 

equation 2:

where h(x) is the predefined shape model for maize or soy-

bean, x refers to the date, and xscale, tshift, and yscale are 

variables that need to be optimally determined so as to min-

imize the difference between f(x) and the satellite derived 

WDRVI curves. Here, the root mean square error (RMSE) 

between f(x) and the satellite- derived WDRVI curves was 

used as the loss function which was iteratively minimized 

with the Levenberg- Marquardt algorithm (Moré, 1978). 

The reference dates (Table 1) of four phenological stages for 

maize were set at 150, 200, 240, and 265, and for soybean at 

170, 225, 240, and 270, which were empirically determined 

based on in situ observations of phenological stages.

The threshold values to detect emergence and maturity 

dates for maize were set at −0.68 and −0.68, and to detect 

emergence and beginning maturity for soybean were set at 

−0.68 and −0.55. These threshold values were determined 

based on trial- and- error comparisons between identi-

fied dates and United States Department of Agriculture 

(USDA)/National Agricultural Statistics Service (NASS) 

reported emergence and maturity dates for all three states. 

As USDA/NASS weekly Crop Progress Report (CPR) only 

recorded critical phenological stages (such as emergence 

and silking) based on area ratios, a sigmoid function was 

employed to interpolate the area ratio (Figure S1). In situ 

observations of phenological stages were then set at the 

date when the interpolated area ratio reached 50% at the 

state level (Tollenaar et al., 2017). The phenological dates 

determined from the USDA/NASS CPR were also used to 

evaluate the accuracy of the shape model fitting and the 

threshold method to identify the four critical phenological 

stages.

Another data set used in identifying phenological 

stages was the NASS cropland data layer (NASS- CDL) 

that provided target maize and soybean pixels for im-

plementing the shape model fitting and the threshold 

method over the three states. The spatial resolution of the 

NASS- CDL was generally 30  m but 56  m for data from 

2006 to 2009 as different satellite data sets were used to 

generate the NASS- CDL. Further details and metadata 

regarding the CDL dataset can be found in USDA/NASS 

website (https://www.nass.usda.gov/Resea rch_and_Scien 

ce/Cropl and/metad ata/meta.php). The CDL data were ag-

gregated to the same spatial resolution of MODIS images 

(i.e., 250  m). The shape model fitting and the threshold 

method were applied only to MODIS pixels with at least 

80% maize or soybean fractions (Sakamoto et al., 2010; 

Zhu et al., 2018). This fraction threshold was to reduce the 

impact of mixed pixels that may contain signals of non-

maize/soybean information on the identification of crop 

phenological stages. Finally, the crop phenological stages 

identified from satellites were aggregated to the county 

level using the average operation for subsequent analysis. 

Here we define the durations between neighboring phe-

nological stages as D1, D2, and D3 for maize, that is, D1 

for the duration between Emergence and Silking, D2 for 

the duration between Silking and Dent, and D3 for the du-

ration between Dent and Maturity. For soybean, D1 refers 

to the duration between Emergence and Beginning Seed, 

D2 refers to the duration between Beginning Seed and 

Full Seed, and D3 refers to the duration between Full Seed 

and Beginning Maturity.

2.2 | MODIS LAI data

The LAI data used in the study were extracted from the 

8- day 500 m LAI product (i.e., MOD15A2H, available at 

https://ladsw eb.modaps.eosdis.nasa.gov/missi ons- and- 

measu remen ts/produ cts/MOD15 A2H/). This LAI prod-

uct (2000– present) has been assessed over a widely 

distributed set of locations and time points and proved to 

(2)f (x) = yscale × h (xscale × (x + tshift))

T A B L E  1  Phenological stages identified for maize and soybean using the shape model fitting

Stage

Maize Soybean

Vegetative Silking Dent Maturity Vegetative Beginning seed Full seed

Beginning 

maturity

V1 R1 R5 R6 V1 R5 R6 R7

Reference 

date

150 200 240 265 170 225 240 270

Note: The reference dates were used to define shape models that were geometrically scaled and fitted to time series WDRVI data on a per- pixel basis.
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exhibit a high accuracy compared with ground- truth data. 

In this study, LAI data covering the three states were mo-

saicked, re- projected, and resampled to match the WDRVI 

data. These LAI data were mainly used to reveal whether 

differences in LAI exist among different crop groups 

(nonpriming, priming, and control groups as defined in 

the section Drought priming on crops). To this end, LAI 

data were aggregated by county and phenological dura-

tions (D1- D3) and the statistical characteristics of LAI 

data such as mean, median, and standard deviations were 

reported for comparisons.

2.3 | Daily weather data

Daily weather data including daily maximum tempera-

ture, minimum temperature, accumulative precipita-

tion, downward surface shortwave radiation, mean VPD, 

and 10- day PDSI from 2000 to 2018 were downloaded 

from gridMET (available through the USGS Geo Data 

portal, https://cida.usgs.gov/gdp/clien t/#!catal og/gdp/

datas et/54dd5 df2e4 b08de 9379b 38d8). gridMET provides 

daily surface meteorological data for the Continental 

United States at 4  km (Abatzoglou, 2013). It blends the 

high- resolution spatial data from PRISM (Daly et al., 

2008) with the National Land Data Assimilation System 

Phase 2 Reanalysis data, resulting in a spatially and tem-

porally continuous product. The product has been exten-

sively validated using weather station networks including 

RAWS, AgriMet, AgWeatherNet, and USHCN- 2 and has 

proved to be suitable for landscape ecological modeling 

(Abatzoglou, 2013).

To be consistent with the data analysis at the county 

level, the daily weather data were aggregated from 4 km to 

the county level at which mean values of these meteoro-

logical variables were used. These variables were further 

aggregated to mean values within the three periods, D1, 

D2, and D3.

2.4 | Defining drought conditions

We used PDSI and SPA to individually define drought for 

each of the three periods (D1- D3) bounded by the four 

critical phenological stages. PDSI was calculated based 

on precipitation and temperature data while accounting 

for changes in soil water content (Alley, 1984; Dai et al., 

2004). It is a standardized index typically ranging from −4 

(dry) to +4 (wet) albeit that more extreme values are pos-

sible. Specifically, PDSI was divided into several groups to 

indicate meteorological conditions from dry to wet: −4.0 

or less (Extreme Drought), −3.0 to −3.9 (Severe Drought), 

−2.0 to −2.9 (Moderate Drought), −1.9 to +1.9 (Near 

Normal), +2.0 to 2.9 (Unusual Moist Spell), +3.0 to +3.9 

(Very Moist Spell), +4.0 and above (Extremely Moist).

The SPA, as calculated in equation (3), characterizes 

the degree to which accumulative precipitation deviates 

from its mean state:

where xy,t refers to the mean total precipitation at the county 

level within each of the three durations (t) D1, D2, and D3 

in a given year y and xt  represents the multi- year mean total 

precipitation within the corresponding duration (t). This 

standardized anomaly has been used before, for example, in 

Li et al. (2019), to quantify the impacts of excessive rainfall 

and extreme temperature on the crop yield. Based on this 

standardized anomaly approach, meteorological dry- to- wet 

events were defined in the following order using the x value: 

−2.0 or less (Extreme Dry), −2.0 to −0.5 (Moderate Dry), 

−0.5 to +0.5 (Near Normal), +0.5 to +2.5 (Moderate Wet), 

+2.5 and above (Extreme Wet). The x values set for extreme 

drought and rainfall were uneven because the precipitation 

distribution showed a longer tail toward high precipitation 

(Figure S2). These uneven values ensured that extreme 

drought and rainfall were equally identified and represented 

(Li et al., 2019).

We also followed the anomaly approach to define 

temperature conditions (hereafter named as STA) from 

extreme cold to extreme heat (Li et al., 2019). Similarly, 

based on the standardized anomaly approach, cold- to- 

heat conditions were defined in the following order using 

the x value: −2.0 or less (Extreme Cold), −2.0 to −0.5 

(Moderate Cold), −0.5 to +0.5 (Near Normal), +0.5 to 

+2.5 (Moderate Heat), +2.5 and above (Extreme Heat).

In this study, we did not use VPD to define drought as 

it is quite difficult to know the category of drought con-

dition, for example, extreme or moderate drought condi-

tions, based on VPD. However, VPD was used in the panel 

data analysis as it regulated the behavior of crop stomata 

and may show impacts of atmospheric conditions on crop 

yield. The separate quantification of drought conditions 

using PDSI and SPA provided independent estimates of 

the impacts of drought priming on crop yield losses.

2.5 | Crop yield anomaly

The crop grain yield data between 2000 and 2018 at 

county level for the three states were downloaded from 

the USDA/NASS Quick Stats 2.0 database and yield trend 

over years for each county is summarized in Figure S3. The 

unit for the crop yield data is metric ton per hectare (Mg/

Ha). To identify drought priming effects, yield variations 

(3)x =

(

xy,t − xt
)

�
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induced by weather conditions including the minimum 

temperature (Tmin), maximum temperature (Tmax), solar 

radiation (Srad), precipitation (Precp), and VPD, as well 

as the general trend in maize and soybean yield (Figure 

S3) were removed. Thus, crop yield anomaly was defined 

after weather- induce yield variation was removed. Here, 

crop yield anomaly for each county for a given year was 

computed in three equations.

First, a panel analysis model, as outlined in equation 4, 

was used to remove yield variations induced by tempera-

ture, solar radiation, and VPD:

where Yieldi,t refers to the crop yield data (either maize or 

soybean) for county i in a given year t, α0t characterizes the 

yield trend ascribed to cultivar development and improved 

agronomic practices, j represents the three durations (D1- 

D3), αj, βj, γj and μj defines the sensitivity of crop yield to 

Tmax, Tmin, Srad, and VPD, respectively, within each of the 

three periods, Countyi allows for a separate intercept for 

each county, which accounts for variation in soil type and 

agronomic practices in different regions, and εi,t is the error 

term. The computation strategy is noted as C1. We define 

the difference between the crop yield data (Yieldi,t) and the 

crop yield data (Yieldp,i,t) provided by equation 4 as the crop 

yield anomaly (Yieldano, equation 5).

Second, the panel model analysis was still used but with-

out meteorological variables and county intercepts as shown 

in equation 6. This computation strategy is noted as C2. 

Equation 6 suggested that only the general trend in crop yield 

over years for each county was removed. Crop yield anomaly 

was then defined as the difference between the crop yield 

data and the expected yield trend (noted as YieldanoTr).

We made a comparison between the magnitudes of the 

drought priming effect using yield anomalies derived from 

C1 and C2 to reveal whether variability in climate condi-

tions would apparently obscure the drought priming effect. 

Note that the APSIM simulations were driven by weather 

inputs such as temperature, precipitation, solar radiation, 

and VPD (similar to the C2 strategy). Thus, the compari-

son between C1 and C2 would help understand whether 

APSIM simulated yield data can be directly used (without 

anomaly calculation as shown in equations 5 and 6) for dis-

cerning the drought priming effect.

Third, to check if the temperature (or heat stress) prim-

ing effect exists, the panel analysis model (as shown in 

equation 4) was adjusted with slightly different variables. 

We repeated analysis steps for the drought priming effect 

with the temperature data.

(4)
Yieldi,t =

�0t +
∑3

j=1

�

�jTmaxj
i,t

+ � jTminj
i,t

�

+ � jSrad
j
i,t
+ �jVPD

j
i,t
+ Countyi

Yieldp,i,t
+ �i,t

(5)Yieldano = Yieldi,t − Yieldp,i,t

(6)
Yieldi,t = Yieldp,i,t �0t

⏟⏟⏟
+ �i,t

(7)
Yieldi,t =

�0t +
∑3

j=1

�

� jTminj
i,t

+ � jSrad
j
i,t
+ �jVPD

j
i,t
+ �jPrecp

j

�

+ Countyi

Yieldp,i,t
+ �i,t

T A B L E  2  Delineation of different groups, that is, drought/temperature priming, drought/temperature nonpriming, and control group 

based on PDSI/STA/SPA values within each phenological duration (D1- D3)

Group D1 D2 D3

Drought priming PDSI <−2 −2<PDSI<2 PDSI<−2

Drought nonpriming −2<PDSI<2 −2<PDSI<2 PDSI<−2

Control group (no drought stress) −2<PDSI<2 −2<PDSI<2 −2<PDSI<2

Temperature priming −0.5<STA<+2.0 −0.5<STA<0.5 −0.5<STA<+2.0

Temperature nonpriming −0.5<STA<0.5 −0.5<STA<0.5 −0.5<STA<+2.0

Control group (no high temperature stress) −0.5<STA<0.5 −0.5<STA<0.5 −0.5<STA<0.5

Drought priming −2.0<SPA<−0.5 −0.5<SPA<+0.5 −2.0<SPA<−0.5

Drought nonpriming −0.5<SPA<+0.5 −0.5<SPA<+0.5 −2.0<SPA<−0.5

Control group (no drought stress) −0.5<SPA<+0.5 −0.5<SPA<+0.5 −0.5<SPA<+0.5

Note: Both PDSI and SPA values were used to delineate drought priming, nonpriming, and control groups.
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In this case, the difference between crop yield data and 

the yield data modeled from equation 7 was used as crop 

yield anomaly and noted as.YieldanoTem

2.6 | Analysis of drought and 
temperature priming effects

If the drought priming effect exists, it can be expected 

that maize/soybean plants experiencing mild to moderate 

droughts (as defined by PDSI) in both D1 and D3 but not 

in D2 would have relatively higher yield than those expe-

riencing droughts only in D3. Similar to the drought prim-

ing effect, if the temperature priming effect exists, it can 

be expected that maize/soybean plants experiencing mild 

to moderate temperature extremes in both D1 and D3 but 

not in D2 would have relatively higher yield than those 

experiencing temperature extremes only in D3. Table 2 

shows the delineation of different groups for identifying 

priming effects on crop yields. To explore the drought 

priming effect, we selected only a county- year in which 

D3 had a PDSI value less than −2.0 (experiencing moder-

ate or extreme drought in the later stage of growth) and 

D2 had a PDSI value larger than −2.0 but less than +2.0 

(near normal condition). The crop yield anomaly data 

were then grouped by D1 PDSI values in two categories 

(PDSI<−2 and 0<PDSI<2). The two groups were referred 

to as priming and no priming groups. The comparison be-

tween the two groups would help show the priming effect 

(if it exists). The two- sample t- test was used to identify if 

differences in crop yield anomaly or crop yield between 

the two groups were statistically significant.

The same procedure was also performed using SPA 

while satisfying the following requirements: for a county- 

year being selected, D3 had a SPA value less than −0.5 

and D2 had a near normal rainfall condition (−0.5 to 

+0.5). For a selected county- year, the corresponding yield 

anomaly was grouped by SPA in D1 in two categories 

(−0.5<SPA<+0.5 and −2.0<SPA<−0.5) and then checked 

if differences in crop yield anomaly between groups were 

statistically significant using the two- sample t- test. The 

two groups were referred to as priming and nonpriming 

groups.

The same procedure was also applied to group yield 

anomalies using STA while satisfying the following re-

quirements: for a county- year being selected, D3  had a 

STA value greater than 0.5 but less than 2.0 and D2 had a 

near normal temperature condition (−0.5 to +0.5). For se-

lected county- year, the corresponding yield anomaly was 

grouped by STA in D1 in two categories (−0.5<STA<+0.5 

and 0.5<STA<2.0) and then checked if differences in 

crop yield anomaly between groups were statistically 

significant using the two- sample t- test. The two groups 

were referred to as priming and nonpriming groups.

As crop yield anomaly resulted from different mod-

eling results (one of the three Yieldano, YieldanoTr, 

YieldanoTem), analysis of the priming effect was per-

formed for all the yield anomaly data sets (either tem-

perature or drought). We also define a normal group (or 

control group) within which crops do not experience 

either drought or temperature stress over the three du-

rations (D1- D3). The yield or yield anomalies from this 

group is considered the attainable nondrought or non-

temperature stress yield.

2.7 | APSIM modeling

A process- based crop model provides an alternative ap-

proach to explore the drought and temperature priming 

effects and whether the model- based observations are con-

sistent with satellite- based observations. Here, the APSIM 

version 7.10 (Holzworth et al., 2014) was used to simu-

late crop yield. Specifically, we used the APSIM- Maize 

and APSIM- Soybean modules to simulate crop yield for 

maize and soybean, respectively. The model simulations 

were forced with the gridMet weather data that were se-

lected for exploring priming effects on maize or soybean 

using PDSI, SPA, or STA. For maize simulations, a generic 

maize hybrid “B_110” provided by APSIM version 7.10 

was used, while for soybean simulations, a soybean variety 

“Pioneer 93M42” was used. Only the county- year that was 

previously selected for analyzing drought and tempera-

ture priming effect (as suggested by the section drought 

imprints on crops) was simulated in the APSIM model. 

The soil- associated variables such as soil organic matter 

fractions were set as a constant for all county- year simula-

tions. Specifically, the Clarion soil series determined from 

the Iowa State University Experimental farm available in 

the APSIM was used. The use of a constant soil profile 

for all the simulations thus can help remove variations in 

crop yield induced by soil characteristics. Sowing dates for 

both maize and soybean were determined using a variable 

rule with the sowing window set between 1 May and 15 

May based on the model predefined cumulative rainfall 

and soil water. Sowing density and spacing for maize were 

set as 10 plants/m2 and 0.8 m while for soybean were set as 

20 plants/m2 and 0.6 m. As the crop cultivar (either maize 

or soybean) used in simulations was the same over years, 

the differences in crop yield between groups as defined by 

D1 PDSI, SPA, or STA would help identify whether the 

APSIM model captures the priming effect and whether 

the quantified effect are similar to that from statistical 

analysis.



8 of 16 |   FU et al.

3  |  RESULTS

3.1 | Accuracy for satellite- derived 
phenological dates

Phenological dates for both maize and soybean were 

identified using a hybrid approach integrating the SMF 

and the threshold method. The validations at the state 

level showed that MODIS- derived dates for phenological 

stages of maize and soybean (Table 3) were in good agree-

ment with those provided by the NASS. Table 3 shows 

that the RMSE of the four phenological dates among the 

three states (Illinois, Indiana, and Iowa) ranged from 

2.5 (Silking) to 4.6  days (Dent) for maize, and from 1.4 

(Beginning Maturity) to 5.5  days (Emergence) for soy-

bean. These findings were consistent with previous stud-

ies in estimating phenological dates for maize and soybean 

(Sakamoto et al., 2010; Zeng et al., 2016; Zhu et al., 2018), 

providing a basis to understand whether priming effects 

exist in maize and soybean.

3.2 | Drought and temperature 
priming effects

The frequency of a county experiencing the priming 

event, either drought or temperature, for maize and soy-

bean, is shown in Figure 3. We did not observe a south or 

north cluster for both temperature and drought priming 

events although most of the temperature priming events 

occurred in Illinois and Indiana. Maize and soybean yields 

from counties experiencing a priming event were com-

pared with those from counties without a priming event 

to determine if priming effect could mitigate yield loss.

Differences were observed in yield anomalies based 

on whether crops in a county were exposed to no drought 

(normal conditions), one drought without priming, or two 

droughts with a priming event (Figure 4). When the linear 

trend in yield was removed (Figure 4a), difference in the 

mean yield anomaly between the drought priming and 

nonpriming groups was 0.37 Mg/Ha for maize, equivalent 

to 3.8% of the mean maize yield (9.77 Mg/Ha) across all 

counties in the three states from 2000 to 2018. The yield 

anomaly for maize in the control group was 0.44 Mg/Ha, 

higher than that in the priming group (0.26 Mg/Ha). This 

suggested that the drought priming effect in maize helped 

mitigate yield loss by 67.3%. For soybean, the difference 

in yield anomaly between the drought priming and non-

priming groups was 0.11 Mg/Ha, equivalent to 3.2% of the 

mean soybean yield (3.41 Mg/Ha) across all counties in the 

three states from 2000 to 2018. The control group in which 

no drought stress was observed across the three durations 

(D1- D3) showed a yield anomaly of 0.14 Mg/Ha, resulting 

in a difference of 0.52 Mg/Ha compared with the no prim-

ing group and of 0.41 Mg/Ha compared with the priming 

group. These numbers indicated that the priming effect 

mitigated the yield loss by 21.2%. When both crop yield 

trend and yield variations induced by solar radiation and 

temperature were removed, the drought priming was still 

observed but with a slightly different magnitude (Figure 

4b). For maize, the difference in yield anomaly between 

the control group and the priming group was 0.21 Mg/Ha 

and between the control group and the no priming group 

was 0.61 Mg/Ha. Thus, the priming effect mitigated yield 

loss by 0.37 Mg/Ha (or 65.6%). For soybean, the priming 

group reduced the yield loss by 0.25  Mg/Ha (or 53.2%) 

while the yield loss due to drought was 0.47 Mg/Ha (i.e., 

the difference between the control group and the no prim-

ing group as shown in Figure 4b). This yield loss reduc-

tion amounted to 7.3% of the mean soybean yield across 

all three states from 2000 to 2018. Furthermore, the stan-

dard deviation associated with each group decreased from 

Figure 4a,b. Specifically, standard deviation (unit: Mg/Ha) 

in the no priming group for maize decreased from 0.94 to 

0.24, in the priming group fell from 0.66 to 0.28, and in the 

normal group declined from 0.88 to 0.26. Soybean showed 

Illinois Indiana Iowa

Maize Emergence 4.2 4.5 4.4

Silking 2.5 3.2 3.9

Dent 3.7 4.6 4.2

Maturity 4.3 3.5 4.3

Soybean Emergence 5.5 5.0 4.8

Beginning seed 4.1 5.0 3.0

Full seed NA NA NA

Beginning maturity 1.4 2.2 2.6

Note: Ground- truth dates for Full Seed are not available (NA). The numbers indicate the root mean 

square error (RMSE) between MODIS- derived phenological dates and NASS reported mean dates at the 

state level.

T A B L E  3  Accuracy assessment of the 

four phenological dates identified using 

the shape model fitting and the threshold 

method
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similar decreases in standard deviation from 0.42 to 0.24, 

from 0.38 to 0.28, and from 0.28 to 0.22 in the no priming, 

priming, and normal groups, respectively.

Yield anomalies were also grouped per drought condi-

tions outlined by a SPA approach (Figure S2). We repeated 

the analysis of the drought priming effect using PDSI with 

using SPA since previous work showed that PDSI may not 

always be a good proxy for crop water stress (Woli et al., 

2012). Based on Figure S4, the drought priming effect on 

maize and soybean was still observed with a similar mag-

nitude compared with that identified using PDSI. For ex-

ample, the difference in maize yield anomaly between the 

control group and the priming group was 0.21 Mg/Ha and 

between the control group and the no priming group was 

0.62 Mg/Ha when only yield trend was removed (Figure 

S4a). These numbers suggested that the drought prim-

ing effect mitigated the crop yield loss by 0.41 Mg/Ha (or 

66.1%), similar to the magnitude derived using the PDSI 

(67.3%). For soybean, when both yield trend and variations 

due to temperature and solar radiation were removed, a 

relatively lower magnitude of the drought priming effect 

was observed. More specifically, as shown in Figure S4b, 

the difference in yield anomaly between the priming and 

no priming groups was 0.21 Mg/Ha, equivalent to 42.0% of 

the difference in yield anomaly between the normal group 

and the no priming group. This mitigation of soybean 

yield loss by 42.0% identified using the SPA approach- 

based groups was comparable to the 53.2% loss observed 

using the PDSI- based groups.

Following the same approach for precipitation, yield 

anomalies were further grouped by temperatures to reveal 

whether temperature priming effects on maize and soy-

bean exist in field conditions. The temperature priming 

effects for both maize and soybean were identified, evi-

denced by Figure 4c,d. When only crop yield trend was re-

moved from the original yield data, the difference in yield 

F I G U R E  3  The frequency for a county experiencing a priming event, either drought or temperature, on corn (a, c) and soybean (b, d) 

from 2000 to 2018. These colored counties are selected using PDSI and STA for exploring whether the priming effect exists
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anomaly between the priming and no priming groups was 

0.24 Mg/Ha for maize and was 0.06 Mg/Ha for soybean 

(Figure 4c). An even higher magnitude for the difference 

in yield anomaly between the priming and no priming 

groups was observed for maize (0.44 Mg/Ha) but not for 

soybean (0.05 Mg/Ha) when both yield trend and varia-

tions due to precipitation and VPD were removed using 

the panel model (Figure 4d). These findings suggested 

that yield loss mitigated by the temperature priming ef-

fect for maize amounted to 2.5% −4.5% of the mean yield 

across all three states from 2000 to 2018 and for soybean it 

reached 1.4% −1.8% of the mean soybean yield across all 

three states from 2000 to 2018. Using yield anomaly in the 

control group as the reference, the temperature priming 

effect abated yield loss by 44.4% (Figure 4c)– 66.7% (Figure 

4d) for maize and reduced yield loss by 18.5% (Figure 4d)– 

19.4% (Figure 4c) for soybean.

3.3 | APSIM simulated differences in 
yield and selected crop traits

Limited in situ and satellite observations are available to 

reveal differences in plant traits associated with the prim-

ing effect at county and state levels. As such, the APSIM 

model is used first to simulate whether the priming effect 

exists in field conditions which are different from green-

house conditions, and then to detect differences in plant 

F I G U R E  4  Yield anomalies for maize and soybean without priming, with priming, and in the control group for drought (a and b) and 

temperature (c and d) conditions. Yield anomalies over time for each county were derived after removing a linear trend from the original 

yield data (i.e., observed yield minus trend) as shown in (a and c) or after removing the panel analysis modeled yield from the original 

yield data (i.e., observed yield minus the panel analysis modeled yield) as shown in (b and d). Statistically significant differences between 

the means of the treatments (no priming, with priming, and control group) for (a) to (d) are observed at a significance level of 0.05 (p- value 

<0.05) using the ANOVA analysis. Numbers close to the bars indicate mean values while the vertical lines with ends represent standard 

deviations. Drought conditions were determined using the Palmer Drought Severity Index (PDSI) and temperature conditions were 

determined using the standard temperature anomaly approach. Under normal conditions (also called control group in this study), there is 

no drought/temperature stress over D1, D2, and D3 and crop yield in this case was considered the attainable nondrought/temperature stress 

yield
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traits including LAI, specific leaf nitrogen, and root depth 

by phenological stages for both maize and soybean. The 

use of the APSIM model is not to accurately simulate crop 

yield and plant traits but to provide a further evaluation 

of what changes in plant traits can be expected. The vari-

ation in yield and plant traits, if any, is only driven by the 

inputs of weather variables as other parameterizations are 

set as constant variables. The selection of the plant traits 

including LAI, specific leaf nitrogen, and root depth for 

analysis in this study is attributable to their importance to 

explain the fraction of absorbed photosynthetically active 

radiation, photosynthetic capacity, and accessibility to soil 

moisture (Adams et al., 2016; Fan et al., 2017; Weiss et al., 

2004) that are critical to crop yield.

Figure 5 shows simulated yield variation for differ-

ent groups as revealed by the APSIM model. Both tem-

perature and drought priming effects were explored. For 

maize, the difference in yield between the drought prim-

ing and nonpriming groups was 1.13  Mg/Ha (Figure 5a 

Left Panel), much larger than that (0.37 Mg/Ha) derived 

using the panel regression analysis approach while the dif-

ference in yield between the drought priming and control 

groups was relatively smaller (0.04 Mg/Ha, Figure 5a Left 

Panel, p- value >0.05) compared with that (0.18  Mg/Ha) 

using the panel analysis approach as shown in Figure 4a. 

With temperature priming, the maize yield was 10.48 Mg/

Ha, 0.25  Mg/Ha higher than that in the nonpriming 

group (10.23  Mg/Ha, Figure 5a right panel). This yield 

difference between temperature priming and nonpriming 

groups accounts for 26.6% of the difference in yield be-

tween nonpriming and control groups. The temperature 

priming effect on maize revealed by the APSIM was sim-

ilar to that (0.24 Mg/Ha) derived using the panel analysis 

regression- based approach (Figure 4c,d). For soybean, it 

was observed that the drought priming effect would help 

mitigate yield loss by 0.20 Mg/Ha, accounting for 27.4% of 

the yield loss (i.e., the control group showing a higher yield 

of 0.73 Mg/Ha compared with the nonpriming group) and 

roughly 2.0% of the mean yield over all the groups. The 

temperature priming effect on soybean yield exhibited an 

even higher magnitude than the drought priming effect 

as suggested by the APSIM simulations. Specifically, the 

difference in soybean yield between the temperature con-

trol and nonpriming groups was 1.00 Mg/Ha, higher than 

the difference in yield (0.60 Mg/Ha) between the control 

and priming groups. These priming effects on soybean 

were close to those identified using the panel regression 

analysis- based approach.

We also compared the satellite- derived LAI (MODIS 

data, Figure S5) and that (Figure 6) provided by the APSIM 

model (comparisons were made for LAI aggregated over 

each phenological duration from D1 to D3). The absolute 

LAI values from the APSIM model differed from the sat-

ellite data. However, the difference in LAI values among 

groups as aggregated by phenological durations (D1- D3) 

shared a similar pattern. For example, for maize growth 

during D2, LAI in the priming group was larger than that 

in the other two groups (nonpriming and control groups) 

as revealed both by the APSIM model (Figure 6a,b) and 

satellite data (Figure S5a,b). For soybean growth during 

D2, LAI in the priming group (drought and temperature 

groups) was generally smaller than that in the other two 

groups as revealed both by the APSIM model (Figure 

6c,d) and satellite data (Figure S5c,d). Satellite data gen-

erally indicated that LAI did not vary much among groups 

during D1 and D3 for both soybean and maize (Figure S5) 

although results from the APSIM model differed slightly 

from these observations. Further analysis of the APSIM 

F I G U R E  5  Differences in yield among varying groups (i.e., no priming, with priming, and control) as revealed by the APSIM 

simulations for maize (a) and soybean (b). Results related to both drought and temperature priming effects are provided (separated by the 

red dash line). Differences among groups are statistically significant at p < 0.05 level
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model results showed that only root depth exhibited a 

statistically significant difference (p- value=0.01) between 

the drought priming group and the other two groups 

(i.e., nonpriming, priming, and control groups) for both 

soybean and maize (Figure S6). Specifically, the APSIM 

model suggested that the drought priming effect induced 

the increase of root depth by 0.18 m for maize (as com-

pared to the maize nonpriming and control groups) and 

the increase of root depth by 0.08 m for soybean (as com-

pared with the soybean nonpriming and control groups).

4  |  DISCUSSION AND 
CONCLUSIONS

Drought is and will continue to be a main factor contrib-

uting to yield loss (Lobell et al., 2014). It is imperative to 

adopt strategies to help crops develop enhanced resistance 

to drought to ensure global food security for an increasing 

population while conserving water resources. However, 

climate change has already aggravated drought intensity 

and is projected to lead to more frequent extreme weather 

conditions (e.g., much shorter but intense rainfall events) 

associated with droughts (Cook et al., 2018). In this study, 

observational evidence of a drought priming effect was 

observed on two major Midwestern U.S. crops, maize and 

soybean. When a late- season drought was experienced for 

maize, maize yield losses were 0.37– 0.40  Mg/Ha higher 

(equivalent to $50/Ha– $55/Ha), or roughly 3.8%– 4.1% 

of mean annual yields in the three states (i.e., Illinois, 

Indiana, Iowa) in the Midwest, compared with those 

when the crops also experienced an early season drought, 

supporting the drought priming hypothesis. Similarly, 

evidence also supported a drought priming effect for soy-

bean to the benefit of 0.11– 0.25 Mg/Ha (equivalent to $56/

Ha– $128/Ha), or 3.2%– 7.3% of mean annual yields in the 

F I G U R E  6  Differences in LAI among groups (i.e., no priming, with priming, and normal) over different crop phenological durations 

D1, D2, and D3 for both maize (a, b) and soybean (c, d) as revealed by the APSIM model. For maize, D1, D2, and D3 refer to the duration 

between emergence and silking, silking and dent, and dent and maturity, respectively. For soybean, D1, D2, and D3 refer to the duration 

between emergence and beginning seed, beginning seed and full seed, full seed and beginning maturity, respectively. *indicates the 

difference in LAI among groups are statistically significant at p < 0.05 level
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three states in the Midwest. This finding indicates that 

maize/soybean experiencing a mild to moderate drought 

at its early growth stage can have a better capacity to deal 

with moderate and extreme droughts experienced at its 

later growth stage. These results are independent of ex-

perimental studies in greenhouses where meteorological/

agricultural drought conditions occurring in the fields are 

not easily replicated. The two approaches, the panel re-

gression analysis of actual yield variability and the APSIM 

simulations, used in this study to discern priming effects, 

both suggest a similar magnitude of priming effects in 

temperature and drought on maize and soybean. Thus, 

results from both approaches corroborate with each other 

and together point out firmly a promising strategy that can 

be taken in the future as a supplement to existing methods 

such as genetic engineering and plant breeding to develop 

drought- resistance cultivars (Hu & Xiong, 2014). This sup-

plement to existing methods can be achieved by dissecting 

changes in plant traits at individual plants and gene lev-

els that underlie the drought priming effect (Balmer et al., 

2015).

Since increasing warm season temperatures in the 

Midwest can lead to surface moisture loss through evapo-

ration (Wuebbles et al., 2017) and then further aggravate 

drought stress on crops, the temperature priming effects 

on maize and soybean were also evaluated in this study. 

Temperature priming effects were revealed on both maize 

and soybean whereby the impacts of late- season high 

temperatures were less severe when crops were exposed 

to high temperatures early in the season. The temperature 

priming effect helped mitigate yield loss by 0.24– 0.44 Mg/

Ha (equivalent to $33/Ha– $60/Ha) for maize and by 0.05– 

0.06 Mg/Ha (equivalent to $25/Ha– $30/Ha) for soybean, 

accounting for 2.5%– 4.5% of the mean maize yield and 

1.4%– 1.8% of the mean soybean yield over the Midwestern 

states. This reduction in yield losses by temperature prim-

ing events is comparable to the worldwide average yield 

loss caused by increased temperatures (Zhao et al., 2017). 

Thus, the observational evidence presented in this study 

also corroborates the initial hypothesis that maize/soy-

bean experiencing moderate temperature extremes at its 

early stage of growth would have a better capacity to deal 

with extreme and moderate temperatures experienced at 

its later stage of growth. Moreover, this study moves be-

yond the current frontier in understanding the impacts 

of climate change (e.g., temperature and precipitation 

change) on crop yield by highlighting the importance of 

understanding the role of increased climate variability on 

crop resilience.

The APSIM model, despite its general success in re-

producing the priming effect on maize and soybean yield, 

provides slightly different results from those of the panel 

regression- based approach as seen from yield and LAI 

variations. For example, the difference in maize yield 

between the drought priming and control groups is not 

statistically significant (p- value <0.05) as revealed by the 

APSIM model simulations (but statistically significant as 

revealed by the panel regression- based approach using 

PDSI or SPA). For soybean, simulation results suggest 

that the temperature priming effect can help overcome 

crop yield loss by 0.4 Mg/Ha, much larger than that (0.05– 

0.06 Mg/Ha) derived from the panel regression analysis- 

based approach (Figure 4c,d). These differences between 

magnitudes of the priming effect derived using the panel 

regression analysis and the APSIM simulations are poten-

tially explained by APSIM model parameterization using 

constant variables (e.g., soil conditions were set as con-

stant for all simulations) other than meteorological drivers 

that determine nonpriming, priming, and control groups. 

The means by which the APSIM model reproduces the 

temperature and drought priming effects is likely through 

stimulation of root growth (Dodd et al., 2008). This ef-

fect of the model results in maize and soybean accessing 

deeper water in the soil profile under stressed conditions, 

which can have a direct effect on biomass accumulation 

(Hammer et al., 2009). It is believed that this direct effect 

on biomass allocation, along with the canopy structure 

change represented by LAI, may lead to mitigation of yield 

loss during a priming event. Other process- based crop 

models such as those involved in the Agricultural Model 

Intercomparison and Improvement Project (AgMIP) may 

also be able to capture this priming effect since most of 

them have modules to represent responses of plants to 

weather and soil conditions (Rosenzweig et al., 2014). 

Additionally, it is found that the APSIM model can rep-

licate the difference in LAI among groups during D2 as 

compared with satellite- based LAI. Another possible ex-

planation for the model to reproduce the priming effect, 

LAI differences, and root depth differences would be the 

inherent ability of the model to respond to changes in me-

teorological variables and divert resources to optimize the 

agricultural productivity (Holzworth et al., 2014). Further 

studies are needed to improve understanding of how the 

process- based models such as APSIM can account for the 

priming effect or how to explicitly include a mechanism or 

module to explain the priming effect.

Despite general wetter conditions projected for the 

Midwestern United States (Neri et al., 2020), such a varia-

tion in precipitation patterns may not alleviate drought fre-

quency and intensity for crop growth. Spring precipitation 

is increasing while precipitation in mid-  and late- summer 

is decreasing, which is likely to lead to fewer opportunities 

for drought priming making crops more vulnerable to fu-

ture climate change (Lobell et al., 2014). Because drought 

priming, as shown in this study, can help lower crop yield 

loss from late- season droughts, further understanding 
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of the mechanistic or physiological basis of the drought 

priming effect is needed. Once these mechanisms are elu-

cidated, the potential may exist to use advanced breeding 

methods (Hu & Xiong, 2014; Kerchev et al., 2020; Pinto 

et al., 2010) to identify and incorporate key functional 

genes into crops, potentially to create “drought primed” 

cultivars.

Further refinements of this study may be possible by 

considering the following two aspects. First, although the 

panel regression analysis reveals drought and temperature 

priming effects, the magnitude of mitigating crop yield 

loss exhibits variability due to factors such as soil con-

ditions, irrigation, cultivars, and errors propagated from 

the satellite- derived phenological metrics. For example, 

as the Midwest region is predominately rainfed although 

rapid irrigation expansion has occurred over the past few 

years (Xie & Lark, 2021), thus future refinements of this 

study can be made to exclude a county- year with large 

amounts of irrigation over the growing season. As such, 

the process- based modeling approach such as APSIM, as a 

virtual farm platform, would be an alternative approach to 

understanding the priming effect by setting some variables 

as constant. However, in this study, despite successful sim-

ulations of the temperature and drought priming effects, 

the APSIM model cannot reproduce all the changes in 

the plant traits such as LAI over the three phenological 

durations as compared with satellite observations. This is 

expected as only one genotype is used in the APSIM model 

and parameters such as soil conditions are set as con-

stants. Thus, studies are warranted to further understand 

the priming effects through process- based crop growth 

models such as APSIM. Second, the current priming ef-

fect is evaluated based on phenological metrics (four key 

phenological stages for both maize and soybean) derived 

from 8- day MODIS composite reflectance images. Thus, it 

is not possible using current phenological metrics to know 

precisely when crop priming initiates as conceptually il-

lustrated in Figure 1. It is also difficult to know exactly 

the amount of drought and temperature stress needed to 

induce a priming event. Therefore, a precise character-

ization of when and how the priming effect can be in-

duced may need to combine the greenhouse experimental 

studies, model simulations, and large- scale phenotyping 

of plant traits, biomass, and yield in field conditions, for 

which further research is required.
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