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Abstract: Classifying the zero-temperature ground states of quantum field theories with

finite charge density is a very interesting problem. Via holography, this problem is mapped

to the classification of extremal charged black brane geometries with anti-de Sitter asymp-

totics. In a recent paper [1], we proposed a Bianchi classification of the extremal near-

horizon geometries in five dimensions, in the case where they are homogeneous but, in

general, anisotropic. Here, we extend our study in two directions: we show that Bianchi

attractors can lead to new phases, and generalize the classification of homogeneous phases

in a way suggested by holography. In the first direction, we show that hyperscaling vi-

olation can naturally be incorporated into the Bianchi horizons. We also find analytical

examples of “striped” horizons. In the second direction, we propose a more complete clas-

sification of homogeneous horizon geometries where the natural mathematics involves real

four-algebras with three dimensional sub-algebras. This gives rise to a richer set of possible

near-horizon geometries, where the holographic radial direction is non-trivially intertwined

with field theory spatial coordinates. We find examples of several of the new types in sys-

tems consisting of reasonably simple matter sectors coupled to gravity, while arguing that

others are forbidden by the Null Energy Condition. Extremal horizons in four dimensions

governed by three-algebras or four-algebras are also discussed.
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1 Introduction

There has been considerable recent interest in possible applications of holography to con-

densed matter systems [2–5]. Some of the most interesting phenomena arise when one

“dopes” an insulator with finite charge density [6]. Related fascinating phenomena are

thought to occur also in the phase diagram of QCD as one varies the chemical potential

and number of light quark flavors [7]. The problem of exemplifying interesting ground

states of doped quantum field theory, and perhaps even classifying them, is then a difficult

but well-motivated one.

For the subset of field theories with weakly curved gravitational duals, holography

maps these complicated questions about quantum dynamics to simple questions in classi-

cal general relativity. Finite temperature states in the field theory are dual to black hole

geometries with planar horizons (“black branes”), and states at finite chemical potential

(and charge density) map to charged black branes. The low-temperature limit of such a

system — dual to the ground state of the doped field theory — is then governed by the

extremal charged black brane geometry. Therefore, in holography, the task is to present

interesting examples of, or perhaps to classify, extremal black brane geometries in asymp-

totically anti de Sitter solutions of Einstein gravity coupled to various matter fields (chosen

to be typical of the content of low-energy string theory).

Studies of doped matter in AdS/CFT have yielded new near-horizon geometries with

novel properties including dynamical scaling [8–11] and hyperscaling violation [12–21].

These are dual to emergent infrared phases which break Lorentz-invariance (as the doping

does in the UV), but which respect spatial rotation and translation invariance. However,

more typically, one expects to find emergent geometries which break more of the space-time

symmetries. In condensed matter physics, for instance, phases with spin or charge density

waves, stripe order, nematic order, and other more exotic orders are well known. Similar

modulated phases also occur in the phase diagram of finite-density QCD.

There have been interesting holographic studies of some such spatially modulated

phases — notably, studies of emergent helical order [22–30], stripe order [31–36], and more

elaborate orders [37–40]. One largely open problem is to give simple analytical examples of

phases realizing or even combining the various properties mentioned above (e.g. hyperscal-

ing violation with helical order) — many cases discussed in the literature are complicated

enough that numerical work is required. But a systematic classification of possible emergent

geometries is also something one could hope to achieve. That this is not always hopeless is

clear from the success of the Kerr-Newman classification of charged, rotating black holes in

asymptotically flat four-dimensional space-time, and perhaps more relevant in this context,
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the success of the Bianchi classification of homogeneous cosmological solutions. In fact,

in a previous paper [1], we found that the basic strategy of the Bianchi classification in

cosmology can also be used to classify homogeneous (but, in general, anisotropic) extremal

black brane geometries.

The focus in [1] was the symmetry structure of the 3d spatial slices (the spatial di-

mensions “where the field theory lives”) in asymptotically AdS5 space. This gives rise to a

classification based on real three-dimensional Lie algebras, the original Bianchi classifica-

tion [41] — very readable expositions appear in [42, 43]. The generators of the Lie algebra

correspond to Killing vectors in the geometry, which generate the isometry group of the

corresponding spatial slices.1

In this paper, our goal is to apply and generalize the results of [1] in several directions.

We show that by using standard ideas of dimensional reduction and the solutions of [1],

one can give simple analytical examples of Bianchi horizons which exhibit hyperscaling vio-

lation. Similarly, we also find analytical examples of “striped” phases, by using techniques

of dimensional reduction. And finally, we attempt to give a more general classification of

the possible homogeneous, anisotropic near-horizon metrics dual to doped 3+1 dimensional

field theories.

The basic generalization of the classification of [1] that remains possible can be easily

explained. Even with a focus on static solutions in 5d gravity, there is a more general

symmetry structure that could be relevant. The additional “radial” direction of holog-

raphy could be non-trivially intertwined with the spatial field theory coordinates. This

makes it clear that the relevant symmetry structure could more generally involve real four-

dimensional Lie algebras with a preferred three sub-algebra (which, roughly, generates

the spatial symmetry group in the dual field theory).2 Happily, the classification of such

algebras (with the relevant subalgebras) has also been accomplished, though much more

recently — see [44] for a clear exposition and also [45] for the proper history. Here, we

use these results to find the more general classification of extremal black brane geometries

relevant for holography in 5 bulk dimensions. We also show that a few of the new symme-

try structures cannot arise in solutions of theories that satisfy simple physical conditions,

such as respecting the Null Energy Condition (NEC), and we give simple examples of some

interesting new types that do not run afoul of the NEC.

The more general possibilities described above also arise in the four dimensional space-

time, implying that one can find homogeneous horizons there governed by real three-

dimensional algebras with two-dimensional sub-algebras — i.e., governed by the Bianchi

types, but now with the symmetries acting on the “radial” direction in addition to the

“field theory” spatial coordinates. We can also potentially realize the real four-algebras

in four dimensional space-times. In such cases, the time-direction is nontrivially involved

and as a result, we generically obtain either time-dependent metrics or stationary met-

rics, though static metrics occasionally arise. We describe several such examples in the

penultimate section.

1In [1], we also considered some examples where the three-algebra involves the time coordinate, which

yield stationary space-times.
2The examples in [1] are a degenerate case of this structure where there is a semi-simple Lie algebra

with a separate Abelian factor corresponding to the isometry of translations in the radial direction.
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The organization of this paper is as follows. In section 2, we describe generic Kaluza-

Klein dimensional reduction of Einstein gravity coupled to massive vector fields. In sec-

tions 3–5, we discuss how to obtain hyperscaling violating space-time metrics with reduced

spatial symmetries. This is done by dimensional reduction of 5d Bianchi metrics in sec-

tion 3, and by analyzing directly in 5d generalizations of the Bianchi types in section 4 and

section 5. In section 6, we give examples of analytical solutions for “striped” phases, by

Kaluza-Klein reducing the 5d type VII0 geometries of [1]. In section 7, we change gears and

discuss the four-dimensional real Lie algebras and their three-dimensional subalgebras. We

also present invariant vector-fields and invariant one-forms which geometrically represent

the algebra. One might hope that one could realize all of these symmetry structures in holo-

graphic space-times, where the holographic radial direction is nontrivially intertwined with

field theory spatial coordinates. However, in section 8, we show that the Null Energy Con-

dition (NEC) gives interesting constraints and rules out several of the potentially relevant

algebraic structures. In section 9, we show that prototypical examples of the remaining

types enumerated in section 8 do arise as solutions of simple gravity coupled to matter

theories. In section 10, we describe 4d static space-times where the radial direction is non-

trivially intertwined with “field theory” space-time coordinates by either three-algebras or

four-algebras and also show how the NEC constrains or forbids some of these space-times.

We conclude in section 11 with a brief discussion of possible future work. Some additional

helpful details are relegated to appendices A–C.

2 Kaluza-Klein reduction of gravity coupled to massive vectors

In this section, we review the Kaluza-Klein reduction of gravity coupled to massive vector

fields. We will use this result later at section 3 and section 6 in order to obtain hyperscaling

violating and striped-phase metrics in lower dimensions.

Consider the d+1 dimensional Einstein-Hilbert action coupled to massive vector fields

and a cosmological constant,

S =
1

κ̂2

∫

dd+1x̂
√

|ĝ|
[

R̂− 1

4
F̂ (i)2 − 1

4
m2

i Â
(i)2 + Λ

]

(2.1)

where F̂ (i) = dÂ(i) is the field strength corresponding to the i-th massive vector field A(i),

and where we note that our convention for Λ requires positive Λ to support AdS space.

Quantities with a ˆ correspond to fields in (d + 1)−dimensions, while hatless objects are

d− dimensional. We now follow the calculation of [48].

Let us consider a split of the d+1-dimensions into xµ̂ = (xµ, z), where µ̂ = 1, · · · , d+1

and µ = 1, · · · , d. We focus on field configurations where none of the (d + 1)-dimensional

fields depend on the coordinate z, i.e. ∂z is a Killing vector. Consider the reduction ansatz

to be:

dŝ2 = e2α1φ(x)ds2 + e2α2φ(x) (dz +Bµ(x)dx
µ)2 , (2.2)

Â(i)(x, z) = A(i)
µ (x)dxµ+χ(i)(x)dz=

(

A(i)(x)−χ(i)(x)B(x)
)

+χ(i)(x) (dz+B) , (2.3)
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where B = Bµdx
µ. The determinant of the metric satisfies,

√

|ĝ| = e(dα1+α2)φ
√

|g| . (2.4)

The field strength is given by,

F̂ (i) = dÂ(i) =
(

dA(i) − dχ(i) ∧B
)

+ dχ(i) ∧ (dz +B) (2.5)

= F (i) + dχ(i) ∧ (dz +B) , (2.6)

where F (i) = dA(i) − dχ(i) ∧B. The vierbein basis is related as,

Êa = eα1φEa ; Ê z̄ = eα2φ (dz +B) , (2.7)

where EA is the vierbein in (d + 1)-dimensions, and index A = (a, z̄). Now (we will drop

the index i for convenience)

F̂ =
1

2
F̂ABÊ

A ∧ ÊB (2.8)

=
1

2
e2α1φF̂abE

a ∧ Eb + e(α1+α2)φF̂az̄E
a ∧ (dz +B) (2.9)

=
1

2
FabE

a ∧ Eb + CaE
a ∧ (dz +B) , (2.10)

where C = dχ,

F̂ab = e−2α1φFab ; F̂az̄ = e−(α1+α2)φCa . (2.11)

The components of the potential are related as

Âa = e−α1φ(A− χB) ; Âz̄ = e−α2φχ . (2.12)

So the kinetic term of the gauge field gives

− 1

4

√

|ĝ|F̂ 2 = −1

4

√

|g|e((d−4)α1+α2)φF 2 − 1

2

√

|g|e((d−2)α1−α2)φC2 . (2.13)

Similarly, the mass term satisfies

− 1

4
m2Â2 = −1

4
m2e−2α1φ(A− χB)2 − 1

4
m2e−2α2φχ2 , (2.14)

so

−
√

|ĝ|1
4
m2Â2 = −1

4
m2e[(d−2)α1+α2]φ(A− χB)2 − 1

4
m2e(dα1−α2)φχ2 . (2.15)

Now the gravitational part of the action reduces to [48]

√

|ĝ|R̂ =
√

|g|
(

R− 1

2
(∂φ)2 − 1

4
e−2(d−1)α1φH2

)

, (2.16)

where H = dB and to write the gravitational action in the above form, we have used the

identities

α2 = −(d− 2)α1 , α2
1 =

1

2(d− 1)(d− 2)
. (2.17)
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These relations guarantee both that the Weyl rescaling puts the gravitational action in

Einstein frame, and that the scalar field has a canonical kinetic term.

In summary, the total dimensionally reduced action becomes:

S =
1

κ2

∫

ddx̂
√

|g| [R− 1

2
(∂φ)2 − 1

4
e−2(d−1)α1φH2 − 1

4
e−2α1φF (i)2 − 1

2
e2(d−2)α1φ(∂χ(i))2

−1

4
m2

i (A
(i) − χ(i)B)2 − 1

4
m2e2(d−1)α1φχ2 + Λe2α1φ] . (2.18)

3 Hyperscaling violation via Kaluza-Klein reduction

There has been considerable recent interest in the geometries that include a hyperscaling

violation exponent θ 6= 0 [12–21]. This is in part because, in some specific cases, they

share many of the properties of theories with a Fermi surface [16]. The cases studied in

the literature have all enjoyed standard spatial rotation and translation symmetries. Here,

we demonstrate that it is simple to find homogeneous but anisotropic solutions which also

enjoy θ 6= 0. These can be duals to ordered phases with hyperscaling violation.

We actually do this in two steps. As a first step, in this section, we show that di-

mensional reduction allows one to turn some of the 5d Bianchi solutions into 4d Bianchi

solutions with hyperscaling violation. (By a 4d Bianchi solution, we mean a solution re-

alizing one of the Bianchi types with the radial direction included as one of the spatial

dimensions governed by the algebra). In section 3.2, we demonstrate this for type III so-

lutions, and in section 3.3 we show that the type III solutions of this sort can be obtained

from more general actions in 4d which do not arise from dimensional reduction.

As a next step, in section 4, we demonstrate that 5d Bianchi solutions (where the

algebra acts only on the field theory “spatial” coordinates) can also enjoy hyperscaling

violation. We give several examples there, leaving the special case of type VII0 (which has

been especially popular in the literature) to its own section, section 5.

Before proceeding let us note that in the gravity theory hyperscaling violation arises if

the metric has a conformal killing vector, i.e. if the metric is left invariant upto a weyl trans-

formation by the corresponding coordinate transformation. In the solutions of this section

and in section 4 and section 5, we construct examples where the metric has genuine killing

vectors which make it homogenoeus along the field theory directions while possessing an ad-

ditional conformal killing vector which leads to a scaling transformation in the field theory.

3.1 General idea

In this subsection we discuss the general prescription of obtaining hyperscaling violating

solutions from scaling solutions via dimensional reduction, as described in [49]. Let us con-

sider the metric ansatz eq. (2.2), where α1, α2 are constants given by eq. (2.17). Let r be

the “radial” coordinate in (d+ 1)-dimensions, which will also appear as a coordinate after

compactification to d-dimensions. We will consider metric components to be functions of r

only, and will allow the higher dimensional metric to be invariant under scale transforma-

tions, generated by a shift of r (and appropriate rescaling of the spatial coordinates). Let

φ(r) = φ0r:

dŝ2 = e2α1φ0rds2 + e2α2φ0r (dz +Bµ(r)dx
µ)2 (3.1)

– 5 –



J
H
E
P
0
3
(
2
0
1
3
)
1
2
6

Now, requiring that dŝ2 is invariant under r → r + ǫ implies that the lower dimensional

metric transform as

ds2 = e−2α1φ0ǫds2 (3.2)

So the lower dimensional metric is invariant under the scale transformation up to an overall

scaling function in front of the metric, a conformal factor. This corresponds to a metric

which exhibits hyperscaling violation.

3.2 Dimensional reduction of 5d type III to 4d space-time

In this subsection, we consider the dimensional reduction of the type III metric as given in

eq. (4.38) of [1]. Let us first recall the relevant results of [1].

The action is given by eq. (2.1) with d = 4 and only one vector field turned on. For

convenience we do not write the quantities with ˆ here, and we explicitly mention the

space-time dimension of the quantity. The metric in (4 + 1) dimensions takes the form

ds2 = dr2 − e2βtrdt2 + e2β2rdz2 +
1

ρ2
(dρ2 + dx2) (3.3)

with vector field given by

A =
√

Ate
βtrdt . (3.4)

In order to find a solution, the parameters in the action and in the metric/vector field

should be related via:

m2 = 2(1− β2
2) , Λ =

1

β2
2

+ 2β2
2 , (3.5)

At =
2− 4β2

2

1− β2
2

, βt =
1− β2

2

β2
. (3.6)

Now, consider the dimensional reduction along z by using the techniques of section 3.1.

For this subsection we use α1 =
1

2
√
3
, α2 = − 1√

3
from eq. (2.17) with d = 4.

The new 4d action is given by eq. (2.18)

S =

∫

d4x
√−g

{

R− 1

2
(∇φ)2 + e2α1φΛ− 1

4
e−2α1φF 2 − 1

4
m2A2

}

. (3.7)

The relevant solution can be read off from the 5d solution above. The metric is

ds2 = eβ2r

(

dr2 − e2βtrdt2 +
dρ2 + dx2

ρ2

)

, (3.8)

and the matter fields are

A =
√

Ate
βtrdt , φ =

β2
α2

r . (3.9)

Actually eq. (3.8) shows that this is a hyperscaling violating solution of Bianchi type III.

It is possible to view this solution in different coordinates which make it more trans-

parent that it is a hyperscaling violating solution. We perform the following coordinate

transformation

r =
1

β2 + βt
log r̃ . (3.10)

– 6 –
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In the new coordinates, the solution is given by

ds2 =

(

1

β2 + βt

)2 dr̃2

r̃2γ
− r̃2γdt2 + r̃2β

dρ2 + dx2

ρ2
(3.11)

A =
√

At r̃
βt

β2+βt dt , (3.12)

φ =
β2

α2(β2 + βt)
log r̃ , (3.13)

where

2γ =
β2 + 2βt
β2 + βt

, 2β =
β2

β2 + βt
. (3.14)

For general mass parameter, we have β2 6= 0. Therefore, we generically have γ 6= 1,

which implies that this metric is not scale invariant. Instead, it Weyl rescales under scale

transformations, in the way which is characteristic of hyperscaling violating metrics.

3.3 Hyperscaling violating type III metrics in 4d space-time

We saw that the Kaluza-Klein reduced action eq. (3.7) has a hyperscaling violating type

III solution of the form eq. (3.11). In this subsection, we define a family of actions which

generalizes the 4d action eq. (3.7) of the previous subsection, and we exhibit more generic

hyperscaling violating type III solutions of these actions. We note that generic values of the

parameters here do not allow an “uplift” to a 5d solution, so these solutions considerably

generalize those of section 3.2.

Consider the general Einstein Hilbert action in (d+1)-dimensions coupled to a massless

scalar field, a massive vector field and a cosmological constant:

S =

∫

dd+1x
√
g

{

R− 1

2
(∇φ)2 − e2αφ

4
F 2 − m2

4
e2ǫφA2 + e2δφΛ

}

. (3.15)

In this section we will consider d = 3. This action is a natural generalization of the one

given by eq. (3.7).

As an ansatz, let us take a hyperscaling violating type III metric of the form:

ds2 = λ2dr
2

r2γ
− r2γdt2 +

r2β

ρ2
(dρ2 + dx2) . (3.16)

Also, let the gauge field and the scalar field be

A =
√

Atr
θdt , φ = k log(r) . (3.17)

All of the equations become algebraic if we take the following relations among param-

eters:

γ = 1 + kδ , ǫ = α+ δ , θ = 1 + k(δ − α) , β = −kδ . (3.18)

Plugging in these relations, the Einstein equations along r, t, ρ become

− 8kδ(2 + kδ) +At

(

−m2λ2 + 2(1 + k(−α+ δ))2
)

− 2
(

−4λ2 + k2 + 2Λλ2
)

= 0 , (3.19)

At

(

m2λ2 + 2(1− kα+ kδ)2
)

+ 2
(

4λ2 + k2
(

1 + 4δ2
)

− 2Λλ2
)

= 0 , (3.20)

– 7 –
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8kδ(2 + kδ)−At

(

m2λ2 + 2(1 + k(−α+ δ))2
)

+ 2
(

4 + k2 − 2Λλ2
)

= 0 . (3.21)

The equation along x is the same as the equation along ρ because (ρ, x) span an Euclidean

AdS2 factor.

The gauge field equation is

m2λ2 + 2k(−1 + k(α− δ))(α− δ) = 0 , (3.22)

and the scalar field equation is

2k +At

(

2α+ 2k2α(α− δ)2 + 4kα(−α+ δ) +m2λ2(α+ δ)
)

+ 4δλ2Λ = 0 . (3.23)

The solutions to the above equations are

ǫ = α+ δ , γ=
1+2(α−δ)δ

(

1+λ2
)

1 + 4αδ
, θ = 1+

2
(

α2−δ2−(α−δ)2λ2
)

1 + 4αδ
,

β =
2δ

(

α+ δ − αλ2 + δλ2
)

1 + 4αδ
, k =

−2(α+ δ) + 2(α− δ)λ2

1 + 4αδ
,

At =
2
(

−1 + λ2 + 4δ2
(

1 + λ2
))

−1− 2α2 − 4αδ + 2δ2 + 2(α− δ)2λ2
,

Λ =
1

(λ+ 4αδλ)2
×
{

(

1 + λ2
) (

1 + 2δ2
(

−1 + λ2
)

+ 8δ4
(

1 + λ2
))

+2α2
(

1−2λ2+λ4+4δ2
(

1+λ2
)2
)

−4αδ
(

−2+λ2
(

−3+λ2+4δ2
(

1+λ2
)))

}

,

m2 = −4(α−δ)
(

−1−2α2−4αδ+2δ2+2(α−δ)2λ2
) (

α
(

−1+λ2
)

−δ
(

1+λ2
))

(λ+ 4αδλ)2
. (3.24)

Throughout this paper we will take the cosmological constant to be negative, this

corresponds to taking Λ > 0 in our conventions.3 In addition we will mainly consider

geometries where the horizon area vanishes.4 Choosing the horizon to lie at r → 0 this gives

rise to the conditions γ, β > 0. Finally, for a physically acceptable solution At, λ > 0. All

these conditions can be met for the solution found above in various open sets of parameter

ranges; one such range is α < 1
2

(

−8− 3
√
7
)

, −1
2 < δ < 0, 0 < λ <

√

1−4δ2

1+4δ2
.

4 Hyperscaling violation in 5d Bianchi VI, III, V attractors

In section 3, we have seen how dimensional reduction of the Bianchi solutions of [1] can give

rise to hyperscaling violating solutions. This leads to an expectation that such solutions

are fairly easy to find in their own right, also in 5d. We confirm this expectation in this

section by finding hyperscaling violating generalizations for many of the solutions found

in [1]. In this section, we exhibit hyperscaling violating solutions in 5d for Bianchi types

VI, III and V. We leave the discussion of type VII0, which has been especially popular in

the literature, to a separate section, section 5.

3Hopefully this will allow the near-horizon geometries we study to smoothly connect with asymptotic

AdS space. We leave a study of such interpolating geometries for the future.
4Of course, as the extremal RN black brane example shows, this condition can be relaxed in some cases.
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We do the calculations in 5d, although we expect similar results to hold in other di-

mensions too. We begin with the action given by eq. (3.15) for d = 4. We can achieve

hyperscaling violation by allowing the scalar field to run logarithmically with the radial

coordinate. This is similar to the earlier dilatonic realizations of hyperscaling violating

geometries studied in [10–14].

Before we move on to individual solutions, it is worth noting that the dimensionless

constants in the action are α, δ, ǫ and m2

Λ . In the discussion that follows we will find

it convenient to take ǫ = α + δ since the equations simplify in this case. Furthermore,

sometimes the algebra governing the Bianchi type will have some free parameters too —

for example, type VI has one parameter h appearing in its real three-algebra.

4.1 Type VI (generic h)

To begin with, let us start with a Type VI metric. We take the ansatz for the metric and

matter fields to be of the form

ds2 =
dr2

r2γ
− r2γdt2 + λr2βxdx2 + r2βye−2xdy2 + r2βze−2hxdz2 , (4.1)

A =
√

Atr
θdt , (4.2)

φ = k log(r) . (4.3)

All of the equations become algebraic if we choose

βx = −δk , γ = 1 + δk , ǫ = α+ δ , θ = 1 + k(δ − α) . (4.4)

The Einstein equations, gauge field equation, and scalar field equation then respectively

give:

At(2(1 + kδ − kα)2 −m
2) + 8(βy + βz + βyβz)− 2k

(

k + 4δ + 4kδ2
)

+
8
(

1 + h+ h2
)

λ
− 4Λ = 0 ,

At(−2(1 + kδ − kα)2 −m
2)−

8
(

1 + h+ h2
)

λ
− 2

(

k
2 + 4

(

β
2
y + βyβz + β

2
z

)

− 2Λ
)

= 0 ,

At(−2(1+kδ−kα)2−m
2)+

8h

λ

+2
(

4
(

1 + βy + β
2
y + βz + βyβz + β

2
z

)

+ k
(

k + 4(3 + 2βy + 2βz)δ + 8kδ2
)

− 2Λ
)

= 0 ,

At(−2(1 + kδ − kα)2 −m
2) +

8h2

λ
+ 2

(

4 + 4βz(1 + βz) + k
(

k + 4(2 + βz)δ + 4kδ2
)

− 2Λ
)

= 0 , (4.5)

At(−2(1 + kδ − kα)2 −m
2) +

8

λ
+ 2

(

4 + 4βy(1 + βy) + k
(

k + 4(2 + βy)δ + 4kδ2
)

− 2Λ
)

= 0 ,

βy + hβz + (1 + h)kδ = 0 ,

m
2 − 2(kα+ βy + βz)(1 + kδ − kα) = 0 ,

2k(1 + βy + βz + kδ) +At

[

m
2(α+ δ) + 2α(1 + kδ − kα)2

]

+ 4δΛ = 0 .

Generically, it is difficult to find solutions to these nonlinear algebraic equations. How-

ever fortunately, given a choice of h which characterizes the three-algebra, one can show

that the following solutions exist:
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βz =
k(2δ(−α(h(h+ 2)− 1) + δh(2h+ 1) + δ)− h+ 1)− 2(h− 1)(α+ δ)

2 (h2 + 1) (α− 2δ)
,

βy =
k
(

2αδ((h− 2)h− 1) + 2δ2
(

h2 + h+ 2
)

+ (h− 1)h
)

+ 2(h− 1)h(α+ δ)

2 (h2 + 1) (α− 2δ)
,

λ =
4
(

h2 + 1
)2

(α− 2δ)2

(α(4δk + 2)− 2δ2k + 2δ + k)

×
1

(k (2αδ((h− 4)h+ 1) + 2δ2(h+ 1)2 + (h− 1)2) + 4α((h− 1)h+ 1)− 2δ(h+ 1)2)
, (4.6)

At =

(

k + 6δ + 6kδ2
)

(−1 + k(α− δ))(α− 2δ)
,

Λ =
1

4 (h2 + 1) (α− 2δ)2

×
[

4k{6α2
δ(h(2h−3)+2)−α

(

3δ2(h(h+6)+1)−4h2+6h−4
)

+δ
(

12δ2
(

h
2+1

)

+(h−6)h+1
)

}

+k
2{2α2

(

12δ2(h− 1)2 + h
2 + 1

)

− 6αδ
(

2δ2(h+ 1)2 − (h− 6)h− 1
)

+12δ4(h(3h+2)+3)+16δ2
(

h
2+1

)

+3(h−1)2}+12{2α2((h−1)h+1)−4αδh+δ
2(h−1)2}

]

,

m
2 = (1+δk−αk)

k
(

2α2
(

h2+1
)

−4αδ(h+1)2+δ2
(

6h2+4h+6
)

+(h−1)2
)

+2(h−1)2(α+δ)

(h2 + 1) (α− 2δ)
.

Note that At is h independent, but the rest of the formulae do depend on h.

This messy formula gives, for example, with h = 1
2 :

βz =
k + 2α+ 2δ − kαδ + 8kδ2

5α− 10δ
,

βy =
k + 2α+ 2δ + 14kαδ − 22kδ2

10(−α+ 2δ)
,

λ = − 25(α− 2δ)2

(−12α+ 18δ + k(−1 + 6(α− 3δ)δ)) (2(α+ δ) + k (1 + 4αδ − 2δ2))
,

At =

(

k + 6δ + 6kδ2
)

(−1 + k(α− δ))(α− 2δ)
, (4.7)

Λ =
1

20(−α+ 2δ)2

×{12
(

6α2 − 8αδ + δ2
)

+ 4k
(

8α− 7δ + 24α2δ − 51αδ2 + 60δ3
)

+k2
(

3 + 80δ2 + 228δ4 + 2α2
(

5 + 12δ2
)

− 6αδ
(

7 + 18δ2
))

} ,

m2 = (1− k(α− δ))
2(α+ δ) + k

(

1 + 10α2 − 36αδ + 38δ2
)

5(α− 2δ)
.

We take Λ > 0 and also γ > 0. An acceptable solution with vanishing horizon area then

requires (βx + βy + βz), λ, At > 0. One possible range where these conditions is met is

0 < α ≤
√
6
5 , 0 < δ < α

2 , −
2(α+δ)

1+4αδ−2δ2
< k < − 6δ

1+6δ2
.

4.2 Type III (h = 0)

This is a limiting case of type VI, with h = 0. The solution is obtained from eq. (4.6) by

setting h = 0:

βz =
2(α+ δ) + k(1 + 2δ(α+ δ))

2(α− 2δ)
,
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βy = −kδ ,

λ =
4(α− 2δ)2

(2(α+ δ) + k (1 + 4αδ − 2δ2)) (4α− 2δ + k(1 + 2δ(α+ δ)))
,

At =

(

k + 6δ + 6kδ2
)

(−1 + k(α− δ))(α− 2δ)
, (4.8)

Λ =
1

4(α− 2δ)2

×{12
(

2α2 + δ2
)

+ k2
(

3 + 2α2 + 6αδ + 8
(

2 + 3α2
)

δ2 − 12αδ3 + 36δ4
)

+4k
(

δ + 12α2δ + 12δ3 + α
(

4− 3δ2
))

} ,

m2 = (1− k(α− δ))
2(α+ δ) + k

(

1 + 2α2 − 4αδ + 6δ2
)

(α− 2δ)
.

An acceptable solution with vanishing horizon area arises if (βx + βy + βz), λ, At, Λ,

γ > 0. These conditions can be met, e.g., one possible range of parameters is 0 < α <
√

2
3 ,

0 < δ < α
2 ,

−2α−2δ
1+4αδ−2δ2

< k < − 6δ
1+6δ2

.

4.3 Type V (h = 1)

This is a limiting case of type VI, with h = 1. The solution is obtained from eq. (4.6) by

setting h = 1:

βy = βz = −kδ ,

λ = − 4(α− 2δ)

(−1 + kδ) (2(α+ δ) + k (1 + 4αδ − 2δ2))
,

At =

(

k + 6δ + 6kδ2
)

(−1 + k(α− δ))(α− 2δ)
, (4.9)

Λ =
6α+ k

(

2 + 6(α− 2δ)δ + k
(

α− 4
(

δ + 3δ3
)))

2(α− 2δ)
,

m2 = 2k(α− 2δ)(1 + k(−α+ δ)) .

Again, an acceptable solution with vanishing horizon area arises when (βx + βy + βz), λ,

At, Λ, γ > 0. We can find some allowable range of values for α, δ, k where these conditions

are met. For example: 0 < α <
√

2
3 , 0 < δ < α

2 ,
−2α−2δ

1+4αδ−2δ2
< k < − 6δ

1+6δ2
.

5 Hyperscaling violation in 5d Bianchi VII0 attractors

In this section we will obtain a hyperscaling violating solutions in 5d with Bianchi type

VII0 symmetry using the same theory as before, i.e eq. (3.15) with d = 4. Again we will

have ǫ = α+ δ, so that the solutions will have α, δ, m
2

Λ as free parameters. The ansatz for

the various fields is chosen as

ds2 = C2
a

dr2

r2γ
− r2γdt2 + r2βxdx2 + r2βyz

(

(

ω2
)2

+ λ
(

ω3
)2
)

. (5.1)

A =
√

A2 rθω2. (5.2)

– 11 –



J
H
E
P
0
3
(
2
0
1
3
)
1
2
6

φ = k log(r) . (5.3)

Here, the ωi are two of the invariant one-forms of Type VII0 geometry:

ω2 = cos(x)dy + sin(x)dz ω3 = − sin(x)dy + cos(x)dz . (5.4)

All the equations of motion become algebraic if we choose

βx = −kδ , γ = 1 + kδ , ǫ = α+ δ , θ = βyz − kα . (5.5)

The Einstein equations, gauge field, and scalar equations respectively give:

− 2
(

βyz(−8 + (−4 +A2)βyz) + k(−2A2αβyz + 4δ) + k
2
(

1 +A2α
2 + 4δ2

))

λ

+C
2
a(2 +A2(2 +m

2
λ) + 2λ(−2 + λ− 2Λ)) = 0 ,

2
(

k
2
(

1 +A2α
2
)

− 2A2kαβyz + (12 +A2)β
2
yz

)

λ

+C
2
a(2 +A2(2 +m

2
λ) + 2λ(−2 + λ− 2Λ)) = 0 ,

2
(

4 + βyz(8 + (12 +A2)βyz) + 2k(−A2αβyz + 6δ + 8βyzδ) + k
2
(

1 +A2α
2 + 8δ2

))

λ

+C
2
a(−2 +A2(−2 +m

2
λ)− 2λ(−2 + λ+ 2Λ)) = 0 , (5.6)

2
(

4 + 2A2kαβyz + βyz(4 + 4βyz −A2βyz) + 4k(2 + βyz)δ + k
2
(

1−A2α
2 + 4δ2

))

λ

−C
2
a(A2(−2 +m

2
λ) + 2(−3 + λ(2 + λ+ 2Λ))) = 0 ,

2
(

4− 2A2kαβyz + βyz(4 + (4 +A2)βyz) + 4k(2 + βyz)δ + k
2
(

1 +A2α
2 + 4δ2

))

λ

+C
2
a

(

−2 + 6λ2 +A2(−2 +m
2
λ)− 4λ(1 + Λ)

)

= 0 ,

λ(2(kα− βyz)(1 + βyz + k(α+ δ))λ+ C
2
a(2 +m

2
λ)) = 0 ,

−A2

(

2C2
aα+ 2α(−kα+ βyz)

2
λ+ C

2
am

2(α+ δ)λ
)

+ 2λ
(

k + 2kβyz + k
2
δ + 2C2

aδΛ
)

= 0 .

Note that all of the 7 equations are written in vierbein coordinates. Six of the equations are

independent, and can be used to solve for the six parameters C2
a , Λ, βyz, k, m

2, A2 in terms

of α, δ, λ. Although we were able to solve above equations in terms of α, δ, λ, the solutions

are very complicated and not very illuminating. Instead we present below solutions at spe-

cial values in the (α, δ) parameter space, where the resulting expressions are more compact.

Solution for α = −δ:

C
2
a =

2
(

−1 + 6δ2
) (

11 + 12δ2(−1 + λ)− 5λ
)

(−2 + λ)

(1 + 6δ2)2 (−3 + λ)2(−1 + λ)
,

βyz =
2
(

−2− 3δ2(−1 + λ) + λ
)

(1 + 6δ2) (−3 + λ)
,

k = −
6δ

1 + 6δ2
, (5.7)

m
2 =

−22 + 24δ2(−1 + λ)2 − 2λ(2 + λ(−10 + 3λ))

(11 + 12δ2(−1 + λ)− 5λ)λ
,

Λ =
(−1+λ)

(

−22+144δ4(−1+λ)3+λ(117+λ(−90+19λ))+12δ2(13+λ(−24+(24−7λ)λ))
)

2 (−1 + 6δ2) (11 + 12δ2(−1 + λ)− 5λ) (−2 + λ)λ
,

A2 = −2−
2

−2 + λ
.

A solution with vanishing horizon area would arise if C2
a > 0, A2 > 0, βx + 2βyz > 0,

Λ > 0, λ > 0 are satisfied. These conditions are indeed met when − 1√
6

< δ < 1√
6
,
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1 < λ < 2. This specific case α = −δ can be obtained from dimensional reduction, but we

can get more generic solutions, which do not allow an uplift to higher dimensions, as follows.

• Solution for α = δ = −1:

C2
a =

−81
(

−12 +
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

49(−1 + λ)(27 + λ(−14 + 23λ))2

+
λ
(

2793− 938
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

49(−1 + λ)(27 + λ(−14 + 23λ))2

+
λ2

(

−11965 + λ(−11109 + 9589λ) + 1991
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

49(−1 + λ)(27 + λ(−14 + 23λ))2
,

βyz =
30 + λ(−21 + 37λ) +

√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))

7(27 + λ(−14 + 23λ))
,

k =
138− 28λ+ 26λ2 − 8

√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))

7(27 + λ(−14 + 23λ))
, (5.8)

m2 =
1

5λ(−11 + 13λ(−6 + 17λ))
[26− 7

√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))

+λ{−1661 + 104
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))

+λ
(

2065 + 13λ(−79 + 9λ)− 13
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

}] ,

Λ =
1

10λ(−11 + 13λ(−6 + 17λ))
[−463− 34

√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))

−6λ
(

357 + 52
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

+λ2
(

10000 + 39λ(−166 + 81λ) + 754
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

] ,

A2 =
1

4

(

8 + λ(−7 + 9λ) +
√

144 + λ(−112 + λ(113 + 9λ(−14 + 9λ)))
)

.

An acceptable solution with vanishing horizon area arises if λ > 0 and λ 6= 1,

λ 6= 1
221

(

39 + 4
√
247

)

.

• Solution for α = −3 and δ = −1:

C2
a =

5

(25− 39λ)2(−1 + λ)(11 + 39λ)2
[−12125

(

−30 +
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

+λ
(

220485− 4978
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

+39λ2
(

−20395 + 5λ(−2075 + 3081λ) + 477
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

] ,

βyz =
−380 + 3λ(−83 + 273λ) + 9

√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))

(−25 + 39λ)(11 + 39λ)
,

k =
2
(

185 + λ(−82 + 117λ)− 8
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

(−25 + 39λ)(11 + 39λ)
, (5.9)

m2 =
1

5λ(−3395 + 109λ(−6 + 41λ))
[−2425

(

37 +
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

+λ
(

44235− 654
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

+λ2
(

130567− 327λ(217 + 34λ) + 3379
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

] ,

Λ =
1

10λ(109λ(41λ− 6)− 3395)
[λ(λ(130567− 327λ(34λ+ 217)) + 44235)− 89725

+(109λ(31λ− 6)− 2425)
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))] ,

A2 =
1

40

(

−10 + λ(−19 + 39λ) +
√

900 + λ(380 + λ(−1219 + 39λ(−38 + 39λ)))
)

.

This solution is physically acceptable for all λ > 0 except λ = 25
39 ,

327+4
√
954949

4469 , 1.
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These two classes of solutions are quite messy, but are presented (in a somewhat Pyrrhic

victory) to illustrate that physically sensible solutions of this sort do exist for several values

of α, δ.

6 Striped phases by Kaluza-Klein reduction of 5d type VII0

By using the dimensional reduction we reviewed in section 2, we can also obtain simple

analytical examples of striped phases. For that purpose, we start with 5d type VII0 case.

See for examples of the other constructions of “striped” phases in the literature [31–36].

Let’s consider the 5d type VII0 solution [1], which takes the following ansatz

dŝ2 = dr2 − e2βtrdt2 + (dx1)2 + e2βr
[

(c dx2 + s dx3)2 + λ2(−s dx2 + c dx3)2
]

, (6.1)

Â =

√

Ã2e
βr(c dx2 + s dx3) , (6.2)

where c = cosx1 and s = sinx1. This is the solution of the 5d action given by eq. (2.1),

where

m2 =
2(11 + 2λ2 − 10λ4 + 3λ6)

λ2(5λ2 − 11)
, (6.3)

Λ =
1

50

(

95λ2 +
25

λ2
− 50

λ2 − 2
+

144

5λ2 − 11
− 146

)

, (6.4)

β =
√
2

√

2− 3λ2 + λ4

5λ2 − 11
, (6.5)

βt =
λ2 − 3√
2 (λ2 − 2)

√

2− 3λ2 + λ4

5λ2 − 11
, (6.6)

Ã2 =
2

2− λ2
− 2 , (6.7)

and 1 ≤ λ <
√
2.

In order to dimensionally reduce this 5d solution to 4d along x2, we re-write the metric

and gauge field as

dŝ2 = dr2−e2βtrdt2+(dx1)2+e2βrf(x1)(dx3)2 + e2βr(c2+λ2s2)(dx2+B3dx
3)2 , (6.8)

Â =

(
√

Ã2e
βrs− χB3

)

dx3 + χ(dx2 +B3dx
3) , (6.9)

where

B3 =
(1− λ2)cs

c2 + λ2s2
, χ =

√

Ã2e
βrc , f(x1) =

λ2

c2 + λ2s2
. (6.10)

This metric can be written in the form

dŝ2 = e2α1φ(x)ds2 + e2α2φ(x) (dz +Bµ(x)dx
µ)2 (6.11)

where α2 = −2α1 = − 1√
3
using eq. (2.17) and setting d = 4. The lower dimensional scalar

field depends non-trivially on x1 through c = cosx1 and s = sinx1, so it is clear that this

can give geometries dual to striped phases.
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The 4d action (after appropriate Weyl rescaling etc) is given by eq. (2.18),

S =

∫

d4x
√

|g|
[

R− 1

2
(∂φ)2 − 1

4
e−6α1φH2 − 1

4
e−2α1φF 2 − 1

2
e4α1φ(∂χ)2

−1

4
m2(A− χB)2 − 1

4
m2e6α1φχ2 + Λe2α1φ

]

. (6.12)

The 4d solution is given by,

ds2 = eβrg(x1)
(

dr2 − e2βtrdt2 + (dx1)2 + e2βrf(x1)(dx3)2
)

, (6.13)

g(x1) =
√

c2 + λ2s2 , φ = −
√
3
(

βr + log g(x1)
)

, (6.14)

A =

√

Ã2e
βrsdx3 , B = B3dx

3 (6.15)

where B3, χ, f(x
1) are given in (6.10).

If we perform the coordinate change r = 1
βt+β log(r̃), the field configuration simplifies

slightly to:

ds2 = g(x1)

(

1

(βt + β)2
dr̃2

r̃2γ
− r̃2γdt2 + r̃2δ(dx1)2 + f(x1)r̃6δ(dx3)2

)

, (6.16)

φ = −2
√
3 δ log r̃ −

√
3 log g(x1) , χ =

√

Ã2r̃
2δc , (6.17)

A =

√

Ã2r̃
2δsdx3 , B = B3dx

3 , (6.18)

where

2γ =
2βt + β

βt + β
, 2δ =

β

βt + β
. (6.19)

The “striped” structure of the solution is evident and is seen in both the scalar field and

in the metric.

7 Classification of four dimensional homogeneous spaces

We have seen so far that by various simple modifications of the Bianchi horizons, it is pos-

sible to exhibit analytic striped phases and hyperscaling violation in anisotropic phases.

The more ambitious goal of [1] was to classify homogeneous, anisotropic extremal horizons

as a tractable starting point for a more general classification.

Here, we try to extend the classification proposed in [1]. The holographic dual of a four-

dimensional quantum field theory has four-dimensional spatial slices (including the “radial”

direction), and therefore a classification based on four-dimensional real Lie algebras seems

more natural for static metrics. This allows for the possibility that the radial direction is

more non-trivially intertwined with the “field theory spatial” dimensions.

The classification of [44] yields 12 different classes of four-dimensional real Lie alge-

bras (including some indexed by continuous parameters), with a variety of inequivalent

embeddings of fixed three sub-algebras (corresponding to the field theory space) into each.

Here, we give the data corresponding to the four-dimensional algebras in section 7.1, and

describe the classification of subalgebras in section 7.2.
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7.1 Real four-dimensional Lie algebras

A four-dimensional homogeneous space H has four linearly independent Killing vectors ei
with i = 1, · · · 4, which generate the isometries of H. These satisfy an algebra

[ei, ej ] = Ck
ijek (7.1)

with Ck
ij the structure constants of the related four-dimensional real Lie algebra. It also

has four invariant one-forms ωi. The Lie derivatives of the ωi along all the ej directions

vanish, and the ωi’s can be normalized to satisfy the relation

dωi =
1

2
Ci
jkω

j ∧ ωk . (7.2)

Here, we will list the structure constants of the 12 inequivalent four-dimensional algebras,

as well as convenient choices for the Killing vectors and one-forms. The one-forms are

particularly useful because a metric written in terms of them

ds2 = · · ·+ ηijω
i ⊗ ωj (7.3)

(with · · · independent of the relevant four dimensions) will be invariant under the isometry

group.

In the following, we adopt the notation of [44] in naming the algebras — we call them

A4,k with k = 1, · · · , 12. We list only the non-vanishing structure constants (up to obvious

permutation of indices).

• A4,1: C
1
24 = 1, C2

34 = 1

e1=∂1 e2=∂2 e3=∂3 e4=x2∂1+x3∂2+∂4

ω1=dx1−x4dx
2+

1

2
x24dx

3 ω2=dx2−x4dx
3 ω3=dx3 ω4=dx4

• Aa
4,2: C

1
14 = a, C2

24 = 1, C2
34 = 1, C3

34 = 1

e1=∂1 e2=∂2 e3=∂3 e4=ax1∂1+(x2+x3)∂2+x3∂3+∂4

ω1=e−ax4dx1 ω2=e−x4(dx2−x4dx
3) ω3=e−x4dx3 ω4=dx4

• A4,3: C
1
14 = 1, C2

34 = 1

e1=∂1 e2=∂2 e3=∂3 e4=x1∂1+x3∂2+∂4

ω1=e−x4dx1 ω2=dx2−x4dx
3 ω3=dx3 ω4=dx4
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• A4,4: C
1
14 = 1, C1

24 = 1, C2
24 = 1, C2

34 = 1, C3
34 = 1

e1=∂1 e2=∂2 e3=∂3

e4=(x1+x2)∂1+(x2+x3)∂2+x3∂3+∂4

ω1=e−x4

(

dx1−x4dx
2+

1

2
x2
4dx

3

)

ω2=e−x4(dx2−x4dx
3) ω3=e−x4dx3 ω4=dx4

• Aa,b
4,5: C

1
14 = 1, C2

24 = a, C3
34 = b

e1=∂1 e2=∂2 e3=∂3 e4=x1∂1+ax2∂2+bx3∂3+∂4

ω1=e−x4dx1 ω2=e−ax4dx2 ω3=e−bx4dx3 ω4=dx4

• Aa,b
4,6: C

1
14 = a, C2

24 = b, C3
24 = −1, C2

34 = 1, C3
34 = b

e1=∂1 e2=∂2 e3=∂3

e4=ax1∂1+(bx2+x3)∂2+(bx3−x2)∂3+∂4

ω1=e−ax4dx1 ω2=e−bx4 [cos(x4)dx
2−sin(x4)dx

3]

ω3=e−bx4(cos(x4)dx
3+sin(x4)dx

2) ω4=dx4

• A4,7: C
1
14 = 2, C2

24 = 1, C2
34 = 1, C3

34 = 1, C1
23 = 1

e1=∂1 e2=∂2−
1

2
x3∂1 e3=∂3+

1

2
x2∂1

e4=2x1∂1+(x2+x3)∂2+x3∂3+∂4

ω1=e−2x4

(

dx1+
1

2
x2dx

3− 1

2
x3dx

2

)

ω2=e−x4(dx2−x4dx
3)

ω3=e−x4dx3 ω4=dx4

• A4,8: C
1
23 = 1, C2

24 = 1, C3
34 = −1

e1=∂1 e2=∂2−
1

2
x3∂1 e3=∂3+

1

2
x2∂1

e4=x2∂2−x3∂3+∂4

ω1=dx1+
1

2
x2dx

3− 1

2
x3dx

2 ω2=e−x4dx2 ω3=ex4dx3 ω4=dx4

• Ab
4,9: C

1
23 = 1, C1

14 = 1 + b, C2
24 = 1, C3

34 = b

e1=∂1 e2=∂2−
1

2
x3∂1 e3=∂3+

1

2
x2∂1
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e4=(1+b)x1∂1+x2∂2+bx3∂3+∂4

ω1=e−(b+1)x4

(

dx1+
1

2
x2dx

3− 1

2
x3dx

2

)

ω2=e−x4dx2 ω3=e−bx4dx3 ω4=dx4

• A4,10: C
1
23 = 1, C3

24 = −1, C2
34 = 1

e1=∂1 e2=∂2−
1

2
x3∂1 e3=∂3+

1

2
x2∂1

e4=−x2∂3+x3∂2+∂4

ω1=dx1+
1

2
x2dx

3− 1

2
x3dx

2 ω2=cos(x4)dx
2−sin(x4)dx

3 ω3=cos(x4)dx
3+sin(x4)dx

2

ω4=dx4

• Aa
4,11: C

1
23 = 1, C1

14 = 2a, C2
24 = a, C3

24 = −1, C2
34 = 1, C3

34 = a

e1=∂1 e2=∂2−
1

2
x3∂1

e3=∂3+
1

2
x2∂1 e4=2ax1∂1+(ax2+x3)∂2+(ax3−x2)∂3+∂4

ω1=e−2ax4

(

dx1+
1

2
x2dx

3− 1

2
x3dx

2

)

ω2=e−ax4(cos(x4)dx
2−sin(x4)dx

3)

ω3=e−ax4(cos(x4)dx
3+sin(x4)dx

2) ω4=dx4

• A4,12: C
1
13 = 1, C2

23 = 1, C2
14 = −1, C1

24 = 1

e1=∂1 e2=∂2

e3=∂3 + x1∂1 + x2∂2 e4=∂4 + x2∂1 − x1∂2

ω1=e−x3(cos(x4)dx
1 − sin(x4)dx

2) ω2=e−x3(cos(x4)dx
2 + sin(x4)dx

1)

ω3=dx3 ω4=dx4

7.2 Three-dimensional subalgebras

We would like the bulk geometry to reflect homogeneity of the spatial slices in the dual

field theory. For this to happen, we wish to embed a three-dimensional real Lie algebra

A3 ⊂ A4,k. The associated Killing vectors will generate isometries of the spatial dimensions

in the dual field theory; the non-trivial embedding of A3 in A4 reflects the intertwining

of the “spatial” and “radial” directions along the flow, which allows us to generalize the

solutions of [1] , where the full four-dimensional algebra was semi-simple and contained a

trivial factor corresponding to scale transformations.
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These subalgebras (including inequivalent embeddings of a fixed A3 into a given A4,k)

have been classified in [44]. The results are as follows. We name the subalgebras following

the convention of [44].5 We also list the generators after each subalgebra.

• A4,1:
3A1 e1, e2, e4
A3,1 e4 + xe3, e2, e1

• Aa
4,2, a 6= 0, 1:

3A1 e1, e2, e3
A3,2 e4, e2, e3
A3,4 e4, e1, e2 (a = −1)

Az
3,5 e4, e1, e2, z = a(a < 1), z = 1/a(a > 1)

• A1
4,2:

3A1 e1, e2, e3
A3,2 e4, e2, e3 + xe1
A3,3 e4, e1, e2

• A4,3:

3A1 e1, e2, e3
A2 ⊕A1 e4 + xe3, e1; e2
A3,1 e3, e4, e2

• A4,4:
3A1 e1, e2, e3
A3,2 e4, e1, e2

• Aa,b
4,5 (−1≤a<b<1, ab 6=0):

3A1 e1, e2, e3
Aa

3,5 e4, e1, e2
Ab

3,5 e4, e1, e3
Az

3,5 e4, e2, e3 z=a/b, |a/b|<1; z=b/a, |a/b|>1

• Aa,a
4,5 (−1 ≤ a < 1, a 6= 0):

3A1 e1, e2, e3
A3,3 e4, e2, e3
Aa

3,5 e4, e1, e2 cos(φ) + e3 sin(φ)

• Aa,1
4,5 (−1 ≤ a < 1, a 6= 0):

3A1 e1, e2, e3
A3,3 e4, e1, e3
Aa

3,5 e4, e1 cos(φ) + e3 sin(φ), e2

5For a dictionary relating the notation of [44] for three-algebras with the more standard Bianchi nomen-

clature [43], see appendix B.
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• A1,1
4,5:

3A1 e1e2, e3
A3,3 e4, e1 + xe3, e2 + ye3

e4, e1 + xe2, e3
e4, e2, e3

• Aa,b
4,6 (a 6= 0, b > 0):

3A1 e1, e2, e3
Ab

3,7 e4, e2, e3

• A4,7:
A3,1 e2, e3, e1

A
1

2

3,5 e4, e1, e2

• A4,8:

A3,1 e2, e3, e1
A2 ⊕A1 e4, e2; e1

e4, e3; e1

• Ab
4,9 (0 < |b| < 1):

A3,1 e2, e3, e1
Az

3,5 e4, e1, e2 z = 1 + b, |1 + b| < 1; z = 1
1+b , |1 + b| > 1

A3,4 e4, e1, e3 b = −1
2

Az
3,5 e4, e1, e3 z = b

1+b , | b
1+b | < 1; z = 1+b

b , |1+b
b | > 1

• A1
4,9:

A3,1 e2, e3, e1

A
1

2

3,5 e4, e1, e2 cos(φ) + e3 sin(φ)

• A0
4,9:

A3,1 e2, e3, e1
A2 ⊕A1 e1, e4; e3
A3,3 e4, e1, e2
A3,2 e4 + xe3, e1, e2 x 6= 0

• A4,10: A3,1 e2, e3, e1

• A4,11 (0 < a): A3,1 e2, e3, e1

• A4,12:

A3,3 e3, e1, e2
A3,6 e4, e1, e2

A
|x|
3,7 e4 + xe3, e1, e2 x 6= 0
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8 Null energy condition for 5d space-times with four-algebras

We have proposed a classification of extremal near-horizon metrics for 5d black branes using

four-algebras. The first check of validity for space-times which realize these symmetries is

whether they can be supported by reasonable matter content, i.e. whether the stress energy

tensor that supports the space-time satisfies the Null Energy Condition (NEC):

TµνN
µNν ≥ 0 (8.1)

for all future directed null vectors Nµ. Via Einstein’s equations this translates into a con-

straint on the geometry, namely that the Einstein tensor has to satisfy

GµνN
µNν ≥ 0 . (8.2)

We will work in an abstract orthonormal basis, in which the metric takes the form

ds2 =

4
∑

i=1

(σi)2 − (σt)2 , (8.3)

for σi ≡ λijω
j , where ωj are the invariant one-forms listed before. For simplicity we shall

only take the matrix λij to be diagonal: λij = λiδij and σi = λiω
i (no sum for i). The

time-like one-form is given by σt =
√

gtt(r)dt, where we will only consider a simple scaling

red-shift factor: gtt(r) = e2βtr. The radial coordinate r is identified with one of the exact

one-forms λidr = σi such that the other 3 one-forms form a sub-algebra. In this basis an

arbitrary future-directed null vector can easily be written by using 4 real parameters si
(i = 1, 2, 3, 4) in the form:

~N =

( 4
∑

i=1

s2i

)
1

2

Xt +
4

∑

i=1

siXi (8.4)

where Xt, Xi are dual vectors to the invariant one-forms σt, σi. Equation (8.2) then

becomes a bilinear function

GµνN
µNν ≡ Mijs

isj ≥ 0 , (8.5)

for arbitrary choices of the four real parameters si, i = 1, 2, 3, 4. Since the NEC amounts to

imposing positive definiteness of this bilinear function, it then requires that the eigenvalues

of the matrix Mij must be non-negative.

We will study natural multiparameter families of metrics realizing a given symmetry

structure. We conclude that if a given set of parameters violates the NEC, it cannot be

supported by physically reasonable matter fields. In this case, we view the metric with

those parameters as capturing a physically unrealizable geometry. In some cases the entire

“natural” set of possibilities for realizing a given four-algebra can be eliminated — in this

case, we conclude that the related type is not realized physically.

In the following we will study the NEC for each of the 12 types of space-times (in a

natural metric parametrization realizing the associated four-algebra), by writing out specif-

ically the eigenvalues of the Mij , and analyzing the constraints obtained by requiring that

all of these eigenvalues be non-negative.
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Before listing the results of applying the NEC to each type, let’s discuss the constraint

on βt, βi. In general, a structure coefficient of the form Ci
ir = ki signifies a scaling of the

form e−kir for the one-form σi. The red-shift factor gtt(r) is e
2βtr, and the limit where the

red-shift factor gtt approaches zero corresponds to the IR in the dual theory. A field theory

spatial volume ∼ e−
∑

3
i=1

kir in the IR limit corresponds to a ground state entropy density

of the field theory. In order to satisfy the laws of thermodynamics, we require that the

field theory entropy density goes to zero in the IR. On the gravity side, this means that

the spatial volume ∼ e−
∑

3
i=1

kir should have the same qualitative scaling behavior as the

red-shift factor, in the sense that

Nernst′s Law : βt

3
∑

i=1

Ci
ir < 0 . (8.6)

We will impose this, as well as the NEC, as a criterion of reasonableness, which we’ll call

“Nernst’s law”.6

We will now study the NEC separately for each of the A4,k cases, where the natural

metric ansatz we will consider is

ds2 = −e2βtrdt2 +
4

∑

i=1

λ2
i (ω

i)2 . (8.7)

• A4,1 : We identify x4 as a radial coordinate; λ4dr = σ4 = λ4ω
4 gives x4 = r.

It is straightforward to calculate the matrix M defined by eq. (8.5). One of the

eigenvalues of the matrix M becomes

M1 = −λ2
1λ

2
3 + λ4

2

2λ2
2λ

2
3λ

2
4

< 0 , (8.8)

which is negative. Therefore this geometry is ruled out.

• Aa
4,2 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 = −(a+ 2− βt)(a+ βt)

λ2
4

, M2 = −2λ2
3

(

a2 + (a+ 2)βt + 2
)

+ λ2
2

2λ2
3λ

2
4

, (8.9)

M3,4 =
(βt + 1)(−a− 2 + βt)

λ2
4

±

√

λ2
2λ

4
3λ

4
4

(

λ2
3(a+ 2− βt)2 + λ2

2

)

2λ4
3λ

4
4

. (8.10)

Nernst’s law forces

βt(a+ 2) < 0 . (8.11)

It can be shown that the NEC and Nernst’s law are satisfied in several open sets of

parameter space; for example: with all λi = O(1) for i = 1, 2, 3, 4, it is easy to see

that at large negative values of βt with −2 < a, all conditions are satisfied.

6As already mentioned in some of the discussion above this may in fact be too strong. For instance,

AdS2 × Rd near-horizon geometries, which violate this criterion, are ubiquitous in simple approximations

to string theory, and show fascinating physical properties. However, these have ki = 0, and one could

contemplate softening the condition above to ≤, at least in some cases.
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• A4,3 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 =
β2
t − 1

λ2
4

, M2 = −
2βt +

λ2
2

λ2
3

+ 2

2λ2
4

, (8.12)

M3,4 =
2(βt − 1)βtλ

4
3λ

2
4 ±

√

λ2
2λ

4
3λ

4
4

(

(βt − 1)2λ2
3 + λ2

2

)

2λ4
3λ

4
4

. (8.13)

Nernst’s law forces βt < 0. The NEC can be easily satisfied at large negative values

of βt.

• A4,4 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 = −
λ2
1

λ2
2

+
λ2
2

λ2
3

+ 6 + 6βt

2λ2
4

(8.14)

The other three eigenvalues M2,3,4 are roots of a higher order polynomial, which is

too cumbersome to write down. However in the large negative limit βt → −∞, we

can easily check that the rest M eigenvalues behave as

M2,3,4 →
β2
t

λ2
4

+O(βt) . (8.15)

On the other hand, Nernst’s law forces βt < 0. Therefore the NEC can be easily

satisfied in the regime with large negative values of βt.

• Aa,b
4,5 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 = −(1 + βt)(a+ b− βt + 1)

λ2
4

, M2 = −(a+ βt)(a+ b− βt + 1)

λ2
4

, (8.16)

M3 = −(b+ βt)(a+ b− βt + 1)

λ2
4

, M4 = −1 + a2 + b2 + βt(1 + a+ b)

λ2
4

. (8.17)

Nernst’s law forces

βt(1 + a+ b) < 0 . (8.18)

We see that there is an open parameter set satisfying both the NEC and Nernst’s

law for large negative βt with 1 + a+ b > 0.

• Aa,b
4,6 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 = −(a+ βt)(a+ 2b− βt)

λ2
4

, (8.19)

M2 = −
2a2 + 2aβt + 4b(b+ βt) +

λ2
3

λ2
2

+
λ2
2

λ2
3

− 2

2λ2
4

, (8.20)

M3,4 = −(b+ βt)(a+ 2b− βt)

λ2
4

±

√

λ4
2λ

4
4

(

λ4
3 − λ2

2λ
2
3

)2 (
λ2
2λ

2
3 ((a+ 2b− βt)2 + 2) + λ4

2 + λ4
3

)

2λ4
2λ

4
3λ

4
4

. (8.21)
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Nernst’s law forces

βt(a+ 2b) < 0 . (8.22)

We see that there is an open parameter set satisfying both the NEC and Nernst’s

law for large negative βt with a+ 2b > 0.

• A4,7 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 =
β2
t − 2βt − 8

λ2
4

+
λ2
1

2λ2
2λ

2
3

, M2 = −
8βt +

λ2
2

λ2
3

+ 12

2λ2
4

, (8.23)

M3,4 =
(βt − 4)(βt + 1)

λ2
4

− λ2
1

2λ2
2λ

2
3

±

√

λ10
2 λ4

3λ
4
4

(

(βt − 4)2λ2
3 + λ2

2

)

2λ4
2λ

4
3λ

4
4

. (8.24)

Nernst’s law gives

βt < 0 . (8.25)

It is obvious that there is an open parameter range satisfying the NEC and Nernst’s

law at large negative βt.

• A4,8 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 = − 2

λ2
4

, M2 =
β2
t

λ2
4

+
λ2
1

2λ2
2λ

2
3

, (8.26)

M3,4 = − λ2
1

2λ2
2λ

2
3

+
βt(βt ± 1)

λ2
4

. (8.27)

We find that the matrix M has one negative eigenvalue, M1 = − 2
λ2
4

, hence this type

of metric is ruled out by the NEC.

• Ab
4,9 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 = −(2b− βt + 2)(1 + βt)

λ2
4

− λ2
1

2λ2
2λ

2
3

, (8.28)

M2 = −(2b− βt + 2)(b+ βt)

λ2
4

− λ2
1

2λ2
2λ

2
3

, (8.29)

M3 = −(2b− βt + 2)(b+ βt + 1)

λ2
4

+
λ2
1

2λ2
2λ

2
3

, (8.30)

M4 = −2(b(b+ βt + 1) + βt + 1)

λ2
4

. (8.31)

Nernst’s law forces

βt(b+ 1) < 0 . (8.32)

Therefore, the NEC and Nernst’s law are satisfied on an open set where b > −1 and

large negative βt.
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• A4,10 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M2 =−
(

λ2
2 − λ2

3

)2

2λ2
2λ

2
3λ

2
4

, M1 =
β2
t

λ2
4

+
λ2
1

2λ2
2λ

2
3

, (8.33)

M3,4 =
2β2

t λ
4
2λ

4
3λ

2
4−λ2

1λ
2
2λ

2
3λ

4
4 ±

√

λ4
2λ

4
4

(

λ4
3−λ2

2λ
2
3

)2 ((
β2
t +2

)

λ2
2λ

2
3+λ4

2+λ4
3

)

2λ4
2λ

4
3λ

4
4

. (8.34)

Notice that M1 is negative and hence violates the NEC unless λ2 = λ3. However, in

the case where λ2 = λ3, we have the metric

ds2 = −e2βtrdt2 + λ2
4dr

2 + (λ1)
2(ω1)2 + λ2

2((ω
2)2 + (ω3)2) (8.35)

where

ω1 = dx1 +
1

2
x2dx3 − 1

2
x3dx2 , ω2 = dx2 , ω3 = dx3 . (8.36)

This is a type II Bianchi geometry7 of the sort studied in section 4.1 of [1]. Therefore,

the generic case of A4,10 with λ2 6= λ3 is ruled out by the NEC. In the case λ2 = λ3,

the NEC imposes the constraint β2
t > λ2

1λ
2
4/2λ

4
2.

• Aa
4,11 : We identify x4 as a radial coordinate (x4 = r). The eigenvalues of M are

M1 =
−8a2 − 2aβt + β2

t

λ2
4

+
λ2
1

2λ2
2λ

2
3

, M2 = −
12a2+8aβt+

λ2
3

λ2
2

+
λ2
2

λ2
3

−2

2λ2
4

, (8.37)

M3,4 = −2λ2
2λ

2
3(4a− βt)(a+ βt) + λ2

1

2λ2
2λ

2
3λ

2
4

±

√

λ4
2λ

4
4

(

λ4
3 − λ2

2λ
2
3

)2 (
λ2
2λ

2
3 ((βt − 4a)2 + 2) + λ4

2 + λ4
3

)

2λ4
2λ

4
3λ

4
4

. (8.38)

Nernst’s law forces

aβt < 0 . (8.39)

Therefore, there is an open parameter range for a > 0 and large negative βt where

both the NEC and Nernst’s law are satisfied.

• A4,12 : in this class both x3 and x4 are obvious candidates for the radial coordinate.

Case 1: r = x4

If we pick r = x4, the eigenvalues of M are

M1 = −
(

λ2
1 − λ2

2

)2

2λ2
1λ

2
2λ

2
4

, M2 =
β2
t

λ2
4

− 2

λ2
3

, (8.40)

M3,4 =
β2
t

λ2
4

− 2

λ2
3

±

√

λ4
3

(

λ2
1 − λ2

2

)2 ((
β2
t + 2

)

λ2
1λ

2
2 + λ4

1 + λ4
2

)

2λ2
1λ

2
2λ

2
3λ

2
4

. (8.41)

7One can easily check that basis (8.36) gives dωi = 1

2
Ci

jkω
j ∧ ωk with C1

23 = −C1
32 = 1 and the rest

Ci
jk = 0.
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Similar to the A4,10 case, we see that in this case M1 is negative and hence the NEC

is violated, unless λ1 = λ2.

In the case λ1 = λ2, the geometry becomes a product of the form

ds2 = −e2βtrdt2 + λ2
4dr

2 + λ2
3d

~x2EAdS3 , (8.42)

where d ~x2EAdS3 is the Euclidean AdS3 metric with unit length-scale. In this case the

NEC then imposes just that β2
t > 2λ2

4/λ
2
3.

Case 2: r = x3

If we pick r = x3 instead, the eigenvalues of M are then

M1 = −2(βt + 1)

λ2
3

, M2 =
(βt − 2)βt

λ2
3

−
(

λ2
1 − λ2

2

)2

2λ2
1λ

2
2λ

2
4

, (8.43)

M3,4 =
(βt − 2)(βt + 1)

λ2
3

± λ4
1 − λ4

2

2λ2
1λ

2
2λ

2
4

. (8.44)

Nernst’s law forces

βt < 0 . (8.45)

Therefore, both the NEC and Nernst’s law are easily satisfied at large negative βt.

In summary, we have seen that the types of space-times that are eliminated by the

NEC are types A4,1, A4,8, A4,10, and A4,12 with the x4 = r choice. The rest of the classes

all contain at least one open set of parameters where both the NEC and “Nernst’s law”

are satisfied, around large negative values of βt.

The reader should note that we have made the “obvious” choice of the holographic

radial coordinate in each case in the analysis above.8 Generically, the radial direction r can

be a more complicated function of xi’s. While this freedom does not enter in any of the data

involving the spatial 4-slices, it is relevant in the construction of our 5d space-time. This

is because we have selected the redshift factor gtt(r) “by hand” to have the form e2βtr and

its contributions in the NEC calculations clearly depend upon, among other things, which

coordinate we choose to consider as r. It is quite possible that more elaborate choices than

those considered here could resurrect some of the algebraic structures we have left for dead.

9 5d space-time avatars of four-algebras

In this section we will demonstrate that some of the afore-mentioned geometries are indeed

realizable from reasonable matter content. In particular, we will work out a few exam-

ples explicitly, in a system with a similar effective action to one we’ve discussed before

8“Obvious” since we have taken r simply identified with one of the xi, but generically we can take more

complicated combinations of them as radial coordinate. For example, in the type A4,12, one can also take

any linear combinations of x3 and x4 as radial coordinates, r.
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(eq. (3.15)):9

S =

∫

dx5
√−g

{

R−2(∇φ)2+e2δφΛ− 1

4
e2αφ(F 2

A+F 2
B)−

1

4
e2βφ(M2

AA
2+M2

BB
2)

}

(9.1)

with A,B two abelian gauge fields, and FA, FB their field strengths.

However, we are going to relax the requirement that the spacetime be scale-invariant,

and look for a possibly hyperscaling violating generalization of the space times based on

four-algebras. In the orthonormal basis notation, this means that we are going to generalize

the radial one-form to be

σr =
dr

f(r)

where

f(r) = eθr

for a hyperscaling violating metric (with hyperscaling-violation exponent θ). The structure

constants involving the radial index will need to change via: Ci
rj → Ci

rjf(r). The equations

of motion will be modified in the orthonormal basis to be:

• Electric field:
{[

A
′

t(r)f(r) +At(r)C
t
rt(r)

]

e2αφ
}′

f(r) +
[

A
′

t(r)f(r) +At(r)C
t
rt(r)

]

Ci
rie

2αφ

=
M2

A

2
e2βφAt(r) (9.2)

with a similar equation for B.

• Magnetic field:
[

A
′

i(r)f(r) +Aj(r)C
j
ri(r)

]

Ck
pqǫ

iklǫpqle2αφ = 0 (9.3)

M2
A

2
e2βφAm(r) =

{[

A
′

m(r)f(r) +Aj(r)C
j
rm(r)

]

e2αφ
}′

f(r)

+
[

A
′

m(r)f(r) +Aj(r)C
j
rm(r)

]

Ct
rt(r)e

2αφ

− 1

4
Ai(r)C

i
pqC

j
klǫ

jpqǫmkle2αφ + [A
′

i(r)f(r) +Aj(r)C
j
ri(r)]C

k
rp(r)ǫ

iklǫmple2αφ (9.4)

with a similar equation for B.

• Scalar field:

2φ′(r)f(r)ǫmjkCm
ri (r)ǫ

ijk + 4φ′(r)f(r)Ct
rt(r) + 4(φ′(r)f(r))′f(r)

− α

2
e2αφ(F 2

A + F 2
B)−

β

2
e2βφ(M2

AA
2 +M2

BB
2) + 2δe2δφΛ = 0 (9.5)

The gauge curvature is given by

FA(r) =
[

A
′

i(r)f(r) +Aj(r)C
j
ri(r)

]

σr ∧ σi + [A
′

t(r)f(r) +At(r)C
t
rt(r)]σ

r ∧ σt

+
1

2
Ai(r)C

i
jkσ

j ∧ σk (9.6)

with a similar equation for B.

9In fact the above action is the same as eq. (3.15) generalized to include two gauge fields, up to the

following simple field redefinitions: φhere = 1

2
φthere, αhere = 2αthere, δhere = 2δthere, β = 2ǫ.
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9.1 Aa
4,2

Many of the space-times in the classification before are simply scaling geometries with a

spatial 3-fold belonging to one of the 3d Bianchi types. They have already been dealt

with in previous sections. We will therefore focus on the geometries with non-trivial radial

actions on the spatial geometries, and Aa
4,2 is the first such case. A hyperscaling violating

version of the Aa
4,2 geometry takes the following metric:

ds2 = −e2βtrdt2 +
dr2

f(r)2β2
1

+ (ω1)2 + β2
2(ω

2)2 + (ω3)2 (9.7)

The structure coefficients in the orthnomal basis becomes:

C2
34(r) = β2β1f(r) , C1

14(r) = aβ1f(r) , C2
24(r) = C3

34(r) = β1f(r) , (9.8)

where again f(r) = eθr. We will turn on the two massive vector fields and the dilaton as:

A(r) = Ate
−ωφ(r)σt , B(r) = B2e

−ωφ(r)σ2 +B3e
−ωφ(r)σ3 , φ(r) = kr .

If we take

α = β − θ

k
, δ =

θ

k
, θ = k(β − ω) ,

then the equations of motion becomes algebraic:

• EOM for A:

M2
A + 2(2 + a− kβ)β2

1(βt − kω) = 0 (9.9)

• EOM for B:

2B3β
2
1β2(1 + kω) +B2(M

2
B + 2β2

1(−1− a+ kβ + β2
2

+βt + k(−1− a+ kβ + βt)ω)) = 0 (9.10)

2B2β
2
1β2(−1− a+ kβ + βt) +B3(M

2
B − 2β2

1(1 + a− kβ − βt)(1 + kω)) = 0 (9.11)

• EOM for φ:

−B2
2M

2
Bβ−B2

3M
2
Bβ−8(2+a)kβ2

1+8k2ββ2
1+8kβ2

1βt+4Λ(β−ω)

−2β2
1(B

2
3+4k2+B2

2(1+β2
2)+2β2B2B3)ω−4kβ2

1(B
2
2+B2

3+B2B3β2)ω
2

−2(B2
2 +B2

3)k
2β2

1ω
3 +A2

t (M
2
Aβ + 2β2

1ω(βt − kω)2) = 0 (9.12)

• Einstein’s Equations:

− 4Λ+B2
3(M

2
B+2β2

1)+4B2B3β
2
1β2 +B2

2(M
2
B+2β2

1(1+β2
2))

+2β2
1(12+β2

2−8βt+4(k2+kβ(−2+βt)+β2
t ))−A2

t (M
2
A+2β2

1(βt−kω)2)

+2kβ2
1ω(8 + 2B2B3β2 − 4βt +B2

2(2 + kω) +B2
3(2 + kω)) = 0 (9.13)

−4Λ +B2
3(M

2
B + 2β2

1) + 4B2B3β
2
1β2 −B2

2(M
2
B − 2β2

1(−1 + β2
2))
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+2β2
1(4+4a2+3β2

2−4βt+4(k2+kβ(−1+βt)+β2
t )−4a(−1+kβ+βt))

−A2
t (M

2
A + 2β2

1(βt − kω)2)

+2kβ2
1ω(4+4a+2B2B3β2−4βt−B2

2(2+kω)+B2
3(2+kω)) = 0 (9.14)

− 2B2
2β

2
1β2(1+kω)−2β2

1β2(2+a−kβ−βt+kω)−B2B3(M
2
B+2(β1+kβ1ω)

2)=0 (9.15)

−4Λ−B2
3(M

2
B + 2β2

1)− 4B2B3β
2
1β2 +B2

2(M
2
B − 2β2

1(−1 + β2
2))

+2β2
1(4 + 4a2 − β2

2 − 4βt + 4(k2 + kβ(−1 + βt) + β2
t )− 4a(−1 + kβ + βt))

−A2
t (M

2
A + 2β2

1(βt − kω)2)

+2kβ2
1ω(4 + 4a− 2B2B3β2 − 4βt +B2

2(2 + kω)−B2
3(2 + kω)) = 0 (9.16)

−4Λ +B2
3(M

2
B − 2β2

1)− 4B2B3β
2
1β2 +B2

2(M
2
B − 2β2

1(1 + β2
2))

−2β2
1(−4 + 4k2 + β2

2 + 4a(βt − 2) + 8βt)−A2
t (M

2
A − 2β2

1(βt − kω)2)

−2kβ2
1ω(2B2B3β2 +B2

2(2 + kω) +B2
3(2 + kω)) = 0 (9.17)

4Λ−B2
3(M

2
B + 2β2

1)− 4B2B3β
2
1β2 −B2

2(M
2
B + 2β2

1(1 + β2
2))

−2β2
1(4(3 + 2a+ a2 + k2 − (a+ 2)kβ) + β2

2)−A2
t (M

2
A + 2β2

1(βt − kω)2)

−2kβ2
1ω(8 + 4a+ 2B2B3β2 +B2

2(2 + kω) +B2
3(2 + kω)) = 0 (9.18)

A general solution is impractical for such a system of algebraic equations. Instead,

we will show that a solution exists for some particular values of the parameters,

which gives a thermodynamically reasonable space-time. In particular, we pick

a = 2, β1 =
3
2 , βt = −2, β2 = 2. The following solution is obtained:

k = −6

ǫ
, Λ = −54 +

162

ǫ2
, B2 = ǫ

√

2(1 +
√

26 + 12β(3β+5ǫ)
ǫ2

)

6β + 5ǫ
,

At =

√

36 + ǫ2(−12 +
√

26 + 12β(3β+5ǫ)
ǫ2

)

3β + 2ǫ
,

B3 = B2

ǫ(1 +
√

26 + 12β(3β+5ǫ)
ǫ2

)

6β + 5ǫ
, M2

A = −18
(3β + 2ǫ)2

ǫ2
,

M2
B = − 9

2ǫ2

(

36β2 + 60βǫ+ ǫ2
(

27− 2

√

26 +
12β(3β + 5ǫ)

ǫ2

))

, (9.19)

where ǫ = ω − β. We see that a large open set of β, ǫ will yield real solutions with

a positive value of Λ (so that it is, quite plausibly, ultimately gluable to AdS5).

For example, taking β = −1
2 , ǫ = 1, we have k = −6, At = 2

√

24 +
√
5, B2 =

√

(1 +
√
5)/2, B3 = (1 +

√
5)3/2/2

√
2,Λ = 108,M2

A = −9
2 ,M

2
B = −9

2(6− 2
√
5). Also

notice that the solution is not valid when ǫ = 0, which corresponds to the conformal

case θ = 0. This fact remains true for other values of the parameters, indicating

that in this system Aa
4,2 is not realizable unless it has non-zero hyperscaling violation

exponent θ.
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9.2 A4,3

This is a simplified version of Aa
4,2 with the structure coefficients

C2
34(r) = β2β1f(r) , C1

14(r) = β1f(r) . (9.20)

It can be shown that with the same matter content as the previous example, this class

of geometries is also realizable. Again, if we fix that β1 =
3
2 , βt = −2, β2 = 2, the solutions

take the form:

k = −3

ǫ
, Λ = −9

2
+

81

2ǫ2
, B2 = ǫ

√

2(1 +
√

10 + 9β(β+2ǫ)
ǫ2

)

3(β + ǫ)
,

At =
2

√

9 + ǫ2(−1 +
√

10 + 9β(β+2ǫ)
ǫ2

)

3β + ǫ
, M2

A = −9(3β + ǫ)2

2ǫ2
,

B3 = B2

ǫ(1 +
√

10 + 9β(β+2ǫ)
ǫ2

)

3(β + ǫ)
,

M2
B = − 9

2ǫ2

(

9β2 + 18βǫ+ ǫ2
(

11− 2

√

10 +
9β(β + 2ǫ)

ǫ2

))

. (9.21)

Similarly to the previous case, a large open set of β and ǫ can yield real solutions

with positive Λ; and this system can only support geometries with non-zero hyperscaling

violation.

9.3 Aa,b
4,6

This geometry has the interesting feature that the radial action involves both scaling and

rotation on the spatial 3-manifold. The hyperscaling violating version of the geometry has

the following metric:

ds2 = −e2βtrdt2 +
dr2

f(r)2β2
1

+ (ω1)2 + (ω2)2 + λ2(ω3)2

with structure coefficients:

C1
14(r)=aβ1f(r) , C2

24(r)=C3
34(r)=bβ1f(r) , C2

34(r)=
β1
λ
f(r) , C3

24(r)=−λβ1f(r)

Since the radial action rotates the 2-3 plane of the geometry, choosing one of the vector

fields to be aligned with either of σ2, σ3 will suffice to be general. Therefore we will turn

on the following fields:

A(r) = Ate
−ωφ(r)σt , B(r) = B2e

−ωφ(r)σ2 , φ(r) = kr

As before, taking α = β− θ
k , δ = θ

k , θ = k(β−ω) will reduce the equations to algebraic

equations:

• At:

M2
A + 2(a+ 2b− kβ)β2

1(βt − kω) = 0 (9.22)
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• B2 :

M2
Bλ

2 + 2β2
1(1− (a+ b− kβ − βt)λ

2(b+ kω)) = 0 (9.23)

a+ b− kβ − βt + bλ2 + kλ2ω = 0 (9.24)

• φ :

(B2
2M

2
Bβ − 8kβ2

1(−a− 2b+ kβ + βt))λ
2 + 2β2

1(B
2
2 + (b2B2

2 + 4k2)λ2)ω

+4bB2
2kβ

2
1λ

2ω2 + 2B2
2k

2β2
1λ

2ω3 + 4Λλ2(−β + ω)

−A2
tλ

2(M2
Aβ + 2β2

1ω(βt − kω)2) = 0 (9.25)

• Einstein’s Equations:

(−4Λ−A2
tM

2
A +B2

2M
2
B)λ

2 + 2β2
1

(

1 +B2
2(1 + λ2(b+ kω)2)

+λ2(−2 + 12b2 − (−4 +A2
t )β

2
t + λ2 − 8b(βt + k(β − ω))

+2kβt(2β + (A2
t − 2)ω) + k2(4−A2

tω
2))

)

= 0 (9.26)

− (4Λ +A2
tM

2
A +B2

2M
2
B)λ

2 + 2β2
1

(

3 + (−2 + 4(a2 + ab+ b2))λ2

−B2
2((bλ+ kλω)2 − 1)− λ2(4kβ(a+ b− βt) + βt(4(a+ b) + (A2

t − 4)βt)

+λ2 − 2k(2(a+ b) + (A2
t − 2)βt)ω + k2(A2

tω
2 − 4))

)

= 0 (9.27)

(−4Λ−A2
tM

2
A +B2

2M
2
B)λ

2 + 2β2
1

(

−1 + (−2 + 4(a2 + ab+ b2))λ2

+B2
2((bλ+ kλω)2 − 1) + λ2(−4kβ(a+ b− βt)− βt(4(a+ b)

+(A2
t−4)βt)+3λ2+2k(2(a+b)+(A2

t−2)βt)ω+k2(4−A2
tω

2))
)

= 0 (9.28)

(−4Λ−A2
tM

2
A +B2

2M
2
B)λ

2 + 2β2
1

(

−1 + (2 + 4b2 − 4k2 + a(8b− 4βt)

−8bβt − λ2 +A2
t (βt − kω)2)λ2 −B2

2(1 + λ2(b+ kω)2)
)

= 0 (9.29)

(4Λ−A2
tM

2
A −B2

2M
2
B)λ

2 + 2β2
1

(

−1−B2
2((bλ+ kλω)2 + 1)

−λ2(−2 + 4a2 + 12b2 + 4k2 +A2
tβ

2
t + λ2 + 8bk(ω − β)

+A2
tkω(kω − 2βt) + 4a(2b+ k(ω − β)))

)

= 0 (9.30)

− b(2 +B2
2 − 2λ2) + a(λ2 − 1)− (kβ + βt)(λ

2 − 1) + k(λ2 −B2
2 − 1)ω = 0 (9.31)

Again, we are not going to give a general solution, but instead simply observe that

at b = 1, βt = −2, λ = 2, the following solution is obtained:

k = − 1

ω
, B2 =

√
15 , At =

√

4 + 16βω + 34ω2

ω
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Λ =
β2
1(16 + 64βω + 121ω2)

8ω2
, a = −3− β

ω
,

M2
A = −2β2

1 , M2
B = −β2

1

2
. (9.32)

It is easy to see that by making for example β = −4ω ∼ ε for some ε ≪ 1, we can

obtain real solutions with a > 0, which appear thermodynamically stable; and Λ > 0,

which allows it to be glued to AdS5. The conformal case θ = 0 → β = ω is apparently

valid, except that it will make a + 2b < 0, hence is not thermodynamically allowed

(by “Nernst’s law” of section 8).

9.4 Comment

In summary, in this section, we have found (hyperscaling-violating analogues of) extremal

scaling metrics governed by several of the four-algebras consistent with the NEC and

“Nernst’s law.” It is interesting that we have been unable, as yet, to find such metrics

without hyperscaling violationi, i.e. with θ = 0. We leave this to further work. All the ex-

amples we have considered have a three-dimensional sub-algebra which acts on the spatial

directions in which the field theory lives. The gravity description suggests there could be

even more novel possibilities where the bulk geometry is homogeneous with a symmetry

group which does not have such a three-dimensional sub-algebra that acts on the field

theory directions alone. An exploration of such geometries and their field theory duals is

also left for the future.

10 4d metrics governed by three and four-algebras

In section 8 and section 9, we have discussed 5d space-time. In this section, we discuss 4d

space-time where the radial direction is nontrivially involved in realizations of the real three

and four-algebras we’ve been discussing. We have seen that the fairly general static homo-

geneous horizons in 5d can be governed by a four-algebra involving the three “field theory”

spatial coordinates and the radial direction. Quite analogously, the Bianchi three-algebras

can arise as symmetry algebras of general horizons in 4d. In such cases, the Bianchi three-

algebra mixes the two field theory spatial coordinates and the radial direction. In the first

part of this section, we investigate examples where the radial and field theory spatial coor-

dinates are intertwined in a non-trivial way by the Bianchi three-algebras. Then, in the sec-

ond part of this section, we investigate the examples where four-algebras can arise as sym-

metry algebras of horizons in 4d, where the radial and field theory spatial and time coordi-

nates can all be intertwined. We restrict our attention to only the static metrics, and discuss

conditions that the NEC places on them. We will see that some of the types are excluded.

10.1 Bianchi three-algebras for radial and two-spatial directions

We first discuss 4d space-times where the radial direction is nontrivially involved in the

three-algebras. Here, we give some examples of this sort, which should be easily general-

izable.
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We will illustrate the type III examples. The Killing vectors ei of type III satisfy

[ei, ej ] = Ck
ijek where C1

13 = −C1
31 = 1 and the rest of the Ci

j,k = 0. The Killing vectors

and invariant one forms are given as

e1 = ∂2 ω1 = e−x1

dx2

e2 = ∂3 ω2 = dx3

e3 = ∂1 + x2∂2 ω3 = dx1 .

This three-algebra has three two-dimensional sub-algebras given by {e1, e2}, {e2, e3}
and {e1, e3}. We consider two possible embeddings of the two-algebras in the three-algebra.

• Case 1:

Consider {e1, e2} to correspond to symmetries along the field theory spatial directions

and x1 = r to be the radial direction. Then the metric can be written as

ds2 = L2
[

−e2βtrdt2 + dr2 + e−2r(dx2)2 + (dx3)2
]

. (10.1)

Time is added as an extra direction, modifying e3 to e3 = ∂r + x2∂2 + βtt∂t and

adding e4 = ∂t to the set of Killing vectors.

• Case 2:

Consider {e1, e3} to correspond to symmetries along the field theory spatial directions

and x3 = r to be the radial direction. Then the metric can be written as

ds2 = L2
1

[

−e2βtrdt2 + dr2
]

+ L2
2

[

(dx1)2 + e−2x1

(dx2)2
]

. (10.2)

Time is added as an extra direction, modifying e2 to e2 = ∂r + βtt∂t and adding

e4 = ∂t to the set of Killing vectors.

We will illustrate that both case 1 and case 2 can be obtained as solutions of Einstein

gravity coupled to a (either massive or massless) gauge field with/without scalar fields.

• Case 1

Case 1 can be obtained from the Einstein action coupled to a massive vector and a

massless scalar field,

S =

∫

dx4
√−g

[

R+ Λ− 1

4
F 2 − 1

4
m2A2 − 2(∂φ)2

]

. (10.3)

Along with the metric ansatz given by eq. (10.1), we consider the ansatz for the gauge

field and scalar field:

A =
√

Ate
βtrdt , (10.4)

φ = φ1x
3 . (10.5)

The scalar field equation is identically satisfied. The vector field equation gives

√

At(m
2L2 + 2βt) = 0 . (10.6)

– 33 –



J
H
E
P
0
3
(
2
0
1
3
)
1
2
6

The Einstein equations are given by

At

L2

(

m2L2 + 2β2
t

)

+ 8(1 + φ2
1)− 4ΛL2 = 0

At

L2

(

m2L2 − 2β2
t

)

+ 8(βt − φ2
1) + 4ΛL2 = 0

At

L2

(

m2L2 + 2β2
t

)

− 8(β2
t + φ2

1) + 4ΛL2 = 0

At

L2

(

m2L2 + 2β2
t

)

+ 8(βt − β2
t − 1 + φ2

1) + 4ΛL2 = 0 .

The equations can be solved to get

m2L2 = −2βt , (10.7)

ΛL2 = 2− βt + β2
t , (10.8)

At = 2L2(1 +
1

βt
) , (10.9)

φ2
1 =

1

2
(1− βt) . (10.10)

So we have Λ > 0. In order to satisfy Nernst’s law (i.e. that the horizon area vanishes

at the horizon), we need βt < 0, and therefore m2 > 0 and φ2
1 > 0. With this, At > 0

implies βt < −1.

• Case 2

Case 2 can be obtained as a solution of the Einstein-Maxwell action,

S =

∫

dx4
√−g

[

R+ Λ− 1

4
F 2

]

. (10.11)

Along with the metric ansatz given by eq. (10.2), we consider the gauge field ansatz

to be

A =
√

Ate
βtrdt . (10.12)

The Maxwell equation is identically satisfied. Then the Einstein equations give only

two independent equations:

Atβ
2
t

L2
1

+ 4
L2
1

L2
2

− 2ΛL2
1 = 0 (10.13)

Atβ
2
t

L2
1

− 4β2
t + 2ΛL2

1 = 0 . (10.14)

The solution is given by

At = 2L2
1

(

1 +
1

1− L2
2Λ

)

, (10.15)

β2
t = L2

1

(

− 1

L2
2

+ Λ

)

. (10.16)

β2
t > 0 implies ΛL2

2 > 1.
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10.2 Bianchi four-algebras A4,k in 4d Bianchi attractors

So far we investigated examples of the three-algebras realized in 4d space-time. We now

investigate 4d realizations of the four-algebras A4,k. Since this involves the field theory time

coordinates as well, generically this induces a time-dependent metric. In this paper, we are

rather interested in time-independent metrics, which may be dual to (time-independent)

ground states of doped field theories. Therefore we seek metrics which do not involve the

time-coordinate explicitly. This leaves us with only two possibilities; either the metric

should be static, or it should be stationary. Here we restrict our attention to static metrics

in 4d, but it is straightforward to generalize the analysis to include the stationary cases.10

A suitable static metric is as follows. For simplicity, we consider the diagonal metric

ansatz and takes the “obvious” choice for the coordinate identification. Then, the metric

ansatz is

ds2 =
4

∑

i=1

ηi(ω
i)2 (10.17)

where ωi are the invariant one-forms of A4,k and we require all ηi > 0. Since the static

property restricts the metric to the form

ds2 = −e2βtrdt2 + ds23DBianchi , (10.18)

we will see later that this form can be obtained only from the four-algebras Aa
4,2, A4,3, A

a,b
4,5,

Aa,b
4,6. The three dimensional subgroup G, which acts on the field theory spatial coordinates

and radial direction, turns out to be type IV, II, VI, VIIb in the 3d Bianchi’s classification

(or, A3,2, A3,1, A
a
3,5, A

b
3,7 in the notation of [44]) for the A4,k with k = 2, 3, 5, 6 respectively.

We will investigate the metric ansatz for each A4,k type given by eq. (10.17) and

also the corresponding null energy condition eq. (8.2) and “Nernst law” constraint as in

section 8 for each class of static metrics. We choose our null vectors in investigating the

NEC constraints as in eq. (8.4), but here i only runs over three values.

• A4,1:

The invariant one-forms are manifestly dependent on x4. So we should not choose

x4 as time if we wish to obtain a static metric. Furthermore, if we choose time as

one of the xi (i = 1, 2, 3), then the diagonal metric ansatz yields a stationary metric.

For example, if we choose x1 as the time and x4 as the radial directions, the metric

ansatz becomes like;

ds2 = −
(

dt− rdx+
1

2
r2dy

)2

+ ηrdr
2 + ηx(dx− rdy)2 + ηydy

2 , (10.19)

and this generically induces closed time-like curves (CTC). So we discard this case

without further exploration.

10Once we allow the stationary cases, we have to worry about the possible presence of closed time-like

curves, as seen in [1].
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• Aa
4,2:

Again in this case, we should not choose x4 as time since then the metric will be

manifestly time-dependent. Then, the best choice is to select x1 as time and x4 as

the radial direction, yielding a metric ansatz

ds2 = −e−2ardt2 + ηrdr
2 + e−2r

(

ηx (dx− rdy)2 + ηydy
2
)

, (10.20)

which is static. We have ηr > 0, ηx > 0, ηy > 0. In this case, the spatial part of the

metric coordinatized by (x, y, r) forms type IV of Bianchi’s 3d classification, or A3,2

in the notation of [44]. (See appendix B).

The non-zero components of the Einstein tensor are given by

G11 = −ηx + 12ηy
4ηrηy

, G22 = 2a+ 1− ηx
4ηy

, (10.21)

G33 =
ηx

(

3ηx + 4(a2 + a+ 1)ηy
)

4ηrηy
, G34 = −(a+ 2)ηx

2ηr
, (10.22)

G44 = −ηx − 4(a2 + a+ 1)ηy
4ηr

. (10.23)

Then, for the arbitrary null vector Nµ = (
√

∑3
i=1(s

i)2 , s1√
ηr

, s2√
ηx

, s3√
ηy
), the null

energy condition gives:

NµNνTµν = NµNνGµν =
f1(s

1)2 + f2(s
2)2 + f3s

2s3 + f4(s
3)2

2ηrηy
≥ 0 (10.24)

where

f1 = −ηx + 4(a− 1)ηy , f2 = ηx + 2(a− 1)(a+ 2)ηy , (10.25)

f3 = −2(a+ 2)
√
ηxηy , f4 = −ηx + 2(a− 1)(a+ 2)ηy , (10.26)

for arbitrary s1, s2, and s3. Therefore we need

fi ≥ 0 (i = 1, 2, 4) , 4f2f4 ≥ (f3)
2 . (10.27)

Also, to satisfy Nernst’s law, we need a > 0.

Let us set ηx = 1 by a coordinate change. We can then show for large positive a

and ηy,

f1 → 4aηy > 0 , f2 → 2a2ηy > 0 , f4 → 2a2ηy > 0 ,

4f2f4 → 16a2η2y ≫ (f3)
2 → 4a2ηy . (10.28)

Therefore, eq. (10.27) allows at least solutions at large (a, ηy).

If we choose x2 or x3 as the radial direction instead, but keep using x1 as time in

order to obtain a static metric, the warp factor is not a function of the radial direction

alone. And if we do not choose time as x1, then the metric becomes stationary at

most, but not static. We postpone further investigation of these geometries.
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• A4,3:

This has a very similar structure to the Aa
4,2 case above. So again to obtain a static

metric, the simplest approach is to choose x1 as time. If we choose x4 as the radial

direction, then the metric ends up with following form:

ds2 = −e−2rdt2 + ηrdr
2 + ηx (dx− rdy)2 + ηydy

2 . (10.29)

The only difference between this case and Aa
4,2 is the way in which radial warping

appears in various components. In these cases, the spatial part of the metric coordi-

nated by (x, y, r) form Bianchi’s 3d classification type II, or A3,1 (appendix B).

Note that in this case the horizon volume is independent of the radial coordinate. So

special care must be taken for analysis of Nernst’s law or “physical reasonableness”.

Let us first check whether the Null Energy Condition is satisfied.

The non-zero components of the Einstein tensor are given by

G11 = − ηx
4ηrηy

, G22 = − ηx
4ηy

< 0 , (10.30)

G33 =
ηx (3ηx + 4ηy)

4ηrηy
, G34 = − ηx

2ηr
, (10.31)

G44 = −ηx − 4ηy
4ηr

. (10.32)

It follows that for a null vector Nµ = (1 , 1√
ηr

, 0 , 0), the Null Energy Condition is

violated;

NµNνGµν = − ηx
2ηrηy

< 0 . (10.33)

Therefore we cannot obtain this space-time from physical matter systems.

• A4,4:

This has a very similar structure to the A4,1 case. Choosing x4 as the radial direction,

the warp factors as a function of r are the only difference. Again, there are three

choices for time from x1, x2, x3, but any choice always admits at most a stationary

metric, but not a static one.

• Aa,b
4,5:

In this case, the simplest choice for a radial direction is x4, since it admits warp

factors in the metric which are functions of r only, consistent with the algebraic

structure. (If we do not choose x4 as the radial direction, then the warp factors are

not functions of radius alone). There are three equally good choice for time: x1, x2,

or x3. All give equivalently good static metric ansatzes. For example, setting x3 to

be time, we have a static metric

ds2 = −e−2brdt2 + ηrdr
2 + e−2rdx2 + e−2ardy2 . (10.34)

– 37 –



J
H
E
P
0
3
(
2
0
1
3
)
1
2
6

Similarly setting either x1 or x2 as time, we obtain respectively,

ds2 = −e−2rdt2 + ηrdr
2 + e−2ardx2 + e−2brdy2 , (10.35)

and

ds2 = −e−2ardt2 + ηrdr
2 + e−2rdx2 + e−2brdy2 . (10.36)

Note that these are just generalized Lifshitz geometries. In all cases, the three spatial

coordinates (x, y, r) are in type VI of Bianchi’s classification, or Aa
3,5 (appendix B)

for generic a 6= 0, 1. For the special case a = 1, the metric reduces to Bianchi’s type

V, or A3,3 (appendix B).

Let’s consider the metric ansatz eq. (10.35). It is pretty straightforward to calculate

the Einstein tensor, and we obtain it in diagonal form as

G11 = −a2 + ba+ b2

ηr
, G22 = ba+ a+ b , (10.37)

G33 =
b2 + b+ 1

ηr
, G44 =

a2 + a+ 1

ηr
. (10.38)

Therefore, for the choice of null vectors Nµ = (1, 1√
ηr
, 0, 0), Nµ = (1, 0, 1, 0), Nµ =

(1, 0, 0, 1), respectively, we obtain

a− a2 + b− b2

ηr
≥ 0 , −(a− 1)(a+ b+ 1)

ηr
≥ 0 , −(b− 1)(a+ b+ 1)

ηr
≥ 0 . (10.39)

The black brane horizon is at r → ∞ where gtt → 0. In order to satisfy the Nernst’s

law, we need

e−(a+b)r → 0 ⇒ a+ b > 0 . (10.40)

Then, with ηr > 0, (10.39) gives

a ≤ 1 , b ≤ 1 . (10.41)

Assuming that gxx → 0 and gyy → 0 at the horizon, we have a parameter regime

where the Null Energy Condition is satisfied,

0 ≤ a ≤ 1 , 0 ≤ b ≤ 1 . (10.42)

Interestingly, on one boundary a = b = 0, we have AdS2 × R2, and on the other

boundary a = b = 1, we have AdS4.

• Aa,b
4,6:

Again, the best choice is to select x1 as time and x4 as the radial direction. Then,

we obtain the static metric ansatz

ds2=e−2ardt2+ηrdr
2+e−2br(ηx (cos rdx−sin rdy)2+ηy (cos rdy+sin rdx)2) . (10.43)
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The three spatial coordinate (x, y, r) form Bianchi’s 3d classification type VIIb, or

Ab
3,7 in the notation of [44]11 (appendix B).

It is pretty straightforward to calculate the Einstein tensor. Then, for the arbitrary

null vector, Nµ = (
√

∑3
i=1(s

i)2 , s1√
ηr

, s2√
ηx

, s3√
ηy
), we have the NEC

NµNνTµν = NµNνGµν =
f1(s

1)2 + f2(s
2)2 + f3s

2s3 + f4(s
3)2

2ηxηyηr
≥ 0 (10.45)

for arbitrary s1, s2, and s3 with ηr > 0, ηx > 0, ηy > 0. Here, the fi are given by:

f1 = 2ηxηy(2b(a− b) + 1)− η2x − η2y , (10.46)

f2 = 2ηxηy(a− b)(a+ 2b) + η2x − η2y , (10.47)

f3 = 2(a+ 2b)(−ηx + ηy)
√
ηxηy , (10.48)

f4 = 2ηxηy(a− b)(a+ 2b)− η2x + η2y . (10.49)

Therefore we need,

fi ≥ 0 (i = 1, 2, 4) , 4f2f4 ≥ (f3)
2 . (10.50)

In appendix C we discuss the explicit parameter ranges where these conditions are

satisfied.

Other choices of coordinates yield either non-static metrics, or field-theory position-

dependent warping factors in the metric.

• A4,7 - A4,12: By completely analogous reasoning to that appearing above, if we as-

sume a diagonal metric ansatz and make the “obvious” choice(s) for the time and

radial coordinates, we can obtain at most stationary metrics, but not static metrics.

In summary, for the diagonal and static metric ansatz (10.17), the allowed cases for

which the NEC and Nernst law constraints can be met are, Aa
4,2, A

a,b
4,5, and Aa,b

4,6.

11 Discussion

In this paper, we have extended the program initiated in [1], of trying to classify a wide

variety of less symmetric extremal near-horizon geometries for black branes, in several direc-

tions. We have demonstrated that one can simply modify these geometries to incorporate

hyperscaling violation in the dual field theory. We have given examples of such hyperscaling

11The fact that the three coordinates (x, y, r) span a manifold of type VIIb in Bianchi’s classification,

can be seen as follows (see [43]). We have chosen e1 as the generator of time-translations, and the spatial

subset e2, e3, e4 forms a real three-algebra where antisymmetric structure constants are given by

C
2
24 = b , C

3
24 = −1 , C

2
34 = 1 , C

3
34 = b . (10.44)

Defining the two-index constants Cdc by Cc
ab ≡ ǫabdC

dc, and furthermore decomposing them into a sym-

metric and anti-symmetric part as Cab ≡ nab + ǫabcac, we can see that nab has two unit eigenvalues and

one zero eigenvalue, and ac = (b, 0, 0). These are precisely the characteristics of Bianchi type VIIb.
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violation both in 4d and 5d bulk space-time metrics which realize the Bianchi types, with

the radial direction included in the algebra. We have also shown that one can easily obtain

analytical “striped” metrics starting from the horizons of [1]. It should be clear in each case

that in providing examples, we have barely scratched the surface of what are likely very rich

sets of solutions to the Einstein equations or appropriate low-energy limits of string theory.

In the direction of finding a more complete classification, we discussed the possible

application of the larger algebraic structures uncovered in [44, 45] to classify 5d extremal

near-horizon geometries in terms of real four-algebras with preferred 3d subgroups. While

we found that several of these possibilities will remain unrealized in sensible gravity coupled

to matter theories (which satisfy the Null Energy Condition), others can be realized with

simple matter sectors coupled to gravity, and likely arise as duals to suitable infrared phases

in strongly-coupled quantum field theory. Similarly, we have classified the 4d extremal

static near-horizon space-times with symmetries governed by the four-algebras, and we have

seen that some of the types are forbidden due to the NEC, but others are likely attainable.

A number of issues remain to be clarified. In many cases, these near-horizon geometries

manifest infrared singularities similar to that of the Lifshitz space-time [8, 50, 51]. In

the Lifshitz case, various physical smoothings or more subtle “resolutions” of the metric

singularity have been discussed in [52, 53]. The issue has also been addressed in isotropic

space-times with hyperscaling violation in [54, 55]. It would be interesting to see if similar

physics arises for the anisotropic space-times described here.

In addition, while we have given evidence in [1] that some of these horizons can be

glued into asymptotically AdS space-time by suitable RG flows, this has not been discussed

in anything close to a comprehensive way for the full classes of anisotropic metrics we’ve

described. A careful study of which classes of geometries are truly infrared phases of doped

CFTs (perhaps with additional currents activated on the boundary) would be worthwhile.

Another important question is to study the stability of the solutions found both in

this paper and in [1]. Such a study could include analysing both whether the solutions

are perturbatively stable, i.e., whether they have modes which grow with time, and also

whether they are stable with respect to changes in boundary conditions, i.e., the presence

of relevant deformations with respect to RG flow.

As always, one can wonder to what extent the rich set of possible phases found here

manifest themselves in UV complete models derived from string theory. It would be useful

to explore embeddings of these solutions into gauged supergravity theories12 that can be

derived from consistent truncation of IIA and IIB supergravity, for instance. It would also

be interesting to find proposals for phases of matter in real systems which could give rise

to some of the more exotic symmetry groups discussed here.

A simple, possibly interesting, extension of this work is to relax the condition of the

geometry being static. In section 10, we have seen that the real four-algebras in 4d space-

time naturally induce metrics which are not static, but can be stationary. However, one

must be careful with such metrics, since they can easily contain closed time-like curves,

as illustrated in [1] (see also [58]). Classifying 4d stationary space-times governed by the

12See also [56, 57] for the study of interesting black brane solutions in gauged supergravity.
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four-algebras which do not contain any such pathological features, could lead to interesting

duals. In field theory systems, if external sources perturb the system, they can induce

currents to flow. This would naturally correspond to a stationary metric in the putative

gravity dual of the system. A concrete example is that of a fluid subjected to a temper-

ature or an electric potential which is time independent and varying slowly in the spatial

directions. Gravity duals of extremal geometries subject to such potential gradients would

be worth studying further.13

The most ambitious possible extension would be to try and classify all extremal in-

homogeneous, anisotropic black brane horizons. In light of the interesting scaling features

shown in holographic transport in the simplest inhomogeneous geometries [59–61], this

problem could be interesting for “applied holography” in addition to its intrinsic interest

as a question in general relativity and string theory. Needless to say, finding all such inho-

mogeneous phases is a challenging question since the analysis cannot be reduced to merely

solving algebraic equations now and instead requires us to confront coupled partial differ-

ential equations in their full glory. The striped phase discussed in section 6 is an example of

an inhomogeneous phase and our discussion in that section can be viewed as a small step in

this direction. Clearly though, much more effort is needed to make progress on this issue.
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A Einstein gravity coupled to massive vector fields

In many sections of the paper, we will want to exhibit explicit solutions of Einstein gravity

coupled to a reasonable matter sector, to show that the near-horizon geometries we propose

can arise in physically sensible systems. We will usually choose our matter sector to consist

of a set of massive Abelian gauge fields Aa, described by the Lagrangian:

S =

∫

d5x
√−g{R+ Λ−

∑

a

(
1

4
F 2
a +

1

4
m2

aA
2
a)} (A.1)

In this section, we discuss some basic facts about the Einstein equations for the theory

with matter (A.1).

A.1 Ricci curvature

We will be interested in static solutions of Einstein gravity. The spatial slices spanned by

{r, x1, x2, x3} will be homogeneous spaces as in [1], though we will allow for slightly more

general possibilities intertwining the radial and “field theory” spatial coordinates in the

later sections of the paper.

As in [1], the basic objects of interest are invariant one-forms ωi, annihilated by the

Killing vectors ei which generate the 4-dimensional isometry group G. Metrics which are

written purely in terms of the ωi with constant coefficients, and with trivial t dependence:

ds2 = −gtt(r)dt
2 + λijω

i ⊗ ωj (A.2)

will automatically be G-invariant. Here we slightly modify the notation of [1]; the factors

of e−βir there, which incorporate the scaling of the coordinates under radial translations,

are built into the forms now, and the radial scaling symmetry is treated as part of G.
In order to exploit the underlying symmetries of the homogeneous geometries, we will

write down the Einstein-Maxwell equations in an orthnomal (vielbein) basis, in which the

metric tensor takes the form:

ds2 =
3

∑

i=1

(σi)2 + (σr)2 − (σt)2 (A.3)

The vielbein elements are simple linear combinations of the ωs; in the most trivial case,

σi = ωi. In this formalism, we will in general lose the advantage that the one forms σµ are

exact, and hence could be integrated into coordinates; instead they form an orthonormal

non-commuting basis.

We are interested in scale-invariant (or conformally scale-invariant, in the case of

hyperscaling-violating metrics) near-horizon geometries. In order for the generalised scal-

ing to make sense, we require that the radial coordinate r to be identified with one of the

exact one-forms σr = λ4dr = dx4, such that the other 3 one-forms form a sub-algebra.

In this appendix A, we set λ4 = 1. We further demand that (σt)2 = gtt(r)dt
2, in keeping

with (A.2). Therefore, the orthnomal non-commuting basis satisfies the following commu-

tation relation:

dσµ =
1

2
Cµ
νασ

ν ∧ σα . (A.4)
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The constants Ci
αβ for i ∈ {1, 2, 3} and α, β ∈ {1, 2, 3, r} are given by the data of

the four-algebra; Cr
µν = 0 ; Ct

tr = −1
2g

′
tt(r)/gtt(r). With this set-up the connection form

Γµ
νβ are no longer given by the Christoffel symbols, but instead are given by the structure

constants via:

Γµ
αβ = −1

2
(gταg

µσCτ
σβ + gτβg

µσCτ
σα − Cµ

αβ) . (A.5)

gµν is equal to the Minkowski ηµν in this basis. See [43] for detail. The Riemann curvature

tensor is given in this basis by the connection forms via:

Rσ
µαβ = Γσ

µβ,α − Γσ
µα,β + Γτ

µβΓ
σ
τα − Γτ

µαΓ
σ
τβ − (Γτ

βα − Γτ
αβ)Γ

σ
µτ (A.6)

Hence we can compute the Ricci curvature Rµν = Rα
µαν completely in terms of the struc-

ture constants, which only depend on r. In the case where we also have scaling symmetry

along the time direction, the entire space-time is homogeneous and the Ricci curvature is

therefore algebraic. We will see that in this formalism, the Einstein equations reduce to

algebraic equations, as in the story of generalized attractors discussed in e.g. [46, 47].

A.2 Maxwell’s equations

Here, we present the Maxwell equations for a single massive Abelian gauge field. Since

there are no cross-couplings between the vector fields Aa, the generalization to multiple

vectors is trivial.

Assume that the vector potential takes the form A(r) = At(r)σ
t +

∑

iAi(r)σ
i. Then

the curvature is given by

F = [A′
i(r) +Aj(r)C

j
ri]σ

r ∧ σi + [A′
t(r) +At(r)C

t
rt]σ

r ∧ σt +
1

2
AiC

i
jkσ

j ∧ σk (A.7)

with components given by F = 1
2Fµνσ

µ ∧ σν . The Maxwell equations for a massive vector

field are given in differential form as:

d ⋆5 F = −1

2
m2 ⋆5 A (A.8)

Since the metric tensor is now Minkowskian, the Levi-Civita tensor reduces to the usual

flat case. It is therefore straight-forward to obtain the following Maxwell’s equations.

A.2.1 Magnetic field

In this case, At(r) = 0. The Maxwell’s equations are:

(A′
i(r) +Aj(r)C

j
ri)C

k
mnǫ

iklǫmnl = 0 (A.9)

1

2
m2Am(r) = (A′

m(r) +Aj(r)C
j
rm)′ + (A′

m(r) +Aj(r)C
j
rm)Ct

rt

−1

4
Ai(r)C

i
pqC

j
klǫ

jpqǫmkl + (A′
i(r) +A(r)jC

j
ri)C

k
rnǫ

iklǫmnl (A.10)
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Algebra in the notation of [44] Algebra in the notation of [42, 43]

3A1 Bianchi I

A3,1 Bianchi II

A2 ⊕A1 Bianchi III

A3,2 Bianchi IV

A3,3 Bianchi V

Aa
3,5 (0 < |a| < 1) Bianchi VI

Aa
3,7 (a > 0) Bianchi VII

A3,8 Bianchi VIII

A3,9 Bianchi IX

Table 1. Classification of Real 3 dimensional Lie algebras.

A.2.2 Electric field

In this case, Ai(r) = 0. There is only one component of Maxwell’s equation:

(A′
t(r) +At(r)C

t
rt)

′ + (A′
t(r) +At(r)C

t
rt)C

i
ri =

m2

2
At(r) (A.11)

Similar to before, in a scaling solution, we expect that the components of the vector po-

tential are constants, reducing Maxwell’s equations to a set of algebraic equations.

A.3 Einstein’s equations

The stress energy tensor of a massive gauge field is given by:

Tµν =
1

2
FµλF

λ
ν +

1

4
m2AµAν −

1

2
ηµν

(

1

4
FαβF

αβ +
m2

4
AρA

ρ

)

(A.12)

where index contraction is done using ηµν .

Therefore we see that the Einstein equations

Rµν −
1

2
ηµν(R+ Λ) =

∑

a

T a
µν (A.13)

are reduced to a set of ordinary differential equations in r; or, in the case of scaling solutions,

a set of algebraic equations.

B Rosetta stone relating different nomenclatures for the Bianchi classi-

fication

In the table 1 above, we provide a dictionary relating two different common nomenclatures

for the classification of 3d real Lie algebras, as given in [44] and [42, 43].

• Bianchi VII0, which we use many times in this paper, is the special limit of Bianchi

VII. More precisely, Bianchi VII has nonzero structure constant C1
23 = −C1

32 = −1,

C2
13 = −C2

31 = 1 and C2
23 = −C2

32 = a. By setting a = 0, Bianchi VII reduces to

Bianchi VII0. The a = 0 limit is called A3,6 in [44].

• A3,4 in [44] is the special limit of the Aa
3,5 in [44] with a = −1.
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Figure 1. The darkest parameter region is the allowed region in the (ηy, b) parameter space. We

have set ηx = 1 and a = 1.

C Null energy condition for 4d A4,6

We need

fi ≥ 0 (i = 1, 2, 4) , 4f2f4 ≥ (f3)
2 . (C.1)

for fi given by eq. (10.46)–(10.49). We set ηx = 1 by performing a coordinate re-

parameterization. Then, with ηr > 0, fi > 0 (i = 1, 2, 4) gives

2ηy(2b(a− b) + 1)− 1− η2y ≥ 0 , (C.2)

2ηy(a− b)(a+ 2b) + 1− η2y ≥ 0 , (C.3)

2ηy(a− b)(a+ 2b)− 1 + η2y ≥ 0 . (C.4)

Furthermore, by flipping r ↔ −r, we can always make a > 0. So the horizon is at r → ∞.

In order to satisfy the Nernst’s law, we require b > 0.

Let’s set a = 1. Then the above 3 conditions become

2ηy(2b(1− b) + 1)− 1− η2y ≥ 0 , (C.5)

2ηy(1− b)(1 + 2b) + 1− η2y ≥ 0 , (C.6)

2ηy(1− b)(1 + 2b)− 1 + η2y ≥ 0 . (C.7)

In the regime where

b > 0 , ηy > 0 , (C.8)

the first condition (C.5) gives

1 + 2b− 2b2 − 2
√

b− 2b3 + b4 ≤ ηy ≤ 1 + 2b− 2b2 + 2
√

b− 2b3 + b4 . (C.9)

The second the third conditions (C.6) and (C.7) give respectively

ηy ≤ 1

2

(

2 + 2b− 4b2 +
√

4 + (2 + 2b− 4b2)2
)

, (C.10)
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ηy ≥ 1

2

(

−2− 2b+ 4b2 +
√

4 + (2 + 2b− 4b2)2
)

. (C.11)

Finally the condition 4f2f4 ≥ (f3)
2 gives additionally

1

4
(g1 − g2) ≤ ηy ≤ 1

4
(g1 + g2) (C.12)

where

g1 =
√

8b (10b3 − 4b2 + b+ 9) + 41− 4b(b+ 1)− 1 , (C.13)

g2 =
√
2

√

−(2b+ 1)2
(

√

8b (10b3 − 4b2 + b+ 9) + 41− 12(b− 1)b− 13
)

. (C.14)

We plot the allowed parameter ranges satisfying (C.9)–(C.12) in figure 1. The limit

ηy = b = 1 corresponds to AdS4.
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