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Abstract 

Climate and hydrologic variables such as temperature, precipitation, streamflow and baseflow 

generally do not follow Gaussian distribution due to the presence of outliers and heavy tails. 

Therefore, they are usually analyzed using the nonparametric Wilcoxon rank-sum (WRS) test 

rather than parametric methods like classical t-tests and analysis of variance. Furthermore, in 

addition to having a non-Gaussian distribution, these data exhibit monthly/seasonal 

variability which leads to within month/season cluster-correlation. In this study, a 

nonparametric procedure, called Joint Rank Fit (JRFit), for analyzing cluster-correlated data 

was implemented and compared against traditional methods such as restricted maximum 

likelihood (REML), least absolute deviations (LAD), and Rank-Based Fit (RFit, a model-
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based extension of WRS) for studying the coupled effect of the phases of El Niño Southern 

Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO) on baseflow levels. The 

results from a large Monte Carlo simulation experiment showed that JRFit was more efficient 

than the other three methods for data with (i) high variability, (ii) outliers due to 

contamination, or (iii) strong monthly/seasonal correlation. The efficiency gain of JRFit was 

up to 50% compared to REML for heavy tailed and highly correlated data. Predictive 

performance evaluated using the mean absolute prediction error and mean prediction standard 

error from an out-of-sample cross-validation study showed JRFit to be optimal for providing 

predictions of baseflow on the basis of the phases of ENSO and AMO. Thus, it is 

recommended that JRFit be implemented in hydroclimatic studies to provide powerful 

inference when there is evidence of clustering in the data.  

Keywords: Joint Rank Fit, Wilcoxon rank-sum, Restricted maximum likelihood, Baseflow, El 

Niño Southern Oscillation 

1. Introduction   

Oceanic-atmospheric phenomena such as El Niño Southern Oscillation (ENSO), 

Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North 

Atlantic Oscillation (NAO) are natural, cyclical (recurring at interannual, decadal, and multi-

decadal scales) phenomena that are caused by fluctuations in sea surface temperature (SST) 

and sea level pressure (SLP) (Ropelewski and Halpert, 1986; Kiladis and Diaz, 1989; 

MacDonald and Case, 2005). These oscillations have strong effect on components of 

hydrologic cycle across the world (Kahya and Dracup, 1993; Regonda et al., 2005; Tootle et 

al., 2005; Lee and Julien, 2016; Schulte et al., 2017; Steirou et al., 2017). Therefore, studies 

of interannual, decadal, and multi-decadal climate variability phenomena and their 

interactions with hydrologic processes can provide useful information towards strategies for 
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mitigating their adverse effects on water resources (Climate Research Committee and 

National Research Council, 1995).  

ENSO, a major mode of climate variability affecting the global climate system (Diaz 

and Markgraf, 1992), is the fluctuation (occurring with a periodicity of two to seven years) in 

SST in the east-central equatorial Pacific Ocean. ENSO has three phases, namely Neutral, El 

Niño and La Niña (Philander, 1990). The terms “El Niño” and “La Niña” refer to respective 

warming and cooling of SST at Eastern Tropical Pacific. Similar to ENSO, AMO is caused 

by the fluctuations in ocean-atmospheric temperature. However, it occurs in the North 

Atlantic Ocean. High and low SST anomalies are characterized by warm/positive and 

cold/negative phases, respectively, of AMO cycles that oscillate with a periodicity of 60-80 

years (Tootle et al., 2005; Johnson et al., 2013). The importance of understanding the 

teleconnections between natural climate and hydrologic variability has increased since its 

near-future predictability helps in planning and formulating water resources management 

(Zorn and Waylen, 1997; Cayan et al., 1999; Poveda et al., 2001; Schmidt et al., 2001; 

Räsänen and Kummu, 2012). These teleconnections (coupled/interaction studies) have been 

widely exploited in long lead-time forecasts of streamflow (e.g. Gutierrez and Dracup 2001; 

Chiew et al., 2003; Tootle et al., 2005). 

To test and quantify the teleconnections of ocean atmospheric phenomena on 

hydroclimatic variables such as temperature, precipitation, streamflow, and groundwater, the 

conventional nonparametric Wilcoxon rank-sum (WRS) test has been widely applied (Diaz 

and Markgraf, 1992; Chiew et al., 1998; Tootle et al., 2005; Roy, 2006; Keener et al., 2010; 

Johnson et al., 2013; Mitra et al., 2014). Since hydroclimatic data sets are typically skewed 

(not normally distributed and contain outliers), nonparametric procedures provide a viable 

approach to minimize the influence of outliers and non-normality in testing and estimation 

(Helsel and Hirsch, 2002; Tootle et al., 2005; Johnson et al., 2013). The nonparametric WRS 
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test makes no distributional assumptions on data and is resistant to the adverse effects of 

outliers (Bradley, 1968; Hogg et al., 2005). Therefore, WRS is more suitable than parametric 

methods such as classical t-tests and analysis of variance (ANOVA) for testing hypotheses 

when non-normality is evident (Crawford et al., 1983; Rousseeuw and Leroy, 1987; Hogg et 

al., 2005). Although the two sample WRS test is ideal for dealing with data sources that are 

non-normal, it does not readily extend to testing the interactive effects of multiple climatic 

oscillation variables. WRS requires splitting the data into different phases of climatic cycles 

in order to detect significant differences and quantify the comparative effects of multiple 

climatic oscillations on hydroclimatic variables (Tootle et al., 2005; Johnson et al., 2013; 

Mitra et al., 2014). Therefore, previous studies have not performed direct interaction 

(coupled) tests between two ocean atmospheric phenomena, but instead made inferences 

about interaction by splitting the data into different phases of climatic oscillations (Tootle et 

al., 2005; Roy, 2006; Keener et al., 2010; Johnson et al., 2013; Mitra et al., 2014).  

Furthermore, as Galbraith et al. (2010) demonstrated, despite its robustness, the 

performance of WRS is suboptimal when data exhibit high monthly or seasonal clustering. 

Monthly or seasonal clustering refers to grouping of data points resulting from monthly 

(seasonal) variation of data points that is higher than the variation within months (seasons). In 

addition to outliers and heavy tails, meteorological and hydrological variables such as 

temperature, precipitation, streamflow, baseflow and groundwater display monthly or 

seasonal clustering in that their values tend to be similar on a monthly or seasonal basis, 

irrespective of year (Singh et al., 2015). Thus, WRS is typically performed on standardized 

monthly or seasonal anomalies that are obtained from subtracting long-term monthly or 

seasonal medians and dividing by standard deviation (Johnson et al., 2013; Mitra et al., 

2014). In addition, Rosner et al. (2003) and Datta and Satten (2005) have proposed modified 

WRS tests for cluster-correlated data. While these tests are appropriate for clustered non-
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Gaussian data, they still do not allow direct testing for coupled effects, measuring effect 

sizes, including other explanatory variables, or making predictions.  

Robust approaches for modeling include the least absolute deviations (LAD) 

estimator (Koenker and Basset, 1978) and rank-based regression (RFit) estimator (Adichie, 

1967; Jureckova, 1971; Jaeckel, 1972; Hettmansperger and McKean, 2011). RFit is a direct 

extension of WRS to a modeling framework. Neither LAD nor RFit account for correlated 

hydrological responses. The common modeling approach employed for studying phenomena 

that include cluster-correlated (monthly or seasonal) responses, is via the linear mixed effect 

(LME) model (Milliken and Johnson, 2004). Typically, the fitting of LMEs involves the use 

of the parametric restricted maximum likelihood (REML) method under the assumption that 

the responses are derived from the Gaussian distribution (Milliken and Johnson, 2004; Bates 

et al., 2015). REML is appealing since it allows one to not only estimate effect sizes and test 

their significance, but also estimate intraclass correlation coefficient that measures cluster 

effects (Milliken and Johnson, 2004). Since the assumption that the responses follow the 

Gaussian distribution may not be appropriate for hydroclimatic data, the use of Joint Rank Fit 

(JRFit) procedure (Kloke et al., 2009) is proposed in this study that gives a genuine 

nonparametric alternative to REML for fitting LME models. JRFit, like RFit, formulates the 

WRS method as a linear model, but additionally estimates the effect of cluster correlation in 

the model without requiring any assumption on the distribution of the data. 

Therefore, the goal of this study was to propose a modeling framework to (1) provide 

a robust mechanism for testing of main and interaction effects of climate variables on 

hydrological variables; (2) account for cluster correlation in hydrological data; and (3) give 

accurate estimates and out-of-sample predictions of hydrological variables using climate 

phenomena. The interaction or the coupled effect of interannual and multi-decadal ocean 

atmospheric phenomena such as ENSO and AMO on baseflow levels were modeled, tested, 
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and compared using the LAD, RFit, REML, and JRFit procedures. In this study, the authors 

aim to demonstrate the application and examine the efficiency of the JRFit procedure against 

other parametric and nonparametric procedures (RFit, LAD, and REML) in evaluating the 

influence of an interannual cycle (e.g. ENSO) and a multidecadal cycle (e.g. AMO) on 

baseflow levels as well as providing out-of-sample predictions. The paper is organized as 

follows. Section two presents baseflow data and methods and section three presents the 

results of simulation experiments as well as results of an analysis using baseflow data. 

Finally, section four provides conclusions and recommendations of the study. 

2. Data and Methods  

This study was performed in the Apalachicola-Chattahoochee-Flint (ACF) River 

Basin which is located in southeastern United States (Figure 1) (Mitra et al., 2014; Singh et 

al., 2015). It covers approximately 50,800 km
2
 where much of the basin lies in Georgia, 

smaller areas of the basin are contained in southeastern Alabama and northwestern Florida 

(Figure 1). Soil of the ACF river basin consists of different land-resource areas where 97% of 

this basin is covered by Southern Piedmont, Georgia Sand Hills, Southern Coastal Plain, and 

Eastern Gulf Coast Flatwoods land-resource areas (Couch et al., 1996). The physiography of 

this river basin contains parts of the Blue Ridge, Piedmont, and Coastal Plain. There are six 

aquifers: the surficial aquifer system, the Floridan aquifer system, the Claiborne aquifer, the 

Clayton aquifer, the Providence aquifer, and the crystalline rock aquifer underlie this basin 

(Couch et al., 1996). The climate of the ACF basin is humid subtropical with mild winters 

and long summers. The average annual precipitation and temperature of this basin are about 

127 cm and 17 °C, respectively (Mitra et al., 2014; Singh et al., 2015). The ACF River Basin 

is predominantly affected by ENSO-induced droughts, and studies have shown that other 

climate variability cycles (such as AMO) also have considerable influence in the region 

(Kiladis and Diaz, 1989; Hansen and Maul, 1991; Enfield et al., 2001; Schmidt et al., 2001; 



 

 

© 2018 American Geophysical Union. All rights reserved. 

Johnson et al., 2013; Singh et al., 2015). Moreover, low baseflow due to municipal, 

industrial, and agricultural water withdrawals is often a concern in the humid Southeast US. 

Specifically, in the study basin, low baseflows threaten protected endangered mussel species 

and diminish US Army Corps of Engineers’ ability to meet minimum flows requirements in 

the Apalachicola River and Bay during droughts. Therefore, in this basin, the relationship 

between baseflow and the coupled effects of interannual (ENSO) and multidecadal (AMO) 

climatic phenomena was studied using several parametric and nonparametric procedures (i.e., 

LAD, REML, RFit, and JRFit). Furthermore, the efficiency of these procedures was 

examined based on their estimation and prediction errors. A detailed description of the 

models used for the estimation and prediction of baseflow is provided in Section 2.3. It is to 

be noted that baseflow data were used for the demonstration purpose only. Other non-normal, 

cluster-correlated hydrological data with heavy tails and outliers can also be used for this 

purpose. 

2.1 Data Sets 

2.1.1 Baseflow Data 

In order to study the effect of climate variability on baseflow, it is important to obtain 

unregulated streamflow datasets (those that are not affected by reservoirs and dams). In this 

study, the streamflow gauging stations on the Flint River (Figure 1) were selected since Flint 

River is relatively unaffected by water control structures as compared to the other parts of the 

ACF basin that are highly regulated. For example, the Chattahoochee River has 5 federal 

dams and 6 private river dams, while the Flint River has only 2 small, run-of-the-river dams 

(Johnson et al., 2013). Daily streamflow data (in cubic feet per second, ft
3
/s) for 

approximately 59 years were collected from six United States Geological Survey (USGS) 

gauging stations (Table 1). Baseflow were separated from daily streamflow using Web-based 
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Hydrograph Analysis Tool (WHAT) that has two digital filter methods for baseflow 

separation (Lim et al., 2005; Singh et al., 2015), namely BFLOW and Eckhardt. In this study, 

Eckhardt filter method with baseflow index 0.9, which is used for perennial rivers (Lim et al., 

2005), was used for baseflow separation. The equation used for the Eckhardt filter method is 

given below. 

𝑏𝑡 = (1 − 𝐵𝐹𝐼𝑚𝑎𝑥)𝛼 + 𝑏𝑡−1 + (1 − 𝛼)𝐵𝐹𝐼𝑚𝑎𝑥𝑄𝑡1 − 𝛼𝐵𝐹𝐼𝑚𝑎𝑥                                        (1) 

where, 𝑏𝑡 is the filtered baseflow at time step t; 𝐵𝐹𝐼𝑚𝑎𝑥  is the maximum value of long term 

ratio of base flow to total streamflow; 𝛼 is the filter parameter; 𝑏𝑡−1 is the filtered base flow 

at time step t-1; and 𝑄𝑡 is the total streamflow at time step t. Finally, the daily values were 

changed into monthly cubic meters per second (m
3
/s) for further analysis. The time series 

plots of monthly baseflow levels for each station are presented in Figure 2. The quantile-

quantile plots (Figure 3) indicate that baseflow has a non-Gaussian distribution with heavy-

tails and potential outliers. 

2.1.2 Oceanic-atmospheric Climate Variability Indices  

In this study, the Niño 3.4 SST index (ERSST.v3b) was used to define ENSO phases 

and durations (Trenberth, 1997; Trenberth and Stepaniak, 2001). The Niño 3.4 index is based 

on the SST anomalies in the Niño 3.4 region (5
o
N–5

o
S, 120

o–170
o
W) (Trenberth, 1997). The 

monthly Niño 3.4 index values were obtained from the National Oceanic and Atmospheric 

Administration (NOAA), Climate Prediction Center, United States of America (USA) 

(http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). When 

Niño 3.4 index value is between -0.5
o
C and +0.5

o
C, ENSO is considered to be in Neutral 

phase, and indices above +0.5
 o

C or below -0.5
o
C values indicate that ENSO is in El Niño or 

La Niña phase, respectively (Kiladis and Diaz, 1989; Ropelewski and Halpert, 1986).  
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The AMO index is identified as the coherent pattern of SST variability in the North 

Atlantic Ocean (0
o–70

o
N) (Schlesinger and Ramankutty, 1994; Enfield et al., 2001; Tootle et 

al., 2005) and is defined by the warming and cooling pattern of SST. The warm/positive and 

cold/negative phases of AMO were defined based on the positive and negative numerical 

values from 121-month smoothed index values, and each phase lasts for about 20-40 years. 

AMO index values were obtained from the Physical Sciences Division of the Earth Systems 

Research Laboratory, NOAA, USA (ESRL, 2012; Johnson et al., 2013) 

(https://www.esrl.noaa.gov/psd/data/timeseries/AMO/). The positive phase of AMO 

considered in this study spanned from 1950 to 1963 and 1995 to 2008, and the negative phase 

spanned from 1964 to 1994. 

2.2 Statistical Methods 

2.2.1 Wilcoxon Rank-Sum Procedure 

The problem of testing for significance of the effect Δ on hydrological responses to 

the change from one phase to another of a climate variable is often represented as a two-

population statistical testing problem. Given hydrologic data 𝑈1, … , 𝑈𝑚 and 𝑉1, … , 𝑉𝑛 from 

two climate phases, where m and n are the respective sample sizes, with expected effect of 

phase change Δ (= V − U) only, interest lies in testing the null hypothesis 𝐻0: Δ = 0 versus 

the alternative 𝐻𝐴: Δ ≠ 0, 𝐻𝐴: Δ > 0, or 𝐻𝐴: Δ < 0. The WRS test proceeds by ranking all the 

data (𝑈1, … , 𝑈𝑚 and 𝑉1, … , 𝑉𝑛) together from the smallest (rank 1) to the largest (rank 𝑚 + 𝑛) 

and then summing the ranks of one of the samples, say 𝑉, to get the WRS statistic 𝑊 =𝑅(𝑉1) +  ⋯ + 𝑅(𝑉𝑛) (Lehmann, 1975). The standardized WRS statistic follows an asymptotic 

standard Gaussian distribution (Lehmann, 1975). The estimator of the treatment effect 

associated with the WRS is the median of all pairwise differences (Hodges and Lehmann, 

1963) 
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                                 ∆̃= 𝑚𝑒𝑑𝑖𝑎𝑛(𝑉𝑖 − 𝑈𝑗),           1 ≤ 𝑖 ≤ 𝑛;  1 ≤ 𝑗 ≤ 𝑚                                   

(2) 

and ∆̃ is approximately Gaussian with mean Δ and standard deviation 𝜏(1 𝑚⁄ + 1 𝑛⁄ )1/2
, 

where 𝜏 is a scale parameter that needs to be estimated from the data (Koul et al., 1987). 

Asymptotic relative efficiency (ARE) comparisons of WRS test and the classical t test 

indicate that the t test is only 4.5% more powerful than the WRS test when the data 

distribution is Gaussian; however, the WRS is 10% and 24% more powerful than the t test, 

for the heavier-tailed logistic and t distribution with 5 degrees of freedom, respectively 

(Lehmann, 1975). 

 Hydrological and climatic data have several interacting variables and it is often 

relevant to understand the interaction effects. Moreover, a modeling framework that allows 

for accurate estimation and prediction of hydrological phenomena from climate variables, in 

addition to testing of hypotheses, is of interest. For this reason, a generalization of the WRS 

to the linear model, Rank-Based Fit (RFit), first proposed by Jaeckel (1972) is considered in 

this study. 

2.2.2 General Linear Models: RFit and LAD 

Consider the general linear model that relates a set of p predictors (X) collected on n 

subjects to their response (Y) using the plane  

                                                               𝑌 = 𝛼1𝑛 + 𝑋𝛽 + 𝜀,                                                        

(4) 

where 𝑌 is an 𝑛 × 1 vector of responses, 𝑋 is an 𝑛 × 𝑝 matrix of predictors, 𝜀 is an 𝑛 × 1 

vector of random errors, and 1𝑛 is an 𝑛 × 1 vector of ones (Seber and Lee, 2003). Estimation 
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of the 𝑝 × 1 vector of slope parameters 𝛽 = (𝛽1, … , 𝛽𝑝)𝑇 as well as test for the significance 

of the components of 𝛽 are objectives of interest.  

The Jaeckel (1972) rank-based estimator (RFit) of 𝛽, say 𝛽, minimizes the objective 

function 

                                                     𝐷(𝛽) = ∑ 𝜑 (𝑅(𝑒𝑘(𝛽))𝑛+1 ) 𝑒𝑘(𝛽)𝑛𝑘=1                                              

(5) 

where 𝑒𝑘(𝛽) is the kth entry of 𝑌 − 𝑋𝛽, 𝑅(𝑒𝑘(𝛽)) is the rank of 𝑒𝑘(𝛽) among 𝑒1(𝛽), … , 𝑒𝑛(𝛽), and 𝜑 is a non-decreasing function defined on the interval (0,1).  Jaeckel 

(1972) established that 𝐷(𝛽) is a convex, continuous, and positive function of 𝛽. When 𝜑 is 

odd about 1 2⁄ , a natural estimator of the intercept is the median of the estimated residuals 𝑒1(𝛽), … , 𝑒𝑛(𝛽). Heiler and Willers (1988) have shown that the 𝛽 follows an asymptotic 𝑝 

dimensional Gaussian distribution with mean 𝛽 and covariance matrix 𝜏𝜑2 (𝑋′𝑋)−1, where 𝜏𝜑2  

represents a scale parameter analogous to the error variance 𝜎2 in least squares estimation 

(Hettmansperger and McKean, 2011). A consistent estimator �̃�𝜑2  of 𝜏𝜑2  is given in Koul et al. 

(1987). The estimator of 𝜏𝜑2  along with the asymptotic distribution can be used to construct 

test statistics for testing various types of hypotheses. Particularly, a Wald t test for the 

significance of the jth individual slope, 1 ≤ 𝑗 ≤ 𝑝, uses the statistic 

                                                                   𝑊𝑗 = �̃�𝑗 √�̃�𝜑2 (𝑋′𝑋)𝑗𝑗−1                                                         

(7) 

and the null hypothesis 𝐻0: 𝛽𝑗 = 0 is rejected in favor of 𝐻𝐴: 𝛽𝑗 ≠ 0 if |𝑊𝑗| > 𝑡𝑛−𝑝−1(𝛾/2) 

where 𝑡𝑛−𝑝−1(𝛾/2) is the upper 𝛾/2 percentile of the 𝑡 distribution with 𝑛 − 𝑝 − 1 degrees 
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of freedom (Hogg et al., 2005). A Wald t-test uses a t-statistic formulated on the basis of the 

asymptotic Gaussian distribution of an estimator where a consistent estimator of the true 

variance is used in the calculation of the standard error of the estimator (Hogg et al., 2005). 

This RFit Wald test is equivalent to the WRS test in the case of a linear model with single 

binary (0 and 1) regressor indicating group membership (Hettmansperger and McKean, 

2011). For example, if Y is baseflow and X is an indicator corresponding to the phases of 

ENSO, then the Wald test for significance of 𝛽 using the RFit estimator in the regression 𝑌 = 𝛼 + 𝛽𝑋 + 𝜀 is identical to the WRS test comparing baseflow of two phases of ENSO. 

A classical robust approach for estimating 𝛽 is the least absolute deviations (LAD) 

method (Koenker and Basset, 1978), where the 1-norm of the errors ‖𝜀‖1 =  ∑ |𝜀𝑖| is 

minimized to obtain the estimator of 𝛽. If the errors 𝜀1, … , 𝜀𝑛 are assumed independently 

drawn from a distribution that has probability density function 𝑓, then the LAD estimator of 𝛽 follows an approximate 𝑝-dimensional Gaussian distribution with mean 𝛽 and covariance 

matrix 𝜉2(𝑋𝑇𝑋)−1, where 𝜉 = (2𝑓(0))−1 (Hettmansperger and McKean, 2011). 

2.2.3 Linear Models with Cluster Correlation: JRFit and REML 

Assume that a total of 𝑁 = 𝑛1 + ⋯ + 𝑛𝑚 observations in m clusters are available, 

where cluster k has 𝑛𝑘 observations. Within cluster k, let 𝑌𝑘, 𝑋𝑘, and 𝜀𝑘 denote the 𝑛𝑘  ×  1 

vector of responses, the 𝑛𝑘  ×  𝑝 design matrix, and the 𝑛𝑘  ×  1 vector of errors, respectively. 

Let 1𝑛𝑘 denote a vector of 𝑛𝑘 ones. Then the linear model for 𝑌𝑘, 𝑘 = 1, … , 𝑚, is  

                                                          𝑌𝑘 = 𝛼1𝑛𝑘 + 𝑋𝑘𝛽 + 𝜀𝑘,                                                       
(8) 

where 𝛼 and 𝛽 represent the scalar intercept and the 𝑝 ×  1 vector of slope parameters, 

respectively (Bates et al., 2015; Kloke et al., 2009). The errors in the same cluster are not 
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assumed to be independent but errors in different clusters are assumed independent. The 

within cluster covariance matrix denoted by 𝐶𝑜𝑣(𝜀𝑘) =  𝜎2Ω𝑘 is an 𝑛𝑘  ×  𝑛𝑘 positive 

definite matrix.  Model (8) reduces to the independent general linear model (4) if Ω𝑘 = 𝐼𝑛𝑘  

for all 𝑘. In this study, Ω𝑘 is assumed to be compound symmetric (Milliken and Johnson, 

2004); that is, all the off-diagonal elements are equal, and all the diagonal elements are also 

equal. In this study the clusters are monthly or seasonal and there is no indication that the 

underlying correlations are different for different years. Monthly baseflow values fluctuate 

around the same value irrespective of year but the level tends to be different from month to 

month (Singh et al., 2015).  

An extension of RFit to the clustered data case is given by Joint Ranking Fit (JRFit) 

estimation method that starts by stacking 𝑌𝑘 into an 𝑁 × 1 response vector 𝑌. The 𝑁 × 𝑝 

predictor matrix 𝑋 is similarly defined by stacking 𝑋𝑘. The residuals for the stacked model 

are defined by the vector 𝑒(𝛽) = 𝑌 − 𝑋𝛽 with ith element 𝑒𝑖(𝛽), 𝑖 = 1, … , 𝑁. JRFit defines 

the dispersion function using 𝑒(𝛽) as 𝐷𝐽𝑅(𝛽) = ∑ 𝜑 (𝑅(𝑒𝑖(𝛽))𝑛+1 ) 𝑒𝑖(𝛽)𝑁𝑖=1 . Thus, JRFit is 

exactly the minimization of Jaeckel’s dispersion for linear models with cluster-correlated 

errors with the resulting estimator denoted by 𝛽𝐽𝑅. Kloke et al. (2009) showed that 𝛽𝐽𝑅 

follows an asymptotic Gaussian distribution with mean 𝛽 and covariance matrix given by 𝑉𝜑 = 𝜏𝜑2 (𝑋𝑇𝑋)−1(∑ 𝑋𝑘𝑇Σ𝜑,𝑘𝑚𝑘=1 𝑋𝑘)(𝑋𝑇𝑋)−1, where Σ𝜑,𝑘 = 𝐶𝑜𝑣(𝜑(𝐹(𝜀𝑘))) is the 𝑚 × 𝑚 

score intra-cluster covariance matrix. This asymptotic distribution is used to derive Wald 

tests of significance of the model parameters.  

 It is noted that both RFit and JRFit provide identical estimates of 𝛽 because they use 

the same formulation in their fixed-effects components. However, their random-effects 

components are different; thus, the standard errors of the estimators from RFit and JRFit are 

different (Kloke et al., 2009). JRFit calculates the within month variation in baseflow 
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separately from the between month variation which is accounted for as random effects. For 

example, if we only want to study the effect of ENSO phases on baseflow, JRFit calculates 

baseflow differences between El Niño and La Niña phases within each month and the overall 

effect is compiled from the monthly effects. In RFit, since between month variations are not 

considered systematically as random effects, large month-to-month variations inflate the 

variance of the model random error. Thus, the standard errors of the JRFit estimators are 

generally smaller than those of RFit estimators and substantially smaller for data with high 

within month correlation.  

The traditional approach of fitting model (8) involves using likelihood methods within 

the linear mixed effects model framework. Absent any distributional information on the 

population from which the data are drawn, the likelihood equation is constructed based on the 

assumption that 𝜀𝑘 follow an 𝑛𝑘 dimensional Gaussian distribution with mean 0 and 

variance-covariance matrix Ω𝑘. Estimation is performed using the REML method by first 

using regression to estimate the fixed effects residuals and using these residuals to estimate 

the variance components (Bates et al., 2015). The REML estimator of 𝛽, denoted by �̂�𝑅𝐸𝑀𝐿, 

has an asymptotic Gaussian distribution with mean 𝛽 and variance-covariance matrix 𝑉 = 𝜎2(∑ 𝑋𝑘𝑇(𝐼𝑛𝑘 +  𝑋𝑘𝑇Ω𝑘𝑚𝑘=1 𝑋𝑘)−1𝑋𝑘)−1
.  

For the linear score function, the ARE for comparing the JRFit estimator with the 

REML estimator is given by (Kloke et al., 2009) 

                                         𝐴𝑅𝐸(𝛽𝐽𝑅 , �̂�𝑅𝐸𝑀𝐿) =  1−𝜌1−𝜌𝐹 12𝜎2(∫ 𝑓2(𝑡)𝑑𝑡)2                                   

(11) 

where 𝜌 is the within cluster correlation and 𝜌𝐹 = 𝐶𝑜𝑟(𝐹(𝜀11), 𝐹(𝜀12)) is the within cluster 

rank correlation. The usual approach involves estimating the integral in equation (11) using 
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kernel density estimates of the data distribution 𝑓 on the basis of a preliminary fit of the 

model (Koul et al., 1987). In this study, the effects of tail thickness, outliers, and correlation 

on the efficiency of JRFit (as well as LAD and RFit) versus REML were investigated using a 

Monte Carlo simulation experiment (Section 2.4) since analytical computation of AREs 

involving 𝛽𝐽𝑅 is generally very complicated and often cannot be derived in closed form.  

2.3 Baseflow Models 

The effect of climate variability phenomena ENSO and AMO on baseflow (BF) were 

estimated using the linear model (Model 1) 

                                                𝐵𝐹 = 𝛽0 + 𝛽1𝐸𝑁𝑆𝑂 + 𝛽2𝐴𝑀𝑂 +  𝜀                                            

(13) 

where 𝜀 represents random errors and 𝐸𝑁𝑆𝑂 = 0 and 𝐸𝑁𝑆𝑂 = 1 represent the La Niña and 

El Niño phases of ENSO and 𝐴𝑀𝑂 = 0 and 𝐴𝑀𝑂 = 1 represent the positive and negative 

phases of AMO, respectively. The baseline BF value is 𝛽0, which is the expected baseflow 

for the combination of La Niña and AMO positive phases. The value of 𝛽1 measures the 

change in baseflow from baseline due to change from La Niña to El Niño for the same AMO 

phase, while 𝛽2 measures the change in baseflow from baseline due to change from AMO 

positive to AMO negative for the same ENSO phase (Table 2). Since this is an additive 

model, if ENSO changes from La Niña to El Niño and AMO changes from positive to 

negative, the expected change in baseflow will be 𝛽1 + 𝛽2 (Table 2). This does not capture 

the modulation effects of the phases of one climate phenomenon by another one. 

In this study, the coupled effect of climate variability phenomena on baseflow were 

studied using a linear model that allows us to test and estimate the interaction of the ENSO 

and AMO and their effect on baseflow. For that, we used the statistical model (Model 2) 
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                                   𝐵𝐹 = 𝛽0 + 𝛽1𝐸𝑁𝑆𝑂 + 𝛽2𝐴𝑀𝑂 + 𝛽3𝐸𝑁𝑆𝑂 ∗ 𝐴𝑀𝑂 +  𝜀                        

(14) 

where, 𝛽3 measures the interaction (coupled) effect of ENSO and AMO. The significance of 

the interaction effect 𝛽3 indicates that the effect on baseflow of at least one of the phases of 

ENSO depends on the phases of AMO.  

Under Model 1, the effect on expected baseflow of changing ENSO phase from La 

Niña to El Niño is 𝛽1 regardless of whether AMO is in its positive phase or negative phase 

(Table 2). Under Model 2, however, the effect on expected baseflow of changing ENSO 

phase from La Niña to El Niño is 𝛽1for the positive phase of AMO but 𝛽1+ 𝛽3 for the 

negative phase of AMO (Table 2). Hence 𝛽3represents the effect on expected baseflow of the 

interaction of ENSO and AMO. Its significance indicates significant baseflow modulation of 

ENSO by the phases of AMO (Table 2). Model 2 is estimated as a linear mixed effect (LME) 

model where the errors 𝜺 are cluster correlated. In our study, JRFit, REML, LAD, and RFit 

were used to fit Model 2. The last two do not take cluster correlation into account. For the 

methods that account for cluster correlation, intraclass correlation coefficients were 

calculated as the proportion of total baseflow variance that is due to monthly variability 

(West et al., 2007). Moreover, the WRS test for clustered data (Rosner et al., 2003) was 

applied to baseflow data, where individual climate variability phases were compared 

separately since the method is not capable of including ENSO and AMO simultaneously as in 

Model 1 and Model 2.  

Since linear models can be used for prediction, an out of sample cross validation was 

performed to evaluate the predictive performance of JRFit, REML, LAD, and RFit. The out 

of sample cross validation used a 10-fold cross-validation procedure where the data were 

randomly divided into 10 parts and 9 of the 10 parts were used as a training set while the 
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remaining one part was used as a testing set. All methods were used to fit Model 2 using the 

training data, and resulting models were used for predicting baseflow values of the held-out 

sample. Prediction errors were computed by calculating the mean absolute prediction error 

(MAPE) between the predicted baseflow values and the true testing set baseflow values. 

Similarly, mean prediction standard errors (MPSE) were calculated from the testing set 

prediction variances. The MAPE and MPSE values of the different methods from the 10-fold 

cross-validation were compared using paired t-tests (Wong et al., 2014). These were 

corrected for multiple comparisons using the Bonferroni procedure (Bretz et al., 2011). 

2.4 Monte Carlo Evaluation of the Relative Efficiency of JRFit 

A Monte Carlo simulation was used to evaluate the relative efficiency of JRFit. In this 

simulation, 60 years hypothetical climate data, with 30 years assumed to be under climate 

phase 𝐴 and the remaining 30 assumed to be under climate phase 𝐵, were generated. The 

responses (baseflow values) were assumed to be measured seasonally; that is, there were four 

measured responses per year corresponding to each season. A compound-symmetric seasonal 

clustering structure was imposed where within cluster observations were correlated with 

correlation 𝜌. To simulate the heavy-tailed nature of climate data, the responses were 

generated using the t distribution with various degrees of freedom. The tails of the t 

distribution are heavy for small degrees of freedom and they approach the tails of the 

Gaussian distribution for degrees of freedom approaching infinity. Thus, a single set of 

responses under the two climate phases 𝐴 and 𝐵 was generated as 

                                                                𝑌𝐴 =  𝑇30(𝑑, 𝜌) +  𝑆                                                    

(15) 

                                                                𝑌𝐵 =  𝑇30(𝑑, 𝜌) + Δ +  𝑆                                             

(16) 
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where 𝑇30(𝑑, 𝜌) is a random variate from the 30-dimensional 𝑡 distribution with degrees of 

freedom 𝑑 and correlation 𝜌, Δ is the effect of climate phase change, 𝑆 is the season effect. 

Therefore, the difference in expected responses of two different climate phases is 𝐸(𝑌𝐵) −𝐸(𝑌𝐴) = ∆. Different techniques were judged by how precisely and accurately they were able 

to recover the true value of ∆ in this noisy setting. In our simulation, we considered various 

combinations of (𝑑, 𝜌, Δ). The values of 𝑑 and 𝜌 considered were 𝑑𝑓 = (3, 4, 5, 10, 15, 20, 30, 60, 100) representing decreasing tail-thickness (decreasing 

variability in baseflow) and 𝜌 = (0, .05, .1, .2, .3, .4, .5) representing increasing degrees of 

seasonal correlation. Several values of Δ = (0, 1, 2, 3) were used to validate and check the 

sensitivity of estimation procedures. 

 The performance of JRFit versus traditional approaches was evaluated by studying the 

errors in the estimation of ∆ using JRFit, REML, LAD, and RFit methods. The mean squared 

errors (MSE) of the estimates of ∆ were calculated based on 𝑀 =10,000 iterations as in 

Kloke et al. (2009) where fresh data were generated in every iteration. For example, for JRFit 

we have 𝑀 estimates ∆̃𝐽𝑅,1(𝑑𝑓, 𝜌), … , ∆̃𝐽𝑅,𝑀(𝑑𝑓, 𝜌) corresponding to various degrees of 

freedom of the t distribution and various degrees of within season correlation. The Monte 

Carlo estimate of the MSE was calculated as 

                                            𝑀𝑆𝐸𝐽𝑅(𝑑𝑓, 𝜌) = 1𝑀 ∑ (∆̃𝐽𝑅,𝑖(𝑑𝑓, 𝜌) − Δ)2𝑀𝑖=1 .                                 
(17) 

𝑀𝑆𝐸𝑅𝐸𝑀𝐿(𝑑𝑓, 𝜌), 𝑀𝑆𝐸𝐿𝐴𝐷(𝑑𝑓, 𝜌), and 𝑀𝑆𝐸𝑊𝑅𝑆(𝑑𝑓, 𝜌) were calculated analogously. The 

finite sample relative efficiencies (RE) of JRFit, LAD, and RFit versus REML are the ratios 

𝑀𝑆𝐸𝑅𝐸𝑀𝐿(𝑑𝑓,𝜌)𝑀𝑆𝐸𝐽𝑅(𝑑𝑓,𝜌) , 𝑀𝑆𝐸𝑅𝐸𝑀𝐿(𝑑𝑓,𝜌)𝑀𝑆𝐸𝐿𝐴𝐷(𝑑𝑓,𝜌) , and 
𝑀𝑆𝐸𝑅𝐸𝑀𝐿(𝑑𝑓,𝜌)𝑀𝑆𝐸𝑅(𝑑𝑓,𝜌) , respectively. If RE = 1, then the two methods 



 

 

© 2018 American Geophysical Union. All rights reserved. 

were judged to be equally efficient, whereas, RE > 1 indicated that the competitor was more 

efficient than REML in estimating phase effect.  

 The effect of outliers was evaluated by replicating the above simulation procedure 

using data from the contaminated normal distribution instead of the t distribution. Huber 

contamination (Huber, 1964; El-Shaarawi, 1989) of a base standard Gaussian with a Gaussian 

contaminant that has a higher variance was employed. This distribution is given as (1 −𝛿)𝑁(0,1) +  𝛿𝑁(0, 𝜎2), where 𝛿 and 𝜎2 represent the proportion and the variance of 

contamination, respectively. In our simulation study, 0% to 35% contamination and 

contamination variance of 𝜎2 = 9 were used, where 0% represents no contamination and 

35% represents heavy contamination (Abebe and Bindele, 2016; Bindele and Abebe, 2015). 

3. Results and Discussion 

3.1 ENSO and AMO 

The estimates and standard errors for Model 1 (additive effect of ENSO and AMO on 

baseflow) as well as Model 2 (including the coupled effect of ENSO and AMO on baseflow) 

are provided in Table 3. The coefficients represent changes in baseflow (m
3
/s) from the 

reference group baseflows where the reference group is taken to be the set of baseflow values 

of La Niña - AMO positive phase years (Table 2). ENSO coefficients indicate the change in 

baseflow as the phase changes from La Niña to El Niño. AMO coefficients indicate the 

change in baseflow as the phase changes from AMO Positive to AMO Negative. Considering 

the additive Model 1, ENSO and AMO coefficients were found to be positive and significant 

(at 5% level of significance) by REML and JRFit methods for all stations. However, LAD 

failed to find ENSO effects to be significant for all the stations. It also failed to find AMO 

effects to be significant for Stations C, D, and E. RFit failed to find ENSO to be significant 

for Stations A and F.  Considering the interactive Model 2, the interaction term was found to 
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be negative and significant by all the methods and for all stations except LAD and RFit that 

failed to find the interaction to be significant for Station F. Negative and significant 

interaction terms indicate that baseflow decreased overall when AMO changed phase from 

negative to positive primarily associated with drops in baseflow during La Niña phases while 

baseflow remained largely unchanged during El Niño phases. Comparing Model 1 and Model 

2, it was found that removing the interaction term decreased the individual effects (ratio of 

coefficient estimates to standard errors) of ENSO and AMO on baseflow indicating the 

increased power of the interactive Model 2 in comparison to the additive Model 1. The 

Rosner et al. (2003) WRS test for clustered data using individual climate variability phases 

separately gave similar results to JRFit used on individual climate variability phases. 

The results from the out of sample cross-validation study that calculated MAPE and 

MPSE values for the four different procedures (REML, LAD, RFit and JRFit) are presented 

in Table 4 and Figure 4. The within-month baseflow clustering effect found by calculating 

the intraclass correlations is also reported in Table 4. MAPE and MPSE values of different 

methods were compared using paired t-tests. Methods that differed significantly following a 

Bonferroni correction (Bretz et al., 2011) are indicated by different letter superscripts (a, b, c 

and d) in Table 4. The recommended optimal procedure is given in the last column of Table 

4. The MAPE values for REML were found to be larger than those for LAD, RFit, and JRFit 

(Table 4 and Figure 4).  MAPE values were similar for JRFit, LAD, and RFit where, as 

expected, JRFit and RFit gave equal MAPE values (Table 4 and Figure 4). The MPSE values 

for JRFit were found to be significantly smaller than all the other methods for Stations C, D, 

and E (Table 4 and Figure 4).  The MPSE values for JRFit were not found to be significantly 

different from REML for Stations A and B, and from LAD and RFit for Station F. Table 4 

shows that JRFit had either the lowest MAPE and/or the lowest MPSE in comparison to all 

the methods, except for Station F where it is tied with LAD and RFit (Figure 4). Thus, JRFit 
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was found to be an optimal procedure for providing out-of-sample predictions of baseflow 

responses using climate variables. The MAPE and MPSE values (Figure 2 and Table 4) are 

increasing from upstream to downstream (from station A to F). This might be due to the large 

variation in baseflow levels at the downstream stations (Figure 2) where the range of the 

baseflow values are high for the stations E and F as compared to the upstream stations. It is 

possible the variation could be due to the size of the drainage basin (Table 1) and/or the 

existence of a dam upstream of station E thus affecting the free flow of water (Figure 2).  

3.2 Evaluation of the Relative Efficiency of JRFit 

The relative efficiency (RE) values reported for various combinations of (𝑑𝑓, 𝜌) are 

given in Figure 5 for the t distribution and in Figure 6 for the contaminated normal 

distribution. The value of Δ did not have much effect on measured relative efficiencies. So, 

only the results for Δ = 3 are reported. Considering the effect of tail thickness and clustering 

strength on the efficiency of the various methods (Figure 5), it is noted that the methods that 

did not take clustering into account (i.e., RFit and LAD) had relative efficiency curves always 

below that of JRFit. Hence, RFit and LAD were inefficient compared to JRFit in all the cases 

evaluated; in some cases losing over 100% in efficiency. RFit and LAD were also inefficient 

compared to REML, especially as the tails of the distribution approach the tails of the 

Gaussian distribution (increasing 𝑑𝑓). However, they tended to perform better than REML 

for distributions that have tails substantially thicker than Gaussian tails, especially when the 

correlation is high (large 𝜌). For instance, for 𝜌 = 0.4, RFit and LAD were 18-19% more 

efficient than REML for 3 degrees of freedom t distribution but this efficiency quickly 

dropped to a loss of 6-7% efficiency for 4 degrees of freedom. For clustered data, the 

competition is between REML and JRFit. For heavy tailed data (𝑑𝑓 = 3), JRFit was 24-51% 

more efficient than REML for the entire range of correlation scenarios. The efficiency of 
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JRFit versus REML also increased consistently as the clustering in data became stronger 

(increasing 𝜌). JRFit was found to be less efficient than REML for lighter tails (increasing 𝑑𝑓) and weak cluster correlation (decreasing 𝜌) with relative efficiency approaching the 

theoretical 95.5% value, which is the case for independent data, as 𝜌 approached 0. 

Generally, in all the scenarios evaluated, JRFit’s efficiency loss relative to REML was never 

more than 8%, but efficiency gain was up to 50% for heavy tailed and highly correlated data.  

Figure 6 contains the relative efficiency values with respect to changing levels of data 

contamination and clustering strength. It was found that JRFit is more efficient than RFit and 

LAD as its relative efficiency curve lies above those for RFit and LAD. REML was also 

more efficient than RFit and LAD as the RFit and LAD relative efficiency curves were below 

1. However, it was observed that the efficiency of REML deteriorated for data with strong 

clustering and with increasing percentage of contamination. For 𝜌 = 0.5 and 35% 

contamination, RFit and LAD were 20% more efficient than REML. When there was no 

contamination in the data, JRFit’s relative efficiency versus REML increased from 92% for 𝜌 = 0 to 111% for 𝜌 = 0.5. One of the most interesting results was that, for this finite sample 

analysis, JRFit outperformed REML for highly correlated Gaussian data. Moreover, JRFit’s 

relative efficiency increased steadily as percentage of contamination increased. For data with 

35% contamination, JRFit’s relative efficiency versus REML increased from 122% for 𝜌 = 0 

to 134% for 𝜌 = 0.5. In summary, while all methods lost efficiency with increasing 

contamination, REML lost efficiency at a higher rate. This gave an increasing relative 

efficiency (versus REML) curve for all the methods as contamination increased. 

Similar observations have been made for JRFit versus REML in Kloke et al. (2009) 

who performed a simulation study limited to only two clusters where data were drawn from 

Gaussian and contaminated Gaussian with 20% contamination. The results from the Monte 
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Carlo simulation performed in this study demonstrate that the efficiency of JRFit holds for 

linear models with cluster-correlated errors in a larger setting. It was observed that rank 

methods tended to perform better than REML when the cluster structure exhibits strong 

correlation. While we simultaneously estimate and test the significance of effects, Galbraith 

et al. (2010) have also discussed WRS for clustered data (Rosner et al., 2003; Datta and 

Satten, 2005) from a testing perspective. They have also reported the perils of ignoring 

clustering from the perspective of inflated Type I error rates of tests.  

4. Conclusions and Recommendations 

The hydroclimatic variables such as temperature, precipitation, streamflow, baseflow 

and groundwater are typically not normally distributed and often contain outliers. Thus, the 

nonparametric WRS test has gained popularity for the analysis of such data due to its 

robustness to deviations from normality as well as the presence of outliers (Figure 3) (Diaz 

and Markgraf, 1992; Chiew et al., 1998; Tootle et al., 2005; Roy, 2006; Keener et al., 2010; 

Johnson et al., 2013; Mitra et al., 2014). However, these data display monthly or seasonal 

clustering and the WRS test does not properly account for the intra-cluster correlations. The 

purpose of this study was to evaluate the fidelity and efficiency of JRFit, an extension of 

WRS to modeling framework that accounts for cluster-correlation, against traditional 

statistical procedures. This was done via a Monte Carlo simulation experiment where datasets 

were generated under various scenarios. The efficiency of JRFit was compared to three 

traditional methods: restricted maximum likelihood, least absolute deviations and the RFit (a 

model-based equivalent of WRS) methods. The results confirmed that JRFit provides more 

efficient estimates of effects than the other three methods for clustered data with heavier tails 

(or data with outliers) or strong correlation. JRFit’s efficiency gain was up to 50% as 

compared to REML for heavy tailed and highly correlated data. Researchers have extensively 

used the WRS method in past studies. However, our results conclusively show that using 
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methods that fail to account for cluster correlations might lead to inefficiencies and possibly 

erroneous conclusions. 

If interest lies in only testing, then the WRS methods of Rosner et al. (2003) or Datta 

and Satten (2005) that are specifically designed for clustered data may be used. However, if 

one is also interested in measuring effect sizes and prediction of future responses, then we 

recommend the use of JRFit that simultaneously provides estimation and testing. Moreover, 

the interaction of two climate phenomena can also be efficiently incorporated into the model 

and tested using the JRFit approach (Singh et al., 2015). The prediction errors of the JRFit 

provided the lowest mean absolute prediction error when intra-month correlations values 

were high. Thus, the nonparametric approach, JRFit, which was the focus of the this study, 

was not only found to be efficient for heavy tailed and contaminated datasets but also 

provided more consistent prediction of future values in the presence of cluster-correlation.  

The results obtained from this study give credence to the importance of examining the 

coupled effect of interannual (e.g. ENSO) and multidecadal (e.g. AMO) climate variability 

phenomena. Incorporating decadal and multidecadal climatic cycles along with ENSO can 

help provide a clearer picture of climate impacts on baseflow. Moreover, the prediction 

standard errors of baseflow may further be reduced by incorporating other informative 

variables such precipitation, temperature, topographic elevations, etc. This can provide useful 

information to policymakers in devising water management policy and help in promoting 

drought severity-based water restrictions in this region. The linear mixed effects modeling 

framework used in JRFit is conducive for including more variables in the regression and 

performing model selection. For example, depending on the availability of data on several 

climatic/environmental variables, one may use the rank-based least absolute selection and 

shrinkage operator (LASSO) of Abebe and Bindele (2016) to simultaneously select the 



 

 

© 2018 American Geophysical Union. All rights reserved. 

climatic/environmental variables that provide optimal prediction of hydrological processes as 

well as estimate their effect.  

There are methods, such as generalized linear mixed models (Breslow and Clayton, 

1993), that can be used to model clustered data from non-normal distributions, but they 

require the data distribution to be specified. JRFit is distribution-free; thus, investigators are 

not burdened with making a distributional choice. Despite its broad appeal JRFit has certain 

limitations. The computational burden of using JRFit for high dimensional data may be quite 

large. So, there is a need for improved algorithms to calculate JRFit estimates. A promising 

approach may be to extend the iterated reweighted least squares fitting approach (Sievers and 

Abebe, 2004; Miakonkana and Abebe, 2014) in combination with REML. Moreover, at the 

moment, JRFit can efficiently handle data for which the correlation structure is compound 

symmetric (Milliken and Johnson, 2004), but it is still of interest to develop a version of 

JRFit that can provide efficient estimation and prediction for hydroclimatic data whose 

correlation structure may not be compound symmetric. The current version of JRFit is freely 

available as an open source R package (R Core Team, 2017; Kloke, 2014). 
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Figure 1: Map of Apalachicola-Chattahoochee-Flint (ACF) River basin showing the location 

of the gauging stations selected for this study. The ACF River basin is located in Alabama, 

Georgia, and Florida. The streamflow gauging stations are shown as green dots and it is to be 

noted that the flows in the Flint River are mostly unregulated. 
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Figure 2: Monthly baseflow (m
3
/s) time series plots for stations A, B, C, D, E, and F. 
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Figure 3: Quantile - Quantile plots for stations A, B, C, D, E, and F. 
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Figure 4: (a) Mean Absolute Prediction Error (MAPE) and (b) Mean Prediction Standard 

Error (MPSE) of Restricted Maximum Likelihood (REML), Least Absolute Deviations 

(LAD), Rank-Based Fit (RFit) and Joint Rank Fit (JRFit) across all the stations. 
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Figure 5: Estimated relative efficiencies (RE) versus Restricted Maximum Likelihood 

(REML): Joint Rank Fit (JRFit), Least Absolute Deviations (LAD), and Rank-Based Fit 

(RFit). Dashed line represents the theoretical ARE 3 𝜋⁄  of JRFit vs REML for Gaussian 

(𝑑𝑓 = ∞) case when 𝜌 = 0. 
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Figure 6: Estimated relative efficiencies (RE) versus Restricted Maximum Likelihood 

(REML):  Joint Rank Fit (JRFit), Least Absolute Deviations (LAD), and Rank-Based Fit 

(RFit). Dashed line represents the theoretical ARE 3 𝜋⁄  of JRFit vs REML for Gaussian 

(𝛿 = 0) case when 𝜌 = 0. 
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Table 1: Streamflow gauging stations used in this study showing the USGS station ID, 

location, their assigned names used in the manuscript, and their respective date ranges. 

Station 

ID 
Location Latitude Longitude 

Given 

Name 

Drainage 

Area (km
2
) 

Data Range 

(Year) 

02344500 
Flint River near Griffin, 

GA 

33.244 -84.429 
A 704 1950-2008 

02347500 
Flint River near 

Carsonville, GA 

32.721 -84.232 
B 4791 1950-2008 

02349500 
Flint River at 

Montezuma, GA 

32.298 -84.044 
C 7511 1950-2003 

02349605 
Flint River near 

Montezuma, GA 

32.293 -84.043 
D 7563 1950-2008 

02352500 Flint River, Albany, GA 31.594 -84.144 E 13753 1950-2008 

02353000 Flint River, Newton, GA 31.307 -84.339 F 14867 1957-2008 
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Table 2: Expected baseflow values under Model 1 and Model 2. ENSO = 0 and ENSO = 1 

represent the La Niña and El Niño phases of ENSO, and AMO = 0 and AMO = 1 represent 

the positive and negative phases of AMO, respectively. 

ENSO AMO Expected baseflow under Model 1 Expected baseflow under Model 2 

0 0 𝛽0 𝛽0 
1 0 𝛽0 + 𝛽1 𝛽0 + 𝛽1 
0 1 𝛽0 + 𝛽2 𝛽0 + 𝛽2 
1 1 𝛽0 + 𝛽1+𝛽2 𝛽0 + 𝛽1+ 𝛽2+ 𝛽3 
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Table 3: Coefficient of estimation and standard error values (in the bracket) for Model 1 and 

Model 2 for Restricted Maximum Likelihood (REML), Least Absolute Deviations (LAD), 

Rank-Based Fit (RFit), and Joint Rank Fit (JRFit). The values represent changes in baseflow 

in m
3
/s per changes in climate variable phase. Numbers in bold are not significant. 

Station Effect 
REML LAD Rfit JRFit 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

A 

ENSO 
0.816 2.445 0.656 2.329 0.570 1.541 0.571 1.540 

(0.290) (0.399) (0.490) (0.727) (0.299) (0.438) (0.235) (0.347) 

AMO 
1.544 3.136 2.035 2.570 1.275 2.212 1.274 2.212 

(0.290) (0.394) (0.490) (0.719) (0.299) (0.433) (0.219) (0.361) 

ENSO*AMO 
 -3.183  -2.492  -1.946  -1.946 

 (0.558)  (1.016)  (0.612)  (0.331) 

B 

ENSO 
7.773 19.155 7.812 15.063 5.199 11.380 5.198 11.384 

(1.970) (2.700) (3.995) (5.251) (2.181) (3.189) (1.680) (2.552) 

AMO 
9.324 20.443 8.142 12.549 6.733 12.775 6.734 12.773 

(1.969) (2.668) (3.996) (5.191) (2.182) (3.153) (1.645) (2.636) 

ENSO*AMO 
 -22.232  -15.939  -12.446  -12.447 

 (3.775)  (7.342)  (4.460)  (2.447) 

C 

ENSO 
9.951 29.246 9.295 22.366 7.207 19.705 7.207 19.698 

(3.126) (4.451) (5.179) (5.747) (3.418) (5.045) (2.683) (3.968) 

AMO 
10.452 28.025 7.571 20.058 7.111 17.800 7.110 17.799 

(3.143) (4.248) (5.206) (5.482) (3.436) (4.812) (2.179) (3.477) 

ENSO*AMO 
 -35.076  -25.102  -22.540  -22.531 

 (6.000)  (7.744)  (6.798)  (3.673) 

D 

ENSO 
11.482 29.651 9.347 22.366 7.221 17.826 7.230 17.823 

(2.973) (4.055) (5.032) (5.538) (3.282) (4.577) (2.419) (3.365) 

AMO 
12.239 29.988 7.607 20.058 8.530 18.473 8.533 18.475 

(2.973) (4.007) (5.033) (5.474) (3.283) (4.524) (2.095) (3.587) 

ENSO*AMO 
 -35.484  -25.102  -20.724  -20.727 

 (5.669)  (7.744)  (6.400)  (3.675) 

E 

ENSO 
28.668 57.529 13.314 32.930 13.443 27.804 13.434 27.800 

(5.768) (7.997) (8.004) (9.538) (5.194) (7.662) (4.680) (6.329) 

AMO 
22.849 51.041 15.178 28.262 14.157 27.649 14.166 27.650 

(5.765) (7.903) (8.005) (9.429) (5.195) (7.574) (3.887) (6.238) 

ENSO*AMO 
 -56.368  -29.785  -28.882  -28.876 

 (11.179)  (13.337)  (10.713)  (6.524) 

  ENSO 
24.820 59.828 7.271 15.914 9.866 24.047 9.886 24.053 

(6.997) (11.058) (10.340) (17.726) (6.662) (10.762) (4.440) (6.447) 

F AMO 
23.288 54.108 21.437 26.039 18.689 30.929 18.687 30.958 

(7.173) (10.375) (10.599) (16.615) (6.829) (10.088) (5.347) (8.948) 

  ENSO*AMO 
 -56.651  -16.673  -23.787  -23.806 

 (14.082)  (22.560)  (13.698)  (8.890) 

Table 4: Mean Absolute Prediction Error (MAPE) and Mean Prediction Standard Error 

(MPSE) in m
3
/s of Restricted Maximum Likelihood (REML), Least Absolute Deviations 

(LAD), Rank-Based Fit (RFit), and Joint Rank Fit (JRFit). 
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Station 

Name 

Mean  

values 
REML LAD RFit JRFit 

Intra-month 

Correlation 

Selected 

Optimal 

Procedure 

A 
MAPE 2.733

a 
2.245

b 
2.225

b 
2.225

b 

54.50% JRFit 
MPSE 0.421

a 
1.414

b
 0.465

c 
0.384

a 

B 
MAPE 19.446

a 
15.922

b 
15.622

b 
15.621

b 

61.04% JRFit 
MPSE 2.849

a 
6.794

b 
3.346

c 
2.772

a 

C 
MAPE 28.246

a 
23.322

b 
23.017

b 
23.016

b 

59.20% JRFit 
MPSE 4.609

a 
9.714

b 
5.249

c 
4.145

d
 

D 
MAPE 27.959

a 
23.120

b 
23.051

b 
23.048

b 

59.00% JRFit 
MPSE 4.278

a 
9.188

b 
4.884

c 
3.811

d 

E 
MAPE 52.105

a 
36.254

b 
35.942

b 
35.942

b 

55.00% JRFit 
MPSE 8.439

a 
12.320

b 
8.123

c 
6.852

d 

F 
MAPE 59.951

a 
44.731

b 
43.554

b 
43.553

b 

55.30% 
LAD/RFit/

JRFit MPSE 11.503
a 

8.280
ab 

11.201
b 

9.573
b 

For each station, MAPE and MPSE results with different superscripts (a, b, c and d) indicate significant difference between 

procedures according to paired t-test comparison followed by a Bonferroni correction.  

 


