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Abstract

Computing localizable entanglement for noisy many-particle quantum states is difficult due to the
optimization over all possible sets of local projection measurements. Therefore, it is crucial to develop
lower bounds, which can provide useful information about the behaviour oflocalizable entanglement,
and which can be determined by measuring a limited number of operators, or by performing the least
number of measurements on the state, preferably without performing a full state tomography. In this
paper, we adopt two different yet related approaches to obtain a witness-based, and a measurement-
based lower bounds for localizable entanglement. The former is determined by the minimal amount
of entanglement that can be present in a subsystem of the multipartite quantum state, which is
consistent with the expectation value of an entanglement witness. Determining this bound does not
require any information about the state beyond the expectation value of the witness operator, which
renders this approach highly practical in experiments. The latter bound of localizable entanglement is
computed by restricting the local projection measurements over the qubits outside the subsystem of
interest to a suitably chosen basis. We discuss the behaviour of both lower bounds against local
physical noise on the qubits, and discuss their dependence on noise strength and system size. We also
analytically determine the measurement-based lower bound in the case of graph states under local
uncorrelated Pauli noise.

1. Introduction

Over the last two decades, quantum entanglement [1] has emerged as a crucial resource in a plethora of quantum
information processing tasks, including quantum teleportation [1-3], quantum dense coding [4-6], quantum
cryptography [7, 8], and measurement-based quantum computation [9-11]. It has also been proven useful in
areas other than quantum information science, such as in detecting quantum phase transitions in quantum
many-body systems [12—15], in characterizing topologically ordered states [ 16—19], in studying the AdS/CFT
correspondence [20-23], and even in areas other than physics, such as in describing the transport properties in
photosynthetic complexes [24-27]. Impressive experimental advancement in creating entangled quantum states
in the laboratory, by using current technology and substrates such as ions [28—30], photons [31-33],
superconducting qubits [34, 35], nuclear magnetic resonance molecules [36], and cold atoms in optical lattices
[37-39] has enabled the realization of a wide range of entanglement-based quantum protocols.

Studying the properties of entanglement confined in a subsystem of increasingly larger multipartite
quantum systems remains a pressing task. Many studies aiming at investigating such entanglement have
followed two popular approaches. In one, an appropriate entanglement measure is computed for the reduced
state py_,, of a chosen subsystem €2 that contains N — m qubits, obtained by tracing out the m qubits in the rest
of the multipartite system, £, from the N-qubit state p, such that py,_,, = Trg p [1]. In the other approach, one
attempts to obtain entangled post-measurement states over the region 2 by performinglocal projection
measurements over {2, so that the average entanglement of the states in the post-measurement ensemble over {2
is non-zero [40—43]. For instance, an N-qubit Greenberger—Horne—Zeilinger (GHZ) state [44] given by
|GHZ) = %(|O>®N + [1)®N) is a classic example where the second approach is particularly useful. Here, the

reduced state of N — m qubits foranym < N — 2, givenby pi % = %[(lO) (0)EN=m] + (]1) (1])*N="] has
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zero entanglement. On the other hand, the post-measurement states of, say, two qubits, obtained by performing
local projection measurements on any one qubit in, say, a three-qubit GHZ state in the basis of Pauli X matrix,
are maximally entangled Bell sates |¢p*) = (|00) + |11))/~/2. This motivates one to define localizable
entanglement as the maximum average entanglement, as measured by an appropriate entanglement measure,
localized over §2 by performing local projection measurements over €2 [41-43]. Localizable entanglement has
been proven to be indispensable in investigating the correlation length in quantum many-body systems
[41,42,45,46], in studying quantum phase transitions in cluster-Ising [47, 48] and cluster-XY models [49], in
protocols like percolation of entanglement in quantum networks [50], and in quantifying local entanglement in
stabilizer states [10, 51-53].

One major challenge with respect to localizable entanglement, even in qubit systems, is its computability,
due to the maximization that needs to be performed over all possible local projection measurements on the m
measured parties in the N-partite system [41-43]. Since the number of independent real parameters over which
the maximization is to be performed increases with increasing number of measured qubits in the multipartite
state [43], the computation of localizable entanglement becomes in general difficult even in states of a small
number of qubits. Also, in experiments, performing all possible local projection measurements on a set of qubits
and determining the post-measurement states by performing state tomography is resource-intensive and
becomes certainly impractical for systems of a large number of qubits. Moreover, an additional complication
arises from the fact that one needs to deal with experimental N-qubit states which due to noise necessarily
deviate to some degree from ideal, often pure target states. In such cases, determination of the localizable
entanglement becomes difficult also due to the limited number of computable measures of entanglement in
multipartite mixed states [43], if one is interested in localizable entanglement in sets involving more than two
qubits.

In this situation, a promising approach towards understanding the behaviour of localizable entanglement
under noise for large stabilizer states is to develop non-trivial as well as computable lower bounds of the actual
quantity. This may provide useful information about the system and the dependence of localizable entanglement
over different relevant parameters. For example, in the case of the dependence of the localizable entanglement
on the noise strength, a non-zero value of the lower bound of the localizable entanglement at a specific value of
the noise strength implies sustenance of the actual localizable entanglement for that noise strength. Note thata
similar approach of determining computable lower bounds has been adopted in the case of concurrence and
entanglement of formation [54—-58], where the optimization involved in the computation of the actual quantity
is difficult to achieve [59-63]. However, in order to satisfy practical purposes, one requires the lower bound of
localizable entanglement to be easily computable from limited knowledge of the quantum state, and without
performing a full state tomography, for which the required measurement resources increase if the system size is
large. It is therefore also imperative to develop bounds that can be computed by performing the least number of
local measurements.

There have been attempts to determine the entanglement content and to characterize the dynamics of
entanglement in noisy stabilizer states. Methods have been developed in order to obtain lower as well as upper
bounds of entanglement between two subparts in an arbitrarily large graph state under noise [64, 65]. Also, the
behaviour of long-range entanglement [66], relative entropy of entanglement [67], and macroscopic bound
entanglement [68] in cluster states under thermal noise has been investigated. The problem of efficiently
estimating relative entropy of entanglement in an experimentally created noisy graph state by stabilizer
measurement has also been addressed [69]. Since localizable entanglement is the natural choice for quantifying
entanglement between two parties in a multiqubit graph state with or without noise, an in-depth analysis of
localizable entanglement in general noisy large-scale graph states is now necessary.

In this paper, we show how computable lower bounds of localizable entanglement can be constructed. For
concreteness, we focus on stabilizer states [ 10, 51-53] and, more specifically, within this class of states, on
graph states [9—11, 52], since the characterization of graph states and their properties is well developed and a
versatile language for the description of these systems exists. However, since any stabilizer state can be mapped
on to a graph state by local unitary operation [51, 52], our results are either directly translatable, or derivable in a
similar way for arbitrary stabilizer states.

We adopt two different, yet related approaches to obtain computable lower bounds for localizable
entanglement in the case of mixed quantum states. The first approach is based on entanglement witnesses
[70-76] that are local observables whose expectation value signals the presence of entanglement. We use a class
of witnesses, called local witnesses [74—76], and we show how they can be used to estimate alower bound of the
value of localizable entanglement in subsystems of qubits. Lower bounds of the localizable entanglement can be
computed from the expectation values of the witness operators evaluated in the noisy quantum state [77-81].
We show that the entanglement measure, estimated by the expectation values of these witness operators, serves
as a faithful lower bound to the actual localizable entanglement on chosen subsystems of specific size. In the
second scheme that we explore, we obtain a lower bound oflocalizable entanglement by considering a specific
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measurement strategy, thereby restricting the full set of local projection measurement required to compute the
localizable entanglement. More specifically, for noisy graph states, we show that a computable lower bound of
localizable entanglement is obtained by performing local Z measurements over all qubits in the graph except for
the qubits in the region of interest. We establish a relation between these two seemingly unrelated approaches,
and test the performance of the obtained lower bounds by benchmarking them for graph states undergoing
uncorrelated Pauli noise.

The paper is organized as follows. In section 2, we introduce the notation we use and review key concepts of
localizable entanglement and graph states, including graph-diagonal states, used throughout this paper.
Section 3 contains a discussion on the local witness-based and local measurement-based lower bounds (MLBs)
oflocalizable entanglement and the interrelation between these bounds. In section 4, we demonstrate and
compare the performances of the lower bounds in the case of specific noise models, and determine an analytical
formula for the MLB in terms of noise strength and the system size of the analysed states. Section 5 contains
concluding remarks.

2. Definitions

2.1. Localizable and restricted localizable entanglement (RLE)

Thelocalizable entanglement (LE) [41—43] over anumber N, > 2 of selected qubits forming the region Q2 in a
multi-qubit system is defined as the maximum average entanglement that can be accumulated over 2 by
performing local measurements over the qubits in the set 2, where 2 N Q2 = @,and Q U Q represents the
multiqubit system. We denote the state of an N-qubit system by p, where the qubits constituting the system are
labelled from 1 to Nsuchthat Q = {1,2,3,---,Ng},and Q@ = {Ny + 1, Ng + 2, ---, N}. Welabel the m

(m =N — No < N — 2)qubitsin Qby {r, 75, ---, 7,u}, withr; € {Ng + 1, N + 2, ---, N}, and perform local
measurements on them. We restrict ourselves to rank-1 projection measurements

M= {My; k=0,1,2,--,2" — 1},in the Hilbert space of {2, which is of dimension 2. The post-
measurement ensemble { p*, p’é} is represented by the N-qubit post-measurement state p¢, given by

¢ _ TralMipMi']

po = > M
T T Mip M
and the probability with which pé; is obtained, given by
p* = TrMip M. )

Here, k denotes the measurement outcome, and Zi";) ! pk = 1.The LE over the N — m qubits in the region 2 in

the N-qubit system is given by
1
Eq(p) = sup 3 pE(pp), 3)
M k=0
where Eis a pre-decided entanglement measure. The supremum in equation (3) is taken over the complete set of
rank-1 projection measurements over the qubitsin §2.
Rank-1 projection measurements on the qubits in {2 can be parametrized as M = { M = Q.calk.) (k.| },
where k,, € {0, 1} Vr; € Q,and {|k,,)} are given by [82]

|0),, = cos(6,,/2)|0) + el?sin(d,,/2)[1),
[1),, = sin(6,,/2)|0) — el®icos(0,,/2)|1), (4)

with {|0), |1)} being the computational basis, and { (4, qbr’,); i = 1,2, -, m}are 2m real parameters, such
that 0 < 0, < 7,0 < ¢, < 27. Here, one can interpret the outcome index k as the multi-index k. k,, --- k; ,
where the value of k is the decimal representation of the binary sequence k., k,, --- k. Therefore, the
optimization in equation (3) reduces to an optimization over a space of 2m real parameters. In general, such
optimizations are hard problems when m is large, and can be analytically performed only for a handful of
quantum states even in the case of qubit systems [41-43].

Instead of computing the actual localizable entanglement, one may define a restricted LE (RLE) (see [83] for
similar quantities defined in context of quantum information-theoretic measures, such as quantum discord
[84, 85]), where only single-qubit projection measurements corresponding to the basis of the Pauli operators are
allowed. This implies that for each qubit in €2, the possible values of (0;, ¢,)are(d) (0, = 0, ¢, = 0)
corresponding to the basis {|0),,, 1), } of Z,, (ii) (6, = /2, ¢, = 0) corresponding to the basis {|+),, } of X,
and (iii) (6, = 7/2, ¢, = /2) corresponding to the basis {|y,),, } of Y,, where {X, Y, Z} denote the standard
Pauli operators.

We denote the complete set of all possible Pauli measurement settings over the m qubits in Q by
MP = {(M];1=0,1,2,-,3" — 1}.Corresponding to a specific value of I, there can be 2™ measurement
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outcomes, denoted by the index k, corresponding to each of which the projection operator is given by

1
Ml = @ ST+ (=Dfsar,, )

reQ

where [, € {0, 1, 2} represents the direction of local projection with 0y = Z, 0y = X,and o, = Yforaspecific
rpand k,, = 0 (k,, = 1) corresponds to the outcome +1(—1) of the projection measurement. Here, we interpret
the index [as the multi-index ] = .1, --- I, , where the value of /is the base 3 representation of the string

L1, --- I, ,and the outcome index k as the multi-index k = k, k., --- k, , where the value of k is the base 2
representation of the string k. k,, --- k,, . Using this notation and following equation (3), the RLE is given by

2m—1
Eq (p) = sup 37 p*OE(pY), ©)
M k=0
where
Lk _ Tral My pPM))] @)
Q - ‘ bl
Tr[ My pM{i]
and
PR = Tr[ MG pMP] . (8)

Clearly, Eq, > EJ, thereby providing a lower bound to the LE when the optimization is not achieved by Pauli
measurements. However, there are important examples and large classes of quantum states, for which

Eq = Eg . These include (i) graph states [52], (ii) N-qubit generalized GHZ and generalized W states [43], (iii)
Dicke states and superposition of Dicke states with different excitations and a fixed number of qubits [43], (iv)
ground states of paradigmatic quantum spin models like the one-dimensional anisotropic XY modelin a
magnetic field and the XXZ model [41-43, 86], and also (v) the ground states of quantum spin systems described
by stabilizer Hamiltonians in the presence of external perturbations in the form of magnetic field or spin—spin
interaction, such as the cluster-Ising model [47].

2.2. Graph states and stabilizer formalism

A mathematical graph [52, 87, 88] G(V, &) is composed of aset V of Nnodes, labelledby 1, 2, ---, N — 1, N
and aset £ of edges orlinks (i, 7) (i = j) connecting the nodes iand j, where i, j € V. A graph is represented by
the adjacency matrix I', given by

1, for (4, j) € &,
i = { O]

0, for (i, )) € &,

whichisan N x Nbinary matrix. In this paper, we consider simple, undirected, and connected graphs [52, 87, 88]
only. A simple graph does not contain aloop, i.e., alink connecting a node to itself, and multiple edges between a
pair of nodes. A graph G is connected if for each pair of sites {1, j} € V), there existsa path £, constituted of a set
oflinks {(k, I)} € £ with k, I € V,which connects the nodes iandj. Also, in an undirected graph, the links (4, f)
and (j, i) are equivalent. We denote the neighbourhood of anode iby N; C V, which is the set of nodes {j} in
which each node is connected to i by alink, i.e., (4, j) € EVj € M.

Let us now consider a region in the graph G, denoted by €2, which is designated by only the nodes in 2. For
the subgraph G (92, &) corresponding to aregion 2, with Q C Vand &, C &, all the above definitions remain
valid, and &, contains only the links { (3, /) } such that 7, j € 2. We denote the cardinality of 2 by N, (N < N).
In agreement with the notation used in section 2.1, the rest of the graph is denoted by G(€2, £g), where £ hasa
definition similar to that of £, and the set of all nodesis ¥V = Q U Q. The set of links { (7, rj)} between a node
i € Qandanoder; € Qisdenoted by £, so that the complete set of existing linksis £ = €, U £q U &, The
boundary 992 C Q of the region €2 is composed by the nodes in (2 that are linked with nodes in €2 (see figure 1(a)
for examples of G, G, 92, and £, in asimple graph). Without loss of generality, one can label the nodes such
that Q = {1,2,3,---,Ng},and Q@ = {Ny + 1, Ng + 2, ---, N}, which leads to

In 77
I' = . 10
(7 FQ) 10)

Here, I'g and ' are the adjacency matrices corresponding to G, and Gg, respectively, while the
(N — Ng) x Ng matrix yrepresents the set of links connecting 2 and €. In order to keep parity between the
notations in sections 2.1 and 2.2, we would like to determine the LE over the region {2in G, implying
N, O = N — m.

A graph state |G) is a multiqubit stabilizer quantum state associated to an undirected graph G, where a qubit
is placed at every node in the graph. The state is defined by aset, G € PV, of mutually commuting generators

4
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g1 = X1 ZxI37,415
g2 = Z1X2237415
93 = 11 Z>X32415
94 = Z1 4273 X425
95 = 1112137, X5

g 72(9)
‘g/ _ 7'2(9)) _ eiZZle—i%Xgeingei§Z4‘g>

(b)

Figure 1. Graph state, stabilizers, and local complementation operation. (a) A five-qubit graph G(V, £), constituted of nodes

YV =1{1, 2, 3, 4, 5} andlinks £ = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4), (4, 5)} is depicted, and the corresponding stabilizer
generators {g;, £, 3, €4 §5 }» according to equation (11) are explicitly shown. As an example, we consider the subgraph G = (€2, £q)
corresponding to the region € constituted of nodes Vo = {1, 5} and nolinks, i.e., £, = @.On the other hand, Gg = (00, &p) is
constituted of nodes @ = {2, 3, 4} andlinks &g = {(2, 3), (2, 4), (3, 4)}. The boundary 0, in this case, is given by 92 = {2, 4},
and £, = {(1, 2), (1, 4), (4, 5)}. (b) ALC operation w.r.t. the node 2 leads to the graph G’ with modified connectivity, and the
corresponding transformation of the graph states, |G) — |G’) is given by alocal unitary transformation according to equation (13), as
shown explicitly in the figure.

(52, g» where g|G) = |G) Vi = 1,2, -+, N. Here, PN denotes the Pauli group [52, 82], and the form of the
generators {g;}, given by

§=Xi® |:®er’7], (11)

jey

is determined by the underlying graph structure (see figure 1(a) for an explicit example in a five-qubit graph).
The generators {g;} share common eigenstates, and the state |G) is the common eigenstate of {g;} with eigenvalue
+1. The rest of the 2% — 1 eigenstates of {g;} are local unitary equivalent to |G), given by {|G*) = Z,|G)}, where
v=0,1,2 2" — Land Z, = ®)jcgZ", where vj € {0, 1}. Theindex visamulti-index v = vyv, -+ vy,
and can be interpreted as the decimal representation of the binary sequence v v, -+ vy.In this representation,
|G) = |GY). The set of eigenstates {|G) } forms a complete orthonormal basis of the Hilbert space of the system,
and any state that is diagonal in this basis, written as [52, 64, 65, 89-92]

2N

Pep = Y PIG")(G", (12)

v=0

is a graph-diagonal (GD) state, where (G¥|G"') = §,,,, 6,,,» being the Kronecker delta, and {p, } is any
probability distribution. From now on, we shall use the words qubits and nodes interchangeably, and denote
them with the same labels, since each node in G accounts for a specific qubitin |G).

There exist graph states that are connected to each other by local unitary operations, thereby having identical
entanglement properties [52]. A specific set of such states are of particular interest, which correspond to the
different graphs connected to each other by the local complementation (LC) operation [51, 52, 93]. The LC
operation with respect to a qubit i, denoted by 7;(.), on a graph G deletes all the links {(j, k)} if j, k € N;,and
(j, k) € &,and createsall the links {(j,k)} if j, k € N, and (j, k) & £. The operation 7; that transforms G into
anew graph G is equivalent to a set of local unitary operations, denoted by U, on the corresponding graph state
sothat|G) — Ué| G) = |g), where
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Ub=uf ® l@ﬁ], (13)
JEN;

with 4" = exp[(—ir/4)X;]and u; = expl[(ir/4)Z;] beinglocal Clifford operations (for an example, see

figure 1(b)). For a fixed value of N, the set of all possible graphs connected by (sequences of) LC operations over

different nodes in the graph is called an orbit [52]. There may exist more than one orbit for a specific value of N.

The orbits are mutually disjoint sets, and the union of all the orbits corresponding to a fixed value of N provides

the complete set of all possible connected graphs.

3. Lower bounds of localizable entanglement

In this section, we establish a relation between the LE over a region 2 in a graph G with local entanglement
witnesses, and provide a hierarchy of bounds of LE based on suitably chosen local measurements and the
expectation values of local entanglement witnesses.

3.1. Witness- and measurement-based lower bounds

An entanglement witness [70-76] WV is an operator with non-negative expectation values in all separable states,
implying that a negative expectation value (Tr(p)V) < 0) of the witness operator unambiguously signals the
presence of genuine entanglement in p. A witness operator YV¢ that detects the genuine N-partite entanglement
in a multiparty pure state |1)) and a state p that is close to |¢)) is called a global witness operator, and can be chosen
to be of the form [72]

WE = al — 1)) (Y. (14)

Here, Iis the identity operator in the Hilbert space of |1)), and «vis the largest Schmidt coefficient of |1), given by
a = max(|gcs, | (¢[Y) % Spbeing the complete set of all biseparable states. If |1)) is a graph state | G), then it is
genuinely multiparty entangled if the underlying graph is connected, and WV8 with a = % provides the global
entanglement witness operator that can detect entanglement of a noisy state p close to the ideal state |G). Here, p
may originate from the exposure of an already prepared state |G) to noise (where we assume that the state | G) has
been prepared with a high fidelity with the actual target state), or in an experiment, where the target state is | G),
but one ends up with a mixed state p due to noise in the experimental apparatus. Assuming that the effect of
noise in both scenarios can be simulated by known physical noise models, we consider p = A( Pg)s where
pg = |G) (Gl and the operation A(-) describes the transformation |G) — p.

Alocal witness W, is an operator that detects the entanglement in a subset §2 of qubits constituting the state
p. If the subgraph G, is connected, alocal witness can be constructed from the generators {g;} as [74-76]

1 I+g
Wo=—1- ] —2, (15)
2 ico 2
with the property that the expectation value of W, in the state p is the same as the expectation value of the
witness operator W‘é in the reduced state pg, i.e.,
w = Tr(pWo) = Tr(pgW§). (16)
Here the witness operator W, is global with reference to the region 2 in G, so that [74-76]
1
WE = S 1Ga) (Gal, (17)

|Go) being the graph state corresponding to the subgraph Go. The reduced state pg, lives only in €2, and is given by
po = Tra(U, pUs ), (18)

where the unitary operator U, disentangles |G) from |Gg), so that U,|G) = |Go) ® |Gq) [52]. The unitary
operator UW, written as

u,= Il U (19)
@i, rj) € (‘;A

is constituted of controlled phase unitaries acting on thelinks (i, ;) € £, withi € Qand r; € Q, givenby

U,%_Z = %[(I,}. + Z,) + Zi(I;, — Z,)]. Note here that the operator Wy, (equation (15)) is constituted of generators

{g:} with i € Q. Under the transformation U, g, U, the resulting generator no longer has support on €.

Therefore, the unitary operator U, transforms W, into W¥, as

U, WU, ' = W ® In. (20)
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Next, we notice that the unitary operator U, is constituted of controlled phase unitaries Uif}_z which involve
operators %(I,]. + Z,) corresponding to the qubits r; € 92 in Z. Therefore, writing the identity operator

corresponding to the Hilbert space of a specific qubit r; € Q\E)Q as I, = [, + Z;) + (I, — Z;)]1/2, theform
of the unitary operator can be expanded as

1 —Dkiz,
U, =% 28] [&] (21)

k ri€ Q 2
where the correction unitaries { 2%} are given by

ke
zh =] 2, (22)
icQ
where ~;is the ith column of 7, k is a row matrix constituted of the individual measurement outcomes k,j
corresponding to the qubits r; € €2,and u - v indicates a matrix product calculated modulo 2 for the matrices u

and v. Note here that Z§, acts only on €2, and it is determined entirely according to the links in &,,and the values
of {k,} for r; € OS2 Then,

po = Tra(U, pU,) = > p©@h Zépg’k)zlé, (23)
k

(0,k)

where p;""’ and p@ P

are for | = 0in equations (7) and (8) respectively.

3.1.1. Hierarchy of lower bounds

We are now in a position to establish a hierarchy between a set of quantities that are relevant in investigating the
behaviour oflocalizable entanglement. It is clear from the definition of RLE that although the computational
complexity of RLE is less than the same corresponding to a computation of the exact LE, one has in principle still
to consider 3™ possible Pauli measurement settings, which grows exponentially with m. For large m, where this
becomes impractical, one may compute the average entanglement that can be localized on §2, obtained by
choosing a particular setting of Pauli measurement, say, Mlp, in Q, instead of considering the full set of 3™
elements of MP. Here, we have adopted the notation used in section 2.1. The value of the average entanglement
computed in this way depends completely on the choice of the value of I. In the scenarios where the choice is not
an optimal setting, the average entanglement serves as a lower bound of the RLE, and by extension a lower bound
of LE, i.e.,

Eo(p) = E5 (p) = Eb(p). (24)

We call such a lower bound the measurement-based lower bound (MLB) in the following. Unless otherwise
stated, throughout this paper, we shall consider Pauli measurements only, and discard the superscript P from all
the operators to keep them uncluttered. Note that a poor choice of the setting may result in vanishing average
entanglement corresponding to a trivial lower bound of LE, which highlights the importance of an informed
choice of measurement setting from within the full set of Pauli measurements.

In the case of | = 0, the lower bound EJ corresponds to local Z measurements on all qubits in {2, and
equation (24) becomes

Eo(p) > Ef(p) = E§(p). (25)

Anon-zero value of EJ is likely when 2 in G is connected because M is an optimal measurement setting in the
absence of noise (i.e., for p = |G) (G]). The use of EJ as the MLB is justified in scenarios where the state pis very
close to the graph state | G), i.e., when the noise acting on the state has very low strength, or when in an
experiment the prepared state has very high fidelity with the target state |G). In such situations, one expects the
optimal measurement to not deviate much from the optimal one in the absence of noise. However, in subsequent
sections, we shall demonstrate that there exist situations in which EJ) serves as a good choice for MLB even when
the noise strength is considerably high.

A clear connection between EJ and the local entanglement witnesses can now be drawn by using
equation (23). Thelocal unitary invariance of entanglement measures [ 1] implies E (25 pg’k) Z8) = E( pg’k)),
which leads to

Eo(p) = 32 POV (26000 20, (26)
k

for a specific choice of the entanglement measure E. Using the convexity property of entanglement measures
[1,94] resultsin ES(p) > E (pg)> where pq, is given by equation (18), and one can modify equation (25) as

Eq(p) > E5(p) > ES(p) = E(py). (27)
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The quantity E(pg,) may still be difficult to compute in the general case if the region 2 is large and if p, is a
mixed state. However, the expectation value w = Tr(p,, W5), which is obtained by measuring WV, on p, can
typically be determined, say, in an experiment, with a number of resources that depends only on the size of {2,
unlike obtaining p, from p and the posterior full state tomography for it, which require an effort that depends on
the total size of system. From the definition of witness operators, one expects w corresponding to a good witness
operator and a specific quantum state to be highly negative if the state is highly entangled. Motivated by this, one
may use a minimal set of data, and solve an optimization problem which aims to answer the question as to what
the minimum amount of entanglement, E™" (p,,), as measured by any bipartite or multipartite measure E, is
among all states p, subject to p that are consistent with the data of w. In other words, one aims to find the quantity
given by [79-81]

[Fmin (pg) = inf E(p), (28)

subject to
w = Tr(oW$§) = Tr(pgW§), (29)

where pis in the Hilbert space 0of €2, o > 0,and Tr(p) = 1.In the most general scenario, the expectation values of
the local witness operators would provide a lower bound of E™™ (p,,), given by E}}¥ (w), so that the inequality in
(27) can be further appended as

Eo(p) = E5(p) = ES(p) = E(pg) = EY (w), (30)

where we refer the quantity Ey (w) as the witness-based lower bound (WLB) of LE, which is a function of only
the expectation value of alocal witness w = Tr(pWp).

In the following sections 3.2 and 3.3 we provide technically detailed discussions of modifications of the
hierarchy of lower bounds given in (30) in particular situations, such as under local unitary transformations and
for GD states. More specifically, we show that for GD states, ES(p) = E(pq,), and we use logarithmic negativity
[95-97] as a bipartite entanglement measure to show that for GD states and a region €2 constituted of two qubits
only, E(py) = E}Y (w). Readers interested in the demonstration of the different lower bounds in the case of
graph states under physical noise can skip these discussions, and move on to section 4, where we demonstrate the
behaviour of the lower bounds under local Pauli noise as functions of the noise strength.

3.2. Lower bounds under local unitary transformation
An important requirement for the construction of the local witness operator W, is that the region €2 in the
graph has to be connected. Also, in the case of low noise strength, the value of ES can be expected to be non-zero
iff Q2 is connected in G, since in the absence of noise, computing Eg yields zero if €2 is not connected. However,
there may arise situations where the chosen region €2 in a graph G is not connected. In that scenario, one may
arrive ata graph G’ by performing LC operations over a set of chosen qubits in the graph, so that the region (2
becomes connected in G’, and the hierarchies given in (30) hold good. For example, let us consider a region 2 of
two disconnected qubits a and b. The fact that the original graph G is connected ensures the existence of a path £
constituted of links {(7, j)} € & that connects aand b. A series of LC operations on selected qubits {i} C L,
where i = a, b, creates alink between the qubits a and b, thereby resulting in a new graph G’ with modified
connectivity, where the link (a, b) is present. We illustrate this in figure 2 with the example of a square graph.
However, a series of LC operations over a graph is equivalent to a local Clifford unitary transformation of the
graph state, as demonstrated in section 2.2. Therefore, in order to check whether equation (30) is valid in the case
of a graph where the selected region is not connected, one has to check whether the inequalities remain invariant
under such local unitary transformation.

Remembering that the LC operation on a set of qubits in a graph is equivalent to the application of local
Clifford unitaries on a set of qubits in the graph state [51, 52], without loss of generality, one may write

IG") = ULIG), (3D

where U, = ®N , U, { U;} being the set of local Clifford unitary operators acting on the qubits i € G.In the case
of a quantum state p originating from the graph state due to noise or some error in the experimental setup,
without any loss in generality, p’ = U pU; ', where p’ is the quantum state resulting when |G’) has undergone
the same transformation as |G) up to the local unitary U;. Note that since p and p' are connected by local unitary
operators, and since LE is invariant under local unitary transformation of the quantum state, Eq(p) = Eq(p’)
for any connected region {2 € G. Moreover, we note that the Clifford unitary operators have the property

o= U 'olU;, (32)

where both ¢;and o} are Pauli operators corresponding to the qubit i, up to the multiplicative factors {41, +i},
while o;is not necessarily equal to o'.. Since computing the RLE includes all possible Pauli measurement settings,
this implies Eg (p) = Eé) ).
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Figure 2. Creation of a link (a, b) by successive application of local complementation operations. (a) A square graph Gs with a region §2
of two disconnected qubits a and b denoted by black nodes, joined by a path £, constituted of the qubits {4, 1,2, b} and the links {(a,
1),(1,2), (2, b)}, denoted by thick black continuous lines. (b) Local complementation operation on qubit ‘1’ (blue) leading to the
graph 73(Gs)). The new links created by the operation are denoted by blue continuous lines. Note that the link (a, 2) has been created in
this local complementation operation, which is crucial for the creation of the link (g, b) in the next step. No links are deleted in the
operation 7. (c) Local complementation operation on qubit 2’ (red) in the graph 7 (Gs) result in the modified graph G’ = 7, o 71(Gy),
in which the link (a, b) is present. The new links created by this operation are denote by red continuous lines. Note that four of the blue
links created in the previous step along with four links from the original graph are deleted by this operation.

Clearly, the optimal measurement bases for computing LE for p and p’ are not identical. However, the
measurement basis corresponding to p can be determined by using the knowledge of Uy, and an appropriate
measurement basis for p’. In this scenario, we expect p’ to be close to the graph state |G’) where the region Q) is
connected, so that the appropriate measurement basis for p’ should be M, which involves only local
Z-measurement over all qubits in £2. But due to their local unitary connection, the localizable entanglement
ES(p') equals E, (p), where the value of | = I.1,, -+ 1, issuchthatforallr; € €, o, = U;'Z, Uy, uptothe
multiplicative factors { +1, +i}.

In connection with the local witness operator, one has to now consider

I+ U 'Yy,
W’Q =] — H ST UL &L , (33)
2 i€ 2

with { gi/} being the generators of |G') and { U; ! gi' U, } are products of the generators { 8} of | G). Note that the
state P;z corresponding to G is obtained from p’ according to equations (18) and (19), but using a different
unitary operator U./, which is defined according to the connectivity of G'. Inlight of this, the hierarchies of lower
bounds in equation (30), in the case of G’, become

Ea(p) > Ef (p) = Ea(p) > E(pg) > Eg' (W), (34)
where W’ = Tr(pW¢,) and p& = Tr(Uyp’ U];,), with U, being the disentangling unitary of equation (19)
for |G').

In scenarios where {2 is not connected, in the absence of noise, an optimal measurement setting for
computing the LE over the region {2 is the one that corresponds to a sequence of graph operations that results in
aconnected region 2. For example, in the case of a disconnected region €2 constituted of only two qubits, say, ‘a’,
and ‘b, one of the optimal measurement settings corresponds to (i) X measurements on all the qubits that are
situated on a path connecting qubits ‘a’ and ‘b, and (ii) Z measurements on rest of the qubits in the graph [52].
However, there may exist more than one such Pauli measurement setting. Note also that there may exist
different sets of local unitary operations that connect | G) to different graph states where {2 is connected. Both
MLB and WLB described above can therefore be made tighter by considering all such possible cases, and then
choosing the maximum of the values.

3.3. Lower bounds in graph-diagonal states

In this section, we focus on the hierarchies of lower bounds in the case of GD states. The motivation behind
determining the structure of lower bounds for GD states stems from the fact that these states occur naturally
when graph states are subjected to Pauli noise [64, 65], as is demonstrated in section 4. Also, any quantum state
can be transformed into a GD state by local operations, as demonstrated in [89-91].

9
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Let us first consider the measurement operation My = { Mg )} with ! = 0 for the N-qubit graph state,
where the form of M, s, is defined in equation (5) (see section 2.1). Unless otherwise stated, we keep the value of
Ifixed at] = 0 here and throughout the rest of the paper. To keep notation simple, we discard the subscript /
from now on, and denote the measurement operation by M, = { M, }. Here, My = Q),.c M, with
k;, € {0, 1}. Denoting the graph state as p; = |G(Q2, ©)) (G(Q, Q)|, implying that |G(Q2, ©2)) consists of the
qubits in © and €, the effect of operating M, on pg foraspecific 1; € Qis given by [52]

k. 1
PG-r) = Trr,(Mk,,.PMkr,.) = EZk"'P(gfr[)Zk”' (35)
with
ky — ky;
Zh= @ 7" (36)
JEN;

Here, NV, represents the neighbourhood of the qubit r;, and PGry = G2 — 1, QG — 1, Q)]
corresponds to the graph G(§2 — r;, €2), obtained from G(§2, ©2) by deleting the qubit r;and all the links that are
connected to it. Performing local Z-measurement over all qubits in Q the normalized post-measurement state
pg corresponding to the measurement outcome k can be written as pg Z"(pgQ ® M) Zk, where

P, = 1G(E)) (G()|is the graph state corresponding to the subgraph Gg, and the corresponding probability is
p* = 27", which is independent of k. The correction is alocal operator that can be factorized in a part acting on
Qand a part acting on the rest of the qubits, i.e., Z¥ = 2§ ® ZE. Here, Z¥,is the outcome-dependent

correction applied to the qubits in 2 due to the local Z measurements over the qubits in Q) (see equation (22)).
Therefore, tracing out the qubits in €2, the post-measurement state on {2 corresponding to outcome k is

e, = Z6pg, 2t (37)

Similar to equations (21) and (22), Z’é only depends on thelinks in &,.

In the case of GD states, the N-qubit post-measurement state, péD = My pgp M, corresponding to a
specific outcome k, can be written as

pEo =57 b, MiIGY) (GY] M. 38)

Using equation (35) in (38), one obtains the normalized post-measurement state corresponding to the
outcome k as

Pep = 2 0,20 ZXpg, © M) Z¥Z,, (39)

where P?;Q is given by pg,u = pg, = 1G(2)) (G(Q)]. Without loss of generality, we write Z, as Z,,, ® Z,,, where
theindices vq (g = 0, 1, 2, ---, 2N — 1)andvg (vg = 0, 1, 2, -+, 2™ — 1)aresuch that

VQ ®ZV9 l/p - ® Z;]/7> (40)
ieQ) € Q
with v/, 1/% € {0, 1}. Tracing out the qubits in {2, the post-measurement state p}éD ¢ corresponding to the
region {2 can be written as
k
Pen,o = Z6Pop.0 26 (41)
with

pGD 0=

= 5 vo(() vo(Q)
Zpum VQPQQZUQ: UZQPVQIQ ( )><g ( )l (42)

vo

. . o . ko ~
being the post-measurement state correspondingto k = 0 (i.e., 25 = In), where p,; =3, p, 6,1, Note here

that the measurement outcome is reflected only through the correction Z¥. Therefore, the post-measurement
states pléD o corresponding to different measurement outcomes k = 0 are connected to p.  , bylocal unitary

operators of the form Z¥,. Next, we determine the form of U, L, pep U, ' given by

UypepU; ' = Z 2,2 Uy pg Uy 2, (43)

Since by the definition of U.,, U, pog U, I = pogO ® pgo, Pop.o = Tra(U, pgp Uy, ! leads to
Pep,o = Z pr vQ pg 7Zuo pGD (9} (44)

Vo

with the definitions of v as given above.

10
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We now consider the hierarchy of bounds given in (30), and observe that EJ (pgp) = E (pOGD ) dueto
equation (41) and the local unitary invariance of entanglement measures. Also, from equation (44),
E(pgpq) = E (p%D’Q). Combining these observations, the relation in (30) is modified as

Eo(pep) = E& (pap) = ES(pap) = E(pgp.a) = EY (wep) (45)

for GD states, where wgp = Tr(pgp Wh).

3.3.1. Witness-based lower bound for regions of size two

We now focus on the WLB in the case of GD states where the region €2 of interest has size two. For concreteness,
we choose logarithmic negativity [95-97] as the measure of bipartite entanglement. For bipartite quantum states
oap of two parties A and B, logarithmic negativity is defined as

L¢(0aB) = log,(Ng(0ap) + 1), (46)

where N, (04p) is the negativity of g4, based on the Peres—Horodecki separability criterion [98, 99], given by

Ne = [lo%lh = 1. (47)
Here, o, is the partial transposition of the state 0,5 with respect to A performed in the computational basis,
and || g|li = Try/ ¢ is the trace-norm of g. The negativity of the state g, can then be computed as

Ne=2 > I\l (48)
Ai<0

where { \;} are the eigenvalues of ¢ . In the case of witness operators YW, given by equation (17), the lower
bound E}Y (w) of N, corresponding to a region §2 of two or three qubits, is given by (see appendix A)

—2w, forw <0
w o > 5
Eo'(w) = {O, for w > 0. (49)

We demonstrate the following results for negativity, which can be straightforwardly extended in the case of
logarithmic negativity.

Using the form of pgp, , in equation (44) and the witness operator W%, in equation (17), one can determine
wgp = Tr(pGD,QV\/g) = % — P,» implying Egv (wgp) = 2p, — 1when p, > % (i.e., wgp < 0),and
E} (wep) = 0 for f, < % (.e.,wep = 0).

Considering now the two qubits in {2 to be the two parties A and B, pg‘D q is also diagonal in the graph state

basis, similar to pgp, o, with the eigenvalues of pg‘D,Q given by

Mo=1/2—py M=1/2—=p,, X=1/2—p, As=1/2—p, (50)
Ifp, < %Vi € {0, 1, 2, 3}, \; > 0,implying N; (ogp ) = 0. On the other hand, if any of the weights { p,}, say
p, = max{p;}is >%,then b < %.Ifj = 0, then \; < 0,implying N, (pgp o) = 2P, — 1.

Therefore, Ny (pgp o) = E}Y (wep) if p, = max{p},i = 0, 1, 2, 3,implying that in case of negativity as the
entanglement measure, and for {2 having size two, equation (45) for GD states becomes

Ea(pgp) = ES (pep) = ES(pep) = E(pgp.o) = E (wep).- (51)

The corresponding logarithmic negativity of pgp, o is given by L (pgp ) = log,(2p,), following equation (46).
In section 4, we consider local, spatially uncorrelated Pauli noise, giving rise to GD states in which p;, > % isa
common occurrence.

As afinal comment, in a region € constituted of two qubits, the bipartite and the genuine multipartite
entanglements coincide, but this is not the case if 2 contains more than two qubits. We shall demonstrate that
the use of a bipartite entanglement measure for a region of two qubits results in a tighter WLB where E}Y
matches with EJ(p’), while such property is absent when € is bigger (see figures 3(a), (b) and the subsequent
discussions). The procedure of obtaining a WLB for localizable entanglement over a region €2 having size bigger
than two qubits remains the same as described in sections 3.1-3.3 and appendix A, the only difference being in
the functional form of E}y (w) (equation (49)), which depends explicitly on the chosen entanglement measure.
For demonstration, in this paper, we have chosen logarithmic negativity as the measure of bipartite
entanglement between the two qubits in 2 due to the computability of the measure. The main challenge in
obtaining a proper WLB for a region {2 of size larger than two qubits remains in the scarcity of computable
genuine multipartite measure of entanglement for mixed multiparty states. However, given such a computable
multiparty entanglement measure exists, WLB corresponding to that measure for a region larger than two qubits
can be computed by determining E (w).
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Figure 3. Localizable entanglement over regions of different size against noise parameter for linear graphs. (a) Variations of E;3(p),
EL(p), ES(p") and E)Y (w) as functions of the noise parameter g for the region Q = {1, 3} in the linear graph G, = {V, &}
composed of four qubits, where V; = {1, 2, 3, 4},and & = {(1, 2), (2, 3), (3, 4)}. We consider bit-flip noise applied to all the
qubits. (b) Variations of E;|23(p), E17|)23 (»)s Elo| »3(p)and Ef?{s (w) as functions of q for the region 2 = {1, 2, 3} with the bipartition
1|23 in the linear graph G; under BF noise. (c) Variations of E;3(p), E173’ ), Elo3 (p")and El‘gV (w) as functions of q for the region
Q = {1, 3} in thelinear graph G; under amplitude-damping noise.

4, Performance of the lower bounds

In this section, we discuss the performance of the MLB and the WLB discussed in section 3. For concreteness, to
this end we consider graph states G under local uncorrelated Pauli noise and local amplitude-damping (AD)
noise [82], and discuss how the MLB and the WLB can be computed over a connected region 2 in the N-qubit
system. We employ the Kraus operator representation [64, 65, 82, 100], where the evolution of the graph state pg
under noise is given by p; — p = A(pg), and where the operation A(.) can be expressed by an operator-sum
decomposition [82, 100] given by

N1 N1 R
p=Apg) = KapgKi= > q,Jupgll- (52)
a=0 a=0

Here, {K, = /q, ).} are the Kraus operators satisfying the completeness condition | K'K, =1,
with I being the identity operator in the Hilbert space of the system. The map A(.) in equation (52)isa
completely positive trace-preserving (CPTP) map, and q is the driving parameter of the noise model,
which introduces the notion of time, , depending on the type of the physical process through which the
system evolves.

For uncorrelated Pauli noise, the individual Kraus operators, K, can be written as the product of identity, I,
and the three Pauli operators, X, Y, and Z acting on the individual qubits. The operators {J,} in equation (52)
now have the form

N
Jo = Q0u, (53)
i=1

and

N
4, = I1 4., (54)

i=1

with a; € {0, 1, 2, 3}, Zi,-:o 9o, = L andoy = I, 0, = X;,0, = Y;,and 03 = Z,. Note here that the index v
on the left hand side can be interpreted as the multi-index @ = o, -+ ay, where avis represented in base 4 by
the string aj o, -+ ay. Examples of Pauli noise include bit-flip (BF), bit-phase-flip (BPF), phase-flip (PF), and
depolarizing (DP) channels, with the corresponding values of the probability q,, given for completeness as

follows:

(55)

(56)
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PE: g =1-1,4=0,9,=0,q,=4; (57)
2 2
3q q q q
DP: gy=1—- "L g=2 =21, ="2, 58
9o 1 q 1 q, 4 qs N (58)

All of these channels induce a complete decoherence on the input quantum state at probability g = 1, without
any energy exchange with environments, thereby representing non-dissipative noisy channels. Note here that an
operation o,,, &; = 1,2, on the qubit i of a pure graph state is equivalent to a Pauli Z operator on the qubit iand
its neighbourhood, as shown in the following equations:

Oq;=1 %7 ®Z’ Oa;j=2 <7 Zi® ®Z] . (59
jeN; JEN;
This implies that a graph state under local uncorrelated Pauli noise is a graph-diagonal state [64, 65]. Hence the
discussions in section 3.3 apply.
On the other hand, in the case of local AD noise, the single-qubit Kraus operators are given by

ool <ol 9}

1 —gq 0 0

with K, and K; being null operators. Note that although the single-qubit Kraus operators in the case of AD
channel can be expanded in terms of Pauli operators, the resulting state p due to the application of AD noise to all
the qubits in a graph state is not a GD state.

We now illustrate the behaviour of the different quantities in equation (30) for the specific example of a linear
graph G, = {V}, &} ofsize N = 4,where V; = {1, 2, 3, 4},and & = {(1, 2), (2, 3), (3, 4)}. We consider two
specific cases—one with a region 2 of size 2, constituted of qubits 1 and 3 that are not connected by a direct link (see
figure 3(a)), and the other with a connected region €2 of three qubits, constituted of the qubits 1, 2, and 3. In the first
case, one may consider a LC operation on the qubit 2 to create the link (1, 3), so that 2 becomes connected in the
new graph G’ = 7,(G). We determine E;5(p), E17; (0), ES(p),and EQ{V (w) as per the discussions in section 3, when
BF noise is applied to all the qubits. Note here that the transformation 7,(.) corresponds to the local unitary
operation U, = exp(inZ, /4)exp(—imX, /4)exp(inZs/4) on |G;) (see section 2.2). Therefore, computing E3(p”)
for the state ' is equivalent to computing EJ5°(p) for the state p by performing Y measurement on the qubit 2
and Z-measurement on the qubit 4. Recall that the value [ = 6 is the decimal representation of the multi-index [, I,,
inbase 3 (I,, = 2 forr; = 2,implying Y measurement,and I/,, = 0 for , = 4, implying Z-measurement), following
the notation for measurement bases as introduced in section 2.1. Note also that this differs from the index
convention for designating Pauli operators used in this section. In figure 3(a), we have plotted the variations of
Eis(p) B (0), ES(p'), and VY (w) as functions of g. We observe that irrespective of the structure of the graph, the
LE over two and three-qubit regions in graph states under local uncorrelated Pauli noise is always optimized by local
Pauli measurements, implying Eq(p) = EJ (p). Also, in accordance with the results obtained in section 3.3, we find
that E3(p') = E"(w) for all values of . We point out here that the quantity E/;(p), corresponding to an X
measurement on qubit2 (,, = 1) and a Z-measurement on qubit 4 (/,, = 0),is equal to E;3(p), as | = 3 provides the
optimal measurement basis in the noiseless case. This is understandable from the fact that the measurement over
qubit 2 commutes with the BF noise applied to it, thereby neutralizing the effect of the noise. This will be discussed in
more detail in section 4.1.

On the other hand, in the second example, the region of interest {2 = {1, 2, 3} is already connected. Since we
consider a bipartite measure, namely, logarithmic negativity as the measure of entanglement, we focus on the
bipartition 1|23 of the region {2. However, the results to be reported remain unchanged in the case of other two
bipartitions, 2|13 and 12|3 also. The variations of E|3(p), E17|323 (p), E{j53(p),and Ef& (w) against the noise
parameter q are depicted in figure 3(b). Note here that in contrast to the former example, here
Efl23(p) > E"Y(w) forallvalues of g except at g = 0, therefore ensuring the validity of the results obtained in
section 3.3. Lastly, we consider the local AD noise as an example of non-Pauli noise, and determine the
variations of E13(p), Eﬂ; (p), E5(p"),and EQ{V (w) as functions of g. The results are depicted in figure 3(c). The
reconstruction of the graph and the corresponding change in the measurement directions are as the same as in
figure 3(a).

4.1. Measurement-based lower bound under Pauli noise for arbitrary graphs

From the results presented in figure 3(b), it is clear that there exists situations in which E§ may provide a tighter
lower bound than E"Y (w). However, in the case of noisy graph states of large size, the computation of the
quantity E$) as alower bound of E, may turn out to be difficult. In this subsection, we shall describe how EJ, in
the case of uncorrelated local Pauli noise and a specific connected region €2, can be computed as a function of the
noise parameter, g, by using only the knowledge of the connectivity of the underlying graph. For the purpose of
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demonstration, we consider a region consisting of two qubits a and b only, so that 2 = {a, b}. However, the
methodology discussed here can be applied to regions of any size in arbitrary graphs.

Let us consider the general situation where a and b are not connected in G. In such a case, one may obtain a
graph G’ with the link (g, b) by the prescriptions discussed in section 3.2. Application of equation (31) in (52)
leads to

N

4N —1
p= Z qu]ﬂpgjj): = UEIP/UL’ (61)
a=0
where
4N—1
! !/
pl = Z %Japg’ %] (62)
a=0

with J/ = UpJ,U; ',and pg = 1G’) (G']. The property of the Clifford operators (equation (32)) implies that the
operators J,, = ], in equation (62), where ],/ is now given by

Jo' = Qo (63)

with @} = 0, 1, 2, 3,and 0,/ = U;"'0,,, Uj, where the index o/ can be interpreted as the multi-index
o’ = ajal -+ aly,in the same way as ov. Note that p/ is also a GD state.

For reasons that will become clear in the subsequent discussion, we write the modified operators, {J'}, and
the probabilities g, in equation (62) as

Jor =Tao}, ® l@aagl, Ao = 4o, 9 (64)
T,'Ef_z
where ], = 040 ® 0o 4o, = do,dap 304
0= 11 4., (65)
reQ)

Here, o, o, oy € {0, 1, 2, 3},and Zi-:o q,, = 1. Theindex o'y oy, and a;b can be interpreted as the
multi-indices o/ = o, aga; .o O‘:N,z’ Qap = uap,and oy, = alay, in the same way as avin equation (53). Let

us now consider the measurement operation My, as a result of which the N-qubit post-measurement state,
p'* = My p' M, corresponding to a specific outcome k, can be written as

P/k = Z qu]a'Mk’pg’Mk/]n/a (66)

with My = Qr.ca My, k,i € {0, 1}, where
Mk,/, = aa:,MkriUryi.' (67)

The interpretation of the index k’ in terms of the indices {k, } corresponding to the outcomes of the
measurements on the individual qubits is similar to the other indices, such as «, @, I, and k. Note that the
transformation in equation (67) does not change the basis of the measurement, but changes its outcome.

We proceed along the same line as in section 3.3, and write the graph state as
pg = |G'(Q, a, b)) (G'(Q, a, b)|. Use of equation (35) in (66) over qubits in §2, and then tracing out 2 lead to
the two-qubit post-measurement state corresponding to qubits a and b, given by

k 8
Pl =D qalda,) PG ) o) (68)
«

where pgub = thpgab Zfb and pg, = |Gap) (Gapl is the two-qubit graph state. Here, the set {Zfb =7k Zbﬁb} is
constituted of all possible outcome-dependent corrections on p dueto different values of k, where 3,
Oy € {0,1}, Z,?’ b= Lops Zal’ » = Zap-and B = 3,0, is amulti-index given by the decimal representation of the

binary string 3,0
Noteherethat ]/ and q,,  areindependent of the measurement outcome, and depend respectively on the

local unitary operator Uy, (equation (62)), and the probability corresponding to the Kraus operators acting on the
qubit pair (g, b) only. Therefore, for a specific graph G, further simplification of the form of the state p’ ‘fb is
possible by grouping the terms with identical pgab (ie., pgub with the same value of 3) together. Let us introduce
the noise local to the qubit pair (a, b) as A, where
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@ (b)

Figure 4. General structure of the neighbourhood of a connected two-qubit region in an arbitrary graph. (a) The neighbourhood N\,
of the connected qubits aand b in the graph G’ = 7, o 7(Gs) shown in figure 2(b). The links that are connected directly to either of
the qubsits a or b are depicted by continuous lines, while the links { (i, j)} with i, j € Ny, are represented by broken lines. (b) General
structure of A\, in an arbitrary graph, where the red qubits are the connected qubits of interest, labelled by a and b. The
neighbourhood A is constituted of three types of qubits : (1) the qubits that are connected to both aand b (the set ﬂ/;b, denoted by
yellow nodes), (2) the qubits that are connected to only a (the set /(/;, denoted by blue nodes), and (3) those connected to only b (the
set AV}, denoted by green nodes).

Aah(pgab) = Z qaab]a;bpgub]n‘;b' (69)

Qgp

Using this notation, equation (68), for a specific graph G, can be written as

Py = qgf\ab(pgah) = Aa(Ppp)> (70)
B

where

P = 2 45 P4, (71)
&

and for a fixed valueof 6 = @, qg—f "is the sum of the probabilities g5 corresponding to all the values of o, where
8 = . Note that p’akb = p,iffal, = aj = 0,implying o, = a, = 0,1i.e., qubits aand b are free from noise. If
local uncorrelated Pauli noise is present on qubits a and b, then the entanglement of the qubit pair (a, b) decays,
implying E (p’ akb) < E(p,), Ebeing any entanglement measure. We further note that equation (35) suggests that
the corrections over the qubit pair (a, b) are fully determined by the neighbourhood of the qubit pair, denoted by
N = N, U N, where N, (N,) is the neighbourhood of qubit a (b). Therefore, the probability corresponding
to the Kraus operator acting on qubit r; & A, does not affect the post-measurement state. Since the separability
of Pauli maps indicates that }°, g = 1forany QY C Q,where ag is the multi-index involving the indices

{a,}suchthatr, € O, qg can be expressed as
3
90 = 2 oy (72)

_ag
QeNap

4.1.1. MLB as a function of noise strength and system size
The dependence of qg on the noise strength and the system size can be explicitly determined by considering a
general form of the neighbourhood N, in an arbitrary graph G, where the qubits a and b are connected. Let us
consider, for example, the neighbourhood A, in the graph 7, o 7;(Gs) (figure 2(b)). In figure 4(a), we present
N, corresponding to 7, o 7(Gs), where the black qubits are the qubits of interest, and A is constituted of the
gray qubits. The broken links indicate the connectivity of the neighbourhood qubits that are irrelevant in the
context of the corrections applied to the qubit pair (a, b) due to local Pauli measurements over the qubits in A/,
On the other hand, the continuous links are the links that connect a qubitin N,;, with either a, or b, or both,
which represent the three types of qubits constituting N, Evidently, the corrections on (g, b) according to
equation (35) are determined by the connectivity of the qubits in NV, represented by the continuous links. These
features remain unaltered even in the case of a pair of connected qubits in an arbitrary graph.

In figure 4(b), we present the most general form of an isolated neighbourhood MN;;, of a connected qubit pair
(a, b) in an arbitrary G'. The qubits in V,; are categorized into three classes according to their connectivity. Class
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1 consists of the qubits in A\, denoted by N, and represented by the blue nodes, that are connected to only
qubit a. The qubits in N, that are denoted by N, and are connected to only qubit b, form the Class 2, and are
shown by the green nodes. The rest of the qubits in A, denoted by N, and marked by the yellow nodes, that
are connected to both of the qubits a and b is denoted by Class 3. Clearly, N, = N, U N, U N,
N, = Na U J(/;;,, and NV, = M, U /Vab. From equation (67), one can also categorize the noise on each qubit in
Ny into two categories. In the first category denoted by Type 1, k,, = k,, with a finite probability when the
transformation in equation (67) is carried out (BF and DP channel for example), while k,’i always equals to k.
when the noise is of Type 2 (for example, PF noise). We denote the set of qubits in N, experiencing Type I (Type
2)noise by N, (V%) where A, = N, U N2, and VY, N A2, = @. Similar notations are adopted for
qubitsin NV, A, and N, also.

Let us first determine the form of p’ akb when only the set '}, is populated, and N2, = @. Non-zero

contribution in qf—; is provided by the qubits in A%, due to the probabilistic change of the outcome from k,, to
kr'i , along with the application of appropriate corrections Zfb on pg . Withoutloss of generality, let us denote the
T V2 v ol . .
number of qubits in N » N pand N, by n,, ny, and n,, respectively. Let us also assume that corresponding to
. . . =l .
a spec1ﬁc outcome kin equation (66), n5 of the outcomes {k;neQe N } are 0, while n} are 1, such that
n, = n® 4+ n!. Similar definitions apply for nj’* and n%!. Interpreting qQ as the probability that the correction

Z fb isapplied to pg , its explicit form can be determlned as (see appendix B for a detailed derivation)

a3 =P, PP, + P/PiP), qf=P,PyP + PiPiP,,

5= P PyPy + Pr PP, g5 = P, PPy + PPyP, (73)
with
1
P =Sl (~17% - g,
pE %Ui(lﬁﬂ 2™,
1%—%u¢en%u—@wL 74)

where we have assumed the noise to be of BE, BPF, or DP type. Therefore, p’ sz (equation (70)), in its explicit
form, can be determined as a function of the size of '}, and g by using equations (73), (74) as p’ :b = Aw(Dy)
with

b = 952 aPg, Zab + 952wl g, Zab + A5 ZanP g, Zan T A5 Z P gy Zar (75)
where the form of A, is given in equation (69). In the general scenario where /%, = @, its only contribution to
o' akb is an extra correction belonging to the set {Zfb} according to the connectivity of the qubits in N,;,. However,
Zfb being alocal unitary operator, the entanglement properties of p’ akb remain unchanged, and equation (74)
represents the effective form of p’ akb as far as entanglement is concerned. Therefore, the dependence of the

entanglement of p’ akb on the noise strength and the size of the system is solely determined by the qubits in A/,
Note here that the two-qubit post-measurement states corresponding to different values of k are connected by
local unitary operators (see section 3.3), implying that it is sufficient to consider p’ fb, or any other value of k,

since E b(,o’) = E(p ) = E(p ,) (see equation(45)).

To investigate the features of the MBL as a function of the noise strength and the system size, we choose
logarithmic negativity as the measure of bipartite entanglement, E. From the expression of p’ akh (equation (75)),
itis clear that L (,0 ) < Lg(py,) (see equations (70), (71) and subsequent discussions). For the purpose of
demonstration, we consider the scenario where noise is absent on qubits aand b, i.e., p’ ab = P, Onecan
compute the logarithmic negativity of the state p,, from equation (46). The negativity of the state p,,, for a fixed
value of g is given by equation (48), where { \;i = 0, 1, 2, 3} are the eigenvalues of f)ﬂ%. These eigenvalues can be
explicitly computed in a similar fashion as in equation (50) by identifying p. to be equivalent to qg ,whereboth i,
8 =10,1,2,3. As functions of g, 1, 1, and n,, { A;} are given by

Ao 1+ G0 = Gt g,y = L g g - i)

/\2 — l[l _ q~na+nab + q~na+nb + q~n,,1,+nb], )\3 — l[l _ q~nu+nab _ qn,ﬁ-nb _ qnﬂb+nb]) (76)
4 4
where g + § = 1. For the purpose of illustration, let us now consider the situation where n, = n,, = n, = n.

In this case, the eigenvalues ofﬁa% are\p= A\ =\ = i[l + §*",and 3 = i[l — 342", of which the
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Figure 5. Measurement-based lower bounds against noise strength for fixed neighbourhood size. (a) Variation of E; as a function of g
forn, = ny, = my, = nwithn = 1,when a/,a, = 00 (no noise on qubits a and b, equation (77)), a’;a;, = 01 (no noise on qubit a
and BF noise on qubit b), a/,a, = 11 (BF noise on both qubits @ and b), and a;a, = 13 (BF noise on qubit a and PF noise on qubit b).
(b) Variation of Ey; as a function of g for n, = n,;, = m, = nwithn = 10, when o/,aj, = 00, al,a, = 01, aloy = 11,and

alyaj, = 13.(c) Variation of g, as a function of 1 in the case of a,atj, = 00 (equation (78)),01, 11,and 13.

1
negative eigenvalueis Asintherange 0 < g < 1 — (%)z”. In this range, Ey, as a function of g and n can be

expressed as
Ej, =log,[3(1 — 9> + 1] — L (77)

For a specific value of 1, E, goes to zero at a critical value

1\
=1-—-1=1. 78
1) ow

Forg > g, A\s becomes positive, and the logarithmic negativity vanishes.

In figure 5(a), we plot the variation of E;, as a function of the noise strength g with n = 1, for different types
of noise present on the qubit pair (a, b). We conveniently denote the different types of noise on (a, b) by the
multi-index o, = o, ay, where, for example, o), aj, = 11 implies bit-flip noise applied to both qubits a and b.
We find that the variation of E);, with g in the case of {a/,a, = 01, 02, 03, 10, 20, 30} are quantitatively
identical. Similar behaviour is observed in the case of { o, o, = 11, 12, 21, 23, 32, 33} and
{alay, = 13, 22, 31}. With an increase in the value of 1, the value of Ey, for a fixed value of g decreases, and the
effect of the noise on the region 2 = {a, b} becomes less prominent. This is clearly shown by the coincidence of
the variations of EY, against ¢, when the neighbourhood size is increased ton = 10 (see figure 5(b)). The
variation of E, with g remains qualitatively unchanged if one considers different relations between #,, 71, and
nyinstead of n, = n,, = n, = n. However, identical dynamics is now shown by groups of noise channels,
denoted by specific values of o/, o}, which are different from that in the former case. In figure 5(b), we plot the
variation of g, as a function of increasing  for different types of noise on the qubits a and b, where the data for
al aj, = 00 corresponds to equation (78), and the data corresponding to the rest of the noise models are
obtained numerically, by considering EY, = 0 for values below a numerical cut-off, concretely, if EJ, < 107,
The qualitative behaviour of g, against the system size is found to remain invariant for different relations
between 1, 1, and np, instead of n, = n,, = n, = n.

In the regime of low noise strengths, g — 0, upon expanding the logarithm and keeping terms up to second
order in g, equation (77)leadsto

3nq 3n(n — 2)q>

EY~1— , = O O O
ab ™) + 5In2 o(n) + Oi(n) + Ox(n) ,

(79)

Oy(n) being the term involving n in order k. The variation of EJ;, as a function of  for fixed values of g is depicted
in figure 6, when the noise strength is small. To determine the leading order of 7 that describes EQ, for small
values of g, we plot, in figure 6, E3, ~ Oy(1) + O)(n) (up to first order in 1, shown by broken line) and
EY, = Oy(n) + Oy(n) + Oy(n) (up to second order in 1, shown by continuous line) as functions of . It is clear
from figure 6 that for a fixed small value of g, E, ~ Oy(n) + O,(n) matches the actual variation of Ey,
satisfactorily when # is very small (~10). When # increases, the second order term in # starts to become
prominent, and EY, ~ Oy(n) + Oy(n) + O,(n) describes entanglement satisfactorily.

We would like to point out here that the prescription for computing the post-measurement density matrix to
obtain a form equivalent to equation (75) remains unchanged for a region 2 having size larger than two qubits
also. The major step in this calculation is the determination of the mixing probabilities according to the general

structure of the neighbourhood of €2 in a graph where §2 is connected, which can be achieved following
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Figure 6. Measurement-based lower bound as a function of system size. The variations of ES, (equation (77)) as functions of  for
different small values of g, with 1, = n,, = n, = n. The broken (continuous) lines correspond to the variations of Ex, with 7 when
Ejy = Oyn) + Oy(n) (Eg, = O(n) + Oy(n) + Ox(n)) (see equation (79)).

procedure similar to that described in this section and the appendix B. As mentioned earlier in section 3.3, the
main difficulty of estimating localizable multipartite entanglement over a region larger than two qubits in the
presence of noise is the lack of computable measures of genuine multipartite entanglement for mixed states. In
this paper, we have considered a computable bipartite measure of entanglement, namely, logarithmic negativity,
which is equivalent to the genuine multiparty entanglement when €2 is constituted of two qubits only. However,
given a computable multiparty entanglement measure for mixed states, the MLB to the localizable multipartite
entanglement over a chosen region €2 constituted of any number of qubits can, in principle, be computed by
following a procedure same as in the case of a two-qubit region.

4.1.2. Linear graph

We conclude the discussion on the MLB with the example of a linear graph G;, in which we intend to determine
the MLB over two qubits a and b, where the total number of qubits along the path connecting a and b is n,. Note
here that the qubit pair (a, b) can either be (i) the boundary qubits, so that in G;, both N, and A, have size 1, or
they can be (ii) bulk qubits (as in figures 7(a) and (b)), where both N, and A/, have size 2. For the purpose of
demonstration, we consider the scenario where a and b are bulk qubits, n, > 3, and PF noise is applied to each
of the qubitsin G; . The transformation G; — G’, where {a, b} are connected in G, is constituted of successive
LC operations on the qubits in £, starting from the qubit nearest to a and ending at the qubit nearest to b without
skipping any qubit in the middle, so that

§' = Ty, 0Ty,—10 -+ o7 0 7i(Gp). (80)
The structure of G’ is shown for n; = 5 (1, = 6) in figures 7(a) and (b). The equation (80) can equivalently be
represented as |G') = U;|G;), with

U

=

=U,® (@Vl) ® Up, (81)
ieL
where
Ua == (uaz)nﬁa Ub - ubz) ‘/1 == (ulz)nL7 1“li ‘/ng = u;fﬁ unZE 5
Vi= @) uful; 2 <j< (ng — 1), (82)
with 4} and uf defined in section 2.2. Note here that in the case of ny, = 1, U, = uf, U, = ugf, V; = uf*, while for
ne = 2,U, = () Uy = uf, Vi = ufy*,and V5 = u; uf. The transformation of the Pauli operators due to the
unitary operators { U,, Uy, Vj; j = 1, -+, nz} are given in appendix C, which describes the change of the type of
noise on individual qubits according to equations (61) and (62). The post-LC operation structures of the graphs,
as demonstrated in the case of n, = 5, 6, in figure 7, is such that for n. odd, n, = 0, n,, = (nz + 1) /2, and
ny = (ngz — 1) /2, while for nz even, n, = 0and n,, = n, = ng /2. Therefore, Ey, as a function of gand 7, can
be computed by following the methodology discussed in section 4.1. Note here that the values of n,, 11, and 1,
in terms of n; depend on the structure of the graph G’ as well as the noise on the qubits in A, in G’. For
instance, in the case of the BF noise on all the qubits, irrespective of the value of n., n, = n,, = n;, = 1. The
invariance of Ey, with 7 in the case of BF noise on all the qubits in G; can be understood by noticing the fact that
the optimal measurement basis in the absence of noise corresponds to X measurements on qubitsin £, and Z
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(b)

Figure 7. Schematic representation of local complementation operations on a linear graph under phase-flip noise. (a) On the left, a
linear graph G with two bulk qubits aand b, separated by n; = 5 qubits, is shown. The noise on each qubit is of PF type (Z-type), and
isindicated by the labels. A series of LC operations on the qubits in £, given by equation (80), takes Gy to G’ (on the right), where the
link (g, b) exists. The operation also changes the noise on individual qubits according to equations (61), (62) and appendix C, which is
indicated by the different labels, where label X and Y indicate BF and BPF noise, respectively. (b) A similar transformation is described
for alinear graph with n; = 6.

measurements on the rest of the qubits except a and b, and the measurement on qubits in £ commutes with the
noise.

5. Conclusions and outlook

In this paper, we have considered two different approaches of determining computable lower bounds of
localizable entanglement for large stabilizer states under noise. One of the approaches is based on local witnesses,
whose expectation values can be used to obtain alower bound of the localizable entanglement. The other
approach restricts the allowed directions of the local projection measurements over the qubits outside the
specific region of interest over which the localizable entanglement is to be computed. By establishing a relation
between the disentangling operation that reduces the full quantum state to the quantum state corresponding to
the specific regime, and local Z measurements over qubits outside the region, we have been able to connect these
two seemingly different approaches, and have proposed a hierarchy of lower bounds of localizable
entanglement.

Using graph states for demonstration, we show that in the case of graph states exposed to noise, the MLB is
greater or equal to the WLB. The equality occurs in the case of graph diagonal states, when localizable
entanglement over a region constituted of two qubits is to be determined. We have demonstrated how the
hierarchy of lower bounds of localizable entanglement is modified due to local unitary transformation, and
discussed the behaviour of the lower bounds under physical noise models, such as the local uncorrelated Pauli
noise. We have demonstrated that for two-qubit regions, in the case of graph states under local Pauli noise,
which form a subset of the complete set of graph-diagonal states, the WLB coincides with the MLB. But in the
case of three-qubit regions, the MLB is a tighter lower bound for localizable entanglement. We have also
proposed an analytical approach to determine the MLB for quantum states of arbitrary size under Pauli noise,
and discussed the behaviour of the MLB by performing Z-measurement over the qubits outside a two-qubit
region as a function of noise strength and system size. The results discussed in this paper are either valid for, or
can be translated to more general stabilizer states due to their connection with graph states by local unitary
operation. The WLBs of localizable entanglement proposed in this paper can be evaluated experimentally
without performing a full state tomography, and by considering only one local witness operator expectation
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value, which makes it a quantity feasible to be computed in experiments. Also, the MLB discussed in this paper
does not require a full optimization with all possible local measurement bases over the qubits outside the region,
but needs only local measurement in the computational basis, and can be determined by only knowing the
structure of the graph and the type of noise applied to the qubits. Therefore, we expect the quantities and
methods introduced in this work to be valuable for the investigation of localizable entanglement in experimental
medium- and large-scale noisy stabilizer states.
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Appendix A. Optimizing the witness-based lower bound

As discussed in section 3.1, we need to determine the minimum value of negativity that is consistent with
experimentally determined expectation values {w} oflocal witness operators. In our case, we only focus on the
witness operator W, and the optimization problem aims to find the solution of

NP = inf|[(pyp)"[h — 1, subject to Tr(pysW8) = w,  pap = 0, Tr(pyp) = 1, (AD)

where the optimization is done over all possible states p 1 5. Here, we have considered a specific bipartition of the
region () into the subparts Aand B,and E™" = N,"" is the quantity to be computed. Using the variational
characterization of trace-norm, and following the procedure described in [79], one arrives at

N;‘in > EY(w) = inf Tr[D(p,p)™4] — 1,  subject to Tr[pyWil = w,  pup =0, Trlpyl =1, (A2)

where Dis any operator such that || D||,, = 1, and the right-hand-side of the inequality in equation (A2)
provides E}’ corresponding to negativity. Considering D to be of the form D = —f W$)™s + hI involving the
partial transpose of the local witness operator that has been measured, where the coefficients fand h are such
that ||D||c = 1, onearrives ata simple form of the lower bound, given by

EXY(w) = max(—fw + h — 1) subject to ||D|jc = 1. (A3)
o

Note that the form chosen for D allows one to avoid the minimization involved in (A2). Note also that any set of
values of f, h subject to || D||, = 1provides a value of the lower bound.

However, we would like to find the best possible value by performing the optimization in equation (A3). In
order to do so, we note that (WS%)TA =1/21- pgfz, and since pgf; is diagonal in the graph state basis, sois D. In
the case of a region Q2 of size two, A and B denotes the qubits constituting 2, and

1
pg/;) = E[ZOPQQZO + leg”Zl + Zng”Zz — Z3ngZ3], (A4)

following the notation for GD states. In the case of {2 constituted of three qubits, say, 1, 2, and 3, one can consider
three possible bipartitions of €2, which are equivalent under qubit permutations. For the bipartition 1|23, one
obtains

1
Pg;, = E[ZongZo + Z3pg,Zs + Zapg,Za — Z7pg, L7 (A5)

The singular values of Dare {|h|, |h — f|}and {|h|, |k — fl, |h — f/2|} for regions of size two and three,
respectively. Since || D, = 1, the maximum singular value among them must be 1, which implies

max{|h|, |h — f|} = 1,Dbecause the third singular value is smaller or equal than the first or the second for any
pair A, f. This can be satisfied with four sets of solutions of fand 4, given by (i) (h = 1,0 < f < 2), (i) (h = —1,
—2<f<0),30i))h=14+f-2<f<0)and(iv)(h = —1—£0 < f < 2). Asmentioned earlier, although
any of the four pairs of values of fand h provides a valid lower bound for N gmi“ , we choose the best of them. In the
casewhenw < 0, the optimal pair is (h = 1, f = 2), from (i), and for w > 0, the optimal values are (h = 1 and
f=0) from (i) and (iii), which leads to
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—2w, forw <0
EW — > > A
o (@) {0, for w > 0. (46)

The lower bound corresponding to the logarithmic negativity also can now be straightforwardly obtained from
the value of E}}¥ (w) by using equation (46).

Appendix B. Determination of the mixing probabilities

Here we present the crucial steps of the derivation of the forms of qg , given in equation (73). For the purpose of
demonstration, let us consider the correction Z%, = I, ® I,. Let us assume that the number of ‘1’s in the outcome
k" = k. ky,k;, -+ ky,_,,wherer; € N L is m_, and we use similar notations for the sets N ;, and A sz- According to
equations (35) and (67), the correction Z%, may resultiff (i) 71, 15, and my,are all odd, or (ii) all even. The value of
kr: = 1forre N 2 when (a) k,, = 01ischanged to kr/,- = 1, due to the application of a noise of Type I with
probability s (0 < s < 1),and when (b) k,, = 1 remains unchanged with a probability (1 — s). Let us denote the

number of occurrences of event (a) by 1, and the same for event (b) by m,', where m?' + m!' = m.. Similar

descriptions can also be adopted for qubits in N ;, and \/ ib. An odd value of m,, may result either when (1) 73 is

odd and m2" is even, or when (2) m®" is even and m," is odd. The probability of occurrence of the event (1) is
P(l) = P(ll) P(zl) 5 Where

0 1

. n ol oo 5 n 11 111
Ph= >, P B OO L N N D Y @ = s)ma s, (BD)
m¥"=1,3,5,---\ Ma mi=0,2,4,--\ Ma
Similarly, for the event (2), Pz) = P(lz) P(ZZ),where
110 o1 o o1 nl 11 1 11
Ph= > ol — sy, Poy = > 9 = syme st (B2)
md'=0,2,4,--\ Mg mi'=1,3,5,--\ My

These expressions can be simplified by using the following identities, where 0 < ¢ < 1.

l[1 + 1 -20N= > (N)tm(l — pN-m,

2 m = 0,2,4,---

l[1 -1 -20N= > (N)t’”(l — )N-m, (B3)
2 m = 13,5\

Using these identities, the probability that 7 is odd is obtained as
- 1 1
Py = Roy+ Ray= 11 = (=171 = 29 (B4)
A similar approach for the probability of obtaining an even value of m, leads to

Pl = %[1 + (= 1)"(1 — 2s5)™]. (B5)

In analogy, the corresponding probabilities in the case of N ,1, and \/ la;, are obtained as
P = L1 (SR = 29, P = ST (1 - 29] (B6)

Therefore, the probability with which a correction 2, is applied on the state pg,, can be written as
a4 = P PaPy + PSPP, (B7)
which provides the mixing probability corresponding to the state A ( pogub) in the state p’ ukb. Similarly, the

expressions for qg , 8 = 1,2, 3, corresponding to the corrections be =1, Z, Zﬁb =27, ® Ij,and
23, = Z, ® Zy, canalso be obtained as

qslz = P, P,,P} + P PLP,, qé = PfP,P, + P, PP}, qg = P,PP, + PSP,P; . (B8)

We point out here that according to the convention used in the paper (equation (58)), the probability s = /2 in
the case of the BF, the BPF, and the DP channels, while in the case of the PF channel, s = 0.

Appendix C. Transformation of Pauli operators in a linear graph

The transformation |G’) = Uy|G;) of the graph state |G), corresponding to the transformation of the linear
graph given in equation (80), is determined by the local unitary operator Uy, = U, ® (QiccV;) ® Uy, where
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U = )", Uy = uy, i = (u)"e "0, Vi, = gty and Vi = (ufy™ i uf for 2 < j < (ng — 1), with
X __

uj = exp[(—ir /4)X;land u] = exp[(ir/4)Z;]. The transformation of the Pauli operators due to the unitary
operators { U, Uy, Vj; j = 1, --+, ng} are given by

UX.U-1= (=D"X,, forn,=2m
AT T (=YY, for ng = 2m + 1,
Uy U — (—D™Y,, forn,=2m
araza (=D"X,, forns =2m + 1,
U,Z, U, = 7, (CI)
UXoUy' ==Y UYL ' =X, UZU, ' =2, (C2)
VX V-l (—=D™Y;, forn,=2m
RS (—D"X,, forn,=2m+ 1,
Whvil=2,
ViZ V-l = (—=D"X,, forn,=2m ©3)
! (=D)™t1y,, for ny = 2m + 1,
\/nLXnL Vril = _Zn,c) ‘/n/; Yn[ Vn_ﬁl = XHL) ‘/n/;ZnL Vn_£1 = _Y;lg) (C4)
and
—1
ViXjVi' =-2
(-D)"X;, forng—j=2m
VY vit= !
1717 m+1 s
(=", forng —j=2m+ 1,
-1ty forn, —j=2m
VijVII _ ( ) j L ] (C5)

(—D)"HX;, forng —j=2m+ 1,

wherem = 0,1,2,---ifngorn, — j=2m + l,andm = 1,2,3,---ifnporng — j = 2m.
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