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1 Introduction and conclusions

The Sachdev-Ye-Kitaev (SYK) model [1, 2] has received much attention recently [3–8]. It

is a simple model with solvable aspects which exhibits interesting connections to quantum

chaos [9–13], black hole physics and quantum gravity in 1+1 dimensions [14–20]. Under-

standing these relations better in this model, and potential extensions of it, is an active

and exciting research direction that promises to improve our knowledge of holography.

The SYK model is a quantum mechanical model involving Majorana fermions in-

teracting with non-local random couplings. Much of the interesting physics of the model,

including low energy near-conformal symmetry1 and maximal scrambling, is not manifestly

1The relation to AdS2 was first pointed out in [21].
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related to the specific construction in a transparent manner. To gain a better understand-

ing of these features and their origin, it is therefore important to explore generalizations

of the model. There has already been some work in this direction.2

Our approach to exploring the generalization to the SYK model is motivated by holog-

raphy. In this work we consider two models. In the first one, we consider a 1+1d general-

ization in which we add locality in the extra dimension and implement random couplings as

a function of the momentum. In the second model, we consider probe fermions interacting

with a core of SYK degrees of freedom.

The first extension consists of a chain of SYK models, with Majorana fermions at each

site with nearest hopping. This adds local physics in the added spatial direction. The

fermions interact via random couplings, as in the original SYK model, but only at low

enough momenta. This is achieved by first passing the Majorana fermions via a low-pass

filter, and then coupling these via an SYK random interaction. The motivation for this is

to have a model which is an ordinary relativistic field theory above some scale (and below

a UV cut-off), which may model an asymptotically AdS3 space, and some complicated

IR dynamics encoding an object in the interior of AdS3. Besides ensuring that the high

momenta modes are filtered out, in this work we also focus on chiral filters, thus only one

chiral half of the fermions participate in the interactions.

The second extension considers a core of SYK fermions to which a probe fermion is

coupled to. In this approach we interpret the SYK fermions as describing the interior of

the black hole, and the probe fermions as a single trace operator outside of it.

The results we obtain for the first class of models demonstrate, depending on the precise

way the low pass filter is implemented, a rich variety of IR theories generalizing the SYK

family of models. At high momentum, the model asymptotes to a free 1+1 dimensional

field theory. As we decrease the momentum, the modes interact more strongly, until the

new scaling regime is approached. In this scaling regime the fermions acquire an anomalous

dimension, with different scaling for the space and time coordinate. In other words, we

get a general hyperscaling at low energies. The dynamical critical exponent z depends on

the type of low-pass filter we use, and we discuss the range of sensible possibilities that

arise. We also solve an example of the second class of models and discuss the new scaling

dimensions appearing for these fermions.

One could consider our models as a particular class of disordered large N theories at

strong coupling. Applications of holography to such theories have been explored in [25].

Furthermore, that inherent randomness in the disordered theory might be crucial for un-

derstanding black hole physics has recently been pointed out [26]. Interesting connections

between 1+1d theories and black holes in gravity were also previously explored [27–29].

2In [22], a 1+1 translationally invariant model (on average), and higher dimensional extensions, were

proposed. In [23], the authors propose a generalization by introducing an extra flavour index for fermions

and considering complicated interactions between them. These models have neither hopping term nor

a low momentum filter. Hence, we believe our models are qualitatively different from theirs. Another

generalization including hopping term (but not low momentum filter) was introduced in [24]. However the

details of the interaction are different from ours.
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The outline of our paper is as follows. In section 2 we introduce the model of interacting

fermions on a discrete lattice and the associated low-pass filters. We solve for the two point

function in section 3 for scaling filters, exhibit different deep IR scaling dimensions, and

discuss the continuum limit. In section 4 we discuss the probe fermion models and solve

one such example. In appendix A, we derive the Schwinger-Dyson equations using the

replica formulation and in appendix B we discuss gaussian filters.

While we focus below on simple 1+1 dimensional chains, it is possible to extend the

model to several spatial directions and various interesting lattice structures in those direc-

tions. More generally, we view this work as a preliminary study of a large set of models

generalizing the SYK construction both in the UV and the IR. It would be interesting

to further study those models, compare and contrast their features with those of the orig-

inal SYK model. In particular, studying the 4-point function would allow us to probe

the chaotic behaviour of the system and the spatial spread of chaos, as manifested by the

butterfly velocity. It might also be interesting to compute entanglement entropy (perhaps

numerically as in [6]). More ambitiously, one can hope that subtle issues like the infor-

mation paradox [30, 31] might be clearer if one has solvable models capturing the relevant

physics of higher dimensional versions of the AdS/CFT correspondence.

2 The 1+1D “low pass” SYK model

2.1 Definition of the model

Consider an extension of the SYK model involving a one-dimensional lattice with L sites

having N Majorana fermions χi,a on each site i with an SO(N) index a. Its euclidean space

lagrangian is

LE =
∑

i,a

{

1

2
χi,a∂τχ

i,a − iα[χi,a, χi+1,a]

}

+
∑

i,abcd

Ji,abcdη
i,aηi,bηi,cηi,d . (2.1)

We can either take the lattice to be a discretized circle or a discretized infinite line. The

free theory involves a hopping term with bare parameter α. The interaction term involves

random couplings satisfying the disorder average

〈JiabcdJjabcd〉 =
3!J2

N3
δij no sum over a, b, c, d (2.2)

and low pass fermions ηi,a defined by a filter function F

ηi,a =
∑

j

F̃ (i− j)χj,a . (2.3)

We will be interested in two filters: the standard gaussian filter

F̃ (i− j) = Ã exp

(

−D̂2 (i− j)2

L2

)

, (2.4)

where D̂ sets the scale of the filter, and the ”scaling” filters

F̃ (i− j) ∼ Ã

|i− j|γ′ (2.5)

– 3 –
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for a large enough range of |i− j| and an appropriate range of γ′. Depending on the latter,

we may need to soften the filter at short distances or provide a sharper cut-off at large

distances. We will assume the filter behavior is as in (2.5) for a large enough range of

lattice site separations, and discuss potential UV and IR modifications when we need it.

As mentioned in the introduction, some of the features of this model attempt to re-

semble the physics of AdS3 black holes:

• At high momenta, the χ fermions decouple from the random interaction and become

free — this is the analogue of the region of AdS3 far from the black hole. In the

intermediate regime, where momentum is larger than the scale of the low pass filter

but still smaller then the inverse lattice spacing, the model describes the simplest

conformal field theory — N species of Majorana fermions — and, at least kinemati-

cally, we can think about it as AdS3. We could of course also complicate the theory

further in that regime, but in this work we keep the UV theory free (in section 4

we will discuss another interpretation where the free modes are modes outside the

horizon of single trace operators).

• At low momenta, the χ quanta become strongly interacting, in the appropriate SYK

limit J → ∞ — this is akin to low momentum modes of the dual field theory forming

a plasma, encoded by a dual black hole.

The model is not quite SYK — other than the zero modes, all other modes are gapped

in a specific pattern (if we think about them as quantum mechanics). The number of

interacting fermions first increases, as a function of their momentum, as more and more

modes participate in the interaction. It then decreases when the cut-off of the filter is

reached. This will bring about different IR scaling behaviors, depending on the shape of

the smearing function. We will see below that we obtain a large set of models with distinct

scaling behaviors for the time coordinate and for the spatial coordinate.

The specific model that we will discuss is a chiral theory. As is standard with lattice

fermions, the free model flows in the IR to a non-chiral theory of Majorana fermions.

However, the low pass filter that we defined above keeps the low momentum modes of only

one chirality of the fermions. The low-pass fermion for the other chirality is defined as (for

the gaussian filter as an example)

ηR,i,a = Â
∑

j

e−D̂2 (i−j)2

L2 (−1)i−jχj,a (2.6)

The present model includes only interactions of the low ηL and not of low momenta ηR.

We will refer to it as the chiral model — similar models where interactions involve both

left and right can be made non-chiral but here we will discuss only the former.

2.1.1 Possible generalizations

Several interesting generalizations are possible for the model discussed above.

• One possible generalization is the non-chiral model just mentioned. In this general-

ization, there will be a random interaction for the right movers ηR,i,a as well. This

– 4 –
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theory will preserve parity symmetry (discussed in some detail in section 2.2). We

can also add a direct coupling between the left and right moving sectors of the form

Ji,abcdη
L,i,aηL,i,bηR,i,cηR,i,d.

• The random interactions in (2.1) involve 4 Majorana fermions. More generally, as

was done in the 0+1 dimensional SYK model [16], one can have a random interaction

involving an arbitrary number q of fermions. In that case, the theory is exactly

solvable for q = 2 and has important implications for large values of q that allow to

obtain an analytic understanding of the entire flow. We expect the same to hold here.

• The model (2.1) is not translationally invariant because the interactions Ji,abcd de-

pend on the lattice site i, although correlation functions are translationally invariant

after the disorder average. We can modify the model above to accommodate strict

translational invariance replacing the interaction term by, for example,

Lint =
∑

i

∑

a,b,c,d

∑

d1,d2,d3

Jabcdd1d2d3η
i,aηi+d1,bηi+d2,cηi+d3,d (2.7)

This model is not easily solvable using the tools we discuss below, but we hope to

return to it in the near future.

2.2 The free theory

Using euclidean conventions (with Z = e−SE , SE =
∫

dτLE , dτ = idt), the lagrangian is

Lfree
E =

∑

i,a

{

1

2
χi,a∂τχ

i,a − iα[χi,a, χi+1,a]

}

. (2.8)

To describe a periodic lattice, we identify χi,a = χi+L,a. Hence, as operators, the commu-

tation relations are

{χi,a, χj,b} = δab
∑

p∈Z
δi(j+pL) . (2.9)

The momentum space fermions χa
k are defined, for integer k, as

χa
k =

1√
L

∑

j

e2πi
jk

L χj,a with χj,a =
1√
L

∑

k

e−2πi jk
L χa

k . (2.10)

The conventions will be that momentum index is down and position index is up.

We assume that L is even. Since χa
k = χa

k+L, we can either take k to be an arbitrary

integer with this periodicity, or we can restrict ourselves to the range

k = −L/2 + 1, . . . L/2 (2.11)

We will use both these descriptions. As operators, the momentum space fermions satisfy

the commutation relations

{χa
k, χ

b
k′} = δab(δk+k′,0 + δk+k′,L) , (2.12)

– 5 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
8

where the second contribution is only non-zero when k = k′ = L/2. The free theory (2.8)

in momentum space modes becomes3

Lfree
E =

∑

a







L
2
−1
∑

k=1

χa
−k(∂τ + Ek)χ

a
k +

χa
0∂τχ

a
0 + χa

L
2

∂τχ
a
L
2

2







(2.13)

where

Ek ≡ 4α

∣

∣

∣

∣

sin

(

2πk

L

)∣

∣

∣

∣

. (2.14)

Since (χa
k)

† = χa
−k, the fermions χa

k for 1 ≤ k < L
2 can be thought of as complex fermions,

whereas χa
0 = χa

0
†, χa

L
2

= χa
L
2

† are 2N Majorana fermions.

Linearized theory. The free theory (2.8) is non-chiral since it is invariant under the

parity transformation

χi,a → (−1)iχL−i,a (2.15)

Its action in momentum space is

χa
k ↔ χa

L
2
−k

, χa
−k ↔ χa

−(L
2
−k)

for 1 ≤ k <
L

2

χa
0 ↔ χa

L
2

(2.16)

If we define4

χL,a
k ≡ χa

k, χR,a
−k ≡ χa

L
2
−k

for 1 ≤ k ≤
[

L

4

]

, (2.17)

parity maps left χL,a
k to right χR,a

−k fermions. Using these degrees of freedom, the

action (2.13) becomes

Lfree
E =

∑

a







[L
4
]

∑

k=1

[

χL,a
−k (∂τ + Ek)χ

L,a
k + χR,a

k (∂τ + Ek)χ
R,a
−k

]

+
χa
0∂τχ

a
0 + χa

L
2

∂τχ
a
L
2

2







.

(2.18)

This form of the action will is more useful when taking the continuum limit L → ∞ and

linearising the dispersion relation.

States of the free theory. The ground states of the free theory |β〉 satisfy
χa
k|β〉 = 0 for 1 ≤ k < L/2 (2.19)

since χa
k are annihilation operators for k > 0 and creation operators for k < 0. Hence, they

form 2N dimensional representations of χa
0, χ

a
L
2

. These states can equivalently be described

in the left and right representation as

χL,a
k |β〉 = χR,a

−k |β〉 = 0, k > 0 (2.20)

Excited states are of the form

χa
−k|β〉 for 1 ≤ k < L/2 (2.21)

They carry energy Ek as in (2.14).

3We have dropped some non-essential constant pieces in obtaining this expression.
4We will take L not divisible by 4 for simplicity. [x] below denotes the integer part of x.
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Momentum space correlators. We now compute the time ordered propagator for the

momentum space fermions in any of the vacuum states

Gab
k,k′(τ) ≡ 〈T

[

χa
k(τ)χ

b
−k(0)

]

〉 . (2.22)

Using standard methods, we obtain

〈T
[

χa
k(τ)χ

b
−k(0)

]

〉 = θ(τ)e−Ekτδab for 1 ≤ k <
L

2
, (2.23)

〈T
[

χa
−k(τ)χ

b
k(0)

]

〉 = −θ(−τ)e−Ek|τ |δab for 1 ≤ k <
L

2
, (2.24)

〈T
[

χa
0(τ)χ

b
0(0)

]

〉 = 〈T
[

χa
L
2

(τ)χb
L
2

(0)
]

=
1

2
sgn(τ) .e−ǫ|τ |δab (2.25)

Here ǫ is small and positive and constitutes some effective “ǫ prescription”.Correlators of

left and right fermions in equal

〈T
[

χL,a
k (τ)χL,b

−k(0)
]

〉 = 〈T
[

χR,a
−k (τ)χ

R,b
k (0)

]

〉 = θ(τ)e−Ekτδab . (2.26)

It is possible to assemble all these propagators in a more compact notation

Gab
k,k′(τ) = 〈T

[

χa
k(τ)χ

b
k′(0)

]

〉 = δk+k′=0,Lδab

[

θ(τ)e−EkτH(k)− θ(−τ)e−Ek′ |τ |H(k′)
]

(2.27)

introducing the function

H(k) =















1 , if 1 ≤ k < L
2

0 , if − L
2 < k ≤ 1

1
2 , if k = 0, L2

(2.28)

Here E0 = EL/2 = ǫ which is a regularization prescription. We have also used Ek = E−k =

4α| sin(2πkL )|.
It is also possible to write the correlators in frequency space (ω)

Gab
k,k′(ω) ≡

∫ ∞

−∞
dτeiωτGab

k,k′(τ) = δk+k′=0,Lδab

[

H(k)

−iω + Ek
+

H(k′)
−iω − Ek′

]

. (2.29)

Continuum limit of the free theory. We describe the continuum of the free theory

here, since it would be relevant when we solve the interacting theory below. We consider

the theory on a circle of size R. Hence, we define the continuum limit as L → ∞ keeping the

coordinate x = i
LR fixed. The physical momentum modes are p = 2πk

R with k = 0,±1, . . .

and the UV cutoff is Λ ≪ L
R .

Linearizing the energy spectrum in (2.14) for small k, one gets Ep = Ek ≈ 4αR
L p. We

will choose the bare parameter α = L
4R ≡ Λ0

4 from now onwards to obtain a relativistic

theory, but we could have accommodated other values. Since we will be interested in chiral

models, we give here the chiral sector of the free theory (2.13) in the above limit

Lfree
E =

∑

a











Λ
∑

p= 2π
R

χa
−p(∂τ + p)χa

p +
1

2
χa
0∂τχ

a
0











. (2.30)
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2.3 The interacting theory

The interacting theory in momentum space equals

LE = Lfree
E + Lint

E =
∑

k

χa
−k(∂τ + Ek)χ

a
k

+
1

L2

∑

a,b,c,d,k1,k2,k3,k4

ηak1η
b
k2η

c
k3η

d
k4





∑

j

e−2πi
(k1+k2+k3+k4)j

L Jj,abcd





(2.31)

where the low pass momentum fermions ηak are defined as in (2.10). These are related to

the physical fermions χa
k through the low pass filter in momentum space F (k) by

ηik = AF (k)χi
k . (2.32)

where A is a normalization constant and F (k) is the Fourier transform of F̃ introduced

before. This allows to write the interaction lagrangian in terms of the physical fermions χa
k

Lint
E =

A4

L2

∑

k1,2,3,4

∑

a,b,c,d

(

4
∏

h=1

F (kh)

)

χa
k1χ

b
k2χ

c
k3χ

d
k4

(

∑

j

Jj,abcd e
−i2π

j
∑4

l=1 kl
L

)

(2.33)

Remember that our convention for the impurity average will be

E[JiabcdJjabcd] =
3!J2

N3
δij , (2.34)

and we will mainly be interested in scaling filters of the form

F (k) = |k|−γ , (2.35)

or in gaussian filters

F (k) = e
−π2k2

D̂2 . (2.36)

3 Solution of the model

In this section we find a saddle point solution to our model (2.31) with a scaling filter,

generalizing the SYK model one. Gaussian filters are discussed in appendix B. We use the

saddle point equations to calculate the two-point functions

Gab
k′,k(ω) = 〈[χa

k′χ
b
k]〉(ω) , (3.1)

in an scaling regime at low energies. We will find a rich variety of behaviour for these

correlators.
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3.1 Recalling SYK

We start by briefly recalling the results in the original 0+1 dimensional SYK model

HSY K =
∑

abcd

Jabcdχ
aχbχcχd . (3.2)

where Jabcd is the random coupling. The two-point function for the free theory is

Gfree(τ) =
1

2
sgn(τ), Gfree(w) =

∫

dteiwtGfree(τ) = − 1

iw
. (3.3)

In the interacting theory the connected 2 point functions are [2–4]

Gc(τ) ∼
1

|τ |2∆ sgn(τ) ∆ =
1

4
(3.4)

where to transform to frequency space the following Fourier transform formula can be used

∫ ∞

−∞
dτeiwτ sgn(τ)

|τ |2∆ = i 21−2∆√π
Γ(1−∆)

Γ(12 +∆)
|w|2∆−1sgn(w) (3.5)

3.2 Single k and collective equation

Given the interaction Lagrangian (2.33), the Schwinger-Dyson (SD) equations are given by

Σaa′

k1k′1
(t) =

J2A8

L3
δaa

′

F (k1)F (k′1)
∑

k2,k3,k4,k′2,k
′

3,k
′

4

δ∑4
i=1(ki+k′i)=0

4
∏

i=2

[F (ki)F (k′i)Gkik′i
(3.6)

(Gaa′

kk′)
−1 = (G

(0)aa′

kk′ )−1 − Σaa′

kk′(ω) . (3.7)

Here G
(0)aa′

kk′ is the free two-point function. In going from the interaction lagrangian to

the SD equation we carried out the disorder average. We also assumed that the filter, in

momentum space, cuts off the interaction before reaching momentum ∼ O(L), such that

the other chirality (in our conventions) does not participate in the interaction (i.e., we are

in the chiral model). Practically, this enforces strict momentum conservation, rather than

up to multiples of L.

We will assume that after disorder averaging both the SO(N) symmetry and the ZL

lattice translations are preserved.5 We implement this by defining

Gab
k′,k(w) = δabδk+k′=0Gk(w). (3.8)

Under this assumption the SD equation (3.6) forces the self-energy Σ(τ) to be diagonal

too. Thus it is natural to define

Σab
k1k′1

(τ) = δabΣk1(τ)δk1+k′1=0 . (3.9)

5Verifying this requires an analysis of stability, which we will not do here.
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The SD equations (3.6)–(3.7) become

1

Gk(ω)
=

1

G
(0)
k (ω)

− Σk(ω) , (3.10)

Σk(τ) =
A8J2

L3
F (k)2

3
∏

h=1

(

∑

kh

F (kh)
2Gkh(τ)

)

, (3.11)

where we also assumed F (k) is an even function of k. Let us introduce new quantities

G̃k(τ) ≡ F (k)2Gk(τ) , G̃(τ) ≡
∑

k

G̃k(τ) , Σ̃(τ) ≡ F (k)−2Σk(τ) , (3.12)

where we already dropped the momentum subscript in Σ̃ since this is independent of k.

The SD equations simplify to

Σ̃(τ) =
A8J2

L3
G̃(τ)3 (3.13)

G̃(ω) =

L
2
∑

k=−L/2+1

1
(

F 2(k)G
(0)
k

)−1
(w)− Σ̃(ω)

(3.14)

1

Gk(w)
=

1

G
(0)
k (ω)

− F (k)2Σ̃(ω) (3.15)

In appendix A we re-derive this set of equations using the replica method.

We will refer to G̃ and Σ̃ as the collective quantities and to (3.13) and (3.14) as the

collective equations. Solving them requires the evaluation of the sum (3.14) to write G̃(ω)

as a function of Σ̃(ω). (3.13) and (3.14) are then two equations for two functions, one in

time and one in frequency, which we can hope to solve. For some choices of F (k) this can

be done analytically (in the scaling regime at least), and in other cases we can try and

evaluate them numerically. In any case, their basic complexity is not much worse than the

original ones in the SYK model. Once we know their solution, we can plug Σ̃(ω) into the

last equation to compute the momentum 2 point propagator.

It may be instructive to revisit part of our holographic motivation to consider these

models at this stage. In terms of a possible bulk interpretation, start by examining the

propagator at large k. In our case, this is approximately the free propagator with a small

correction from Σ̃(ω) because F (k) cuts off the coupling with Σ̃(ω) at high momenta. In

the bulk interpretation, these should correspond to the UV modes near the boundary of

AdS, interacting with some object living in the bulk interior. As the interaction increases,

the momentum modes feel more and more this IR object. In this interpretation, the

collective quantities encode the dynamics of whatever macroscopic object we have in the

bulk, comprised of the strongly coupled dynamics of the low energy (below the filter scale)

modes. They are SYK in nature, although we will see that different filters can give us

different scaling theories. The presence of this IR object in the bulk feeds into the high

momentum modes like a semi-classical object, correcting their propagators.
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3.3 Solving the collective equations in the continuum

Since evaluating the sum (3.14) is complicated, and we are interested in the continuum

theory any way, we start discussing the latter here. We think of our model as defined on

a circle of fixed size R (which we will think of as large), so that the lattice spacing is R/L

and take L → ∞ at the end of the computation. The coordinate around the circle x = i
L R

will be kept fixed. We will require our filter to cut-off momenta at scales much larger than

1/R and much smaller than L/R, and kept fixed in the limit L → ∞. In this scaling,

many momentum modes participate in the collective dynamics, but we still have effectively

a continuum theory for the momentum modes above the filter and below 1/L.

The L → ∞ limit allows us to approximate (3.14) by the integral

G̃(ω) =

(∫ 0

−∞
dk +

∫ ∞

0
dk

)

1
(

F 2(k)G
(0)
k (ω)

)−1 − Σ̃(ω)

=

∫ 0

−∞

dk
(

F−2(k)(−iω − Ek

)

− Σ̃(ω)
+

∫ ∞

0

dk
(

F−2(k)(−iω + Ek

)

− Σ̃(ω)
.

(3.16)

Since G̃(ω) and Σ̃(ω) are both purely imaginary, we obtain

G̃(ω) = 2i Im

∫ ∞

0

dk

F (k)−2(−iω + Ek)− Σ̃(ω)
. (3.17)

We have assumed that the function F−2(k) increases rapidly enough for large k such that

the integral converges and we can replace the cut-off L by infinity.

The discussion above about the scale of the filter is a little subtle since will be interested

in scaling filters of the form F (k) ∼ |k|−γ for a range of γ. These filters need to be cut off at

small k and/or at large k, depending on γ. In position space the filter goes like (x− y)γ−1.

We will approach the issue of the cut-off by examining the integral after the fact.

• If the integral converges at large k then we don’t need to introduce an additional

cut-off in equation (3.17), or more precisely, introducing such a cut-off Λ will change

the results by some negative power of Λ. However, we may still keep this cut-off, as

in (3.15), if we want to.

• The integral (3.17) itself has no problem in low momenta, for finite Σ̃, since F−2(0) =

0. This means that the interaction will effectively mix the low momenta degrees of

freedom and set them at some scale defined by the filter. Phrased in another way,

one might worry that the process of going from the sum to the integral is not correct.

If we were to do the exact sum, then momentum modes around k ∼ 1 (physical

momenta of order 1/R) would give contributions that scale like 1/Σ̃ in the limit of

large interaction strength. We will see that for the filters that we present below, this

is much smaller than the total integral contribution and hence we don’t need to worry

about anomalous contributions of some global modes.

For the scaling low pass filter defined by F−1(k) = |k|γ , the integral (3.17) becomes

G̃(ω) = 2i Im

∫ ∞

0

dk

k2γ(−iω + 2π k/R)− Σ̃(ω)
(3.18)
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where we already linearised the spectrum as in (2.30). Working at fixed low frequency and

large Σ̃(ω), we can eventually neglect ω with respect to k. We will assume this for now

and check for self consistency at the end of the computation.

Using the variable k =
[

−R Σ̃(ω)/(2π)
] 1

2γ+1
k̃, the above integral becomes

G̃(ω) = 2i Im

[

cγ

(

R

2π

) 1
2γ+1

(−Σ̃(ω))
− 2γ

2γ+1

]

, (3.19)

where cγ =
∫∞
0

dk̃
k2γ+1+1

= π
2γ+1 csc(

π
2γ+1).

6 The resulting collective equations are solved by

Σ̃(ω) = i sgn(ω)
2πκ3

RZ
K(γ) |ω|6∆−1 with K(γ) ≡ 21−6∆√π

Γ(1− 3∆)

Γ(12 + 3∆)
, (3.20)

G̃(τ) = Z
2γ

2γ+1
R

2π

κ

|τ |2∆ sgn(τ) (3.21)

provided

∆ =
1 + 4γ

2(1 + 8γ)
, (3.22)

κ(γ) satisfies the constraint

κ
1+8γ
1+2γ 21−2∆√π

Γ(1−∆)

Γ(12 +∆)
= 2cγ sin

(

πγ

2γ + 1

)

K(γ)−2γ/(2γ+1) , (3.23)

and Z is identified as

Z =

(

A8J2R4

L3 (2π)4

)− 1+2γ
1+8γ

. (3.24)

For completeness, we also write the solution to the collective equation in frequency space

G̃(ω) = i sgn(ω)
κR

2π
Z

2γ
2γ+1 21−2∆√π

Γ(1−∆)

Γ(12 +∆)
|ω|2∆−1 , (3.25)

with ∆ given in (3.22).

3.3.1 IR contribution

Here, we check the consistency of our approximations and include further comments on the

possible modifications that our scaling filters may require. We will be interested in working

in the regime |ω|R ≫ 1 and fixed. There are four reasons to examine the IR more closely.

First, naive dimensional analysis would suggest that our 4-fermion interaction corre-

sponds to a marginal operator. Exactly marginal operators or marginally relevant ones

can change the IR (we do our dimensional analysis in 2D language and the Lagrangian

above is a discretized version of it. The quadratic term for the fermions is interpreted as

a hopping term in this language). However, in our case using the ordinary field theory

6The actual integral we get has the contour from 0 to ∞ at an angle θ = − πi
2(2γ+1)

in the complex plane.

Since there are no poles and the contour at ∞ vanishes for γ > 0, we can rotate it back to real axis. One

can then use the Formulae
∫

∞

0
dx

1+xν
= π

ν
csc(π

ν
) for Re(ν) > 1.
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intuition might be imprecise. The main reason is that we are enhancing the effects of the

interaction in the IR using the “filter” functions. Furthermore, we will see that to get a

finite theory at a fixed physical scale, we scale the interaction with the cut-off. We should

therefore think about the model as a “tight binding” model at the lattice scale, resulting

in a new behaviour at fixed physical scale. In particular, we cannot rely on intuition from,

say, conformal perturbation theory. Finally, we can solve the SD equations and check their

self-consistency, which we will do next.

Second, to check that physical momentum modes close to 1/R do not change the

conclusions above, we require the magnitude |G̃(ω)| from (3.19), which captures the con-

tribution from higher momentum modes within the filter, to be larger than the |Σ̃(ω)|−1

contribution from the lower modes. This amounts to working in the range

1 ≪ R |Σ̃(ω)| ⇒
(

A8R2 J2

L3

)

(R|ω|)2 ≫ 1 (3.26)

This condition is compatible with |ω|R ≫ 1 fixed for large enough J .

Furthermore, our analysis neglected the −iω term in G̃(ω), while working in some

momentum range satisfying k2γ+1 ∼ Σ̃. Consistency of both conditions is equivalent to

k

R |ω| ≫
k2γ+1

R |Σ̃(ω)|
∼ 1 (3.27)

which can also be satisfied in our desired regime. This is again the statement that many mo-

mentum modes, much above physical momenta 1/R participate in the collective quantities.

Third, the discussion above is valid at intermediate frequencies, as long as we stay

ω ≫ 1/R, at which point we see that momentum is quantized. It could still be that there

is an almost continuum spectrum of energies originating from large N , but in any case, we

expect that this limit to be governed by a different limit of SD equations.

Fourth, a filter of the form F ∼ 1/|k|γ is non trivial in position space. Its Fourier

transform is F̃ = xγ−1. We can work with γ < 1 to obtain reasonable behavior in position

space, or we can modify the solution to decay further at some long distance, for example

by considering

F (k) = k−γe−D2/k2 . (3.28)

We will then need to choose D to be small enough. Under this assumption, the discussion

above remains the same. We could analogously add a hard UV cut-off to improve the UV

convergence.

3.4 Going to the infinite line

At finite radius R, we can always rescale A and J keeping Z fixed, so that the model

provides finite, L-independent, results. This is the standard RG approach of keeping the

IR fixed and running the UV appropriately. In the following, we investigate whether we

can achieve the same finiteness in the non-compact limit R → ∞.

In the non-compact limit, finite physical momenta are labelled by p = 2πk
R . Despite

the rescaling of momenta, the diagonal contribution to the 2 point function in (3.8) re-

mains finite

G∞(p) = Gk=pR/2π . (3.29)
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To investigate the existence of a finite interacting theory in the deep IR in the non-

compact limit, we will require both the filter function and the two point function (3.15) to

be finite.

The first condition requires to write the filtering function AF (k) = A
|k|γ relating the

interacting fermions η with the physical fermions χ in terms of the physical momentum p

as A∞ F (p) ≡ A∞

|p|γ . Hence, we learn A ∼ A∞Rγ , with A∞ fixed.

The second condition is studied by replacing (3.20) into (3.15)

G∞(p) =
1

[G
(0)
k (ω)]−1 − i sgn(ω)|ω|6∆−1 κ3 (2π)2γ+1K(γ)

R2γ+1 Z p2γ

(3.30)

Requiring the interaction to be finite is equivalent to keeping

J2

Λ3
0

fixed . (3.31)

where recall that Λ0 =
L
R is the inverse lattice spacing.

3.4.1 Hyperscaling

The finite 2 point function (3.30) has an hyperscaling symmetry in the deep IR ω → λ−zω

and p → λ−1 p,7 with dynamical scaling exponent z:

z =
2γ + 1

6∆− 1
=

1

2
+ 4γ . (3.32)

This covers the range z > 1/2. In particular, it includes unitary theories, i.e. those

with z ≥ 1.

The range of z’s slightly changes when we consider random couplings of q fermions

(q = 4 in our previous analysis). Then ∆q ≡ 1+4γ
2(1+2qγ) and the dynamical exponent becomes

zq =
2γ + 1

6∆q − 1
=

1 + 2qγ

q − 2
. (3.33)

This opens further possibilities for the range of z.

3.5 Continuum non-compact limit

In this subsection we discuss again the continuum model formulated on an infinite line,

but from the action perspective. We will recover the condition (3.31) and in the process

we will give the continuum version of the impurity average (2.34).

First, let us write the continuum L → ∞ limit of our interacting theory on a circle of

size R. Using (2.30)) and (2.33),

L =
∑

p

χa
−p(∂τ + p)χa

p +
(2π)4γA4

L2R4γ

∑

ai,pi

4
∏

i=1

[F (pi)χ
a
pi ]

∫

Ldx

R
e−ix

∑4
j=1 pjJa1a2a3a4(x) .

7The z exponent is usually defined in real space by the scaling relations t → λz t and x → λx.
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Here the sum over momentum p runs from the IR cutoff ΛIR ∼ 1
R to the UV cutoff Λ. We

also defined F (p) ≡ 1
|p|γ as in our discussion in subsection 3.4.

Rewriting the original filter parameter A in terms of the fixed A∞ = A(2πR )γ , as in

subsection 3.4, the interaction lagrangian becomes

Lint =
A4

∞
LR

∑

ai,pi

4
∏

i=1

[F (pi)χ
ai
pi ]

∫

dxe−ix
∑4

j=1 pj Ja1a2a3a4(x) . (3.34)

Lastly, we take the non-compact limit R → ∞. Sums over momentum
∑

p are proportional

to R
∫

dp. To keep a finite kinetic term, we need to rescale the physical fermions as

χa
p ∼ χa(p)√

R
, leading to a non-compact lagrangian

∫

dpχa(−p)(∂τ + p)χa(p) +
A4

∞R

L

∑

ai

∫ 4
∏

i=1

[dpiF (pi)χ
a(pi)]

∫

dxe−ix
∑4

j=1 pj Ja1a2a3a4(x) .

Since the non-compact version of the impurity average (2.34)

E[Ja1a2a3a4(x) Jb1b2b3b4(y)] =
3!J2

N3

R

L
δ(x− y) , (3.35)

includes an additional R
L factor from the continuum limit of the discrete Kronecker delta

δij , we can write the continuum version of the SD equation as

Σa1a′1(p1, p
′
1, τ) = δa1a

′

1
J2A8

∞R3

L3
F (p1)F (p′1)

∑

ai

4
∏

i=2

[∫

dpidp
′
iF (pi)F (p′i)G

aiai(pi, p
′
i, τ)

]

·

·
∫

dx e−ix
∑

i(pi+p′i) , (3.36)

where the last term will implement conservation of momentum δ(
∑

i(pi + p′i)). It is now

clear that to keep a non-trivial interaction in the non-compact limit we must work with

J2R3

L3
=

J2

Λ3
0

fixed (3.37)

Hence we reproduce our previous claim (3.31) provided we take the disorder average in the

continuum non-compact limit to be as in eq. (3.35).

4 A probe model

In the previous class of models, we were interpreting the high momentum modes of the

physical fermions χa as living outside of a black hole in some putative bulk, while the

strongly interacting low momentum modes of χa, i.e. the ηa degrees of freedom, built the

putative black hole. In this section, we explore a second class of models with a similar

holographic motivation.

Consider models consisting of two types of fermions: ηa, a = 1 . . . N interacting via

an SYK model or its 1+1 extension described in previous sections and a single degree of
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freedom (or maybe a few) ρ acting as a probe. We envision a situation in which the ηa

fermions describe the degrees of freedom of a black hole (in some approximate sense), while

the ρ’s encode the analogue of single trace operators in the AdS/CFT correspondence

More specifically, we will take ρ to be a 1+1 system (but we can take them in any

dimension), so that they become ρi where i is the spatial index. It can either be fields that

go to a free fermion in the continuum, or we can maybe take them to be some generalized

free fields, in which case we can hope to find a field of arbitrary dimension.

4.1 A 2D probe model with SYK kernel

In this subsection we introduce, and solve in some regime, one such model. Let ηa, a =

1, . . . N be the 0 + 1d SYK Majorana fermions and ρi be Majorana fermions on a periodic

lattice of length L (i = 0, . . . L − 1 is the spatial index and ρ0 ≡ ρL). Following previous

sections, we will find it useful to have a filter for the ρ fermions.

We take our model to have the action S = Sη + Sρ + Sρ,η where

Sη =

∫

dτ





1

2
ηa∂τη

a +
∑

a,b,c,d

Jabcdη
aηbηcηd



 (4.1)

Sρ =
∑

i

∫

dτ

{

1

2
ρi∂τρ

i − iα[ρi, ρi+1]

}

=
∑

k

∫

dτ

{

1

2
ρ−k(∂τ + Ek)ρk

}

(4.2)

Sρ,η =

∫

dτ
∑

i1...ik

Ĵi1...ika1...am ρ̄
i1 ρ̄i2 . . . ρ̄ikηa1 . . . ηam (4.3)

=
Ak

L
k
2

∫

dτ
∑

i1,...ik,k1,...kk,a1...am





k
∏

j=1

F (kj)ρkj



e−
2πi
L

∑k
j=1 ijkjηa1 . . . ηam Ĵi1...ika1...am

(4.4)

ρk stands for the Fourier transform of the ρi lattice fermions, whereas ρ̄i fermions are

the corresponding low pass fermions ρ̄i ≡ 1√
L

∑

k F (k)ρke
−2πik

L interacting with the SYK

fermions ηa. The Ĵi1ika1...am are taken to be random variables with impurity average

E
[

Ĵi1...ika1...am Ĵi1...ika1...am

]

=
k!m!Ĵ2

Nm

and E[JabcdJabcd] =
m!J2

N3 as for SYK fermions.

The N scaling was chosen so that the ρi fermions behave like probes, i.e. their prop-

agator will be corrected by the interactions whereas the ηa propagators will remain un-

modified at leading order. More precisely, there are two leading 1-loop diagrams contribut-

ing to the 1PI self-energy of the ηa propagator, as indicated in figure 1. Diagram (A)

scales like E[J2
...]N

3 ∼ O(N0) as in SYK. Diagram (B) is subleading since it scales like

E[Ĵ2
...]N

m−1 ∼ O(N−1). Hence, the ηa propagators which we denote by G(τ) are indeed

unmodified at leading order.

Next we will solve for the ρ propagator which we will denote by G. The leading 1-loop

diagram (denoted by S) contributing to its 1PI self-energy is given in figure 2. Since this

– 16 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
8

η ηη

(A)

η η

(B)

η

ρ

Figure 1. Diagrams contributing to the η propagator.

ρ ρ

Figure 2. Diagram contributing to the ρ propagator.

diagram scales like Ĵ2
...N

m ∼ O(N0), it gives rise to a non-trivial correction. In fact we

find the SD equations for ρ to be

Sk1,k′1
(τ) =

A2kĴ2

Lk
G(τ)mF (k1)F (k′1)×

∑

i1,...ik,k2...kk,k
′

2...k
′

k

k
∏

j=2

[F (kj)F (k′j)Gkjk′j
(τ)]e−

2πi
L

∑k
j=1 ij(kj+k′j) (4.5)

G−1
k,k′(ω) = G(0)−1

k,k′(ω)− Sk,k′(ω) (4.6)

It is clear that the SD equations force self energy S and hence the propagator G to be

diagonal in momentum space. We will assume that F (k) is an even function. Let us define

Sk,k′(τ) ≡ δk+k′=0Sk(τ) Gk,k′(τ) ≡ δk+k′=0Gk(τ) (4.7)

The SD equations then become

G−1
k (ω) = G(0)−1

k (ω)− Sk(ω) (4.8)

Sk(τ) = A2kĴ2F (k)2G(τ)m

[

∑

k′

F (k′)Gk′(τ)

]k−1

(4.9)

We finally write a collective SD equation by defining

Sk(τ) ≡ F (k)2S̃(τ) G̃(τ) ≡
∑

k

F (k)2Gk(τ) (4.10)

We have dropped the subscript k on S̃ because the SD equations force it to be independent

of k. The final SD equations become

G̃(ω) =
∑

k

1

F (k)−2G(0)−1
k (ω)− S̃(ω)

(4.11)

S̃(τ) = A2kĴ2G(τ)mG̃(τ)k−1 (4.12)

Gk(ω) =
1

G(0)−1
k (ω)− F 2(k)S̃(ω)

(4.13)
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These equations can be solved using the available SYK solutions in the conformal

window G(τ) ∼ 1

τ
1
2
(see [4]), and the same strategy we followed in section 3. Rather than

presenting the solution for arbitrary k and m, we focus on the k = m = 2 case.

The scaling of the collective probe propagator and self-energy is

G̃(τ) ∼ |τ |−∆1 , G̃ ∼ |ω|∆1−1 (4.14)

S̃(τ) ∼ |τ |−∆2 , S̃ ∼ |ω|∆2−1 (4.15)

(4.16)

with

∆2 − 1 =
1 + 2γ

1 + 4γ
, ∆1 − 1 = − 2γ

1 + 4γ
. (4.17)

Notice these are consistent with the assumption |ω| ≪ S̃ holding in the deep scaling

IR regime.
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A Equations via the replica method

We now rederive the Schwinger-Dyson equations for our model using replica methods. In

this framework those equations represent the saddle point approximation to the effective

action of the model.

In order to compute S(n), the n’th Renyi entropy, we construct n replicas of our model,

labelled by α = 1, . . . n The Euclidean action for the replicated theory is

S(n) =

∫

dτ
∑

α





1

2

∑

i,a

χi,a
α (τ)∂τχ

i,a
α (τ)− iα

∑

i,a

[

χi,a
α (τ), χi+1,a

α (τ)
]

+
∑

i,abcd

Ji,abcd η
i,a
α (τ)ηi,bα (τ)ηi,cα (τ)ηi,dα (τ)



 (A.1)

We now perform the disorder average, recalling that we have independent disorder variables

at each site, we get

S(n) =

∫

dτ
∑

α,a,i

[

i

2
χi,a
α (τ)∂τχ

i,a
α (τ)− iα

[

χi,a
α (τ), χi+1,a

α (τ)
]

]

− 4J2L3

N3

∑

α,β

∫

dτ

∫

dτ ′
∑

i

[

∑

a

ηi,aα (τ)ηi,aβ (τ ′)

]4

(A.2)

where we use the convention E(J..., J...) ∼ J2L3

3!N3 for each randomly distributed variable.
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One can now perform a Hubbard-Stratonovich transformation by introducing the real

decoupling field Qi
αβ(τ, τ

′), symmetric in replica indices, for each site

S(n) =

∫

dτ
∑

α,a,i

[

1

2
χi,a
α (τ)∂τχ

i,a
α (τ)− iα

[

χi,a
α (τ), χi+1,a

α (τ)
]

]

(A.3)

+
∑

α,β

∫

dτ

∫

dτ ′
∑

i





N

4LJ2
Qi

αβ(τ, τ
′)2 − 2L

N
Qi

αβ(τ, τ
′)

(

∑

a

ηi,aα ηi,aβ

)2




Finally we introduce another set of decoupling fields P i
αβ , also real and symmetric in replica

indices, to obtain

S(n) =

∫

dτ
∑

α,a,i

[

1

2
χi,a
α (τ)∂τχ

i,a
α (τ)− iα

[

χi,a
α (τ), χi+1,a

α (τ)
]

]

+
N

L

∑

α,β

∫

dτ

∫

dτ ′
∑

i

[

Qi
αβ(τ, τ

′)2

4J2
+

Qi
αβ(τ, τ

′)P i
αβ(τ, τ

′)2

2

−Qi
αβ(τ, τ

′)P i
αβ(τ

′, τ)

(

L

N

∑

a

ηi,aα ηi,aβ

)]

(A.4)

This is simply the sum over the replicated action obtained for each site separately, for

a direct comparison see for example the discussion in [6, 15]. Note that the saddle point

equations set

P i
αβ(τ, τ

′) =
L

N

∑

a

〈ηiα(τ)ηiβ(τ ′)〉

Qi
αβ(τ, τ

′) = J2P i
α,β(τ, τ

′)2 (A.5)

We now assume that replica symmetry is not broken, so that P i
αβ = P iδαβ and Qi

αβ =

Qiδαβ . Similarly we assume that upon disorder averaging the SO(N) symmetry is restored.

Therefore we can drop the fermion SO(N) index and refer to a single fermion. We further

can go to a single replica, obtaining the action

S = N

∫

dτ
∑

i

[

1

2
χi(τ)∂τχ

i(τ)− iα[χi(τ), χi+1(τ)]

]

(A.6)

+
N

L

∫

dτ

∫

dτ ′
∑

i

[

Qi(τ, τ ′)2

4J2
+

Qi(τ, τ ′)P i(τ, τ ′)2

2
− LQi(τ, τ ′)P i(τ ′, τ)ηi(τ)ηi(τ ′)

]

We are now ready to integrate out the fermions χi. Define the mass shifts Σ̃i = QiP i,

making the same self-consistent assumption as above, namely that the mass shifts are on-

site only (i.e. they are all equal in momentum space), so that the saddle point solution

satisfies Σ̃k = Σ̃, i,.e the same value for each Fourier mode k. With this assumption we

– 19 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
8

can now Fourier transform the action and integrate out the fermions:

S = N
∑

ω,k

log Pf
[

∂τ − Ek − Σ̃(τ, τ ′)F (k)2
]

(A.7)

+N
∑

k

∫

dτ

∫

dτ ′
[

Qk(τ, τ
′)Q−k(τ, τ

′)
4J2

+
Pk(τ, τ

′) Σ̃(τ, τ ′)
2

]

where we have used that in momentum space ηk = F (k)χk. We can further use the identity

Qi = J2(P i)2, and denote G̃i = P i

L to obtain

S = N
∑

k

log Pf
[

∂τ − Ek − Σ̃(τ, τ ′)F (k)2
]

(A.8)

+N
∑

k

∫

dτ

∫

dτ ′
[

J2(G̃(τ, τ ′)2)k(G̃(τ, τ ′)2)−k

4L4
+

G̃k(τ, τ
′) Σ̃(τ, τ ′)
L

]

where (G̃(τ, τ ′)2)k denotes the Fourier transform of G̃i(τ, τ ′)2.

We can now obtain the saddle point equations following from the action. Varying with

respect to Σ̃ gives (in frequency space)

G̃k(ω) =
1

−iω − Ek − Σ̃(ω)F (k)2
(A.9)

whereas varying with respect to G(τ) =
∑

k G̃k(τ) gives

Σ̃(τ) =
J2

L3
G̃(τ)3 (A.10)

To exhibit the dependence on the normalization A, we redefine F (k) → AF (k) and

rescale Σ̃ → A−2Σ̃ and G̃ → A2G̃. This yields the same equations as those derived in

subsections 3.3 and 3.5, where the normalization constant A is shown explicitly.

B Gaussian low pass filter

In this appendix, we consider the gaussian low pass filter. Although we will not be able to

solve the SD equations exactly (even in the deep IR), we will determine the scaling of the

2 point function in frequency space ()ω). Recall the gaussian low pass filter is defined by

the function

F (k) = e
−π2k2

R2D2 , (B.1)

where D = D̂
R is the physical scale of the filter as can be seen by taking the non-compact

limit R → ∞ keeping the physical momentum p ∼ k
R fixed.

If we were to consider an step function filter, one would expect to obtain similar physics

to the SYK model for the modes passing the filter, while decoupling those being filtered

out. What we show below is that the gaussian filter model provides logarithmic corrections

to the SYK scaling behaviour for very long times.
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To solve this model in the same regime as we discussed the solution for the power law

filter, we need to consider the integral (3.17) with F (k) given by (B.1). This looks like

(dropping the −iω term compared to Σ(ω) in the deep IR)

G̃(ω) = 2i Im

∫ ∞

0

dk̃

eπ2k̃2 k̃ − Σ̃(ω)
RD

= 2i
|Σ̃(ω)|
RD

∫ ∞

0

dk̃

k̃2 e2π2k̃2 + |Σ̃(ω)|2
R2 D2

(B.2)

where we used that Σ̃(ω) is purely imaginary. Although we could not solve the above

integral exactly, we can estimate it for large values of |Σ̃(ω)|
RD . In this regime, the integral

cuts off when the two terms become comparable. This occurs around k ∼
√

log |Σ̃(ω)|
RD .

Thus we get the following estimate

|G̃(ω)| ∼

√

log |Σ̃(ω)|
RD

|Σ̃(ω)|
RD

, (B.3)

The other SD equation (3.13) becomes

Σ(τ)

RD
=

A8J2

RDL3
G(τ)3 (B.4)

Let us now assume a simple ansatz Σ̃(ω) ∼ (ω)α| logω|β . Since we will work in small ω and

large time t we can use the following approximation when performing the Fourier transform

∫

dωeiωt(ω)α| logω|β ∼ (log t)β

t1+α

[∫ ∞

−∞
dω̂eiω̂ω̂α

(

1− β| log ω̂|
(log t)β

+O(log t)−2β

)]

=
(log t)β

t1+α

(

1 + +O(log t)−β
)

(B.5)

The situation is thus very similar to the original SYK model, except for the extra log pieces.

Defining J 2 ≡ A8J2

RDL3 , one can check that the SD equations (B.4) and (B.3) are solved by

|G̃(ω)| ∼ J −1
2

| log(ω/J )| 18
|ω/J | 12

, |Σ̃(ω)| ∼ J 1
2 |ω/J | 12 | log(ω/J )| 38 . (B.6)

or in euclidean time τ

|G̃(τ)| ∼ J −1/2 log |J τ | 18
|J τ |1/2 , |Σ̃(τ)| ∼ J 1/2 log |J τ | 38

|J τ | 32
. (B.7)

We see that the resulting theory has log(ω) enhancement compared to SYK in the

free energy.
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