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A B S T R A C T   

Study Region: The contiguous United States (CONUS). 
Study Focus: This study assesses the effects of the large-scale oceanic-atmospheric oscillations such 
as El Niño southern oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO), North Atlantic 
Oscillation (NAO), and Pacific Decadal Oscillation (PDO) on streamflow levels. Two robust and 
powerful non-parametric procedures, namely, the Joint Rank Fit (JRFit) and the rank-based 
partial least squares regression are used to identify and quantify the strength and direction of 
teleconnections (individual analysis). Further, JRFit is used to model the interactive effects 
(coupled analysis) of ENSO with AMO/PDO/NAO cycles on streamflows. 
New Hydrological Insights for the Region: Individual analysis results identified new significant 
ENSO, PDO, AMO and NAO tele-connections with streamflows across CONUS. PLS analysis 
showed a stronger AMO teleconnection with streamflows compared to other oscillations. The 
coupled analyses results were categorized into three groups based on the types of interactions of 
the ENSO phases. Type 1 interactions where a phase of ENSO is modulated by phases of decadal/ 
multidecadal cycles, are seen across all (majority of) regions in CONUS. Interesting results were 
obtained for type 2 (type 3) interactions as the effects of ENSO phases were opposite (similar but 
enhanced), compared to individual analysis of ENSO, when associated with the phases of PDO/ 
AMO/NAO. The results provide several new findings and useful information for forecasting of 
water resources in the CONUS region.   

1. Introduction 

El Niño Southern Oscillation (ENSO), centered in the equatorial pacific, is one of the most studied ocean-atmospheric phenomena 
of tropical air-sea interactions. Its tele-connections to climate variations in the contiguous US on inter-annual timescales (for a 
periodicity of 2–7 years) are well documented (Walker, 1923; Kousky et al., 1984; Ropelewski and Halpert, 1989; Diaz and Markgraf, 
1992, 2000; Gershunov and Barnett, 1998; Dai and Wigley, 2000; Goodrich, 2007). Similar to ENSO, the Pacific Decadal Oscillation 
(PDO), Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO) are also large-scale oceanic-atmospheric 
phenomena responsible for warming or cooling of the Pacific and Atlantic Ocean, respectively; however, they oscillate at different 
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periodicities (decadal to multi-decadal). 
In the recent past studies have generated greater interest related ENSO and other decadal/multidecadal climate cycles such as PDO, 

NAO and AMO and their effect on meteorological and hydrological parameters (Tootle et al., 2005; Araghinejad et al., 2006; Johnson 
et al., 2013; Mitra et al., 2014; Singh et al., 2015, 2016; Tamaddun et al., 2019a, 2019b). Several studies have investigated the 
tele-connections between sea conditions in the Atlantic and Pacific Oceans sea surface temperatures with regional precipitation and 
streamflow (Chiew et al., 1998; Schmidt et al., 2001; Sen et al., 2004; Tootle and Piechota, 2004; Murgulet et al., 2017). Streamflows in 
the United States have shown significant tele-connections to ENSO (Chiew and McMahon, 2002; Dracup and Kahya, 1994; Hamlet and 
Lettenmaier, 1999; Johnson et al., 2013; Tamaddun et al., 2017a,), PDO (Hamlet and Lettenmaier, 1999; Singh et al., 2015; Tamaddun 
et al., 2017a,), AMO and NAO (Tootle and Piechota, 2006; Singh et al., 2015). 

Recent research has focused on coupling of the interannual ENSO with other decadal/multidecadal climatic oscillations such as 
PDO, AMO and NAO. Studies have shown that PDO modulates the strength of ENSO teleconnections to precipitation and droughts 
(Cayan et al., 1998; Gershunov and Barnett, 1998; McCabe et al., 2004). Similarly, Enfield et al. (2001) evaluated the impact of AMO 
on precipitation and found that most of the US experiences below normal precipitation during AMO positive phase. Rajagopalan et al. 
(2000) studied the coupled interactions of ENSO with PDO and NAO on meteorological droughts using the Palmer drought severity 
index. Coupled studies have also been conducted with respect to streamflows at a regional scale in the United States (Hidalgo and 
Dracup, 2001; Rogers and Coleman, 2003; Johnson et al., 2013; Singh et al., 2015; Murgulet et al., 2017; Tamaddun et al., 2017a,). As 
these studies are regional in nature, they fail to provide information at a larger CONUS scale. It is important to consider the CONUS as a 
whole for the evaluation and not limit to regional scale in order to understand the effect of large-scale oscillations on contiguous 
hydrology. Therefore, a study by Tootle et al. (2005) showed significant modulation of ENSO behavior dependent on the phases of 
AMO and PDO throughout the CONUS. They indicated that ENSO phase streamflows in the CONUS are influenced by other decadal and 
multidecadal oscillations. However, the study used the non-parametric statistical Wilcoxon rank sum test (WRS) to infer the interaction 
between ENSO and other decadal/multidecadal climate cycles without directly modelling the interaction effect (interaction test). Also, 
Singh et al. (2018) showed that the WRS test fails to account for monthly and seasonal cluster correlations within the data which might 
indicate erroneous results. Further, the study also failed to quantify the magnitude of the modulation across different regions and/or 
climate zones in the CONUS. Apart from that the strength of teleconnections and scaling rate (change in streamflow with one standard 
deviation change in climate index) of ENSO, PDO, AMO and NAO towards streamflow variability across the regions in the contiguous 
United States have not been quantified. 

The quantification of the modulation magnitude, scaling rate, teleconnection strength and interaction test would indicate/provide 
predictive ability that can be helpful in forecasting of streamflows and water resources availability in the CONUS (Singh et al., 2018). 
Therefore, in this study, we revisit the topic of large-scale ocean-atmospheric cycle modulations on US streamflows and performed a 
comprehensive investigation on the interactive effect of climatic oscillations (i.e., ENSO, NAO, PDO and AMO) on streamflows in the 
entire CONUS using robust and efficient statistical procedures. We tested and evaluated the interactions (interaction test) between 
ENSO and other large-scale oscillations by directly modelling the interaction using a non-parametric linear mixed effects (LME) model. 
We used a powerful statistical procedure called Joint Rank Fit (JRFit) (Kloke et al., 2009; Singh et al., 2018) to fit the mixed effects 
model, and estimate the individual and coupled effects of climatic oscillations on streamflow levels for different regions across the 
CONUS. The JRFit model is able to efficiently model the interaction of two climate phenomena and works well for cluster correlated 
datasets (Singh et al., 2018). Moreover, the strength of tele-connection and scaling rate between the ocean-atmospheric cycles and 
streamflow levels were also quantified using a non-parametric rank-based partial least square (PLS) regression analysis. We also 
perform false discovery rate (FDR) analysis to test for false discovery rates in multiple hypothesis testing (Benjamini and Hochberg, 
1995). Overall, with the help of these statistical analysis we identify and highlight new modulations/interactions by classifying the 
interactions into three major types of interactions in the CONUS region that were missed in the earlier studies. 

Further, this study is conducted over an extended period of historic data (compared to Tootle et al. (2005)) that is required to more 
accurately and comprehensively evaluate the effect of inter-decadal phenomena on hydrologic variables. With a greater number of 
stations, higher record of data, and a powerful statistical technique, this comprehensive study provides a holistic picture of the effect of 
ocean-atmospheric cycles on streamflow levels across different climate zones in CONUS (Karl and Koss, 1984), which greatly adds to 
the current knowledge. The outcomes of this study will be helpful in developing streamflow forecasting frameworks across the CONUS 
region which incorporate climate oscillation information. Incorporating the information from ocean-atmospheric phenomena such as 
ENSO, NAO, PDO and AMO into the forecaster’s toolbox can greatly improve the lead time in streamflow forecasting (Tootle et al., 
2005; Araghinejad et al., 2006). 

2. Methodology 

A robust and powerful nonparametric model-fitting procedure known as JRFit procedure (Kloke et al., 2009) is applied to test and 
quantify the individual impacts of the phases of ENSO, NAO, PDO and AMO on streamflows. Moreover, a rank-based PLS approach is 
introduced to estimate the strength and direction of teleconnection effect of ENSO, AMO, PDO and NAO on streamflow fluctuations. 
Interaction tests between ENSO and the other climatic oscillations are performed to evaluate the modulation by NAO, AMO and PDO of 
ENSO effects on streamflow. 
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Fig. 1. This figure shows the nine climate regions within CONUS (modified from Karl and Koss, 1984). The gray dots show the location of the streamflow gauging stations.  
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2.1. Data 

2.1.1. Streamflow data 
The streamflow data were obtained from the Model Parameter Estimation Experiment (MOPEX) (Duan et al., 2006; Schaake et al., 

2006). Since the spatial and temporal extent of the MOPEX data is large and do not have missing values, it is better suited for analysis 
related to decadal and multi-decadal climatic oscillations (Wang and Hejazi, 2011; Berghuijs et al., 2016). We extracted approximately 
80 years (1920–2002) of daily streamflow data across the contiguous United States (Fig. 1) from MOPEX (Schaake et al., 2006) 
datasets, which are classified to be free of or minimally impacted by water management (Schaake et al., 2006). Monthly data were 
aggregated from daily data to evaluate the effects of climatic oscillations on streamflows. 

2.1.2. Oceanic-atmospheric phenomena indicators 
To identify teleconnections of climatic oscillations on streamflows, we used monthly PDO, ENSO, AMO and NAO indices from the 

“Joint Institute for the Study of the Atmosphere and Ocean, University of Washington” (Joint Institute for the Study of Atmosphere and 
Ocean (JISAO), 2012), “Climate Prediction Center (CPC) National Oceanic and Atmospheric Administration’s (NOAA)”, “Physical 
Sciences Division of the Earth Systems Research Laboratory, NOAA” (Earth Systems Research Laboratory (ESRL), 2012), and “National 
Center for Atmospheric Research (NCAR)”, respectively. In this study, we used the Niño 3.4 SST index (ERSST.v3b) as the ENSO index. 
ENSO has three phases. Neutral phase is defined when Niño 3.4 index value is between -0.5 ◦C and +0.5 ◦C; El Niño (warm) and La 
Niña (cold) phases correspond to the values above +0.5 ◦C and below -0.5 ◦C, respectively. The phases of AMO and PDO (i.e., pos-
itive/warm and negative/cold) are defined based on positive and negative numerical values of SST anomalies (Table 1). The positive 
and negative phases of NAO are defined based on positive and negative numerical values of mean SLP anomalies (Table 1). 

2.2. Statistical method 

2.2.1. Joint rank fit (JRFit) 
The nonparametric JRFit procedure extends the Wilcoxon rank-sum procedure to the estimation of mixed linear model parameters 

and their standard errors; therefore, it can be used for the analysis of models where the response variables exhibit cluster correlation 
(Kloke et al., 2009; Hettmansperger and McKean, 2011). In this study, the JRFit procedure was used to perform individual and coupled 
analyses. The Wilcoxon rank-sum procedure has long been used in hydrological studies (Tootle et al., 2005; Johnson et al., 2013,). This 
was extended by Jaeckel (1972) to the estimation of general linear models with independent responses and this procedure was 
extended to models with responses that are cluster correlated by Kloke et al. (2009). The new procedure, named JRFit, was shown to 
provide parameter estimators that are robust and efficient with an asymptotic normal distribution; hence, significance tests can be 
performed using Wald-type tests (Kloke et al., 2009). 

Effects of individual ocean-atmospheric phenomena PDO, ENSO, NAO and AMO on streamflow were estimated using the simple 
linear model with binary regressor 

S = β0 + β1X + ε, (1)  

where S represents the vector of streamflow values, ε represents a vector of unobserved random errors, and X represents a vector with 
X = 0 and X = 1 representing the positive/warm and negative/cold phases of the respective ocean-atmospheric oscillation. The 
magnitude of the slope coefficient β1 is the amount by which streamflow changes when ocean-atmospheric oscillation changes phases. 
Cluster-correlation in streamflow data on a monthly basis means that the variance-covariance matrix of ε is block-diagonal where each 
block represents a month. JRFit provides an estimate of this matrix along with the regression coefficients. Note that in the case of 
independent responses, then (1) becomes a simple linear model and the test of the hypothesis H : β1 = 0 via JRFit becomes the 
Wilcoxon rank-sum test (Hettmansperger and McKean, 2011). 

Considering the Wilcoxon rank-sum test as a test of linear model parameters opens doors to studying more complicated effects of 
ocean-atmospheric oscillations. For instance, we can study the interactive effects of ocean-atmospheric oscillations on streamflow 
levels. The statistical model for the interaction (coupled) effects of ENSO with other climate oscillations on streamflows was 

S = β0 + β1X1 + β2X2 + β3(X1⊙X2) + ε, (2) 

Table 1 
The years classified as positive and negative phases of AMO, PDO, and NAO.  

Climatic Oscillation Phases AMO PDO NAO 

Positive 1928– 1963, 1995– 2010 
1925– 1944, 1920– 1930 

1941– 1951, 
1977– 1999 1973– 1976, 

1981–2007 

Negative 
1920– 1927 1920– 1924, 1931– 1942 

1945– 1976, 1952– 1972, 
1964– 1994 2000– 2010 1977– 1980, 

2008– 2010  
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where, X1 entries are 0 for La Niña phase and 1 for El Niño phase, X2 entries are 0 or Negative phase of PDO/NAO/AMO and 1 for 
Positive phase of PDO/NAO/AMO, and X1⊙X2 is the component-wise product of X1 and X2. Thus β3 estimates the interactive effect of 
ENSO with other ocean-atmospheric phenomena. The significance of the interaction coefficient β3 represents the mitigation or 
enhancement of the effect of El Niño/La Niña on streamflow due to change of phases of the other climatic oscillations under 
consideration. 

2.2.2. Robust partial least squares 
Generally, partial least squares regression is the combination of principal component analysis and multiple regression. It proceeds 

by extracting orthogonal latent variables from the predictor variables possessing optimal fit to the response. Computation of PLS was 
facilitated by the statistically inspired modification of PLS (SIMPLS) algorithm (de Jong, 1993) and PLS can be constructed by their 
respective weight vectors or loadings wk and orthogonal components or scores tk = Xwk (Boulesteix and Strimmer, 2007) such that wk 
maximizes cov(tk, Y). PLS’s X components explain variance in Y with sequentially decreasing covariation. 

PLS is sensitive to outliers, hence estimation of robust PLS scores was important in this study. In this research, we used a rank-based 
PLS score estimation introduced in Schneid (2015). This approach proceeds by replacing the covariance matrix in SIMPLS computation 
by a robust covariance matrix based on ranks. Note that cov(tk, Y) = var(tk)var(Y)ρtY , where ρtY is the Pearson product moment 
correlation between the scores tk and response Y. The approach proposed by Schneid (2015) replaces ρtY by Spearman’s rank cor-
relation coefficient ρStY defined as 

ρS
tY = corr(rank(tk), rank(Y) ) (3) 

Other proposed robust estimators of PLS scores also use SIMPLS and a robust covariance matrix estimated by a low-dimensional 
projection of the data [X,Y] via a robust algorithm of principal component analysis (Hubert and Branden, 2003). However, most of 
these procedures require complex computational algorithms (Møller et al., 2005; Kruger et al., 2008; González et al., 2009). The 
rank-based approach using bivariate Spearman’s correlation estimates as a simple alternative for the robust covariance estimators is a 
simple approach that results in outlier-resistant PLS (Gil and Romera, 1998; Møller et al., 2005; Serneels et al., 2005; Rousseeuw et al., 
2006; Daszykowski et al., 2007). 

Fig. 2. Stations showing significant (90 %) difference in streamflow medians and percent increase/decrease in streamflows across all climate re-
gions for different phases of ENSO, PDO, AMO, and NAO. 
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Fig. 3. Box and whisker plots of percent increase/decrease in streamflows medians compared to the long term medians for different climate regions due to individual effects of ENSO, PDO, AMO and 
NAO. The red and blue box plots represent El Niño and La Niña, respectively. 
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2.2.3. False discovery rate correction 
Since we make station by station tests of hypotheses, we applied a false discovery rate correction using the step-up FDR procedure 

of Benjamini and Hochberg (1995) to control the proportion of hypotheses that are falsely declared significant. This is a common 
approach utilized when a large number of statistical tests are performed simultaneously and less stringent than family-wise error rate 
controlling methods such as the Bonferroni. Significance cutoff for FDR corrected p-values is often chosen higher than 0.05 (McDonald, 
2009). 

3. Results and discussion 

3.1. Individual analysis 

The results from the non-parametric JRFit procedure (Eq. (1)) for ENSO, PDO, AMO and NAO cycle are presented in Figs. 2 and 3. 
Following an FDR correction for multiple comparisons, the significant stations (p < 0.10) with the percentage change in estimated 
median streamflow for the phases of ENSO, AMO, PDO and NAO compared to the respective station long term medians are presented in 
Fig. 2. The comparison box and whisker plots showing the percentage change in median streamflows during the phases of ENSO, AMO, 
PDO and NAO for the nine climatic regions in the US is provided in Fig. 3. Moreover, the results from the non-parametric PLS analyses 
for all the climatic oscillations are presented in Figs. 4 and 5. PLS coefficients indicating the strength and direction of the tele- 
connections of ENSO, PDO, NAO and AMO cycles towards streamflow variability are provided in Fig. 4. Fig. 5 depicts similar infor-
mation as Fig. 4; however, it presents the range of PLS coefficients for different regions. We also report the scaling rates for different 
cycle i.e., the estimated effect (in m3/s) on regional median streamflow at one standard deviation change in the ENSO, PDO, AMO and 
NAO indices (Table 2). 

3.1.1. ENSO 
The JRFit results for ENSO indicate that all phases show significant teleconnection at all climatic regions except West and NR 

(Fig. 2). The results are consistent with well-established relationships of ENSO effects on streamflow levels in the Southeast (Schmidt 
et al., 2001; Tootle et al., 2005; Johnson et al., 2013; Singh et al., 2015) and Northwest US (Harshburger et al., 2002; Beebee and 
Manga, 2004). In the Southeast, El Niño/La Niña phases resulted in above/below normal streamflows while in the Northwest El 
Niño/La Niña phases led to below/above normal streamflows. Apart from these well-established findings, we also identified significant 
ENSO tele-connections with streamflows in NE, UM, South and the lower regions of OV (Fig. 2). The stations in NW, NE and lower OV 
showed decreased/increased streamflows during El Niño/La Niña phases while in the South and Midwest regions El Niño/La Niña 
phases resulted in higher/lower than normal streamflows (Fig. 3). Streamflow levels in NE, NW and OV were higher by approximately 
10 %, 15 % and 8% (compared to long term median) (Fig. 3) during La Niña conditions, while for South, SE and UM the streamflow 
levels were lower by 20 %, 10 % and 25 % (compared to long term median), respectively (Fig. 3). 

Fig. 4. Partial least square regression analysis coefficients indicating the strength and direction of teleconnections of (a) ENSO, (b) PDO, (c) AMO, 
and (d) NAO with streamflow. 
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The results from PLS regression analysis shows that the PLS coefficient (for ENSO index) is highly positive, indicating a strong 
positive teleconnection on streamflow levels, (i.e. streamflows increase with increase in ENSO SST) for all regions in CONUS except NE, 
NW, and in some parts of OV (Fig. 4 (a) and5) where major negative tele-connections were found (Fig. 4 (a) and 5). From Fig. 5 it is also 
evident that some stations in upper regions of SE also showed positive correlations with ENSO (Fig. 4 (a) and5). Moreover, the PLS 
analysis also quantified the overall scaling rate of ENSO on streamflow levels across different regions in CONUS (Table 2). Results show 
that one standard deviation increase in the ENSO index (0.8) resulted in an estimated regional median streamflow changes (from long 
term median) ranging from a drop of 7.47 m3/s in NW to an increase of 5.23 m3/s in the South (Table 2). 

3.1.2. PDO 
The PDO analysis identified climatic regions (NW, UM, OV, SE and S) where PDO showed prominent teleconnections (Figs. 2 and 

3). Nigam et al. (1999) and Tootle et al. (2005) linked PDO tele-connections to the UM while Beebee and Manga (2004), and Tootle 
et al. (2005) indicated a PDO signal on Pacific Northwest streamflows. However, in this study we also identified stations in other 
climatic regions viz. South, lower regions in OV and SE which indicated statistically significant tele-connections with PDO. This 

Fig. 5. Box and whisker plots showing the range of PLS coefficients indicating the strength and direction of teleconnections of (a) ENSO, (b) PDO, 
(c) AMO and (d) NAO with streamflow for all the climate regions in CONUS. 

Table 2 
Change in regional averaged monthly streamflow levels (m3/s) with one standard deviation change in SSTs of ENSO, PDO, AMO, and NAO.  

Index ENSO PDO AMO NAO 
One Standard Deviation 0.8 1.11 0.14 1.04 
Region Change in Regional Averaged Streamflow (m3/s) 
Northeast −1.41 0.49 −6.98 1.24 
Southeast 0.82 1.63 −11.15 0.68 
South 5.23 9.05 −13.65 0.18 
Southwest 1.70 2.37 −1.13 −0.04 
Upper Midwest 4.29 5.96 −9.27 0.84 
West 0.95 2.94 −0.95 −1.52 
North Rockies 1.98 3.48 −4.70 0.29 
North West −7.47 −7.52 −2.04 −0.22 
Ohio Valley 0.40 6.05 −16.77 2.02  

S. Singh et al.                                                                                                                                                                                                           



Journal of Hydrology: Regional Studies 36 (2021) 100876

9

difference in results could be attributed to longer period of record and use of powerful non-parametric approach in this study. In NW 
and SE, positive/negative phases of PDO resulted in decrease/increase in streamflows, while the opposite was true for SW, UM, S and 
OV (Figs. 2 and 3). For the NW and SE climatic regions, streamflow levels were 8% lower (compared to long term medians) during the 
PDO positive phase while being 10 % and 8% higher (compared to long term medians) respectively, during the PDO negative phase. 

The results from PLS regression analysis shows that the PLS coefficient (for PDO index) is highly positive, indicating a strong 
positive teleconnection on streamflow levels (i.e., streamflows increase with increase in PDO SST), for all regions in CONUS except 
NW, NE, northern regions of SE and in lower parts of OV (Figs. 4 (b) and5) where strong negative tele-connections were found (Fig. 4 
(b) and5). Results on scaling rate show that one standard deviation increase in the PDO index (1.11) resulted in an estimated regional 
median streamflow changes ranging from a drop of 7.52 m3/s for NW region and to an increase of 9.05 m3/s for the South (Table 2). 

3.1.3. AMO 
The AMO analysis identified significant tele-connections across CONUS, with particularly stronger tele-connections along the east 

coast of the US (Fig. 4). The study conducted by Tootle et al. (2005) identified negative streamflow correlations with AMO phases in 
the upper to middle Mississippi River basin, lower Appalachians/Gulf of Mexico, and Southwest while identifying positive streamflow 
correlation in the Northwest. However, the results of this study indicate a wider range of tele-connections across the CONUS. The 
streamflow levels were below/above normal during the positive/negative phase of AMO in SE, NE, S, OV and UM climatic regions 
while it was above normal in the NR, SW, NW and West irrespective of phases of AMO (Figs. 2, 3 and 4). 

A study conducted by Enfield et al. (2001) also correlated the AMO phases with precipitation across the US and identified that 
precipitation exhibited significant negative correlations with AMO phases throughout the US, except for in the Pacific Northwest. 
Negative AMO phase streamflows were approximately 20 % higher compared to the long-term medians across all the climate regions, 
while streamflow levels decreased by approximately 10 % (compared to long term medians) during the positive phase for NE, OV, 
South, SE, and UM regions (Fig. 3). The PLS analysis results also showed that PLS coefficient (for PDO index) is highly negative for most 
of the regions in CONUS (Fig. 4(b)). Results on scaling rates show that one standard deviation (0.14) increase in AMO index leads to 
estimated regional median streamflow changes ranging from a drop of 16.77 m3/s in OV to an increase of 0.95 m3/s in the West 

Fig. 6. Stations showing significant (at 90 %) stations and the percent change in median streamflows for El Niño and La Niña phases associated with 
positive (Pos) and negative (Neg) phases of PDO, AMO and NAO. 
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(Table 2). It is important to note that the PLS coefficients and scaling rates for AMO are negative for all the regions with higher 
magnitudes compared to ENSO, PDO and NAO, highlighting the strong negative teleconnection of AMO with streamflows across the 
CONUS (Fig. 4 and Table 2). 

3.1.4. NAO 
Streamflow generally increased during NAO positive phases showing an average increase of approximately 20 % (compared to long 

term medians) across all the climate regions, except the West (Fig. 2 and 3). Significant differences in streamflows were found in four 
distinct regions i.e., the NE, OV, South and UM where most of the stations showed below normal streamflows (approximately 10 %–25 
%) during the NAO negative phase (Fig. 3). Tootle et al. (2005) found significant differences between the phases of NAO and observed 
an increase streamflows during the positive phase than negative phase of NAO in the upper to middle Mississippi River basin (UM and 
OV) only. Visbeck et al. (2001) also identified significant correlations in NE. The results from this study validate some of the results 
from the previous studies, however the results from the current research also identified strong teleconnections in other climatic regions 
viz. SE, S, NR and NW. The streamflow levels of these regions increased by approximately 8–25 % (compared to long term medians) 
during the NAO positive phase and decreased by 5–12 % during the negative phase. 

Moreover, the results from PLS regression analysis also asserts that NAO has positive teleconnections with streamflows across all 
the climatic regions except West (Fig. 4 and 5). It was also found that the overall strength of teleconnection of NAO on streamflows in 
CONUS was the least among the other climatic oscillations (Fig. 4). An increase of one standard deviation (1.04) in the NAO index leads 
to estimated regional median streamflow changes ranging from a drop of 1.52 m3/s in the West to an increase of 2.02 m3/s in OV region 
(Table 2). 

3.2. Coupled analyses 

The JRFit estimate of interaction term in the linear mixed effect model (Eq. 2) was used to measure the coupled effects of ENSO with 
PDO, NAO and AMO on streamflow. Subsequently, the FDR correction was applied to the interaction test. Significant (p < 0.10) 
interaction between ENSO and any other climate cycles (for example PDO) is an indicator of unequal modulation of the phases of ENSO 
by negative and positive phases of that cycle (for example PDO). Following a significant interaction test, simple-main effect com-
parisons were performed by comparing the phases of PDO, AMO, and NAO with each phase of ENSO using JRFit. Stations that showed 
significant interactions following an FDR correction (p < 0.10) were identified and the percent differences of El Niño and La Niña 
streamflow medians (from the station median) when coupled with the phases of PDO, AMO, and NAO are presented in Fig. 6. Fig. 7 
gives the percent differences of streamflow medians (from long term station medians) for El Niño and La Niña phases coupled with the 
positive and negative phases of PDO, AMO, and NAO (including non-significant stations). Broadly, all climate regions exhibited 
significant coupled effects of ENSO and PDO as well as ENSO and AMO on streamflow. Moreover, the interaction effect of ENSO and 
NAO was significant across all the climate regions except in the Southeast where only a few stations were found to be significant. Due to 
the different types of interactions observed between decadal/multidecadal cycles (either AMO/PDO/NAO) and ENSO, we categorize 

Fig. 7. Box and whisker plots of the percentage change in median streamflows (compared to long term medians) for El Niño (red) and La Niña 
(blue) phases associated with positive and negative phases of PDO, AMO, and NAO across all the climate regions. 
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the results in three major interaction types: 
Interaction Type 1: Positive and negative phases of decadal/multidecadal cycles (AMO/PDO/NAO) are responsible for modulation 

of either phases of ENSO. Type 1 interaction are further subdivided into two types:  

• Type 1A Interaction: when positive and negative phases of decadal/multidecadal cycles (AMO/PDO/NAO) modulates El Niño 
phases only.  

• Type 1B Interaction: when positive and negative phases of decadal/multidecadal cycles (AMO/PDO/NAO) modulates La Niña 
phases only. 

Type 2 Interaction: A phase of decadal/multidecadal cycle (AMO/PDO/NAO) modulates either/both the phases of ENSO, such that 
the sign of “percentage streamflow change” values for either/both the phases of ENSO flip compared to the ENSO individual analysis. 

Type 3 Interaction: A phase of decadal/multidecadal cycle (AMO/PDO/NAO) modulates either/both the phases of ENSO, such that 
the magnitude of “streamflow change values” for either/both the phase of ENSO shifts considerably (without flipping the sign) 
compared to the ENSO individual analysis (however the sign does not change). 

It is important to note that the interaction Type 1 and Type 2/3 are not mutually exclusive i.e., Type 1 can occur simultaneously 
with Type 2 or Type 3. While Type 2 and Type 3 interactions are by definition mutually exclusive. 

3.2.1. ENSO and PDO 
For the ENSO-PDO analysis, Type 1 interactions are seen across almost all regions in CONUS. Strong influence of PDO negative and 

positive phases were observed on La Niña and El Niño streamflows, respectively across the CONUS. The most significant combinations 
are that of La Niña associated PDO negative phase and El Niño associated PDO positive phase which exhibited above normal 
streamflow in the NW and SE, respectively. This is consistent with the findings of Gershunov and Barnett (1998) that PDO has strong 
influence on ENSO for sea level pressures and heavy daily precipitation in the contiguous United States and El Niño (La Niña) signals 
were found to be strong and stable during the positive (negative) PDO phase. Tootle et al. (2005) identified that PDO influence El Niño 
streamflows in the upper to middle Mississippi River basin only (at higher significance level) where the phases of PDO influence El 
Niño streamflow however, but they failed to identify PDO-ENSO interaction for the rest of the US. In this study, due to the introduction 
of JRFit interactive test, the ENSO-PDO interaction on streamflow levels was found to be significant across other climatic regions as 
well. 

Strong significant differences were observed in El Niño streamflows when associated with PDO positive and negative phases for the 
entire CONUS except for the SW, West and NR (Fig. 6; Type 1A). Similarly, significant differences were observed in La Niña 
streamflows when coupled with PDO negative and positive phases except for the South and NR regions (Fig. 6; Type 1B). La Niña 
coupled with positive phases of PDO resulted in 25 % decrease in streamflow in the SE linked with extreme droughts in this region 
during these periods (Fig. 7). However, La Niña associated with the positive phase of PDO resulted in approximately 25 % and 100 % 
increase in streamflow in the SW and West, respectively, compared to overall La Niña phases (Fig. 7). 

Type 2 interactions are also seen in the ENSO-PDO interaction analysis. Contrary to ENSO individual analysis, it was found that for 
positive phase PDO, streamflow levels were higher during the El Niño phase and lower during the La Niña phase for the NE and OV 
(Fig. 6 and 7). Similar Type 2 interactions also suggest that El Niño is modulated by the negative phase of PDO in the NW, UM, South 
and SE. The percent changes in median streamflow levels were above normal during El Niño phase associated with PDO negative phase 
for NW (contrary to ENSO individual analysis). Also, El Niño phase streamflows were below normal (approximately 25 %) during PDO 
negative phase for the UM, South and SE, also contrary to the results of the ENSO individual analyses (Figs. 6 and 7). These results 
derived from interaction tests, clearly provides new insights on how the ENSO phases are modulated by the phases of PDO across 
CONUS that are contrary to the findings of individual analysis and have not reported in earlier literature studies (Tootle et al., 2005; 
Johnson et al., 2013; Bhandari et al., 2018; Tamaddun et al., 2017a, 2019). These findings also indicate that individual analysis results 
can sometimes be disinforming if not considered in conjunction of the interaction effects of other decadal/multidecadal cycles. 

3.2.2. ENSO and AMO 
Interaction of ENSO streamflows due to AMO cycles were observed at almost all regions in the CONUS. Several researchers have 

identified this modulation effect for SE (Tootle et al., 2005 and Singh et al., 2015), however, in this study we found that the modulation 
effect exists for other regions in CONUS as well. Type 1 interactions were observed in NW, UM, OV, NR and West regions. Type 1A 
interactions were observed in the NW, UM and OV where highly significant differences in El Niño streamflows when associated with 
AMO positive and negative phases (Fig. 6). Similarly, Type 1B interactions were observed in entire CONUS region (with the exception 
of NR, UM and West) where significant differences were observed in La Niña streamflows when associated with AMO positive and 
negative phases. 

Type 2 interaction were observed in some parts of CONUS as well. Contrary to the results in ENSO individual analysis, La Niña 
events occurring in an AMO positive phase result in decreased streamflow in the NE, OV and SW. This indicates that La Niña does not 
always cause wetter conditions in these regions, rather when associated with AMO positive phase can lead to drier conditions in these 
regions. Similarly Type 2 interactions were also observed in South and SE regions. Significant differences in La Niña streamflow levels 
were observed in these regions when associated with the positive and negative phases of AMO. As per individual ENSO analysis, La 
Niña events lead to decreased streamflow levels in the South and SE (Figs. 6), however La Niña events coinciding with the AMO 
negative phase result in above normal streamflow levels countering La Niña’s negative effect on streamflows in this region. 

Type 3 interaction was also observed in the AMO-ENSO analysis. La Niña coupled with AMO positive resulted in significantly 
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greater reduction (approximately 35 %) in streamflow than individual La Niña phase (Fig. 7) leading to severe droughts in the SE and 
South regions. Moreover, the percentage changes in median streamflows were above normal (approximately 15 %) and below normal 
(approximately 25 %) during El Niño-AMO positive phase in NW and UM, respectively, compared to individual El Niño phase (Fig. 7). 

3.2.3. ENSO and NAO 
For ENSO-NAO, a significant association was seen for El Niño with NAO phases in UM, NW and NR regions, however La Niña 

association with NAO phases were not significant in the CONUS region. From the individual analysis it was found that an El Niño phase 
usually led to an increased streamflow in the UM however, when coinciding with NAO negative phase (Figs. 6 and 7), resulted in below 
normal streamflow (Type 2 interaction). This result asserts the findings from Tootle et al., 2005. However, in this study, different 
interactions with respect to ENSO-NAO were also observed. El Niño associated with the positive phase of NAO resulted in greater 
increase in streamflow (approximately 100 %) in the UM suggesting a modulation effect of both phases of NAO on El Niño streamflow 
levels (Type 1A interaction). 

In NR region, El Niño during NAO negative phase resulted in greater increase in streamflow compared to individual ENSO 
(approximately 80 %; Type 3 interaction) (Fig. 7). Higher than normal streamflows were identified in NW during the El Niño phase 
occurring in an NAO negative phase which differs from the ENSO individual analysis where streamflow levels were below normal 
during El Niño phases (Type 2 interaction). Moreover, El Niño phase occurring in an NAO positive phase resulted in a greater decrease 
in streamflow levels (approximately 20 %) as compared to individual El Niño results (approximately 5%; Type 3 interaction). 

4. Conclusions 

This study systematically investigates the relationships between interdecadal and interannual ocean-atmospheric phenomena on 
streamflow levels across nine climate regions of the CONUS. This research made a number of novel contributions towards the un-
derstanding of the interplay between large-scale interannual and multidecadal ocean-atmospheric oscillations and its connection to 
CONUS streamflow levels using powerful and robust statistical procedures. Previous studies used common statistical procedures (viz. 
wavelet analysis and WRS) to detect teleconnections and infer the interaction between ENSO and other decadal and multi-decadal 
climate cycles without performing interaction test (Tootle et al., 2005; Johnson et al., 2013; Mitra et al., 2014; Bhandari et al., 
2018; Tamaddun et al., 2019a). However, in this study we model the interactions using the interaction test to identify newer in-
teractions that were not reported in earlier literature. We tested and evaluated the interactions (interaction test) between ENSO and 
other large-scale oscillations by directly modelling the interaction using a non-parametric LME model. We also used a powerful sta-
tistical procedure (JRFit) to fit the mixed effects model and estimate the individual and coupled effects of climatic oscillations on 
streamflow levels. Further we quantify the magnitude of the modulation, scaling rates, teleconnection strength across climate zones in 
the CONUS. The entire study was divided into individual and coupled analysis. 

The major and new findings in the individual analysis are summarized below:  

1 In the individual ENSO analysis almost all the regions showed significant tele-connections. In this study several new tele- 
connections were also identified viz. in NE, UM, West, South and the lower regions of OV.  

2 In PDO individual analysis several regions were identified having tele-connections with PDO. However, in this study, South, lower 
regions in OV and SE also indicated statistically significant teleconnections with PDO, that were not reported in earlier literature. 

3 The negative correlation of AMO with streamflow was apparent across climate regions, however some new areas exhibiting sig-
nificant positive correlation (where streamflow increased during positive AMO phase) were identified in the West and some parts of 
Northwest, NR and SW.  

4 The effect of NAO on streamflow levels was found to be positive across all the climatic regions except West, SW and NW regions 
where streamflow decreased during NAO negative phase. Newer tele-connections were observed in SE, S, NR and NW.  

5 The PLS coefficients and scaling rates for AMO highlight the strong negative tele-connection of AMO with streamflows across the 
CONUS (compared to ENSO, PDO and NAO). 

Coupled analysis reveal the interplay between large scale interannual and decadal variations in climate (e.g., the relationship 
between the ENSO with PDO, AMO and NAO), which may modulate the teleconnections with streamflow in CONUS region. The study 
presented here contributes to an improved understanding of how interdecadal phenomena modulate the effect of ENSO and its impact 
on streamflow levels in the nine climate regions across the US. Through interaction test between ENSO with AMO, PDO and NAO, three 
types of interaction results were identified. 

Some of the major and newer findings in the coupled analysis are summarized below:  

1 Significant Type 1 ENSO-PDO interactions are seen across all regions in CONUS. Such interactions were also observed for ENSO- 
AMO at majority of the regions in CONUS (NW, UM, OV, NR, UM and West).  

2 Type 2 interactions discovered in this study were interesting as they generally go against the results of ENSO individual analysis. 
For example, contrary to the results in ENSO individual analysis, La Niña events occurring in an AMO positive phase result in 
decreased streamflow in the NE, OV and SW. This indicates that La Niña does not always cause wetter conditions in these regions, 
rather when associated with AMO positive phase can lead to drier conditions in these regions. Similar Type 2 interactions were 
found for all ENSO-PDO, ENSO-AMO and ENSO-NAO coupled analysis. 
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3 Type 3 interactions involve where the results of the ENSO individual analysis are enhanced due to the interaction of the phases of 
ENSO with other cycles. For example, La Niña coupled with AMO positive resulted in significantly greater reduction (approxi-
mately 35 %) in streamflow than individual La Niña phase. Prominent Type 3 interactions were observed with ENSO-AMO analysis 
in the SE and south regions. Moreover, in ENSO-NAO analysis Type 3 interactions were observed in NW and NR regions. 

The results from this study will be helpful in development of better forecasting tools. Studies have shown that incorporating large- 
scale climate information could lead us to more accurate (specificity) hydrological forecasts with increase in the lead times signals 
(Grantz et al., 2005; Abrishamchi et al., 2006; Singh, 2016). This current research will help provide important information to water 
managers responsible for predicting streamflow variability in response to ocean atmospheric oscillations in CONUS. It would also help 
regional water managers in forecasting regional water availability, hydropower generation, and help them develop drought adaptation 
and mitigation strategies by incorporating information based on the large-scale ocean-atmospheric cycles. 

It is however important to note that the entire analysis is based on non-parametric statistics that is primarily data driven and does 
not consider the physical processes involved in modelling the modulation/interaction effect. Therefore, model-based studies are 
needed to validate the findings of this study. Moreover, the record length of 80 years of streamflow data is still limited when 
considering the analysis with respect to multidecadal cycles as very only few phases of each cycle can be considered (especially for 
modelling interactions), limiting the robustness of the results. 
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