
J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

Published for SISSA by Springer

Received: June 22, 2011

Revised: November 9, 2011

Accepted: December 21, 2011

Published: January 20, 2012

Holographic Fermi and non-Fermi liquids with

transitions in dilaton gravity

Norihiro Iizuka,a Nilay Kundu,b Prithvi Narayanb and Sandip P. Trivedib

aTheory Division, CERN,

CH-1211 Geneva 23, Switzerland
bTata Institute for Fundamental Research,

Homi Bhabha Road, Mumbai 400005, India

E-mail: norihiro.iizuka@cern.ch, nilay.tifr@gmail.com,

prithvi.narayan@gmail.com, trivedi.sp@gmail.com

Abstract: We study the two-point function for fermionic operators in a class of strongly

coupled systems using the gauge-gravity correspondence. The gravity description includes

a gauge field and a dilaton which determines the gauge coupling and the potential energy.

Extremal black brane solutions in this system typically have vanishing entropy. By analyz-

ing a charged fermion in these extremal black brane backgrounds we calculate the two-point

function of the corresponding boundary fermionic operator. We find that in some region

of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-

particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At

the transition, the two-point function can exhibit non-Fermi liquid behaviour.

Keywords: Gauge-gravity correspondence, Black Holes in String Theory, Holography and

condensed matter physics (AdS/CMT)

ArXiv ePrint: 1105.1162

Open Access doi:10.1007/JHEP01(2012)094



J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

Contents

1 Introduction 2

2 The dilaton gravity system 4

2.1 The solutions 6

2.2 More on the solutions 7

2.3 Thermodynamics of the slightly non-extremal black brane 8

2.4 Taming the singularity 10

2.5 Conductivity 12

3 Fermionic two point function 13

3.1 β + γ > 1 17

3.2 Some general comments for the cases β + γ ≤ 1 20

3.3 More on the β + γ = 1 case 23

3.4 Case β + γ < 1 25

3.5 The transition from β + γ = 1 to β + γ < 1 26

4 Conclusions 28

4.1 Results 28

4.2 Discussion 29

A Other near-horizon geometries 31

B More on conductivity 32

C Neglecting the k1 dependent terms 33

C.1 More details 34

D More on the β + γ = 1 case 35

D.1 Analysis with k1 > 0 35

D.2 Analysis with k1 < 0 36

D.3 Marginal Fermi liquid for k1 = 1
2(2γ − 1) 37

E Scalar two point function 38

E.1 β + γ > 1 39

E.2 β + γ < 1 40

E.3 β + γ = 1 40

F Extremal branes: from near-horizon to boundary of AdS 41

F.1 Identifying the perturbation 42

F.2 Numerical integration 43

– 1 –



J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

1 Introduction

The Gauge/Gravity correspondence [1–3] provides us with a new tool to study strongly

coupled field theories. It is worth exploring whether insights of relevance to condensed

matter physics can be gained using this tool. One set of questions which have proved

difficult to analyze using conventional techniques is the behaviour of fermions in strongly

coupled systems in the presences of a chemical potential. There has been considerable

activity exploring this issue on the the gravitational side recently and some interesting

lessons have been learnt from such studies. This question is particularly interesting in view

of considerable evidence now for non-Fermi liquid behaviour in condensed matter systems,

e.g., in High Tc materials and in heavy fermion systems close to quantum phase transitions.

Extremal black branes, which are at non-zero chemical potential and typically at zero

temperature, are of particular interest in the gravity description in exploring this question.

Some of the early studies have focussed on analyzing the behavior of fermionic fields in

extremal Reissner Nordstrom (eRN) Black brane backgrounds [4–9]. While these black

branes have the virtue of being simple and explicit they suffer from an important unphysical

feature, namely, their entropy does not vanish despite their vanishing temperature. Instead,

the entropy of these extremal solutions scales with the appropriate power of the chemical

potential and increases as the chemical potential increases. It is widely believed that this

big violation of the third law of thermodynamics is an artifact of the large N limit, and in

the absence of supersymmetry or say the infinite number of symmetries in 1+1 dim. CFT’s,

this degeneracy should be lifted once finite N corrections are included.1 In this context it is

also relevant to note that quite often in string constructions extremal RN black branes have

been found to be unstable, for example due to the presence of light charged scalars, [11].

In this paper we will consider 3 + 1 gravity systems with a holographic field theory

dual which is 2 + 1 dimensional. The reservations discussed above for extreme RN black

branes make it worth looking for other gravity systems where the extremal black branes are

different so that their entropy in particular vanishes at extremality. Such a class of systems

was explored in [12–14]. The key new ingredient was to include a dilaton which allows the

gauge coupling of the Maxwell field to vary. It was found that as a result the black branes

have zero entropy at extremality.2 The dilatonic systems were further generalized by [15],

see also, [16, 17], with both the gauge coupling and the potential energy now depending

on the dilaton. Extremal black branes were often found to posses zero entropy in such

systems as well.

These dilatonic systems, in particular their extremal black brane solution, are therefore

a promising starting point for exploring questions related to the behaviour of fermionic

fields. The behaviour of a bulk fermion in an extremal black brane solution of the type

studied in [13, 14], was analyzed in [18, 19]. It was found that the two-point function

of the corresponding fermionic operator in the boundary theory was qualitatively quite

different from the non-Fermi liquid behaviour found in the eRN case and much more akin

1For some discussion of related issues in extremal black holes see [10].
2More precisely to ensure that higher derivative corrections are small one should introduce a small

temperature. One then finds that the entropy density vanishes as a positive power of the temperature.
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to a Fermi-liquid. The two-point function showed that there is a sharp Fermi surface in the

system with well-defined quasi-particles excitations which have a linear, i.e., relativistic,

dispersion relation at small frequency, and a width which has an essential singularity at

vanishing frequency and which is therefore very narrow at small frequency.3

In this paper we will analyze the behaviour of a charged bulk fermion for the more

general class of extremal dilaton systems studied in [15] and use it to calculate the two-

point function of the corresponding fermionic operator in the boundary. We find that there

is a wide range of behaviours that the fermion two-point function exhibits. One parameter

in particular determines this behaviour, it is denoted by β+γ below (for a definition of β, γ

in terms of the parameters appearing in the Lagrangian eq. (2.4), see eq. (2.22), (2.23)).

For β + γ > 1 one gets Fermi-liquid behaviour. At β + γ = 1 there is a transition. For

β+γ < 1 there are no well-defined quasi-particle excitations since they acquire a big width

which is non- vanishing as ω → 0.4 The behaviour at the transition, when β + γ = 1, is

also quite interesting. The geometries which correspond to this case include both extreme

RN type solutions and other backgrounds where the entropy vanishes. These additional

backgrounds, we find, also give rise to non-Fermi liquid behaviour of a type very similar to

that seen in the extreme RN case first.

From the field theory point of view, the systems we analyze can be thought of as

essentially free fermions coupled to a fermionic operator of a strongly interacting sector [18].

The near-horizon gravity solution provides a dual description of the strongly coupled sector.

By varying the parameters β, γ we explore different kinds of strongly coupled sectors and

the resulting change in the behaviour of the fermionic two-point function. Our central result

is that the class of strongly coupled sectors which are described by our gravity backgrounds

can give rise to the different types of behaviour mentioned above and to transitions among

these kinds of behaviours. For example, at the risk of belaboring this point, our results show

that Non-Fermi liquid behaviour of the type found first in [4] - [9] is more common and can

occur without the large entropy of the eRN case. It also shows that transitions can occur

across which well-defined quasi-particle excitations acquire a big width and cease to exist.

On general grounds we expect to be able to model only strongly coupled systems in

the large N limit using a classical gravity description. This is a central limitation of our

analysis. As a result the fermions we are studying are only a small subsector of a much

bigger system with many degrees of freedom. It turns out that while the fermionic two-point

function undergoes dramatic changes as the parameter β + γ is varied, as was mentioned

above, the geometry and other background fields change smoothly, signalling that most of

the degrees of freedom of the large N “heat bath” in fact do not change their behaviour is

a significant way. As a result, one finds that the thermodynamics and transport properties

3For a Fermi liquid the width is O(ω2), which is much broader. It could easily be that additional

interactions, e.g., of 4-Fermi type, which are suppressed in the large N limit, when incorporated can

broaden out this width to the ω2 behaviour of Fermi liquid theory. Keeping this in mind we will refer

to such behaviour as being of Fermi-liquid type below. It is also worth mentioning that there are many

additional gapless excitations in the system which contribute to the specific heat and the conductivity. For

this reason such a phase is described as a fractionalised Fermi-Liquid (FL*) phase rather than a Fermi

Liquid phase in [20–22].
4For a more precise description see section 3.5 and also section 4.
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like electrical conductivity also do not change significantly; in particular the qualitatively

big changes in the fermionic two-point function do not correspond to phase transitions.

Once one goes beyond the large N limit one expects that the significant changes in the

behaviour of the fermions, should they continue to occur, would also be accompanied by

significant changes in thermodynamics and transport. A preliminary indication of this is

provided by 1/N corrections to the electrical conductivity which is sensitive to the change

in the Fermion two-point function and therefore to a change in its properties, [8, 9]. The

results of this paper showing that behaviours other than of Fermi liquid type can arise

in a fairly robust way may be taken as preliminary evidence that such behaviour is fairly

generic in strongly coupled field theories and could occur beyond the large N limit as well.

Before proceeding it is worth commenting on some of the related literature. For a

general discussion about phase transitions where the Fermi surface disappears and non-

Fermi liquid behaviour can arise see [23]. A system with fermions living on probe branes

with examples of Non-Fermi liquid phases and transitions due to the excitations getting

gapped was found in [24, 25]. Some discussion of the Holographic description of a Fermi

liquid can be found in [26]. Progress towards constructing an holographic description of the

strange metal phase can be found in [27]. Recent progress in understanding the Holographic

non-Fermi liquid phases often found in gravity systems in terms of fractionalised Fermi

liquids and related ideas is contained in [20–22].

This paper is organized as follows. We begin by reviewing the dilaton system of in-

terest and discuss the near-horizon geometry of extremal and near-extremal black branes

in this system, along with some aspects of their thermodynamics and transport in sec-

tion 2. The fermionic two-point function, for various ranges of parameters, is discussed

in section 3. Section 4 contains a summary of main results and conclusions. Appendix A

contains a discussion of additional extremal solutions, appendices B–D contain additional

material useful for the fermion two-point function calculation and appendix E contains the

calculation for the scalar two-point function. In appendix F we obtain a numerical solution

interpolating between the near horizon geometry and AdS4.

2 The dilaton gravity system

The system we consider consists of gravity, a U(1) gauge field, and a scalar, φ, which we

call the dilaton, with action,

S =

∫

d4x
√−g

{

R− 2(∇φ)2 − f(φ)FµνF
µν − V (φ)

}

. (2.1)

Note that for simplicity we have taken the kinetic energy term of the dilaton to be canonical.

This restriction can be easily relaxed although we will not do so here.

The gauge coupling g2 ≡ (f(φ))−1 and the potential V (φ) are both a function of

the dilaton.

We will be particularly interested in solutions where the dilaton has a run-away type of

behaviour near the horizon of an extremal black brane. Such run-away behaviour can result

in the entropy of the extremal brane vanishing [13]. Also, we will be mainly concerned with
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the low-temperature or low frequency (compared to the chemical potential) response of the

system. On general grounds one expects that this response will be determined by the near-

horizon geometry. Thus for our purposes we will mainly be interested in the behaviour of

f(φ) and V (φ) when the dilaton has evolved sufficiently far along the run-away direction.

We will take this behaviour to be of exponential type,

f(φ) = e2αφ, (2.2)

V (φ) = V0e
2δφ. (2.3)

The parameters α, δ thus characterize the run-away behaviour which occurs for φ = ±∞.

These parameters will repeatedly enter the discussion below. Substituting in eq. (2.1) then

gives the action,

S =

∫

d4x
√−g

{

R− 2(∇φ)2 − e2αφFµνF
µν − V0e

2δφ
}

(2.4)

It is worth noting before we proceed that the full dependence of f(φ), V (φ) away

from the run-away region can be very different from these exponential forms. In fact, to

obtain a solution which is asymptotically AdS4 space, the potential V (φ) will need to have

an extremum at a negative value of the cosmological constant and the dilaton will have

to asymptote to this extremum far away from the horizon. However, these features of

f(φ), V (φ), and the corresponding features of the geometry, will not be very significant

for determining the low-energy behaviour which will arise essentially from the near-horizon

region. In field theory terminology these features correspond to UV data which is irrelevant

for IR physics. The action eq. (2.4) therefore determines only the IR physics of the field

theory. In the analysis below we will also take V0 appearing in eq. (2.3) to satisfy the

condition,5

V0 < 0. (2.5)

In this paper we will be interested in electrically charge black branes. Using the

expected symmetries of the solution (translations and rotation in the x, y directions and

time independence), the metric can be chosen to be of the form,

ds2 = −a(r)2dt2 +
dr2

a(r)2
+ b(r)2(dx2 + dy2) (2.6)

The horizon of the extremal black brane will be taken to lie at r = 0. The gauge field

equation of motion gives,

F =
Qe

f(φ)b2
dt ∧ dr. (2.7)

The remaining equations of motion can be conveniently expressed in terms of an effec-

tive potential as [28]

Veff =
1

b2

(

e−2αφQ2
e

)

+
b2V0

2
e2δφ, (2.8)

5Since a negative cosmological constant is easier to obtain in string/M theory this choice for the sign of

V0 might be also easier to obtain in a string/M construction.
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and are given by,

(a2b2)′′ = − 2V0e
2δφb2 (2.9)

b′′

b
= − φ′2 (2.10)

(a2b2φ′)′ =
1

2
∂φVeff (2.11)

a2b′2 +
1

2
a2′b2

′
= a2b2φ′2 − Veff. (2.12)

2.1 The solutions

In this subsection we will construct the near-horizon geometry for a class of extremal black

brane solutions to these equations. Consider an ansatz6

a = Car
γ b = rβ φ = k log r (2.13)

Note that a multiplicative constant in b can be set to unity by rescaling x, y, and an additive

constant in φ, while subdominant at small r can be absorbed into V0 and Q. With this

ansatz, eq. (2.10) gives,

k2 = β(1 − β) (2.14)

Eq. (2.9) gives,

C2
a(1 + β + kδ)(1 + 2β + 2kδ) = −V0 (2.15)

γ − 1 = δk. (2.16)

Finally, eq. (2.11), eq. (2.12) give, on using γ = 1 + δk and eq. (2.14),

(

C2
ak(1 + 2β + 2kδ) − δ

2
V0

)

r4β−2k(α−δ) = −αQ2
er

−4αk (2.17)

and,
(

C2
aβ(1 + 2β + 2kδ) +

1

2
V0

)

r4β−2k(α−δ) = −Q2
er

−4αk (2.18)

These last two equations can be met if the power of r and the coefficients match on both

sides of each equation. This gives,

4β = −2k(α + δ) (2.19)

C2
ak(1 + 2β + 2kδ) − δ

2
V0 = −αQ2

e (2.20)

C2
aβ(1 + 2β + 2kδ) +

1

2
V0 = −Q2

e (2.21)

6Actually the only assumption in this ansatz is that b has a power law dependence on r. Given this fact,

eq. (2.10) implies that φ ∝ log r, and eq. (2.9) implies (except for some special cases) that a(r) is also a

power law.
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Solving, eq. (2.14), eq. (2.15), eq. (2.16), eq. (2.19), eq. (2.20), eq. (2.21), gives

β =
(α+ δ)2

4 + (α+ δ)2
γ = 1 − 2δ(α + δ)

4 + (α+ δ)2
k = − 2(α+ δ)

4 + (α+ δ)2
(2.22)

C2
a = −V0

(

4 + (α+ δ)2
)2

2 (2 + α(α+ δ)) (4 + (3α− δ)(α + δ))
Q2

e = −V0
2 − δ(α + δ)

2 (2 + α(α + δ))
(2.23)

The following three conditions must be satisfied for this solution to be valid:

Q2
e > 0 ⇒ 2 − δ(α + δ)

2 + α(α + δ)
> 0 (2.24)

C2
a > 0 ⇒ (2 + α(α + δ)) (4 + (3α − δ)(α + δ)) > 0 (2.25)

γ > 0 ⇒ 1 − 2δ(α + δ)

4 + (α+ δ)2
> 0 (2.26)

The last condition arises from the requirement that gtt vanish at the horizon, which we

have taken to lie at r = 0.

Now note that the constraint, Q2
e > 0, can be satisfied in general in two ways: both the

numerator and the denominator are positive or both are negative. The latter possibility,

however, it is easy to see, violates the condition γ > 0. Therefore the conditions above can

be reexpressed as,

2 − δ(α+ δ) > 0 (2.27)

2 + α(α+ δ) > 0 (2.28)

4 + (3α− δ)(α + δ) > 0. (2.29)

Note that from eq. (2.22), (2.23) and eq. (2.27),

γ − β =
4 − 2δ(α + δ)

4 + (α+ δ)2
> 0. (2.30)

The parameter β + γ will play an important role in the subsequent discussion. From

eq. (2.22), (2.23) it takes the value,

β + γ = 1 +
(α+ δ)(α − δ)

4 + (α+ δ)2
. (2.31)

Note that β + γ = 1 when α = ±δ. The case α + δ = 0 has γ = 1, β = 0 and therefore

corresponds to an AdS2 × R2 geometry which is also the near horizon geometry in the

extreme RN case. The case α = δ has β > 0 and therefore corresponds to an extremal

brane with vanishing horizon area.

2.2 More on the solutions

Here we comment on some properties of the solutions in more detail.

The solution in eq. (2.22), (2.23) has only one parameter V0, in particular the charge too

gets fixed in it in terms of this parameter. In the full solution, including the asymptotic

region near the boundary, the charge or the chemical potential would of course be an

– 7 –
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additional parameter, however this parameter does not appear in the near-horizon solution.

The solution above eq. (2.22), (2.23) is actually an exact solution to the equations of motion,

but in a situation where the asymptotic boundary conditions are different, say AdS4, it will

only be approximately valid at small values of r. And the chemical potential will enter in

the determination for when the near-horizon geometry stops being a good approximation.7

If V0 and µ are the only two scales in the geometry one expects that the near horizon

geometry is a good approximation for

r ≪ µ
√

|V0|
. (2.32)

Note that r is dimensionless, µ and
√

|V0| have units of Mass,8 thus this formula is consis-

tent with dimensional analysis.9

Let us make a few more comments. When α+ δ does not vanish, β > 0, and therefore

the area of the horizon and thus the entropy vanishes. Second, the solution has a smooth

limit when δ → 0, and reduces to the black brane found in [13, 29] in this limit. Third,

the solution is somewhat analogous to Lifhsitz type solutions [30–33], however, in general

the metric in the solution does not have any scaling symmetry. Exceptions arise when

γ = 1, which requires either α + δ = 0, the eRN case mentioned above, or δ = 0, the case

studied in [13]. Finally, after a suitable coordinate transformation it is easy to see that

the solution we have obtained above, eq. (2.22), (2.23) agrees with the solution discussed

in [15] in section 8, eq. (8.1a)–(8.1d), with the non-extremality parameter m set to zero.10

We will examine the thermodynamics of the near extremal solution next and also

comment on electrical conductivity.

Before proceeding let us note that there is another class of solution to the equation of

motion, also consistent with the ansatz, eq. (2.13), which is valid in a region of the (α, δ)

parameter space which is different from the one described above. This class of solutions is

discussed in appendix A. A further study of this additional class of solutions is left for the

future, the discussion which follows will mainly focus on the extremal black brane solutions

discussed above.

2.3 Thermodynamics of the slightly non-extremal black brane

Next we turn to constructing slightly non-extremal black brane solutions (these would

have temperature T ≪ |µ|, where µ is the chemical potential). The following observation

7More generally, there could be additional scales, e.g., if a relevant operator is turned on in the boundary

CFT, besides the chemical potential, to obtain the full geometry. In such a situation our comments apply

if these additional scales are also of order the chemical potential. In appendix F we will in fact construct

examples of such solutions where the relevant operator is dual to the dilaton. For typical values of parameters

considered there, the additional scale which corresponds to the coupling constant of this operator in the

Lagrangian is of order µ.
8There is a hidden overall Newton constant GN in the action (2.1).
9Another way to obtain (2.32) in the full solution viewpoint is to note that we need r−rh ≪ rh ∼ µ where

rh is horizon. By restoring the length scale of the system ∼ 1/
p

|V0| and by coordinate transformation so

that we set horizon to be r = 0, we obtain (2.32).
10For comparison purposes the parameters (α, δ) defined in this paper should be related to (γ, δ) in [15]

as follows: (α, δ) → (γ,−δ).

– 8 –



J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

makes it easy to do so. Starting from the extremal solution, of the form, eq. (2.13), the

equations of motion continue to hold if a term linear in r is added to a2b2, while keeping

b2 and φ unchanged. This is straightforward to see for the first three equations of motion,

eq. (2.9)–(2.11), and follows for eq. (2.12) after we note that it can be rewritten as,

(

a2b2
b′

b

)′
= −Veff . (2.33)

This observation allows us to construct a one parameter deformation of the extremal

solutions, where

a2 = C2
ar

2γ

(

1 −
(rh
r

)2β+2γ−1
)

(2.34)

and b2, φ take the form in eq. (2.13), with Ca, γ, β, k as given in eq. (2.22), eq. (2.23). The

parameter rh characterizes the deformation and corresponds to the location of the horizon.

It is easy to see that the deformed solutions have a first order zero at the horizon and thus

are non-extremal. For rh ≪ 1 these solutions are close to extremal.

Near the horizon,

a2 ≃ C2
a(2β + 2γ − 1)r2γ−1

h (r − rh) (2.35)

We note that for the solution in eq. (2.22), (2.23), the condition,

2β + 2γ − 1 > 0 (2.36)

is indeed met, as would be needed for the region r > rh to correspond to the region outside

of the horizon. It is simple to see that the temperature of the non-extremal black brane

goes like,

T ∼ r2γ−1
h (2.37)

and the entropy density scales like,

s ∼ r2β
h ∼ T

2β
2γ−1 (2.38)

A physically acceptable extremal black brane, which corresponds to the ground state

of a conventional field theory on the boundary, should have a positive specific heat when

it is heated up. This leads to the additional condition for an acceptable solution,

2γ − 1 > 0 (2.39)

When expressed in terms of α, δ this becomes,

4 + (α− 3δ)(α + δ) > 0 (2.40)

This condition must be added to the three discused earlier, eq. (2.27)–(2.29). In figure 1

we show the region in the (α, δ) plane which meets all these four conditions.

– 9 –
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Figure 1. Region allowed by the constraints.

2.4 Taming the singularity

In the discussion above we used classical Einstein gravity and worked in the two-derivative

approximation. These approximations can break down at sufficiently small values of the

radial coordinate r. For example, a curvature singularity could arise or the dilaton can

diverge signalling such a breakdown. The essential point we want to make in this subsection

is that turning on a temperature which is very small in the large N limit can often help

control this breakdown. Our arguments are only suggestive at the moment, a definitive

discussion would require an embedding of these dilaton systems in string theory which has

not been done as yet.

The parameter

L =
1

√

|V0|
(2.41)

is an important length that characterizes the system. We will assume that L and the chem-

ical potential µ are the only two scales in the system in the two derivative approximation.

For example, if the geometry is asymptotically AdS4 the radius of AdS4 would be of order

L. From eq. (2.22), (2.23) we see that L is also the only scale in the near-horizon solution.

A measure of the number of degrees of freedom in the system is given by

N2 =
L2

l2P l

. (2.42)

In the near-horizon geometry of the extremal solution the Ricci scalar, R ∼ r2(γ−1)/L2.

The higher invariants RµνR
µν and RµνρσR

µνρσ are also of the same order, i.e. RµνR
µν ∼

(r2(γ−1)/L2)2 etc. We see that these invariants diverge at r = 0 for γ < 1.11 At finite

11For γ ≥ 1 tidal forces could still blow up, as happens in the Lifshitz solutions obtained when γ = 1,

β 6= 0.
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temperature the divergence is cutoff at the horizon located at r = rh. We get

Rl2pl ∼
r
2(γ−1)
h

N2
(2.43)

Expressing this in terms of the temperature

T ∼ r2γ−1
h

L
(2.44)

leads to

Rl2pl ∼
(TL)

2γ−2
2γ−1

N2
(2.45)

We see that for N2 ≫ 1 the curvature can be made much smaller than the Planck scale by

taking
(

1

N2

)
2γ−1

2(1−γ)

≪ TL≪ 1 (2.46)

Thus the curvature can be made much smaller than the Planck scale, while keeping the

temperature much smaller than 1/L . In the large N limit, where N → ∞, keeping L

fixed, this condition is in fact met for any non-zero temperature.

However this analysis might be incomplete, since the 4 dim. Planck scale is a derived

quantity in string theory and the criterion for breakdown of classical two-derivative gravity

involves the curvature in units of the string scale, which is related to lP l via the values of

moduli, and also involves the string coupling. It could be that requiring the curvature to

be much smaller than the string scale imposes a stronger condition than eq. (2.46), or that

a stronger condition arises by requiring that quantum effects remain small.12

For example, it could be that the dilaton enters in the relation between the string

and Planck scale,13 since the dilaton also varies with r this could change the condition for

the validity of the two-derivative approximation. Similarly, the dilaton might also enter in

the string coupling and the requirement that quantum corrections are small could impose

significant restrictions. In fact this is likely to be the case. The gauge coupling in the

action eq. (2.4) goes like g2 = e−2αφ. One would expect the theory to be weakly coupled

only when g2 ≪ 1. The dilaton in the near horizon region is given by,

φ = k log(r/rc) (2.47)

where we have introduced a radial cut-off rc on the r.h.s. . This leads to the condition,

e−2αφ =

(

rh
rc

)−2αk

≪ 1 (2.48)

When αk > 0 this does not allow the temperature to become very small. The parameter rc
depends on the chemical potential, which determines how far out in r the geometry begins

12Another reason for thinking that there is more to this analysis is the condition eq. (2.46) involves L

which does not directly have an interpretation in the boundary theory.
13The scalar we are calling the dilaton may not literally be the dilaton field of string theory whose

expectation value determines the string coupling.
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to depart from the near-horizon solution, and also can depend on the asymptotic value of

φ. It could be that this condition can be met only if T is large compared to µ, this would

require a temperature which is much too big, the resulting finite temperature black brane

would not be described by the near-horizon metric we have found. Or it could be that if

one starts with the asymptotic value of the dilaton being small enough this condition can

be met while remaining within the scope of the solution we have found.

Clearly, this question about the validity of our solution, in the presence of a small

temperature, will need to be revisited in a more complete string construction.

2.5 Conductivity

For completeness let us also comment on the electrical conductivity of this system. Our

discussion follows [13] section 3 and [14] section 3 closely, we omit some details. Before

proceeding let us note that the compution of the electrical conductivity in AdS/CFT is

discussed in several other papers as well, e.g., [34–39]. The essential idea of our calcula-

tion, [35], is to cast the equation governing a perturbation of say the Ax component of the

gauge field in the black brane background in the form of a Schrödinger problem,

− d2ψ

dz2
+ V (z)ψ = ω2ψ (2.49)

where ω is the frequency. Starting at the boundary with an ingoing pulse one can calculate

the reflection amplitude R from the potential V (z). The conductivity is then given by

σ =
1 −R

1 +R
. (2.50)

The dependence of the conductivity on ω, T , for small values of these parameters can be

obtained, upto overall coefficients, by analyzing the behaviour of V (z) in the near-horizon

region. Thus our lack of knowledge of the full solution in the problem at hand will not be a

limitation in extracting this information, although conceptually it is useful to assume that

there is a screen eventually located in an asymptotically AdS region.

Some more details are as follows. The variable ψ is

ψ = f(φ)Ax (2.51)

and z is given in terms of the radial variable r used in the metric, eq. (2.6), by

∂z = a2∂r . (2.52)

As discussed in appendix B, in the extremal near-horizon geometry,

V (z) =
c

z2
(2.53)

where the coefficient c, which is important for this calculation, takes the value,

c = 2
(4 + α2 − δ2)(4 + (α− 2δ)(α + δ))

(4 + (α− 3δ)(α + δ))2
. (2.54)
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Defining

ν =

√

c+
1

4
, (2.55)

it then follows from the analysis of section 3 in [13] for example that the optical conductivity,

for ω ≪ µ at zero temperature, is given by,

Re(σ) ∼ ω2ν−1 ∼ ω
2(4+α2−δ2)

4+(α−3δ)(α+δ) (2.56)

Similarly, the DC conductivity, for ω → 0, for small temperature, T/µ ≪ 1, goes like,

Re(σ) ∼ T 2ν−1 ∼ T
2(4+α2−δ2)

4+(α−3δ)(α+δ) (2.57)

as follows from the analysis in [14] section 3 for example. There is in addition a delta

function at zero frequency in Re(σ) which we have omitted above.

Note that using eq. (2.22), eq. (2.23), we can express the exponent

2ν − 1 =
2γ

(2γ − 1)
(2.58)

Since 2γ− 1 > 0 from eq. (2.39), the r.h.s. is always positive thus the exponent in both the

optical conductivity and DC conductivity are positive. This means the optical conductiv-

ity increases with increasing frequency and the DC conductivity increases with increasing

temperature, with the system behaving in effect as one with a “soft gap”.14 As (α, δ) are

varied 2γ − 1 can become arbitrarily small (while remaining positive) and thus the expo-

nent eq. (2.58) can become very large so that the increase with frequency or temperature

is very gradual.

The result for the optical conductivity agrees with section 8 of [15]. The DC conduc-

tivity does not agree. The answer above corresponds to the DC conductivity as defined by

the two-point current -current correlation function using the Kubo formula. The definition

in [15], section 5, for the DC conductivity is different and related to the drag force on a

massive charge.

3 Fermionic two point function

We will consider a free fermion in the bulk with mass m and charge q. Its action is

Sfermion =

∫

d3+1x
√−gi[ψ̄ΓMDMψ −mψ̄ψ] (3.1)

We will mostly follow the spinor and related Dirac matrix notation of [5] and specifically

comment on any differences below. In our notation then,

ψ̄ = ψ†Γt̄, DM = ∂M +
1

4
ωabMΓab − iqAM (3.2)

14In a system with a conventional gap the conductivity would be exponentially sensitive to the tempera-

ture, going like, Re(σ) ∼ e
−∆

T , instead of having the power-law behaviour we find.
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where ωabM is the spin connection and AM is the vector potential. The gamma matrices,

Γr =

(

1 0

0 −1

)

, Γµ =

(

0 γµ

γµ 0

)

(3.3)

with

γ0 = iσ2, γ
1 = σ1, γ

2 = σ3. (3.4)

where σi, i = 1, · · · 3 denote the Pauli matrices.

The spinor ψ has four components and we define ψ± to be the upper and lower two

components respectively,

ψ =

(

ψ+

ψ−

)

(3.5)

Using the translational symmetries we can take,

ψ± = (−ggrr)−
1
4 e−iωt+ikix

i
φ± . (3.6)

Asymptotically,

φ+ = Arm +Br−m−1, φ− = Crm−1 +Dr−m (3.7)

where A,B,C,D are 2 dim. column vectors. If we define D = SA then The two-point

function on the boundary for the dual operator is

GR = −iSγ0 . (3.8)

We can simplify the calculations by using the rotational symmetry in x, y plane to

choose k = k1. Then writing

φ± =

(

y±
z±

)

. (3.9)

The equation of motion for ψ then breaks up into block 2 × 2 form coupling only (y+, z−)

and (y−, z+) together respectively. The two-point function GR has two non-vanishing

components, GR11 and GR22, these are related by, GR11(ω, k1) = GR22(ω,−k1) and are

not independent. In what follows we will set (y−, z+) to vanish, this is sufficient to extract

GR22 and then also GR11.

Also it will be convenient to make one change of variables and work with

z′− = iz− (3.10)

instead of z−.

The equations for (y+, z
′
−) take the form,

√

gii

grr
(∂r −m

√
grr) y+ = −(k1 − u)z′− (3.11)

√

gii

grr
(∂r +m

√
grr)z

′
− = −(k1 + u)y+ (3.12)
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with

u =

√

gii

−gtt
(ω + qAt) . (3.13)

Asymptotically, towards the boundary,15 it is easy to see that the solution take the

form,
(

y+

z′−

)

= C1

(

1

− (ω+µq+k1)
(2m−1)r

)

rm + C2

( −(ω+µq−k1)
(2m+1)r

1

)

r−m (3.14)

where µ is the asymptotic value of the gauge potential At. Comparing with eq. (3.7) and

eq. (3.8) we find that

GR22 = −C2

C1
. (3.15)

In the near horizon region, eq. (2.22), (2.23) the fermion equations of motion,

eq. (3.11), (3.12) take the form,

rβ+γ

(

∂r −
m

Carγ

)

y+ = −
(

k1

Ca
− rβ−γ

C2
a

(ω + qAt)

)

z′− (3.16)

rβ+γ

(

∂r +
m

Carγ

)

z′− = −
(

k1

Ca
+
rβ−γ

C2
a

(ω + qAt)

)

y+ . (3.17)

The explicit Ca dependence will vanish if we work with the rescaled variables, m =

m̃Ca, k1 = k̃1Ca, (ω + qAt) → C2
a(ω̃ + q̃At). To avoid clutter we will refer to these rescaled

variables m̃, k̃1, ω̃, q̃ as m,k1, ω, q in the discussion below. Eq. (3.16) and (3.17) now take

the form,

rβ+γ
(

∂r −
m

rγ

)

y+ = −
(

k1 − rβ−γ(ω + qAt)
)

z′− (3.18)

rβ+γ
(

∂r +
m

rγ

)

z′− = −
(

k1 + rβ−γ(ω + qAt)
)

y+ . (3.19)

We will be interested in the retarded Green’s function in the bulk, this is obtained by

imposing in-going boundary conditions at the horizon. Very close to the horizon where ω

term dominates, eq. (3.18), (3.19) become,

rβ+γ ∂r

(

y+

z
′
−

)

= ωrβ−γ iσ2

(

y+

z
′
−

)

. (3.20)

The ingoing solution is obtained by taking

(

y+

z′−

)

=

(

1

−i

)

e−iωz (3.21)

where

z =
1

(1 − 2γ)r2γ−1
. (3.22)

15We are assuming here that asymptotically the spacetime approaches AdS4, as happens for the examples

considered in appendix F. While this is useful for extracting the field theory results, at low-frequency the

essential features in these results really only depend on the near-horizon region.
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Figure 2. Region with β + γ > 1 in blue; β + γ < 1 in green.

Note that the time dependence has been taken to be of form e−iωt, eq. (3.6), and since

z → −∞, at the horizon, where r → 0, e−iω(t+z) is well behaved at the future horizon

where t→ ∞.

We are interested in the small frequency behaviour of the boundary two-point function.

At a Fermi surface, where k1 = kF , the boundary two-point function has a singularity, for

ω → 0. We will be interested in asking whether such a surface can arise in this system and

what is the nature of small frequency excitations near this surface. It will be convenient

to divide our analysis into three parts, depending on the value the parameter β + γ takes.

When β + γ > 1 we will see that the boundary fermionic two-point function is of

Fermi liquid type. More correctly, as was discussed in the introduction the small frequency

excitations have a linear dispersion relation, with a width which is narrower than ω2. When

β + γ < 1 we will find that the low-frequency excitations acquire a width which is non-

vanishing even in the ω → 0 limit, and thus is very broad. The transition region, β+γ = 1

consists of two lines. One of them corresponds to extremal RN type geometries, which are

well known to give Non-Fermi liquid behaviour [4–6]. The other corresponds to geometries

which have vanishing entropy, here we find that the behaviour can be of both Fermi or

non-Fermi liquid type with width Γ ∼ ωp. The power p > 0 and can be bigger, equal to,

or less than two, so that one can get both Fermi-liquid and non-Fermi liquid behaviour.

We now turn to discussing these three cases in turn. In figure 2 we plot the regions

where β, γ take different values, in the (α, δ) plane.

Before proceeding let us comment on the significance of the parameter β + γ. We
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denote16

ψ =

(

y+

z′−

)

. (3.23)

There is a convenient way to recast eq. (3.18) and (3.19) as a second order equation of

Schrödinger form, with a spin dependent potential:

rγ+β∂r(r
γ+β∂rψ) =

[

m2r2β + k2
1 − (ω + qAt)

2r2(β−γ)
]

ψ + βmr2β+γ−1σ3ψ (3.24)

+i
[

(β − γ)r2β−1(ω + qAt) + qr2β∂rAt

]

σ2ψ .

The Shrodinger variable is

ζ =

∫

dr

rγ+β
=

r1−β−γ

(1 − β − γ)
. (3.25)

The distance as measured in this variable to the horizon (r = 0) has a power-law divergence

for β + γ > 1, a logarithmic divergence for β + γ = 1 and no divergence for β + γ < 1.

This difference yields the interaction strength difference between bulk fermion and black

brane. Depending on the distance to the horizon being infinite or finite, it is expected that

the influence of the black brane to the bulk fermion is highly suppressed or large. Since

at the horizon the bulk fermions decay into black brane degrees of freedom, this distance

difference ultimately results in the three qualitatively different types of behaviour (decay

ratio width) for the boundary fermions two-point function as we will see below.

Eq. (3.24) is convenient for our analysis for the following reason. We are interesting in

the dominant ω dependence at small frequency. As we will see, this dependence arises from

a region close to the horizon where the m,At dependent terms on the r.h.s. of eq. (3.24) can

be neglected. This only leaves the k1 and ω dependent terms in eq. (3.24). Of these the k1

dependent term is particularly important, since it is repulsive and hinders the particle from

falling into the horizon. Physically this is because the shrinking size of the x, y directions

gives rise to a cost in the k1 dependent energy that increases closer to the horizon. In

eq. (3.24) this is seen clearly since the k1 dependent term does not give rise to a spin

dependent potential (which would be proportional to the σ matrices) and only multiplies

the identity matrix in spin space, with a sign which corresponds to its providing positive

potential energy.

3.1 β + γ > 1

In this case we will see that the WKB approximation can be used to calculate the boundary

Green’s function. The width of the boundary correlator is related to tunneling through

a classically disallowed region in the bulk and will be exponentially suppressed at small

frequency.

In the WKB approximation radial derivatives on (y+, z
′
−) are more important than

those on the metric or gauge potential, From eq. (3.18) and eq. (3.19) it then follows that

16In the action eq. (2.4) etc above ψ stands for the four components fermion, in the subsequent discussion

we will only be exciting the (y+, z
′
−) components and to save clutter henceforth will refer to the two

component spinor itself as ψ.
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for example y+ satisfies the equation,17

rβ+γ∂r(r
β+γ∂ry+) −m2r2βy+ −

(

k2
1 − r2(β−γ)(ω + qAt)

2
)

y+ = 0. (3.26)

We will be mainly interested in the small frequency behaviour, which is essentially

determined by the near horizon region, where

r ≪ 1. (3.27)

In this region we see that the mass dependent terms are subdominant compared to the ω

and k1 dependent terms. Also, from eq. (2.7) we see that in this region the gauge potential

is given by,

At ∼ r1−2αk−2β. (3.28)

From eq. (2.22), (2.23) we see that for β + γ > 1, (α + δ)(α − δ) > 0. It will turn out that

the small frequency behavior can in fact be extracted from the region where

r1−(2β+2αk) ≪ ω (3.29)

so At can also be neglected compared to the ω dependence18 in eq. (3.26). Note that

1 − (2αk + 2β) > 0 under eq. (2.40), therefore eq. (3.27) and (3.29) are compatible.

The equation eq. (3.26) can be cast in the form of a Schrödinger equation for a zero

energy eigenstate,

− d2y+

dζ2
+ V y+ = 0 (3.30)

where ζ is defined in eq. (3.25), and V , the potential, is

V = k2
1 − ω2

r2(γ−β)
. (3.31)

There are three regions of interest in the calculation. The region very close to the

horizon, which we will call R1 is where r → 0. This region is classically allowed, as follows

from eq (2.30) which imply that γ − β > 0, therefore V < 0.

The second region which we call R2 is where

1 ≫ rγ−β ≫ ω

k1
(3.32)

so that the k1 term dominates over the ω dependent term in V . Note we still have to meet

eq. (3.29); at the end of this section we will return to this point and show that eq. (3.29)

and eq. (3.32) are indeed compatible. Note that the R2 region is classically disallowed and

in this region the frequency dependence is unimportant.

Finally the third region R3 is close to the boundary where r → ∞.

The regions R1 and R2 are separated by a turning point at

rtp =

(

ω

k1

)
1

γ−β

. (3.33)

17This equation has additional terms which are small in the WKB approximation.
18We take q ∼ O(1).
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It is easy to see that in R1 the solution to eq. (3.30) in the WKB approximation, which

corresponds to in-going boundary conditions at the horizon, is

y+ =
1
√

k̂
e−i

R

k̂(r)dr (3.34)

where

k̂(r) =
1

r2γ

√

ω2 − k2
1r

2(γ−β) , (3.35)

and the constant in the integration is chosen so that
∫

k̂dr ≃ ω
(1−2γ)r2γ−1 for r → 0.

In region R2 there are two independent solutions to eq. (3.30) which in the WKB

approximation go like

f± = e
∓

„

k1

(γ+β−1)r(γ+β−1)

«

. (3.36)

Matching to eq. (3.34) using standard turning point formulae, see, e.g, [40], gives,

y+ =
A
√

k̂

[

f+ +
i

2
e−2If−

]

(3.37)

where now

k̂ =
k1

rγ−β
. (3.38)

and,

I = c1

(

k2γ−1
1

ωβ+γ−1

)
1

γ−β

, (3.39)

c1 =

∫ ∞

1

dx

x2γ

√

x2(γ−β) − 1 , (3.40)

and A is an overall coefficient. Notice that e−2I is exponentially suppressed when ω → 0.

Thus the f− term has a very small coefficient and is subdominant at small ω.

From eq. (3.18), (3.19) it is easy to find the solution for z′− in this region. The result

can be stated as follows. There are two linearly independent solutions in region R2,

ψ± =

(

1

∓1

)

f±. (3.41)

The solution which agrees with eq. (3.37) is

ψ =
A
√

k̂

[

ψ+ +
i

2
e−2Iψ−

]

(3.42)

Note that in this solution the frequency dependence is summarized in the coefficient e−2I ,

the solutions, ψ± are independent of frequency.

Now ψ± can further be extended from region R2 to region R3 which lies close to

the boundary. Let the coefficients C1, C2, eq. (3.14), which arise from ψ± be denoted by

C1±, C2± respectively. Then the boundary two-point function is given by

GR22 = −C2+ + i
2e

−2IC2−
C1+ + i

2e
−2IC1−

(3.43)
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A Fermi surface arises when the coefficient C1+ vanishes for ω → 0. In general this imposes

one real condition on the momentum k1 and for a suitably chosen k1 = kF and if necessary

by adjusting the geometry19 for the spacetime which interpolates between the near horizon

region and the AdS boundary etc it should be possible to meet this condition. By rotational

invariance this will then be true for all |~k| = kF . Expanding C1 near k = kF then gives,

GR22 =
c3

ω − vF (|~k| − kF ) + ic2e−2I
(3.44)

vF and c2 arise from the Taylor series expansion of C1+ and the leading behaviour of C1−,

we have neglected the term proportional to C2− in the numerator, and the leading C2+

dependence feeds into the numerator c3.

We see that the small frequency excitations have a linear dispersion relation, with a

width given by,

Γ ∼ e−2I = exp



−2c1

(

k2γ−1
F

ω(β+γ−1)

)
1

γ−β



 . (3.45)

This width is exponentially suppressed at small frequency and therefore very narrow.

Let us end by checking the validity of our approximations. Our use of the WKB

approximation in regions R1, R2 imposes restrictions. This approximation requires that

radial derivatives acting on ψ =

(

y+

z′−

)

are more important than derivatives of the metric.

In region R2 this gives the condition

rγ+β−1 ≪ 1 (3.46)

(we have set k1 ∼ O(1)). Note that eq. (3.46) can be met in the near horizon geometry

where r ≪ 1 only if β + γ > 1. The fact that the WKB approximation breaks when

β + γ ≤ 1 is also suggested by the decay width eq. (3.45) which is no longer suppressed

at small ω. In addition, we have assumed that eq. (3.29) is correct so that the gauge

potential dependent terms can be dropped. In region R2 this has to be compatible with

the condition eq. (3.32). One can show from eq. (2.22), eq. (2.23) that in the region where

β+γ > 1, γ−β < 1− (2β+2αk), it therefore follows that for small ω these two conditions

are compatible.

In Region R1 far from the turning point validity of WKB approximation requires,

r ≪ ω
1

2γ−1 (3.47)

In addition eq. (3.29) needs to be met. These are clearly compatible, in fact eq. (3.47) is

more restrictive.

3.2 Some general comments for the cases β + γ ≤ 1

We will now turn to analyzing what happens when β + γ ≤ 1.

19One can also vary the dilaton dependence of the gauge coupling and potential once the dilaton is not

in the run-away region.
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A few general comments are worth making before we go into details. From eq. (2.22),

eq. (2.23) we see that β + γ = 1 corresponds to the lines, α = −δ and α = +δ. The first

case, α = −δ corresponds to an AdS2×R2 metric which is the near-horizon geometry of the

extreme Reissner Nordstrom Black Brane. This has been analyzed extensively in [4]–[9],

and we will not elaborate on this case further. The second case, α = δ, necessarily has

β 6= 0 (for α 6= 0 ), it is not AdS2 ×R2 and has vanishing area.

In the extremal RN case while studying the fermion equation of motion eq. (3.18),

eq. (3.19) at small frequency the dependence on m,k1 and charge through At dependent

terms are all important. In contrast for the α = δ case and for all cases where β+γ < 1 both

the At and m dependent terms in eq. (3.18), (3.19) can be neglected, in the near-horizon

region relevant for determining the small frequency behaviour. This results in considerable

simplification of the analysis.

It turns out that extracting the ω dependence requires us to solve the equations from

the horizon upto a radial location where

1 ≫ r ≫ ω
1

2γ−1 . (3.48)

Beyond that the ω dependence turns out to be subdominant and can be neglected.20 Now

from eq. (3.18), (3.19) we see that the At dependence is unimportant if |At| ≪ ω. From

eq. (3.29) this leads to the condition,

r ≪ ω
1

1−2αk−2β (3.49)

which is compatible with eq. (3.48) if

ω
1

2γ−1 ≪ ω
1

1−2αk−2β . (3.50)

This last condition is true for ω ≪ 1 because eq. (2.22), eq. (2.23) imply that 2γ − 1 <

1 − 2αk − 2β for δ 6= −α.

The m dependent terms can be neglected if they are small compared to the effect of ∂r.

Now ψ will be vary at least as rapidly as a power of r, from eq. (3.18), (3.19) the condition

for neglecting the m dependent term then becomes

m

rγ
≪ 1

r
. (3.51)

For m ∼ O(1), r ≪ 1 this gives, γ < 1, which is true since β + γ ≤ 1 and β > 0 when

α 6= −δ.
Henceforth we will study the cases β + γ < 1 and the branch α = δ for the case

β + γ = 1 and therefore we can set the At,m dependent terms to be zero in21 eq. (3.18),

eq. (3.19).

20One expects on general grounds that the gravitational redshift is monotonic as one goes from the black

brane horizon to the boundary making the ω dependence increasingly negligible.
21To ensure clarity let us reiterate that below when we refer to β + γ = 1 we only mean the case where

α = δ, for which the metric is not AdS2 ×R2.

– 21 –



J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

Eq. (3.18), (3.19) then become, in terms of

ψ =

(

y+

z′−

)

, (3.52)

rβ+γ∂rψ = (−k1σ1 + irβ−γωσ2)ψ . (3.53)

The behaviour of the solution can be understood qualitatively as follows. Very close

to the horizon, the ω dependent term on the r.h.s. will dominate over the k1 dependent one

since β − γ < 0 as eq. (2.30). Thus ψ will be of the form given in eq. (3.21). The effects

of the frequency will become subdominant to k1 dependent ones when the ω dependent

term on the r.h.s. of eq. (3.53) becomes less important compared to the k1 dependent term

giving the condition,

r ≫
(

ω

k1

)
1

γ−β

. (3.54)

Now another way to estimate when the effects of frequency become small is when the

the phase in eq. (3.21) becomes small. Using eq. (3.22) this gives

|ωz| ∼ | ω

r2γ−1
| ≪ 1 (3.55)

which implies,

r ≫ ω
1

2γ−1 . (3.56)

Now it is easy to see that for β + γ < 1, ω
1

2γ−1 < ω
1

γ−β for ω ≪ 1. Thus as r is

increased from the horizon eq. (3.56) will be met before eq. (3.54) is met.22 For the case

when β + γ < 1 then in the region where

ω
1

2γ−1 ≪ r ≪
(

ω

k1

)
1

γ−β

(3.57)

the solution can be obtained by simply expanding the exponential in eq. (3.21) and gives,

ψ =

(

1

−i

)

+O(ωz). (3.58)

Going to large values of r the k1,m and At dependence will become important, but in this

region the ω dependence can be neglected. We will return to studying the consequences of

our analysis above for the β + γ < 1 case in section 3.4.

In contrast, for the β + γ = 1 case the two exponents in eq. (3.54) and (3.56) are the

same, since β = 1 − γ. Thus, the k1 dependence will become important before the phase

factor in eq. (3.21) can be approximated to unity. Going to large values the k1 dependent

term will be more important and the solution will take the form,

ψ = d1

(

1

−1

)

rk1 + d2

(

1

1

)

r−k1 . (3.59)

At even large values of r the At,m dependent terms will also get important. We will turn

to a more complete analysis of this case in section 3.3.

22We are assuming k1 is O(1) here.
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3.3 More on the β + γ = 1 case

Here we will be interested in solving the fermion equation in the background, eq. (2.22),

eq. (2.23), with α = δ.

Our starting point is eq. (3.53). It is convenient to define,

χ± = y+ ± z′−. (3.60)

And work with the variable,

z̃ =
ω

(2γ − 1)r2γ−1
, (3.61)

which goes to infinity at the horizon. For now we specialize to the case when k1 > 0 and

define

η =
k1

2γ − 1
. (3.62)

Then eq. (3.53) becomes,

(z̃∂z̃ − η)χ+ = z̃χ− (3.63)

(z̃∂z̃ + η)χ− = −z̃χ+, (3.64)

which gives the second order equation,

[

z̃2∂2
z̃ + (z̃2 − η2 − η)

]

χ− = 0. (3.65)

The solution for χ− with the ingoing boundary conditions at the horizon is then

χ− =
√
z̃H

(1)
1
2
+η

(z̃), (3.66)

and from eq. (3.64) for χ+ is

χ+ = −z̃−η∂z̃(z̃
ηχ−). (3.67)

As discussed in appendix D in the region where z̃ ≪ 1, i.e., ω ≪ r2γ−1, the solution for

ψ =

(

y+

z′−

)

, in terms of the radial variable r and upto an overall ω dependent normalization

which is not important, becomes

ψ =

(

1

−1

)

rk1 + deiφω2η

(

1

1

)

r−k1. (3.68)

Here d and the phase eiφ, which in general has both a real and imaginary part, depend on

γ, β, k1, but are independent of ω.

Actually, as noted in appendix D, this solution is only valid when η < 1/2. For the

case η > 1/2 the solution takes the form

ψ =

(

1

−1

)

rk1 + id′ω2η

(

1

1

)

r−k1, (3.69)

so that the second term on the r.h.s. makes a contribution only to the imaginary part of ψ.

There are subleading corrections on the r.h.s. to the real part of ψ which are suppressed
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by a power of ω, these are not kept in eq. (3.69) since their effect on the Green’s function

is comparable to ω dependent contributions generated when evolving the solution further

out towards the boundary.

Note that the result eq. (3.68), eq. (3.69) agrees with eq. (3.59) above. It is also

worth commenting that the result eq. (3.68), eq. (3.69) agrees with what one would get

by continuing the WKB results of section 3.1 to the case β + γ = 1. More precisely, from

eq. (3.25) we see that for β+γ = 1, ζ = log r. As a result for r ≫ rtp the exponential factor

in the two solutions go like23 r±k1 which agrees with eq. (3.68), eq. (3.69). The solution

which grows, as r increases, has wavefunction

(

1

−1

)

in the two component

(

y+

z′−

)

space

and the falling solution has wave function

(

1

1

)

, just as in the WKB case. The only

difference is that the WKB suppression factor which was exponentially suppressed in ω

has now turned into a power-law suppression in eq. (3.68), eq. (3.69). This is because the

fermion wave function can now penetrate the barrier more easily and thus can have a bigger

mixing with the modes in the vicinity of the horizon. This crossover from the exponential

suppression to a power-law has also been discussed in [18].

So far for ease of discussion we have considered the case when k1 > 0. For the case

k1 < 0 a very similar analysis can be carried out, as discussed in appendix D. Let us define

η, both for the case when k1 > 0 and k1 < 0 to be

η =
|k1|

2γ − 1
, (3.70)

so that η > 0. Now for k1 < 0 and η < 1/2, the solution eq. (3.68) is replaced by

ψ =

(

1

1

)

r|k1| + deiφω2η

(

1

−1

)

r−|k1|. (3.71)

And for k1 < 0, η > 1/2, eq. (3.69) is replaced by

ψ =

(

1

1

)

r|k1| + id′ω2η

(

1

−1

)

r−|k1|. (3.72)

It is now easy to follow the discussion in section 3.1 to calculate the two-point function

on the boundary in this case. A Fermi surface will arise for k1 = kF if the growing

solution (this is the first term on the r.h.s. of eq. (3.68), (3.71) for this value of k1 is purely

normalisable in AdS4. The Green’s function one gets by expanding around this value of

momentum is

GR22 =
Z

ω − vF (|k| − |kF |) + iDeiφω2η
(3.73)

where Z,D are constants. For η > 1/2, the phase eiφ = 1, whereas for η < 1/2 the phase

is in general complex.

23There is also a prefactor 1√
k̂

which gives rise to an additional powerlaw in r. We are not keeping this

term.
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This result is very similar to what was obtained in the eRN case in [4–7]. The result

also agrees with the general considerations in24 [23].

For η > 1/2 there is a well-defined quasi-particle with a linear dispersion and a width

which goes like ω2η. For 1/2 < η < 1, the width is broader than the Fermi liquid case.

For η < 1/2 the behaviour is more novel. The last term in the denominator going like ω2η

dominates both the real and imaginary parts of the ω dependence. As a result there is no

well-defined quasi-particle, since the residue vanishes at the pole. Finally for η = 1/2, as

discussed in appendix D the Green’s function actually needs to be modified and takes the

form,

GR22 =
Z

vF (|k| − |kF |) + d1ω log ω + d2ω
(3.74)

where d1 is real and d2 complex.

Unlike the eRN case, when α = δ and γ 6= 1, the geometry has no scaling symmetry.

Despite this fact eq. (3.53) has a scaling symmetry for all values of γ, when β + γ = 1,

under which r → λr, ω → λ2γ−1ω with k1 being invariant.25 This scaling symmetry results

in the the complex part characterized by the exponent η being of power law type in the

frequency. One difference is that in our case the mass and charge of the bulk fermion do

not enter in η explicitly but only through kF , which does depend on these parameters.

Before closing this subsection it is worth commenting that while on general grounds we

expect a value of kF to exist for which the bulk solution is purely normalisable, leading to

a singularity in GR22, we have not investigated this feature in detail, e.g., in the solutions

discussed in appendix F which are asymptotically AdS4. We leave such an analysis, along

with the related calculation of Z, vF ,D which appear in eq. (3.73), for the future.

3.4 Case β + γ < 1

In this case the essential features of the solution can be deduced by setting the k1 dependent

terms in eq. (3.53) to zero. This can be seen to be self-consistently true. In fact the essential

point was already made in section 3.2. Setting the k1 dependent term to vanish in eq. (3.53)

gives the solution eq. (3.21). When eq. (3.55) is met the solution reduces to (3.58). This

happens before the k1 term becomes important because

ω
1

2γ−1 ≪ ω
1

γ−β (3.75)

when β + γ < 1 as discussed in section 3.2 around eq. (3.57).

The reader might worry that this argument is a bit too quick. We will examine it

more carefully in appendix C and find that it is indeed justified. The more careful analysis

shows that the region eq. (3.57) where the solutions reduces to the form, eq. (3.58) should

be thought of as being obtained by keeping r/ω1/(2γ−1) fixed and large while taking ω → 0.

Let us now examine the consequences of eq. (3.58). Note in particular that at leading

order y+ and z′− have a relative phase which is imaginary.

24In fact eq. (3.73), for η < 1/2, is of the scaling form proposed in [23] and satisfies the inequalities in

eq. (9) and (18) of [23].
25In fact a suitable change of variables can map the eq. (3.53) for all values of γ, and γ + β = 1, to the

case γ = 1, β = 0.
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In the following discussion it will be useful at this stage to to define two basis vectors,

ψ+ =

(

1

0

)

, ψ− =

(

0

1

)

(3.76)

and express the leading order answer as

(

y+

z′−

)

= ψ+ − iψ− (3.77)

Starting from the region eq. (3.57) and going further towards the boundary the

k1,m,At dependent terms we have been neglecting will come into play and the form of

the solution will deviate from eq. (3.77). Asymptotically, towards the boundary, the solu-

tion obtained from both ψ± will take the form given in eq. (3.14). Let C1±, C2± be the

values for the coefficients C1,2 which appear in eq. (3.14) when we start with ψ± and evolve

the solution towards the boundary respectively. Then, the net value of C1 we get starting

from eq. (3.77) is

C1 = C1+ − iC1− (3.78)

Now notice that the equations eq. (3.18), eq. (3.19) are both real, therefore C1± will be

both real as well.

As in the discussion for the β + γ > 1 case a Fermi surface arises at k1 = kF when C1

vanishes at this momentum as ω → 0. However, since C1+ and C1− are real this actually

imposes two conditions

C1+ = 0 , C1− = 0 (3.79)

which must both be met by adjusting only one real variable - the momentum k1. Generi-

cally, this will be impossible to do.

Our conclusions will be discussed more throughly in the following subsection. We will

see that starting from β + γ = 1 as we go into the region where β + γ < 1, there is no

locus in momentum space about which there are quasi-particle excitations with a width

that vanishes as ω vanishes. However, for β + γ < 1, but close to unity, there is a surface

about which the excitations have a frequency independent width (at small ω) which is

much smaller than the chemical potential and which vanishes as β + γ → 1.

Let us close by again mentioning that the approximations made in the analysis above

of neglecting the k1 dependent terms is examined more carefully in appendix C and found

to be indeed valid.

3.5 The transition from β + γ = 1 to β + γ < 1

It is useful to discuss the transition from β + γ = 1 to β + γ < 1 in more detail.

Let us start with the case β + γ = 1 and first consider the case when the exponent η

in eq. (3.73) satisfies the condition 2η > 1. In this case, at small ω,

GR22 =
Z

ω − vF (|k| − kF ) + id1ω2η
, (3.80)
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and as was mentioned above there are well-defined quasi-particle excitations about the

Fermi surface.

Suppose we now lower the value of β+γ so that β+γ = 1−ǫ, ǫ≪ 1. The bulk fermion

solution with momentum kF will not be purely normalisable any more and our arguments

in the previous subsection show that the Green’s function takes the form,

GR22 =
Z

ω − vF (|k| − kF ) + ∆1 + i∆2 + id2ω2η
(3.81)

where ∆1,∆2, are ω independent and vanish when ǫ→ 0. We see that ∆1 can be absorbed

by a shift in26 kF , kF → kF − ∆1
vF

. About this new Fermi momentum we get,

GR22 =
Z

ω − vF (|k| − kF ) + i∆2 + id2ω2η
(3.82)

so that the excitations have a width ∆2, which does not vanish as |k| → kF , ω → 0, and is

therefore very broad. In summary, the well-defined quasi-particle which existed at β+γ = 1

has therefore disappeared at β + γ < 1.27

Next, let us turn to the case when the exponent η in eq. (3.73) satisfies the condition

2η < 1. In this case there is no sharply defined quasi-particle even when β + γ = 1. We

define,

kT ≡ (|k| − kF ). (3.83)

Taking |kT | fixed and small compared to kF , and regarding GR22 as a function of ω there

is a pole [9] at ω = ω∗ + iΓ with

ω∗ ∼ Γ ∼ |kT |
1
2η . (3.84)

The pole has vanishing residue,

Zres → 0, (3.85)

and is also broad,
Γ

w∗
→ 1 , (3.86)

as kT → 0.

Let us now lower β + γ in this case to the value β + γ = 1 − ǫ. This results28 in a

Green’s function,

GR22 =
Z

−vF (|k| − kF ) + ∆1 + i∆2 +Deiφω2η
, (3.87)

where ∆1,2 vanish as ǫ→ 0. Shifting kF this can be written as

GR22 =
Z

−vF (|k| − kF ) + |∆|Deiφe−iπη +Deiφω2η
(3.88)

26Alternatively, e.g., in the canonical ensemble, we can absorb it into a shift in the chemical potential µ.
27The width ∆2, while it does not vanish when |k| → kF , is small compared to the chemical potential for

ǫ ≪ 1.
28The term linear in ω in the denominator is dropped compared to ω2η at small ω.

– 27 –



J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

where |∆| is determined by ∆1,∆2 and the shift in kF . For |k| → kF the pole in ω lies at

ω∗ = −i|∆| . (3.89)

This gives rise to a width which does not vanish when (k − kF ) → 0.

In summary we see that when β+γ < 1 the excitations become very broad and acquire

a width which is non-vanishing at zero frequency. There is still a locus in momentum space,

at |k| = kF , which we can call the Fermi surface, with the energy of the excitations, defined

as the real part of ω, extending down to zero energy as the momentum approaches kF .

However, a more precise definition of the Fermi surface can be taken to be the locus where

Green’s function with ω = 0 has a pole in momentum, and across which it changes sign.

With this definition, there is no Fermi surface for β + γ < 1, since the excitations have a

non-zero width even at zero energy, as mentioned above.29

4 Conclusions

The gravity system studied in this paper has a scalar, the dilaton, and two couplings α and

δ which appear in the action given in eq. (2.2), (2.3) and which determine how the dilaton

enters in the gauge coupling and the potential respectively. Instead of α, δ it is sometimes

more convenient to use the parameters, β, γ, which appear in the metric eq. (2.13) and are

given in terms of α, δ, in eq. (2.22), (2.23).

Extremal black branes in this system were studied in [15]. Here we have studied a

charged fermion in the extremal black brane background and calculated the two-point

function for the corresponding fermionic operator in the dual strongly coupled field theory.

The black brane background has rotational symmetry in the two spatial directions and the

two-point function inherits this symmetry, At small frequency, which is the focus of our

investigation, the essential features of this two -point function can be deduced from the

near-horizon geometry of the extremal black hole.

4.1 Results

Our results depend on the parameters β, γ, in particular on the combination30 β + γ.

• When β + γ > 1 we find that close to the Fermi-surface there are well-defined quasi-

particles, with a linear (i.e. relativistic) dispersion relation and a width which is

exponentially suppressed in ω. The precise form of the Green’s function is given

in eq. (3.44).

• This behaviour undergoes a transition when β+γ < 1. In this case there are no well-

defined quasi-particle excitations. Instead the low-energy excitations become very

broad with a width which does not vanish at small frequency. See the concluding

paragraph of section 3.5 for more discussion on the Fermi surface.

29We thank Mohit Randeria for explaining this definition of the Fermi surface and for related discussion.
30The distance to the horizon for the variable ζ, eq. (3.25), in terms of which the fermion equation of

motion becomes of Schrödinger form is governed by β+γ. It is infinite for β+γ > 1, logarithmically infinite

for β + γ = 1, and finite for β + γ < 1.
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• The transition region β + γ = 1 is also very interesting. In terms of the parameters

α, δ which appear in the Lagrangian for the system, this corresponds to two lines,

α = ±δ. The α = −δ line corresponds to an extremal RN geometry. The fermionic

two-point function in this case is well studied and known to exhibit interesting non-

Fermi liquid behaviour. Here we focus on the other case, the α = δ line, for which

the extremal geometry has vanishing entropy and the near-horizon geometry has no

scaling symmetry. Despite this difference we find that bulk fermion equation acquires

a scaling symmetry analogous to that in the eRN case and the two-point function

again exhibits non-Fermi liquid behaviour. The precise form of the Green’s function

is given in eq. (3.73) and depends on the parameter η. When 2η < 1, there are

no well-defined quasi-particles excitations close to the Fermi surface. When 2η > 1,

there are well-defined quasi-particle, with a width which vanishes as ω → 0, although

this width can be much broader than in Fermi-liquid theory. When 2η = 1, one gets

a marginal Fermi liquid.31 The quasiparticles, when they exist for the β+γ = 1 case,

get very broad when β + γ becomes less than unity.

• The transition between these behaviours occurs in a smooth way. More precisely, the

Green’s function evolves in a smooth manner as the parameter β + γ is varied. The

underlying reason for this is that the background geometry itself evolves smoothly.

4.2 Discussion

It is worth trying to phrase our results in terms of the semi-holographic description which

was proposed in [18]. The near-horizon region of the geometry corresponds to a strongly

coupled field theory sector in this description, which is coupled to bulk fermionic excitations

localized away from the near-horizon region. The bulk fermionic excitations by themselves

are weakly coupled and form a sea which is essentially responsible for the Fermi surface in

the boundary theory. The coupling between the two sectors allows the bulk fermions to

decay and gives rise to their width. When β+γ > 1 this decay width is small, since it arises

due to tunneling through a WKB barrier. This results in a width which is highly suppressed

with an essential singularity as ω → 0. As β + γ → 1 the barrier is lowered and the bulk

fermions can decay more easily into degrees of freedom in the strongly coupled sector,

resulting in a decay width which is only power law suppressed. Finally, when β + γ < 1

the decay process is sufficiently enhanced and leads to a width which is non-vanishing even

as ω → 0, leaving no sharply defined quasi-particles in the excitation spectrum.

In fact in our analysis we did not use the information about the full geometry but

only the geometry in the near-horizon region. The full geometry depends on many more

details of the model including the dependence, even away from the run-away region where

φ→ ±∞, of the gauge coupling function and the potential on the dilaton. It is therefore less

universal than the near-horizon geometry which is in fact often an attractor. This is very

much in the spirit of the semi-holographic description, in effect we only relied on the gravity

dual for the strongly coupled sector, and did not use much information about the gravity

31One difference with the eRN case is that the mass and charge of the bulk fermion enters in η only

through their dependence on the Fermi-momentum, kF .
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solution away from the horizon since in the end that would have given rise to a weakly

coupled bulk fermion whose dynamics can be understood in field theoretic terms anyways.32

The basic lesson then from this paper is that a range of interesting behaviours can

arise by coupling fermions to a strongly coupled sector with a gravitational dual of the

kind considered here. This includes both Fermi liquid and non-Fermi liquid behaviour,

transitions between them, and transitions from a non-Fermi liquid state to one where

there are no well-defined quasi-particles since the excitations have become very broad

and essentially disappeared. Moreover, this can happen when the strongly coupled sector

has reasonable thermodynamics behaviour consistent in particular with the third law of

thermodynamics, since the gravity background has vanishing entropy at extremality.

An important feature about our system is that the dramatic changes in the behaviour

of the fermionic Green’s function which we have found are not accompanied by any phase

transition or significant changes in the thermodynamics or transport properties. The en-

tropy densty or specific heat, for example, scale as given by eq. (2.38) and smoothly changes

as β + γ is lowered from a value greater than unity to less than unity. Similarly, the DC

or optical conductivity also changes smoothly, eq. (2.57), eq. (2.56), eq. (2.58). In fact

the background geometry itself changes smoothly, as was mentioned above, this is the root

cause for the smooth behvaiour in transport and conductivity. On general grounds the

gravity system should correspond to a strongly coupled field theory in the large N limit.

In this limit there are many extra degrees of freedom besides the fermionic ones we have

focussed on. And these extra degrees of freedom do not undergo any significant change in

their properties even though the fermionic ones we have focussed on do, resulting in the

smooth changes in thermodynamics and transport.

The large N limit is the price we pay for the having a tractable gravity description.

At finite N one would expect that the transitions seen in the behaviour of the fermion

correlator will also manifest itself in phase transitions or big qualitative changes in thermo-

dynamics and transport. Preliminary evidence for this is the fact that the conductivity in

our set up already has 1/N corrections which see the changes in the nature of the fermion

two-point function. This was investigated in [8, 9], where it was found that for a Green’s

function of the type in eq. (3.73) there would be corrections to conductivity of the form

σ ∼ 1
N T

−2η. Since we have found non-Fermi liquid behaviour to arise from in a wide

variety of gravitational backgrounds it is reasonable to hope that it will persist for some

finite N strongly coupled theories as well.

There are several directions for future work. It will be interesting to generalize the

investigations of this paper to higher dimensions.33

Going beyond effective field theory, it is important to try and embed the class of

gravity systems studied here in string/M theory. This would put constraints on allowed

values of α, β and also the charges and masses for the Fermion fields which determine kF

32Some examples of gravity solutions which interpolate between AdS4 and the solution eq. (2.13) in the

near-horizon region are discussed in appendix F. These are obtained with reasonable potentials and gauge

coupling functions. It is worth studying these examples further to calculate the value of kF (for β + γ ≥ 1)

and the the value of the residue and vF in eq. (3.73), (3.82), (3.88), in them.
33See for example [41].
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and the exponent η in eq. (3.73). Allowed ranges of these parameters would then deter-

mine which kinds of non-Fermi liquid theories are theoretically speaking allowed and when

transitions of various kinds are allowed. Embedding in string/M theory is also important

for deciding whether our approximation of classical two -derivative gravity is a controlled

one, as was discussed in section 2.4. For some progress towards providing such embeddings

see [42, 43].34 It will also be useful to ask whether this analysis can be extended beyond the

case where the gravity theory is analyzed in the two-derivative approximation for example

in Vasiliev theory [44].

Another direction would be to couple charged matter and study superconducting in-

stabilities [45] along the lines of [11]. Or to allow for a bulk Fermi sea in the near-horizon

region and incorporate the changes this leads to [27, 46, 47].35

Investigating transitions of the kind we have found in the presence of a magnetic field

would also be an interesting extension. In this context it would be natural to also include

an axion in the bulk theory, [14].

Finally, only a very small class of possible attractor geometries have been studied

here.36 There is clearly a vast zoo waiting to be explored and the behaviour of fermions in

these additional backgrounds might hold even more surprises.

We leave these directions for the future.
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essential idea is to meet eq. (2.10) and eq. (2.9) as in eq. (2.14), eq. (2.15), eq. (2.16).

However, eq. (2.11), eq. (2.12) are now met by assuming that

2β < −k(α+ δ) (A.1)

so that the l.h.s. in eq. (2.17), eq. (2.18) is more important at small r than the r.h.s. This

yields the equations,

k2 = β(1 − β) (A.2)

C2
a(1 + β + kδ)(1 + 2β + 2kδ) = −V0 (A.3)

γ − 1 = δk (A.4)

2C2
ak(1 + 2β + 2kδ) = δV0 (A.5)

C2
aβ(1 + 2β + 2kδ) = −1

2
V0 (A.6)

The solution is

β =
1

1 + δ2
γ =

1

1 + δ2
k = − δ

1 + δ2
C2

a = −V0
(1 + δ2)2

2(3 − δ2)
(A.7)

This is valid for those values of (α, δ) which satisfy the conditions,

1. 2 < δ(α + δ) and

2. δ2 < 3.

The first of these conditions, arises from eq. (A.1).

Let us describe the solution discussed in section 2 as Case(1), and the solution discussed

in this appendix as Case(2). For a fixed α (> 0) and δ small, we are in region where

Case(1) is valid. If we then increase δ, this solution breaks down when Q2
e turns negative

(i.e δ(α + δ) = 2), and we enter into the region where Case(2) becomes valid.

B More on conductivity

Here we provide some details for the calculation of the conductivity. The metric in the

near horizon extremal geometry is

ds2 = −C2
ar

2γdt2 +
dr2

C2
ar

2γ
+ r2β(dx2 + dy2) (B.1)

with eφ = rk and the gauge field being

F =
Q

r2αk+2β
dt ∧ dr. (B.2)

The constants, γ, β,C2
a , Q

2, are given in eq. (2.22) and (2.23).

Comparing with [13] eq. (3.3)

ds2 = −g(r̂)e−χ(r)dt2 +
dr̂2

g(r̂)
+ r̂2(dx2 + dy2), (B.3)
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we have,

r̂ = rβ (B.4)

g(r̂) = C2
aβ

2r̂
2
β
(β+γ−1) (B.5)

eχ(r̂) = β2r̂
2

“

1− 1
β

”

. (B.6)

The Schrödinger variable defined in eq. (3.8) of [13], also eq. (2.52) above, is then,

z = − 1

(2γ − 1)C2
a

1

r2γ−1
= − 1

(2γ − 1)C2
a

1

r̂
2γ−1

β

. (B.7)

The horizon lies at r → 0 or z → −∞. The Schrödinger potential is as given in eq. (3.15)

of [13]

V (z) =

(

f ′′

f
+ 16

ge−χ

f2

Q2

r4

)

(B.8)

where f = 2eαφ. Note the factor of 16 which was not there in [13] eq. (3.15). This is because

their convention for Q differs from our Q by a factor of 4. This can be seen by comparing

eq. (3.14) of [13] with eq. (B.2). Plugging in the values of k, γ,Ca, Q from eq. (2.22) and

eq. (2.23), we get

V =
2

z2

(4 + α2 − δ2) (4 + (α− 2δ)(α + δ))

(4 + (α− 3δ)(α + δ))2 , (B.9)

leading to c as given in eq. (2.54) above.

C Neglecting the k1 dependent terms

Most of this appendix will deal with a more careful analysis justifying our neglect of the k1

dependent terms in eq. (3.53) in section 3.4. However, before we embark on that discussion

let us note the following. We had argued after eq. (3.79) that generically the two conditions

required for the existence of a Fermi surface will not be met by tuning just k1 which is one

real variable. However, one might have a lingering doubt as to whether this non-genericity

is built into the very nature of eq. (3.18), (3.19) and follows perhaps from its symmetries.

We will now set this doubt to rest.

The equations eq. (3.18), (3.19) are invariant under an exchange of y+ ↔ z′− accom-

panied by a simultaneous change in the parameters, (m,ω,At) → −(m,ω,At) with k1

being kept the same. The wave functions ψ+ and ψ−, eq. (3.76), are exchanged under this

transformation. This means

C1+(m,ω, q, k1) = C2−(−m,−ω,−q, k1) (C.1)

and

C1−(m,ω, q, k1) = C2+(−m,−ω,−q, k1) . (C.2)

In turn, this means that the two conditions, eq. (3.79) can be stated in terms of the

coefficients C1+, C2+ that characterize the asymptotic behaviour of just one of the solutions

ψ+, as

C1+(m,ω, q, k1) = 0 , C2+(−m,−ω,−q, k1) = 0 . (C.3)

It is now clear that both of these will not be generically satisfied for any k1.
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C.1 More details

It is well known that perturbation theory about an extremal background is often fought

with subtleties due to the extremal nature of the horizon. For this reason we would like

to be carry out a more careful analysis that justifies our approximation of neglecting the

k1 dependent terms in eq. (3.53) when r ranges from being very close to the horizon to

values of order eq. (3.57) where the form of ψ in eq. (3.58) can then be used to extract the

leading ω dependence as explained in section 3.4.

We use bra-ket notation below and denote,

|ψ >≡
(

y+

z′−

)

. (C.4)

The unit norm eigenstates of σ2 with eigenvalue ±1 will be denotes by |± > respec-

tively below.

The equations eq. (3.18), eq. (3.19) are

rβ+γ∂r|ψ >= −k1σ1|ψ > +iσ2r
β−γω|ψ > . (C.5)

Neglecting the k1 dependent term gives the zeroth order solution eq. (3.21),

|ψ0 >= e−iωz |− > . (C.6)

Let

|ψ1 >= F1|+ > (C.7)

be the first order correction induced by the k1 dependent term we have neglected. We get

from eq. (C.5)

∂zF1 − iωF1 = −k1r
γ−β < +|σ1|− > e−iωz (C.8)

where z is given in terms of r in eq. (3.22). This gives,

∂zF1 − iωF1 = ik1r
γ−βe−iωz . (C.9)

The solution is

F1(z) = eiωzid2k1

∫ z

−∞
dyy

γ−β
1−2γ e−2iωy . (C.10)

The constant of integration is chosen by the fact that the full solution must be purely

in-going at the horizon. The coefficient d2 is determined by γ, β. Now notice that since

β + γ < 1 the second integral is convergent. By rescaling variables, x = ωy we get

F1(z) = eiωzid2k1ω
1−γ−β
2γ−1

∫ ωz

−∞
dxx

γ−β
1−2γ e−2ix. (C.11)

We need the correction to be small in the region eq. (3.57) so that eq. (3.58) is a good

approximation. For β + γ < 1 the power γ−β
1−2γ < −1, so that the integral is convergent at

the lower end, −∞, but could diverge at the upper end if ωz → 0. This tells us that to keep

the effects of the k1 dependent term small we should work in the region where |ωz| ≪ 1
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but is kept fixed as ω → 0. In terms of r this becomes the condition that (r/ω
1

2γ−1 ) ≫ 1

and kept fixed as ω → 0. In this region the upper limit of the intergal in eq. (C.11) is a

fixed number and the integral converges.

It then follows that the correction F1(z) is small for ω → 0, compared to the leading

term which is order unity, since it is suppressed by ω
1−γ−β
2γ−1 , which is small, due to β+γ < 1

and also 2γ − 1 > 0 from eq. (2.39).

Thus we see that a more careful analysis, where we have calculated the first corrections,

shows that the k1 dependent terms can indeed be neglected in our analysis of section 3.4.

Before concluding let us make two comments. First, a similar analysis could have

been repeated keeping the m1 dependent terms in the equation of motion and shows that

these are even less worrisome that the k1 dependent ones, as we expect on the basis of our

arguments in section 3.2. Second, note that when β + γ = 1 the correction eq. (C.11) is

logarithmically divergent at the horizon (as y → −∞ in eq. (C.10)). This means the effects

of the k1 dependent terms will not be small when β + γ = 1 and we will need to include

them in our analysis on par with the ω dependent terms.

D More on the β + γ = 1 case

As mentioned in the section 3.3 in this appendix we discuss following issues.

• The detailed analysis to get the solution as in eq. (3.68), from the eq. (3.66) and (3.67),

by series expanding the Hankel solution in eq. (3.66) for small argument.

• The analysis to reach eq. (3.71) and (3.72) for the case k1 < 0.

• The marginal Fermi-liquid that arises for k1 = 1
2(2γ − 1).

D.1 Analysis with k1 > 0

Eq. (3.66), for z ≪ 1, can be power law expanded to get a series expansion of χ− and using

eq. (3.67) χ+ is,

χ− = z̃η+1
(

c1 +O(z̃2)
)

+ i
{

z̃η+1
(

d1 +O(z̃2)
)

+ z̃−η
(

d3 + d4z̃
2 +O(z̃3)

)}

(D.1)

χ+ = −z̃η
(

c′1 +O(z̃2)
)

− i
{

z̃η
(

d′1 +O(z̃2)
)

+ z̃−η−1
(

d′4z̃
2 +O(z̃3)

)}

(D.2)

where c1, d1, d3, d4, c
′
1, d

′
1, d

′
4 are all constants depending on η. For small z̃, it is evident

that χ− dominates over χ+, (i.e. iz̃−ηd3 term from χ−). Further calculations are divided

into two cases depending on η,

• 0 < η < 1
2 .

In subleading order, d1 terms dominate over d4 term in χ−. So we get

χ− = iz̃−ηd3 + z̃η+1(c1 + id1) (D.3)

χ+ = −z̃η(c′1 + id′1) . (D.4)
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Using eq. (3.60) and using the fact that z̃η ≫ z̃η+1, we get the original wave functions

y+, z
′
− as,

y+ = iz̃−η d3

2
− z̃η (c′1 + id′1)

2
(D.5)

z′− = −iz̃−η d3

2
− z̃η (c′1 + id′1)

2
. (D.6)

Using eq. (3.61) we can extract the ω dependence from z̃ in the above eq, and up to

an overall ω dependent factor, which is not important, the complete wave function

in terms of radial variable r can be written as,

ψ =

(

y+

z′−

)

=

(

1

−1

)

rk1 + deiφω2η

(

1

1

)

r−k1 , (D.7)

where d is real number dependent on k1. This is the same as eq. (3.68).

• η > 1
2 .

In the subleading order d4 term dominates over d1 terms in χ−. So we get

χ− = iz̃−ηd3 + iz̃−η+2d4 + c1z̃
η+1 (D.8)

χ+ = −iz̃−η+1d′4 − z̃ηc′1 . (D.9)

Using eq. (3.60) to go to variables y+ and z′−, and upon using the fact that z̃η ≫ z̃η+1

and z̃−η+1 ≫ z̃−η+2 we get37

y+ = iz̃−η d3

2
− z̃η c

′
1

2
(D.10)

z′− = −iz̃−η d3

2
− z̃η c

′
1

2
. (D.11)

Again using eq. (3.60), eq. (3.61), and up to some overall normalization the solution

as,

ψ =

(

y+

z′−

)

=

(

1

−1

)

rk1 + id′ω2η

(

1

1

)

r−k1 , (D.12)

where d′ is a real number dependent on k1. This is same as eq. (3.69).

D.2 Analysis with k1 < 0

When k1 < 0, the differential equations instead of eq. (3.63) and (3.64) will be now given

by

(z̃∂z + η)χ+ = z̃χ− (D.13)

(z̃∂z − η)χ− = −z̃χ+ . (D.14)

37We drop the terms proportional to d′4 and d4 because they are purely imaginary and make a contribution

suppressed by powers of ω and ω2 respectively compared to the leading terms proportional to d3 which is

also purely imaginary. Note that on the other hand, a term proportional to c′1 are purely real, so we keep

this term.
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Solutions to the above equations can be easily got by observing the following: χ+, χ− now

satisfy the same differential equation as χ−,−χ+ satisfied in eq. (3.63) and (3.64). Using

this fact and the explicit solution from eq. (3.66) we can write the solution as,

χ+ =
√
z̃H

(1)
1
2
+η

(z̃) (D.15)

χ− = z̃−η∂z̃(z̃
ηχ+). (D.16)

A similar analysis as before goes through with now χ+ being the dominating solution.

Again the analysis is divided into cases,

• 0 < η < 1
2 .

y+ = iz̃−η d3

2
+ z̃η (c′1 + id′1)

2
(D.17)

z′− = iz̃−η d3

2
− z̃η (c′1 + id′1)

2
(D.18)

which gives the wavefunction in the radial variable r given in eq. (3.61) as,

ψ =

(

y+

z′−

)

=

(

1

1

)

r|k1| + deiφω2η

(

1

−1

)

r−|k1| (D.19)

where d is k dependent real number. This is the same as eq. (3.71).

• η > 1
2 .

y+ = iz̃−η d3

2
+ z̃η c

′
1

2
(D.20)

z′− = iz̃−η d3

2
− z̃η c

′
1

2
(D.21)

which gives the wavefunction in the radial variable r given in eq. (3.61) as,

ψ =

(

y+

z′−

)

=

(

1

1

)

r|k1| + id′ω2η

(

1

−1

)

r−|k1| (D.22)

where d′ is real number dependent on k1.Therefore to leading order we get eq. (3.72).

D.3 Marginal Fermi liquid for k1 = 1
2(2γ − 1)

For the specific value of k1 = 1
2 (2γ − 1), i.e., η = 1

2 , something interesting happens. We

rework the above calculation with η = 1
2 now, then eq. (3.66) and (3.67) become,

χ− =
√
z̃H

(1)
1 (z̃) (D.23)

χ+ = −z̃−1
2 ∂z̃(

√
z̃χ−) . (D.24)

Expansion of Hankel function with index 1 for small z̃ will have a log term in the imaginary

part in subleading order. More explicitly,

χ− =
z̃

3
2

2

(

1 +O(z̃2)
)

+ i

{

c1√
z̃

+ c2z̃
3
2 log z̃ + c3z̃

3
2 +O(z̃2)

}

(D.25)

χ+ = −
√
z̃ + i

√
z̃
[

c′2 log z̃ + c′3
]

(D.26)
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c1, c2, c3, c
′
2, c

′
3 are constants depending on k1. Since z̃ ≪ 1 , c1 term dominates over c2, c3

terms in χ−, and c′2 term dominates over c′3 term in χ+. Note that χ− has the most

dominant term 1√
z̃
. Now using eq. (3.60) we get y+ and z′− as,

y+ = i

[

c1√
z̃

+ c′2
√
z̃ log z̃

]

−
√
z̃ (D.27)

z′− = −i
[

c1√
z̃
− c′2

√
z̃ log z̃

]

−
√
z̃ (D.28)

where we have used
√
z̃ ≫ z̃

3
2 . In terms of radial variable r, given in eq. (3.61), and upto

overall ω dependent factor,we get,

ψ =

(

y+

z′−

)

=

(

1

−1

)

r−
2γ−1

2 + g1ω logω

(

1

1

)

r
2γ−1

2 + id′ω

(

1

1

)

r
2γ−1

2 . (D.29)

where g1, d
′ are real numbers dependent on k1. Using this wavefunction one gets the Green’s

function as written down in eq. (3.74).

E Scalar two point function

In this appendix we study a bulk charged massive scalar (denoted by Φ, so that it is

not confused with the dilaton) and calculate the two-point function for the corresponding

operator in the boundary theory.

The action for the charged scalar is

S = −
∫

d4x
√−g

(

(DµΦ)2 +m2Φ2
)

, (E.1)

where DµΦ = (∂µ − iqAµ)Φ.

The equation of motion for the scalar field Φ = Φ(r)eiωt+i~k.~x is

1√
g
∂r(

√
ggrr∂rφ) − (gii(k2 − u2) +m2)Φ = 0 (E.2)

where u is as given in eq. (3.13). In extracting the correlator in the field theory it is

convenient to assume that there is a gravitational background which extends to AdS4,

with radius L, on the boundary and then use the AdS/CFT dictionary to calculate the

boundary correlator. Asymptotically towards the boundary, the scalar field will behave as

Φ = C1r
∆ + C2r

−∆ (E.3)

where ∆ is the positive root of the equation ∆(∆+3) = m2L2. Then the two-point function

on the boundary38 for operator dual to Φ is,

GR =
C2

C1
. (E.4)

38Here we assume the standard quantization for this field.

– 38 –



J
H
E
P
0
1
(
2
0
1
2
)
0
9
4

To obtain the retarded Green’s function, we impose ingoing boundary conditions at

the horizon. The near-horizon background solution is given by eq. (2.22), (2.23). Setting

Ca to unity by rescaling ~k,m, q, as for the fermionic case gives,

1

r2β
∂r

(

r2β+2γ∂rΦ
)

+
(ω + qAt)

2

r2γ
Φ − k2

r2β
Φ −m2Φ = 0. (E.5)

In the near horizon region, the mass term is subdominant, since r ≪ 1, and also the At

term can be neglected compared to the ω dependent for the same reason as in the fermionic

case: the frequency dependence at small ω can be extracted before the At term becomes

important. This gives,

1

r2β
∂r

(

r2β+2γ∂rΦ
)

+
ω2

r2γ
Φ − k2

r2β
Φ = 0. (E.6)

Just as in the fermionic case it is convenient to divide the analysis into three cases.

E.1 β + γ > 1

Here the equation can be analyzed in the WKB approximation. The analysis is similar to

section 3.1 of the fermionic case and we will skip some details. It is easy to see that the

WKB approximation is self-consistently valid. Changing to the variable ζ, eq. (3.25) gives

that Φ satisfies the same equation as y+, eq. (3.30). The resulting solution in the region

eq. (3.32) is

Φ =
A
√

k̂

[

f+ +
i

2
e−2If−

]

. (E.7)

We see that f− has a coefficient which is exponentially suppressed. The factor I in the

exponential suppression is

I = c1

( |k|2γ−1

ω(β+γ−1)

)
1

γ−β

(E.8)

where c1 is given in eq. (3.40).

Now suppose the coefficients C1, C2 , eq. (E.3), that f+ gives rise to are C1+, C2+, and

similarly for f−. And suppose an expansion of these coefficients in a power series in ω has

leading order terms denoted by C
(0)
1± , C

(0)
2± , the first corrections by C

(1)
1± , C

(1)
2± etc. Then the

two-point function is [7]

GR =
C

(0)
2+ + ωC

(1)
2+ω +O(ω2) + i

2e
−2I [C

(0)
2− + C

(1)
2−ω +O(ω2)]

C
(0)
1+ + C

(1)
1+ω +O(ω2) + i

2e
−2I [C

(0)
1− + C

(1)
1−ω +O(ω2)]

. (E.9)

Physically, the coupling of the scalar to the near-horizon region is highly suppressed,

as a result the imaginary part of the Green’s function, which arises because the scalar can

fall into the black hole, is also exponentially small.
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E.2 β + γ < 1

In this case the leading small frequency dependence can be obtained by studying the region,

1 ≫ (ω
k )

1
γ−β ≫ r, thus the k1 dependent term in eq. (E.6) can be dropped, giving

r−2β∂r

(

r2β+2γ∂rΦ
)

+
ω2

r2γ
Φ = 0 . (E.10)

Now define

z =
ω

2γ − 1

1

r2γ−1
. (E.11)

Also define

η =
2β

2γ − 1
. (E.12)

Then in terms of z the differential equation eq. (E.10) is

zη∂z

(

z−η∂zΦ
)

+ Φ = 0 (E.13)

whose solution is

Φ = z
1+η
2 H

(1)
1+η
2

(z). (E.14)

For β + γ < 1 we can be in the region where z ≪ 1 consistent with the requirement

(ω
k )

1
γ−β ≫ r needed to drop the k1 dependent term in eq. (E.6), since, for ω → 0,

(

ω
k

)
1

γ−β ≫
r ≫ ω

1
2γ−1 . In this region, the argument of the Hankel function is small and we get,

Φ = d1 + id2

( ω

r2γ−1

)1+η
, (E.15)

where d1, d2 are real and we have used eq. (E.11). In fact a constant and 1/r2γ−1+2β =

1/r(2γ−1)(1+η) are the two independent solutions to eq. (E.10) in this region where the

ω dependent term can be neglected. Denoting the constant solution as φ+ and the real

solution going like 1/r2γ−1+2β as φ− and taking the coefficients C1±, C2± to be defined as

in the previous case we get

G =
C2+ + i C2− ω1+η

C1+ + i C1− ω1+η
. (E.16)

The coefficients C2±, C1± in turn can be power series expanded in ω as in the previous

subsection.

We see that in this case the imaginary part of G is only power-law suppressed in ω

with a power, η, eq. (E.12), which is independent of the momentum k and the charge and

mass of the scalar.

E.3 β + γ = 1

In this case we define

Φ =
ξ√
r
, (E.17)

then in terms of z, eq. (E.11), eq. (E.6) becomes,

z∂z(z∂zξ) + (z2 − ν2)ξ = 0 (E.18)
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where

ν2 =
k2 + 1

4

(2γ − 1)2
. (E.19)

eq. (E.18) is a Bessel equation whose solution with ingoing boundary conditions is

ξ = H(1)
ν (z). (E.20)

When z ≪ 1, the Hankel function can be power series expanded to get, upto an overall

power of ω,

Φ =
1√
r

[

d1r
ν(2γ−1) + id2ω

2ν 1

rν(2γ−1)

]

. (E.21)

Denoting φ± as the two independent real solutions to the scalar equation in this region

which appear in the first and second terms on the r.h.s. respectively of eq. (E.21) and

defining C1±, C2± as the coefficients of the non-normalisable and normalisable terms these

give rise to, as above, we then get the boundary two-point function to be,

G =
C2+ + iC2−ω2ν

C1+ + iC1−ω2ν
. (E.22)

Note that in this case the imaginary part is again power-law suppressed but this time the

power, ν, eq. (E.19) is dependent on k2 and γ while being independent of the charge and

mass of the scalar.

F Extremal branes: from near-horizon to boundary of AdS

In section 2 we investigated a system of dilaton gravity described by the action eq. (2.1).

Since we were interested in the behaviour when the dilaton had evolved sufficiently far

along a run-away direction we took f(φ) and V (φ) to be of the form, eq. (2.2), eq. (2.3).

The resulting solution was then of the form eq. (2.13). In this appendix we will show

that such a solution can arise as the near-horizon limit starting from an asymptotic AdS4

geometry perturbed by a varying dilaton. For this purpose we will continue to take f(φ)

to be of the form in eq. (2.2), but instead of eq. (2.3) now take the potential to be

V (φ) = 2V0 cosh(2δφ) (F.1)

with V0 < 0. This potential has the property that along the run-away direction where,

φ → ∞, V (φ) → V0e
2δφ and therefore agrees with eq. (2.3). As a result the solution

eq. (2.13) continues to be a good approximate solution for this potential as well.

In addition, the potential eq. (F.1) also has a maximum at φ = 0, with V (φ = 0) =

2V0 < 0. This means that the system has another solution where φ = 0 and the metric is

AdS4 with a radius

R2 = − 3

V0
. (F.2)

Working in a coordinate system of the form eq. (2.6), we will construct a numerical so-

lution which asymptotes between this AdS4 solution and a near-horizon geometry given

by eq. (2.13).
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Note that expanding about φ = 0 the potential eq. (F.1) results in a mass for the

dilaton,

m2 = −2δ2|V0|. (F.3)

In order this to lie above the BF bound, m2
BF = − 9

4R2 , δ must meet the condition

δ2 <
3

8
. (F.4)

Asymptotically, as r → ∞ and one goes towards the boundary of AdS4, the dilaton goes

like

φ→ r∆± , ∆± =
−3 ±

√
9 + 4m2

2
(F.5)

Since m2 < 0, in both cases the dilaton will fall-off. This corresponds to the fact that with

m2 < 0 the dilaton corresponds to a relevant operator in the CFT dual to the asymptotic

AdS4 space-time. In the solution we obtain numerically, in general, the dilaton will go like

a linear combination of both solutions,

φ = c1r
∆+ + c2e

∆− (F.6)

Accordingly, in the dual field theory the Lagrangian will be deformed by turning on the

relevant operator dual to the dilaton.

In the subsequent discussion it will be convenient to choose units such that |V0| = 1.

F.1 Identifying the perturbation

It is actually convenient to start in the near-horizon region and then integrate outwards,

towards the boundary, to construct the full solution.

To start, we first identify a perturbation in the near-horizon region which grows as

one goes towards the UV (larger values of r). For this purpose, we will approximate the

potential as V = −e2δφ and ignore the correction going like e−2δφ to it, this will lead to a

condition on the parameters (α, δ) which we will specify shortly.

Including a perturbation in the metric gives,

a(r) = Car
γ(1 + ǫ d1 r

ν1) ; b(r) = rβ(1 + ǫ d2 r
ν2) (F.7)

The resulting form of the perturbation of φ is determined from the ansatz for b by the

equation of motion (2.10):

φ(r) = k log r + ǫ d3 r
ν2 (F.8)

with d3 = 4(ν2−1)+(α+δ)2(1+ν2)
4(α+δ) d2. We now proceed to find a solution with ν1 = ν2.

39

Solving eq.(2.9) and eq.(2.11) to leading order in r, determine ν1 and d2 in terms of

d1:

ν1 = −3

2
+

4 + 2δ(α + δ)

4 + (α+ δ)2

+

√

(4 + (3α − δ)(α + δ)) [36 − (α+ δ)(17δ − 19α + 8α2δ + 8αδ2)]

2(4 + (α+ δ)2)2
(F.9)

39Other choices might give solutions but we have not studied them.
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Figure 3. Region in α, δ plane satisfying ν1 < −4δk.

and

d2 =
−2(α + δ)2

4(ν1 − 1) + (α + δ)(α(ν1 − 1) + δ(3 + ν1))
d1. (F.10)

Note that d1 is left undetermined and is a free parameter that characterises the resulting

solution. It is also worth noting that the perturbation we have identified satisfies the

constraint, eq. (2.12).

In our analysis above to determine the perturbation we approximated the potential

V = −2 cosh(2δφ) ≃ −e2δφ, while keeping the leading corrections due to the perturbation,

eq. (F.7), eq. (F.8). This is justified, for small r if,

ν1 < −4δk. (F.11)

Figure 3 shows the region in the (α, δ) plane which is allowed by this constraint. In the

numerical analysis we will choose values for (α, δ) which lie in this region, and which also

meet the condition eq. (F.4).

F.2 Numerical integration

Staring with the perturbed solution in the near-horizon region the equations can be now

be numerically integrated to obtain the solution for larger values of r. For this purpose the

full potential eq. (F.1) is used.

Figure 4 and figure 5 show the resulting solution for α = 1, δ = 0.6, these values satisfy

the conditions, eq. (F.4), eq. (F.11). The strength of the perturbation was chosen to be

d1 = 0.01.

Figure 4 and figure 5 clearly show that a(r) ∝ r and b(r) ∝ r for large r, so the solution

is asymptotically AdS4 (A coordinate transformation can be used to set the constant of

proportionality to 1 as in the standard AdS4 space). The dilaton approaches 0, the extrema
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Figure 4. Numerical solution interpolating between the near horizon solution and AdS4 for α = 1,

δ = 0.6 and d1 = 0.01. The second plot shows that a′(r) and b′(r) approach 1. Red lines denote a,

Blue lines denote b.

1 2 3 4 5

r

0.5

1.0

1.5

2.0

Φ@rD

Figure 5. Numerical solution for φ, for α = 1, δ = 0.6.

of the potential cosh(2δφ). Thus the solution interpolates between AdS4 and solution

discussed in section 2 in the near-horizon region.

Qualitatively similar results are obtained40 if the parameters α, δ and d1 are varied

within a range.41 The solution continues to asymptote to AdS4 and the dilaton asymptotes

to φ = 0 which is the extremum of V . In particular, α = 1, δ = 0.6, for which the results

are presented in figure 4 and figure 5, corresponds to β + γ > 1. The range of values for

which we have found qualitatively similar behaviour includes also cases where β + γ ≤ 1.

One final comment about parameters. For a given α and δ there should be a two-

parameter family of solutions corresponding to the chemical potential µ and the coupling

constant of the relevant operator dual to the dilaton in the boundary theory. Our solution

above has one parameter d1 which is the strength of the perturbation in the IR. Another

parameter, which can be thought of as changing the overall energy scale in the boundary

theory, corresponds to a coordinate rescaling in the bulk, (r, xµ) → (λr, xµ/λ). Under this

coordinate transformation the charge Q, eq. (2.7), transforms as Qe → λ2Qe.

40The value, δ = 0.6, is such that both quantisations for the dilaton are possible. Our conclusion that

qualitatively similar results are obtained continues to also hold when |δ| is chosen to be somewhat smaller

so that only the standard quantisation is allowed.
41We work in the region where eq. (F.11) and eq. (F.4) are met.
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