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The current practice of factor of safety computation of pile-stabilised slopes depends substantially on either the

extension of methods for normal slopes with the pile-contribution introduced as an additional term or finite-element

modelling. Extending conventional methods to analyse pile-stabilised slopes fails to capture the key mechanisms like

soil arching, gradual transfer of resistance offered by the pile through the slope, change in slip surface due to

introduction of piles and so on. In this paper, a new algorithm is proposed to compute the factor of safety of pile-

stabilised slopes, in which the Morgenstern–Price method is modified to incorporate the effect of a pile. The

resistance offered by the pile is obtained using a pressure-based method which considers the soil-arching effect in

horizontal and vertical directions. The gradual propagation of this resistance offered by the pile is incorporated

through an iterative procedure, unlike the conventional methods. The algorithm considers the change in slip surface

due to the introduction of the pile. The factor of safety values computed using the proposed algorithm were found

to be in close agreement with that obtained from finite-element modelling. Moreover, a simple technique to

determine the optimal location of stabilising piles and pile-spacing is also presented.
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Notations
D diameter of stabilising piles

E modulus of elasticity

Ei normal inter-slice force

Fs Factor of safety of slope

H depth of the pile above the slip surface

Kan new coefficient of lateral earth pressure incorporating

soil arching

Kc horizontal seismic coefficient

Ms additional moment due to installation of the piles

N 0
i effective normal force on the base

P lateral resistance offered by the pile per unit depth

Pi resultant lateral force acting on post-arching zone

Po resultant reaction on pre-arching zone

Pr resultant lateral force on pile

Qi external force on (ith) slice

S0i mobilized shear resistance on the base of a slice

U resultant pore water force

Wi self-weight of ith slice

X inter-slice shear force

bi width of ith slice

c cohesion of the soil

hi height of ith slice

la length of horizontal arching zone

n ratio of centre-to-centre spacing and pile diameter

s centre-to-centre spacing between piles

u average pore water pressure

ai base inclination of ith slice

b angle of soil slope with horizontal

g unit weight of soil

L spacing coefficient

l scale factor

lm proposed scale factor

m Poisson’s ratio

f angle of internal friction of soil

Y angle of dilatancy of soil

si radial stress on the inner arch of horizontal arching

zone

sv average vertical stress on a differential element dz

Introduction
The stability of slopes is one of the fundamental problems in
geotechnical engineering as their delicate balance is often disrupted
by natural or man-made causes. Furthermore, the increasing demand
for engineered cut-and-fills, construction near or on slopes and so on,
has increased the need to understand the mechanism of slope failure
and develop techniques to stabilise the slopes. Stability of slopes
depends on the balance between a driving force that causes failure
and a resisting force that is developed against it. All the slope
stabilisation methods basically try to reduce the driving force or
increase the resisting force or both. One of the operative techniques
employed for stabilisation of slopes and prevention of excessive soil
movement is using stabilising piles in row(s) (Ashour and Ardalan,
2012; Ausilio et al., 2001; Cai and Ugai, 2000; Hassiotis et al.,
1997; Ito and Matsui, 1975; Kourkoulis et al. 2011a; Liang et al.
2014; Lirer, 2012; Neeraj and Thiyyakkandi, 2020). In practice, the
piles are installed well beyond the potential slip surface to the firm
ground beneath it to arrest the possible sliding of unstable soil mass.
The piles act as a cantilever beam that takes the lateral forces due to
the sliding soil mass and transfer them to the stable ground
underneath it (Ellis et al., 2010; Liang and Zeng, 2002). This
additional resistance provided by the piles stabilises the slope, thus
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improving its factor of safety (Fs) against failure. The computation of
Fs of pile-stabilised slopes is conventionally done by extending the
methods used for analysis of normal slopes to incorporate the
additional forces generated due to installation of piles.

The stability of normal slopes can be analysed by numerous
methods such as the limit analysis method, variational calculus
method, strength reduction method, limit equilibrium method and
so on (Atarigaya, 2016). The need for considering different forces
(e.g. body force, pore water pressure, etc.) and diverse soil types
in the stability analysis of slopes invalidates the use of
conventional methods in the mechanics of continua, and
consequently, the limit equilibrium method is commonly adopted
(Morgenstern and Price, 1965). One of the earliest known and
most widely used concepts of limit equilibrium is explained
through method of slices owing to the ease of computation
(Ahmed, 2017; Atarigaya, 2016; Duncan, 1996; Firat, 2009;
Hassiotis et al., 1997; Tsuchida and Athapaththu 2014; Zhu et al.,
2005). The analysis is done by dividing the slope into a number
of slices to find out the factor of safety of the slope. Various
methods commonly used for formulation of Fs in the method of
slices are the Fellenius Swedish circle or ordinary method,
Bishop’s simplified method, Janbu method, Spencer method and
Morgenstern–Price method. All these limit equilibrium methods
use the Mohr–Coulomb criterion to determine the shear strength
of soil along the failure surface. The choice of method depends
largely on the type of soil and the required accuracy of the work.
The most widely used method for the analysis of a generalised
slip surface is the Morgenstern–Price method (Ahmed, 2017;
Atarigaya, 2016; Firat, 2009; Griffiths and Lane, 1999). This
method considers both moment and force equilibriums to produce
a non-linear indeterminate equation for Fs. The equation is made
determinate by assuming a function that relates the inter-slice
shear force to inter-slice normal force.

The methods mentioned above are applicable for the case of
normal slopes that are not stabilised by piles. At present, the study
of pile-stabilised slopes is generally carried out by extending
these conventional methods (Di Laora et al., 2017; Firat, 2009;
1995; Jeong et al., 2003; Kourkoulis et al., 2011; Lee et al., 1995,
Summersgill et al., 2018). The resistance offered by the piles is
added as an additional term in the formulation of Fs, which does
not account for the propagation of reactive force through soil. A
major issue in this approach is that the critical slip surface
considered is the same as that of non-stabilised soil slopes (Firat,
2009; Kourkoulis et al., 2011; Lee et al., 1995; Summersgill
et al., 2018). However, in reality, due to the introduction of piles,
the critical slip surface changes and this modified surface needs to
be considered while computing the Fs. Also, the conventional
methods fail to incorporate the effect of location of piles along the
slopes (Hassiotis et al., 1997; Lirer, 2012; Neeraj, 2019;
Summersgill et al., 2018). In the present study, the
Morgenstern–Price method is modified using the method of slices
to adopt for the analysis of pile-stabilised slopes such that the
cumulative effect of lateral resistance offered by the pile on each

slice is accounted for. An algorithm is developed to compute the
Fs of the pile-stabilised slope considering the modified critical slip
surface. The proposed algorithm can be easily switched to use for
both normal slopes and pile stabilised slopes. Finite-element
modelling of both normal and pile-stabilised slopes was carried
out and the obtained Fs values were used to validate the proposed
algorithm. The variation of Fs with the location of the pile along
the slope was studied. Subsequently, a simple technique to
determine the optimal pile location is explained.

The Fs computation using the proposed algorithm requires accurate
determination of lateral resistance offered by the stabilising piles.
Due to the resistance from the pile and differential movement of soil
in between the piles, the soil-arching effect plays a key role in the
load-transfer mechanism of pile-stabilised slopes. Several methods
have been proposed in the past to estimate the lateral resistance
offered by the row of piles incorporating the effect of soil arching.
One of the pioneering attempts to model the soil-arching effect due
to the differential lateral deformation of soil between the piles in the
horizontal direction (termed as ‘squeezing effect’) was by Ito and
Matsui (1975). However, the method does not consider the rotation
of principal stresses due to soil arching. Most of the methods
developed afterward have adopted or modified the ‘squeezing
concept’ considered by Ito and Matsui (1975) (Fırat 2009; Harrop-
Williams, 1989; He et al., 2015a; He et al., 2015b; Li and Wei,
2018; Song et al., 2012; Won et al., 2005). As the soil in front of the
piles deforms vertically, the lateral earth pressure distribution adjacent
to the stabilising piles will become non-linear due to the vertical
arching. Adopting the formulation of Ito and Matsui (1975), He et al.
(2015a) presented an analytical method to determine the non-linear
pile resistance in sandy slopes incorporating vertical arching. The
method was extended by He et al. (2015b) for c−f soil; however, it
does not account for the effect of slope angle. In reality, both
horizontal and vertical arching need to be considered to determine
the lateral resistance offered by the stabilising piles. Recently, Neeraj
and Thiyyakkandi (2020) presented a general method (for c−f soil)
to determine the lateral pile resistance incorporating the effect of soil
arching in horizontal and vertical directions. The method also
considers the effect of slope angle (b) in the design. In this work, the
method of Neeraj and Thiyyakkandi (2020) is extended to model the
gradual propagation of pile resistance as explained in subsequent
sections.

Lateral resistance offered by the row of piles
An analytical method to obtain the lateral resistance offered by
the row of piles considering the effect of soil arching in both the
horizontal and vertical direction was proposed by Neeraj and
Thiyyakkandi (2020). The stress state of the soil-arching zone in
the horizontal direction is presented in Figure 1. The resistance
offered by the stabilising piles is given by:

P ¼ si L þ 1ð ÞD þ 2c
ffiffiffiffi

N
p

N − 1
LD

1.
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Where, L is the spacing coefficient given by, L ¼ ½ð
ffiffiffiffiffiffiffiffi

n2þ1
p

n−1 ÞN−1 −
1�n; here n is the ratio of pile spacing to the diameter of the piles
(n = s/D) and N = tan2 45 + f/2. The term c represents the
cohesion of the soil, and f the angle of internal friction. The
stress, si, acting along the central plane of pile row is a function
of average vertical stress (s v) as given by:

si ¼ Kansv þ T2.

Where:

Kan ¼ cosðqwþxÞ cos b
cosðbþxÞ ½3ðN cos2 qw þ sin2 qwÞ

3N−ðN−1Þ cos2 qw �

T ¼ 2c
ffiffiffi

N
p ½cos2 qwð3ðN cos2 qw þ sin2 qwÞÞ

3N−ðN−1Þ cos2 qw − sin2 qw�
The stress state including the direction of the major and minor
principal stresses after vertical arching in the active plastic zone
behind the row of piles is shown in Figure 2. A differential element
EFF0E0 is assumed to take a circular shape due to vertical arching
caused by the shear resistance developed along the vertical plane
OB. An intricate analysis considering the force equilibrium of the
differential element results in the formulation of an expression for
average vertical stress, s v, given by (Figure 2):

sv ¼ g cos bH

1 − C1
1 −

z

H

� �C1

− 1 −
z

H

� �

� �

þ C2

C1
1 −

z

H

� �C1

−1

� �

3.

Where:

C1 ¼ ðKan tan f − Kan tan b þ mÞ sin q
cos q1

;m ¼ Kan

N cos2 qþsin2 q
sin x cos b
cosðxþbÞ

C2 ¼ ðT tan f − Kan tan b þ tÞ sin q
cos q1

;

t ¼ c þ ðTþ2c sin2 q=
ffiffiffi

N
p

N cos2 qþsin2 q
Þ sin x cos b
cosðxþbÞ

where, q is the angle between the slip plane and the slope surface;
q1 is the angle between the slip plane and the horizontal; b is the
slope angle; and x is the angle between the major principal stress
and vertical at point where the differential element dz intersects
the slip plane; which are given by:

x ¼ p
4 þ

f
2 − q1; q ¼ 1

2 ðf − b þ cos−1 sin b
sin fÞ; and q1 ¼ 1

2 ðf þ b þ
cos−1 sin b

sin fÞ

The average vertical stress (s v) varies non-linearly with depth of
the pile due to the vertical arching of soil. The detailed derivation
of Equation 3 is presented in Appendix A.

The resultant force (Pr) offered by the row of piles can be
obtained by integrating Equation 1 with respect to the depth of
the pile:

Pr ¼ D L þ 1ð ÞKan

"

g cos b H2

1 − C1

1

1 þ C1
−

1

2

� �

þ C2H

C1

1

1 þ C1
− 1

� �

#

þTD L þ 1ð ÞH

þ 2c
ffiffiffiffi

N
p

LDH

N − 1
4.

O

z

dz

H

H-z

E’

dAE

G

F R
LJ

G’

F’

K

Potential sliding
surfaceB

θ1

θw

ah
σ1

σ1

σ3

σ1

σ3

σh

dV

dΨ

Slip
plane

A

C

Ψ

β

ξ

θ

τ

Figure 2. Stress state of vertical arching zone in front of pile row
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Figure 1. Horizontal arching zone in pile-stabilised slopes
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Further details about the derivations of Equations 1–4 can be
found in the paper by Neeraj and Thiyyakkandi (2020). The
analytical method described above is adopted to obtain the lateral
resistance offered by piles. The method is further extended in this
work to be used in the determination of FS of pile-stabilised
slopes as explained in the following section.

Analytical solution for safety analysis
As mentioned in the Introduction, the Morgenstern–Price method
is used in this study to analyse slope stability. According to
Morgenstern and Price (1965), the inter-slice shear forces (Xi) can
be related to inter-slice normal forces (Ei) by a predefined
function f(x) as given in Equation 5. The direction of inter-slice
forces varies according to the assumed function.

Xi ¼ Eilf xð Þ5.

Where:

f (x) = inter-slice function that varies continuously along the slip
surface

l = scale factor for the assumed function

Theoretically, the force function f(x) can take any form. However, the
nature of soil imposes certain range of functions that can be
rationally used for all practical purposes (Morgenstern and Price,
1965). Commonly used functions are constant, half-sine, trapezoidal,
user-defined, and so on. In this analysis, f(x) is assumed as a half-
sine function. An algorithm, based on the Morgenstern–Price
method, developed by Zhu et al. (2005) to determine the Fs for soil
slopes that are not stabilised by piles is modified to incorporate the
effects of additional reactive forces generated due to the introduction
of stabilising piles. The solution is developed such that both moment
equilibrium and force equilibrium are satisfied.

Figure 3 shows the free-body diagram of a typical slice (ith) with
height hi, width bi and base inclination ai. The slice is subjected to a
self-weight Wi and seismic force KcWi, where Kc is the horizontal
seismic coefficient, with external force Qi acting at an angle wi to the
vertical, resultant pore water force Ui = uibisecai, where ui is the
average pore water pressure, effective normal force on the base N 0

i

and mobilized shear resistance Si ¼ ðN 0
i tan f

0
i þ c

0
ibi sec aiÞ=Fs,

where f0
i is the effective angle of internal friction, c0i is the cohesion

along the base of the slice and Fs is the factor of safety for the slip
surface. Fs is assumed to be constant along a slip surface. The soil
slice is also subjected to normal inter-slice forces Ei and Ei−1 on the
left and right boundaries of the slice at a height zi and zi−1 from the
bottom, respectively. Inter-slice shear forces are calculated using
Equation 5.

The equation for Fs developed by Zhu et al. (2005) based on the
Morgenstern–Price method for soil slopes that are not stabilised
by piles is as given below.

Fs ¼

Xn−1

i¼1 Ri

Yn−1

j¼1Yj

h i

þ Rn

Xn−1

i¼1 Ti

Yn−1

j¼1Yj

h i

þ Tn6.

Where:

Yi ¼
"

sin ai − lfi−1 cos aið Þ tan f 0

i

þ cos ai þ lfi−1 sin að ÞFs

#

Fi−1
7.

l ¼
Xn

i¼1 bi Ei þ Ei−1ð Þ tan ai þ KcWihi þ 2Qi sinwihi½ �
Xn

i¼1 bi fiEi þ Fi−1Ei−1ð Þ½ �
8.

Ei ¼ Yi−1Ei−1Fi−1 þ FsTi − Rið Þ=Fi9.

Fi−1 ¼ sin ai−1 − lfi−1 cos aið Þ tan f 0

i−1
þ cos ai−1 þ lfi−1 sin ai−1ð ÞFs10.

Fi ¼ sin ai − lfi cos aið Þ tan f 0

i

þ cos ai þ lfi sin aið ÞFs11.

S = (N’itanφi + cbisecαi)/Fs

Ui = uibisecαi

hi/2 

αi

N’i

hi

ωi

Qi

zi–1

zi

Ei–1

Ei

λfiEi

λfi–1Ei–1

Wi

KcWi

bi

Figure 3. Free body diagram of a typical slice
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Ri ¼ Wi cos ai − KcWi sin ai þ Qi cos wi − aið Þ − Ui½ � tan f 0

i

þ c
0

ibi sec ai

12.

Ti ¼ Wi sin ai þ KcWi cos ai − Qi sin wi − aið Þ13.

In reality, Ri is sum of the components of all the forces acting on
a slice contributing to the resisting force except the inter-slice
normal forces, and Ti is sum of all the forces that contribute to the
driving force that cause instability. As the Fs term exists on both
sides of Equation 6, an iterative procedure has to be adopted to
solve for Fs, with an assumed value in the first trial.

To incorporate the influence of stabilising piles in the safety
analysis of slopes, a pile-stabilised slope as shown in Figure 4
with pile located at the kth slice is considered. The slope is
demarcated into three zones, namely, the pre-arching zone, the
arching zone and the post-arching zone. The region k in Figure 4
represents the arching zone. The (k − 1)th and (k + 1)th slices are
located to the right and left of the arching zone, respectively.

Figure 5 shows an enlarged view of the arching zone and the
adjacent slices with the additional forces that occurs due to the
introduction of piles. It should be noted that all the forces shown
in Figure 3 also act on these slices, although they are omitted in

Figure 5 to improve clarity. The width of the kth slice is assumed
to be the length of horizontal arching zone (Figure 1), given by:

la ¼
D

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

14.

From the analytical solutions presented in the previous section,
the resultant pile force Pr is the difference between the force Po

acting on the right edge of arching zone and the force Pi acting on
the left edge of the arching zone (Neeraj, 2019).

Slip surface 

Stabilising pile 

H 

V 

nth

(k – 1)th

(k + 1)th kth

1st

Figure 4. Pile-stabilised slope divided into slices
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Figure 5. (k + 1)th, kth and (k − 1)th slices
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Po ¼ nDH

"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

n − 1

 !N−1(

KanγH cos β

1 − C1

1

1 þ C1
−

1

2

� �

þ C2

C1

1

1 þ C1
− 1

� �

þ T

)

þ 2c
ffiffiffiffi

N
p

N − 1

(

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

n − 1

 !N−1

− 1

)#

15.

Pi ¼ n − 1ð ÞDH
"

KangH cos b

1 − C1

1

1 þ C1
−

1

2

� �

þ C2

C1

1

1 þ C1
− 1

� �

þ T

#

16.

The points of application of lateral thrusts Po and Pi are given by
yk−1 = Mo/Po, and yk+1 = Mi/Pi, respectively, where Mo and Mi are
corresponding moments along the slip surface. The detailed
derivation of resultant forces (Po and Pi) and moments (Mo and
Mi) in the pre-arching and post-arching zones and the points of
action (yk−1 and yk+1) is presented in Appendix B.

The forces Po and Pi are considered as external forces acting on
the corresponding slices. They are resolved in the normal and
tangential direction with respect to base of each slice and
incorporated in Ri and Ti of corresponding slices as shown in
Equations 17–20.

Rk−1 ¼
"

Wk−1 cos ak−1 − KcWk−1 sin ak−1

þ Qk−1 cos wk−1 − ak−1 − 1ð Þ − Uk−1

þ Po

s
sin d

#

tan f 0 þ ck−1bk−1 sec ak−1
17.

Tk−1 ¼
"

Wk−1 sin ak−1 þ KcWk−1 cos ak−1

þ Qk−1 sin wk−1 − ak−1 − 1ð Þ − Po

s
cos d

#

18.

Rkþ1 ¼
"

Wkþ1 cos akþ1 − KcWkþ1 sin akþ1

þ Qkþ1 cos wkþ1 − akþ1 − 1
	 


− Ukþ1

−

Pi

s − D
sin d

#

tan f 0 þ ckþ1bkþ1 sec akþ1
19.

Tkþ1 ¼
"

Wkþ1 sin akþ1 þ KcWkþ1 cos akþ1

þ Qkþ1 sin wkþ1 − ak−1 − 1
	 


þ Pi

s − D
cos d

#

20.

where, d = |a − b| is the inclination of resultant additional force
(Po or Pi) with reference to the respective slice base as shown in
Figure 5. Since the kth slice has equal forces acting from both
sides (Pi + Pr = Po¸ on the right edge and Po on the left edge), Rk

and Tk remain unchanged. However, the moment equilibrium of
the slice is influenced by these forces as their lines of action
differ. Specifically, an additional moment Ma is generated as given
in Equation 21.

Ma ¼
"

ykþ1
Pi

s − D
−

Po

s

� �

þ Po

s
bk tan ak þ

bk−1
2

tan ak−1

� �

þ Pibkþ1

2 s − Dð Þ tan akþ1

#

cos b
21.

Since the present method does not consider the pile’s contribution
as an additional component explicitly, the equation for Fs

(Equation 6) remains the same. However, the scale factor l needs
to be modified to incorporate the additional moment Ma (Equation
21) developed on kth slice as follows,

lm ¼
Xn

i¼1 bi Ei þ Ei−1ð Þ tan ai þ KcWihi þ 2Qi sin wihi½ � þ Ma
Xn

i¼1 bi fiEi þ fi−1Ei−1ð Þ½ �
22.

The modified scale factor, lm, has to be used in Equations 7, 10
and 11 for Fs calculation.
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Algorithm to obtain factor of safety
As indicated earlier, an iterative procedure is required to solve for the
factor of safety. An iterative algorithm was developed for determining
the critical slip surface and corresponding Fs for a given pile-
stabilised slope. The steps involved in the iteration are as follows.

1. Input the slope geometry (height, V and slope angle, b); soil
properties (g, c and f); and pile parameters (D and S).

2. Divide the whole slope into a number of slices.
3. Input pile location (k) and compute the length of the

soil-arching zone (la).
4. Choose an arbitrary slip surface and input entry and exit

points.
5. Calculate the resultant forces acting on kth, (k − 1)th and

(k + 1)th slices (Pr, Po and Pi) and the additional moment (Ma)
developed due to the introduction of the piles, using
Equations 4, 15, 16, and 21, respectively.

6. Calculate Ri and Ti for all the slices using Equations 12 and
13, respectively.

7. Modify Ri and Ti for (k − 1)th slice and (k + 1 )th slice using
Equations 17–20.

8. Define the inter-slice function f (x). A half-sine function is
assumed here:

f xð Þ ¼ sin p
x − xmin

xmax − xmin

� �� �

where, xmax and xmin are abscissa of entry and exit points of
the failure surface, respectively, and x denotes the abscissa of
midpoint of each slice.

9. Assume an initial value for Fs and lm. The number of
iterations required depends on the initial values assumed.
However, the final values of Fs and lm do not vary with the
assumed initial values. An effective transfer of inter-slice
normal force requires the assumed Fs to satisfy Equation 7
(Zhu et al., 2005). In general, for the first iteration, it can be
assumed that Fs = 1 and lm = 0.

10. Calculate Yi and Fi and for all slices using Equations 7 and
11.

11. Calculate Fs using Equation 6.
12. With Fs obtained from step 11 and the assumed value of lm,

repeat steps 10 and 11 once more for the improved values of
Fi, Yi and Fs.

13. Calculate Ei using Equation 9.
14. Calculate lm using Equation 22.
15. With the updated values of Fs and lm, repeat steps 10–15

until the difference in the values of Fs and lm for two
consecutive iterations fall below the tolerances t1 and t2,
respectively. A tolerance of 0.001 was considered for both
cases in this analysis.

16. Store the Fs value for the chosen slip surface.
17. Choose a different slip surface and return to step 4. Repeat up

to step 17 for all the possible slip surfaces.
18. Find the minimum of all the Fs values obtained in step 17 to

obtain the factor of safety and the critical slip surface of the
pile-stabilised slope.

The above algorithm was coded in Matlab software (R2020b).
The algorithm can also be used to obtain the Fs of soil slopes that
are not stabilised by piles if Ri and Ti are calculated using
Equations 12 and 13, respectively, for all slices and the scale
factor (l) is determined using Equation 8. Also, for the no-pile
condition, the division of the slope into three zones is not needed.
Figure 6 shows the typical output plot with various slip surfaces
considered and the failure surface corresponding to the minimum
Fs, for a particular pile position and slope angle. The abscissa and
ordinate represent the respective horizontal and vertical
dimensions of the model considered in the analysis. The critical
slip surface is represented by red colour and the green lines
represent the ground surface. The line with star marks at either
ends denotes the location of the pile.

Comparison of algorithm with finite-element
modelling and the limit equilibrium method
Factor of safety values for soil slopes with and without piles
obtained from the proposed algorithm were compared with that
determined using finite element modelling. Slopes without pile
were modelled both in Plaxis 3D software and the Slope/W
program of the GeoStudio software package. The Slope/W
program is widely used to obtain the factor of safety of normal
soil slopes. Pile-stabilised slopes were simulated only in Plaxis
3D as Slope/W program is a two-dimensional modelling tool.

6

5

4

3

2

1

0

−1

−2

−3

−4
0 5 10 15

Distance: m

E
le

va
ti
o
n
: 
m

Figure 6. Typical output plot with different slip surfaces and
failure surface generated in Matlab

Table 1. Material properties adopted in numerical modelling

Soil A Soil B Pile

g: kN/m3 20 20 25

E: kPa 5 × 103 3.5 × 103 7 × 107

m 0.25 0.25 0.15

c: kPa 0 40 –

f: ° 32 20 –

y: ° 0 0 –

123

Geotechnical Research

Volume 8 Issue 4

Factor of safety of pile-stabilised slopes:

an algorithm incorporating soil-arching

effect
Neeraj and Thiyyakkandi

Downloaded by [] on [02/04/22]. Published with permission by the ICE under the CC-BY license 



A soil slope having a height of 5 m and slope angle (b) of 26.6°
(1V:2H) was modelled using various soil conditions and pile
parameters as shown in Table 1. Two different soil conditions
represented as Soil A (sand) and Soil B (c−f soil) were chosen
for the analyses. In the case of the pile-stabilised slope, a row of
0.3 m and 1 m dia. piles at a spacing of three times the diameter
was considered. Modelling of slope sections with different
number of piles was carried out and the results were essentially
the same. The model presented here was the one with nine piles.

Figure 7 displays the slope model constructed in limit equilibrium
slope stability mode of Slope/W. Morgenstern–Price analysis type
was selected with a half-sine side function as adopted in the
proposed algorithm. The soil was characterised as Mohr–Coulomb
material and the phreatic line was assumed to be at a greater
depth below base of the model. The potential slip surfaces for
analysis were defined using entry and exit points with the
specified ‘radius tangential lines’ intrinsic option available in the
program.

In case of Plaxis 3D analysis, three-dimensional (3D) models of
soil slope (and piles) were generated using 10-nodded tetrahedral
elements. The built-in ‘soil and interface’ material type was
selected to model soil and piles. The soil was modelled as
Mohr–Coulomb material. The piles were modelled as concrete
piles using the linear-elastic material model. The boundary
condition at all the vertical surfaces was set to normally fixed.
The horizontal surface at the base was fully restrained. The slope
surface and the horizontal surfaces at the top were set to free.
Sufficient depth of soil was provided below the pile tip so that the
influence of boundary was negligible. The effect of construction
sequence and pile installation were not considered in the present
analysis. The soil mass and the piles were activated in the initial
phase and a Ko calculation type was chosen. A null plastic
analysis in phase 2 of the staged construction loading type was
carried out to activate the gravity loads due to the soil mass and
the row of piles. The plastic analysis was followed by the inbuilt
safety analysis with updated mesh to determine the factor of

safety of pile-stabilised slopes. The principle of strength reduction
was used to obtain the factor of safety. Factor of safety is defined
as the ratio of maximum available shear strength to minimum
shear strength required for equilibrium. The standard Coulomb
condition is introduced to strength reduction method to obtain
Equation 23 for factor of safety (Brinkgreve et al., 2018).

Factor of safety ¼ c − sm tan f

cr − sm tan fr23.

where, c and f are input strength parameters which are reduced to
cr and fr, the minimum required strength parameters, and sn is the
normal stress component. In the strength reduction approach of
Plaxis 3D, both c and f are reduced by a common multiplier SMsf

as given in Equation 24. This parameter is incrementally
increased till failure and the value of Msf at failure is reported as
factor of safety (Brinkgreve et al., 2018).

X

Msf ¼
c

cr
¼ tan f

tan fr24.

Figure 8 shows the total deformation contour obtained from the
safety analysis of pile-stabilised slope in Plaxis 3D. Table 2
summarises the Fs values for slopes without piles for different soil
types obtained from the proposed algorithm and finite-element
modelling.

The comparison of Fs values of pile-stabilised slopes for the case of
0.3 and 1m dia. piles, estimated using Plaxis 3D, and the developed
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Figure 7. FS computation results in slope/W, GeoStudio

[× 10–3 m]

0

40

80

120

160

200

240

280

320

360

400

440

480

520

Z

X
Y

Figure 8. Total deformation contour after safety analysis of pile-
stabilised slope model in Plaxis 3D
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algorithm are presented in Table 3. The Fs values for the same slope
and pile-dimensions, when computed by taking the pile contribution
explicitly as an additional term, are also presented in Table 3. This
was obtained by adding P (Equation 1) to the numerator of equation
for Fs (Equation 6) wherein Ri, ti and l were obtained using
Equations 12, 13 and 8, respectively, as discussed previously for the
case of non-stabilised slopes.

As is evident from the tables, the factor of safety values for both
normal and stabilised slopes predicted using the proposed method
were in close agreement with that obtained from the numerical
analyses. This implies that the proposed algorithm can be used to
compute the Fs quickly, unlike the finite-element packages which
require a significant amount of time to generate a model and
calculate the results. It can be observed from Table 3 that

considering the resistance offered by piles as an additional term in
the equation for Fs, as conventionally done in practice, leads to an
over-prediction. The ‘additional term’ method also fails to capture
the effect of pile location. In reality, the Fs varies with the
location of piles, as discussed in next section.

Change in critical failure plane
The installation of piles in a slope modifies its critical slip surface.
The existing practices do not consider the change in critical slip
surface and compute the factor of safety corresponding to the same
slip surface as that of un-stabilised slopes. The proposed algorithm
identifies the new critical slip surface formed due to the introduction
of piles and computes the Fs corresponding to the new surface. To
demonstrate the modification of slip surface due to the introduction
of stabilising piles, the analyses were carried out for without and with
stabilising piles cases using the proposed algorithm. Piles having a
diameter of 1 m spaced at a centre-to-centre distance, n = 3, in a
typical c−f soil slope with c = 30 kN/m2, f = 20°, unit weight,
g = 20 kN/m3, and slope angle b = 26.5 (2H:1V) were considered for
the analyses. When all other factors are kept constant, the variation in
the critical slip surfaces for the case of without and with stabilising
piles obtained using the proposed algorithm is given in Figures 9(a)
and 9(b), respectively. The colour codes adopted for Figure 6 are
applicable to Figure 9 as well.

Determination of pile location and spacing
The factor of safety of pile-stabilised slopes is influenced by the
location of the pile. Currently, the determination of optimal location
of pile (OPL) is a time-consuming task which involves multiple
finite-element modelling iterations, consuming considerable amounts
of time. A new a straightforward technique to determine the OPL is
presented in this work. The distance of the pile from the toe of the
slope can be easily taken as an additional variable in the proposed

Table 2. Comparison of Fs values obtained from numerical
modeling and proposed algorithm for slopes without piles

Method Soil A Soil B

GeoStudio (slope/W) 1.55 3.15

Plaxis 3D 1.53 3.08

Proposed algorithm 1.52 3.15

Table 3. Comparison of Fs values obtained from numerical
modeling and proposed algorithm for pile-stabilised slopes

Pile diameter Method Soil A Soil B

0.3 m Plaxis 3D 1.72 3.32

0.3 m Proposed algorithm 1.71 3.42

0.3 m ‘Additional term’ method 1.94 3.83

1.0 m Plaxis 3D 2.15 3.92

1.0 m Proposed algorithm 1.98 4.03

1.0 m ‘Additional term’ method 2.47 4.31
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Figure 9. Critical slip surface generated using proposed algorithm (a) without pile and (b) with pile
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algorithm presented in the previous section and the Fs value
corresponding to each pile location can be computed. Three typical
scenarios, (i) c = 0 kN/m2, f = 32°, (ii) c = 10 kN/m2, f = 20° and
(iii) c = 30 kN/m2, f = 20°, were considered. A pile-stabilised slope
installed with (i) D = 0.3m and (ii) D = 1m piles, spaced at a center-
to-center distance, n = 3, and a slope angle b = 26.5° (2H:1V) was
adopted. The unit weight of soil was assumed as 20 kN/m3. The total
length of the base of the slope was adopted as 10m. The variation
of Fs with the location of pile for cases (i)–(iii) is presented in
Figure 10(a)–(c).

The optimal location of pile obtained using the proposed method is in
accordance with the results of past finite-element analyses found in
literature. Hassiotis et al. (1997) suggested that the piles installed
between the middle and the crest of the slope are most effective. In
case of homogenous purely cohesive soil, Lee et al. (1995) showed
that the most effective position of piles is close to the crest of the slope.

The finite-element analysis presented in the paper by Cai and Ugai
(2000) indicates that the piles located at the middle of the slope provide
the highest factor of safety. Ausilio et al. (2001) also suggest placing
the piles in the upper-middle portion of the slope for efficient
stabilisation. As can be observed from Figure 10, the Fs values initially
increase with the distance of pile from the toe of the slopes, reach a
peak value and then decrease as the piles move further away from the
toe. In case of sandy soil, the maximum factor of safety is obtained
when the piles are located around the mid-slope. On the other hand, as
the soil becomes cohesive, the maximum Fs value is found to occur at
a pile location above the mid-slope. However, the location of pile
corresponding to the peak value of Fs can not be readily called the
OPL as it is also influenced by various other factors, for example, the
access to the slope, space for construction and so on. Nevertheless, the
proposed algorithm can be easily used to obtain the variation of factor
of safety with location of pile, which in turn can be used by engineers
to choose the location based on other field constraints.
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Figure 10. Variation of Fs with location of the piles: (a) soil (i), (b) soil (ii) and (c) soil (iii)
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The variation of Fs with the ratio of pile-spacing to diameter
(n = s/D; D = 0.3) is presented in Figure 11 for the case of soils
(i)–(iii). As the soil-arching effect is more significant when the
piles are placed closer, the resistance they offer will be greater.
Therefore, higher Fs is found to occur at smaller pile-spacing.
Further, it can be observed that, beyond the pile-spacing of 4–5D,
the change in Fs is negligible, because of lower pile-contribution.

Conclusions
In this work, a new algorithm is proposed to compute the factor
of safety of pile-stabilised slopes. The proposed algorithm
involves an iterative procedure which models the progressive
transfer of additional resistance offered by piles. The pile-
stabilised slope is divided into three zones (pre-arching, arching
and post-arching zone) and a pressure-based method proposed by
Neeraj and Thiyyakkandi (2020) is extended to obtain the force
on each zone. Thereby, the effect of soil arching on the load-
transfer mechanism of pile-stabilised slopes was intrinsically
incorporated in the proposed algorithm. The comparison between
Fs values computed using the proposed algorithm and those
obtained using finite-element modelling showed that the algorithm
can be used as a quick, simple and reliable technique to estimate
the factor of safety of pile-stabilised slopes. The conventional
method of computing Fs wherein the pile-contribution is
considered as an additional term, was found to over-predict the
values. Unlike the conventional methods, the proposed algorithm
incorporates the modified slip surface while computing the Fs,
which significantly affects the estimated value. Subsequently, the
variation of Fs with the pile location along the slope was studied.
It was found that, for frictional soil, the mid-slope was the ideal
location of the pile, while, as the cohesion value increased, the
maximum Fs occurred when the piles were placed above the
middle of slope. The factor of safety was found to reduce with an
increase in pile-spacing due to poor contribution from the pile.
Apparently, a pile-spacing greater than four to five times the
diameter of piles was found to be ineffective in stabilising the

pile. However, the optimal pile location and spacing should only
be determined by studying other field constraints and the cost
involved. The experimental validation of the proposed method is
also warranted before field use.
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Appendix

A: formulation of vertical average stress r v

The enlarged view of the differential element EFF 0E0 (Figure 2) is
shown in Figure 12. The triangle LFF0 is in equilibrium state, and
therefore, it can be ignored in the analysis of vertical equilibrium
of the whole differential element (He et al., 2015a; Neeraj and
Thiyyakkandi, 2020). The minor principal stress s3 acts on plane
LF 0, which can be resolved in vertical direction to obtain s3v as

s3v ¼ s3
sin x cos b

cos x þ bð Þ25.

Using the principles of origin of planes, it can be proved that:

x ¼ p
4 þ

f
2 − q1; q ¼ 1

2 ðf − b þ cos−1 sin b
sin fÞ ; and

q1 ¼ 1
2 ðf þ b þ cos−1 sin b

sin fÞ
where q is the angle between the slip plane and the slope surface;
q1 is the angle between the slip plane and the horizontal; b is the
slope angle; and f is the angle of internal friction. Shear stress at
face EE0 is given by:

t ¼ c þ sh tan f ¼ c þ kansv þ Tð Þ tan f26.

Considering the vertical force equilibrium of the differential
element dz,
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tdz þ sv þ dsvð ÞB0 þ s3vdz − svB
0
− sh

tan bdz − gB0h ¼ 0
27.

Where B0 = (H − z) cos q1/sin q and h = dzcos b.

Substituting Equation 26, Equation 2, Equation 25 and Equation
27 and rearranging,

dsv

dz
þ sv

C1

H − z

� �

þ C2

H − z
− g cos b ¼ 0

28.

C1 and C2 can be obtained from Equation 3.

Equation 22 is in the dy/dx + Py = Q form and can be integrated
using the method of integration factor to obtain s v.

sv þ
g cos b H − zð Þ

1 − C1
þ C2

C1

� �

H − zð Þ−C1¼ C
29.

where, C is the constant of integration. Applying the boundary
condition, s v ¼ 0 at z = 0, in Equation 29 gives:

C ¼ g cos bH

1 − C1
þ C2

C1

� �

Hð Þ−C1

30.

Substituting for C (Equation 30) in Equation 29 and re-arranging,

sv ¼ g cos bH

1 − C1
1 −

z

H

� �C1

− 1 −
z

H

� �

� �

þ C2

C1
1 −

z

H

� �C1

−1

� �

31.

B: resultant forces and point of action

The resultant reaction on pre-arching zone, Po, and the resultant
lateral force transferred to the post-arching zone, Pi, can be
obtained by integrating the force per unit length along the depth.

Po ¼ E
H

0

so sð Þdz and Pi ¼ E
H

0

si s − Dð Þdz
32.

Here, so and si are the stresses along the outer and inner planes
of the arching zone, respectively (Figure 1). The stress si is given
by Equation 2 and the stress so is related to si as (Neeraj and
Thiyyakkandi, 2020):

so ¼ si

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

n − 1

 !N−1

þ 2c
ffiffiffiffi

N
p

N − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

n − 1

 !N−1

− 1

2

4

3

5

33.

Substituting Equations 2 and 33 in Equation 32 and integrating
yields,

Po ¼ nDH

"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

n − 1

 !N−1(

KanγH cos β

1 − C1

1

1 þ C1
−

1

2

� �

þ C2

C1

1

1 þ C1
− 1

� �

þ T

)

þ 2c
ffiffiffiffi

N
p

N − 1

(

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p

n − 1

 !N−1

−1

)#

34.

Pi ¼ n − 1ð ÞDH
"

KangH cos b

1 − C1

1

1 þ C1
−

1

2

� �

þ C2

C1

1

1 þ C1
− 1

� �

þ T

#

35.

To obtain the points of application of these forces, the moment
about the point where the piles intersect the slip surface is taken,
that is,

Mo ¼ E
H

0

so sð Þ H − zð Þdz and

Mi ¼ E
H

0

si s − Dð Þ H − zð Þdz

36.

Using Equations 2, 33–36, the point of application of forces from
the slip surface can obtained as:

ho ¼ Mo

Po
and hi ¼

Mi

Pi37.
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