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1 Institut National de la Santé et de la Recherche Médicale Unité 872, Paris, France, 2Université Pierre et Marie Curie – Paris 6, UMR S 872, Centre de Recherche des

Cordeliers, Equipe 16-Immunopathology & Therapeutic Immunointervention, Paris, France, 3Université Paris Descartes, UMR S 872, Paris, France, 4 Institut Pasteur, Unité
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Microorganisms are often covered by a proteinaceous surface layer

that serves as a sieve for external molecular influx, as a shield to protect

microbes from external aggression, or as an aid to help microbial

dispersion. In bacteria, the latter is called the S-layer, in Actinomycetes,

the rod-like fibrillar layer, and in fungi, the rodlet layer [1]. The self-

assembly properties and remarkable structural and physicochemical

characteristics of hydrophobin proteins underlie the multiple roles

played by these unique proteins in fungal biology.

What Are Hydrophobins?

Hydrophobins, low molecular mass (#20 kDa) secreted proteins

of fungi, are characterized by moderate to high levels of

hydrophobicity and the presence of eight conserved cysteine

(Cys) residues. These proteins are able to assemble spontaneously

into amphipathic monolayers at hydrophobic–hydrophilic inter-

faces. Although functional homologues are reported in Streptomyces

(chaplins, SapB, and SapT for aerial morphogenesis; [2]),

hydrophobins are unique to the fungal kingdom. Fungal genome

analyses have indicated that hydrophobins generally exist as small

gene families with two to ten members, although certain species

contain more members (e.g., Coprinus cinereus displays 33 members;

http://www.broadinstitute.org) [3,4]. Hydrophobins show very

little sequence conservation in general, apart from the idiosyn-

cratic pattern of eight Cys residues implicated in the formation of

four disulfide bridges (Cys1–Cys6, Cys2–Cys5, Cys3–Cys4, Cys7–

Cys8) [5] (Figure 1). Based on hydropathy plots, solubility and the

type of layer they form, hydrophobins are divided into two classes

[6, Reference S1 in Text S1], although recent bioinformatics

studies suggest that intermediate/different forms can also exist and

that many hydrophobins with distinct physicochemical character-

istics may have been overlooked in the past [4,7]. In class I,

considerable variation is seen in the inter-Cys-spacing; these

hydrophobins assemble into highly insoluble polymeric monolay-

ers composed of fibrillar structures known as rodlets. The rodlets

are extremely stable, can only be solubilized with harsh acid

treatments, and the soluble forms can polymerize back into rodlets

under appropriate conditions. Despite the low sequence similarity,

class I hydrophobins from different fungal species could partially

complement a Magnaporthe grisea class I hydrophobin gene (MPG1)

deletion mutant, suggesting that hydrophobins constitute a closely

related group of morphogenetic proteins [8]. The sequence and

the inter-Cys spacing are more conserved in class II; the

monolayers formed by class II hydrophobins lack the fibrillar

rodlet morphology and can be solubilized with organic solvents

and detergents.

Hydrophobins at the Interface in the Fungal Life

Cycle

Fungi are heterotrophic terrestrial eukaryotes, showing two

types of growth morphologies: unicellular yeast and multicellular

filamentous forms. Yeasts are hydrophilic and they lack hydro-

phobins. The vegetative hyphae of filamentous fungi growing on

moist environments are also hydrophilic and do not show the

presence of rodlets on their surface. In contrast, the aerial hyphae

and the asexual spores (conidia) are hydrophobic, due to the

presence of hydrophobins. The functions of hydrophobins are

related to their high surfactant activity, which results from their

self-assembly at hydrophilic–hydrophobic interfaces to form an

amphipathic monolayer. The hydrophobin layer reduces the

surface tension of the medium or the substratum in/on which

fungi grow, allowing them to breach the air–water interface or

preventing water-logging while maintaining permeability to

gaseous exchange [9]. Spores produced on the aerial structures

of filamentous fungi are covered by a hydrophobin rodlet layer

that renders the conidial surface hydrophobic and wet-resistant,

thus facilitating spore-dispersal in the air. The rodlet-forming

hydrophobins are essential for these fungi to complete their

biological cycle. In many ‘‘wet’’ fungi (e.g., Conidiobolus obscurus),

the rodlet-layer is covered by a mucilaginous extracellular matrix

that helps the conidia to bind to the substrate, and once the spores

are bound to the host, the rodlet-layer is unmasked for better

resistance to the environment [10]. In the basidiomycete Agaricus

bisporus, the hydrophobin HypA, found in the peel tissue of the

mushroom cap, is suggested to form a protective layer during

fruiting body development [11]. In Cryphonectria parasitica, the

deletion of the gene coding the class II hydrophobin cryparin

generated a mutant incapable of erupting through the bark of the

tree [12]. Hydrophobins are also reported to play a role in the

surface interaction during infection-related development of M.

grisea [13, Reference S2 in Text S1]. In the symbiotic phenotypes

Citation: Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latgé J-
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of lichen-forming ascomycetes Xanthoria spp., the continuous

rodlet-layer seals the apoplast continuum [14].

Structure of Hydrophobins

Hydrophobins from both classes have been studied in vitro and

have been shown to be highly surface active and to form

amphipathic monolayers on hydrophobic/hydrophilic surfaces.

The crystal structures of the class II hydrophobins HFBI and

HFBII from Trichoderma reesei have been solved [15,16]. In

addition, the structure of the class I EAS protein from Neurospora

crassa has been determined by NMR [5]. These studies indicate

that all hydrophobins share a similar small b-structured core that is

dictated by the presence of the four disulfide bonds and that the

proteins have large exposed hydrophobic surface regions that give

rise to their high surface activity. The structures of the class I

hydrophobins DewA (Aspergillus nidulans) and Mpg1 (M. grisea) and

the class II hydrophobin from N. crassa, as well as the secondary

structure of the class I hydrophobins RodA and RodB from

Aspergillus fumigatus obtained through the analysis of their backbone

NMR chemical shifts, are consistent with this (J. I. Guijarro and

M. Sunde, unpublished data). Monolayer formation by class II

hydrophobins does not appear to be associated with major

conformational changes. In contrast, biophysical analysis of SC3

from S. commune and EAS indicate that rodlet formation is

associated with significant structural rearrangements, in some

cases involving helical intermediates, but always to a final rodlet

form with high b-sheet content and amyloid characteristics [5,17,

Reference S3 in Text S1]. Digestion and hydrogen-deuterium

exchange experiments with SC3 [18] indicated that the Cys3–

Cys4 loop is important for adhesion to hydrophobic surfaces and

may directly participate in the formation of rodlets. However,

truncation [19] and systematic site-directed mutagenesis [20]

experiments with EAS have shown that the Cys3–Cys4 loop is not

involved in rodlet formation and that the Cys7–Cys8 loop region is

crucial for auto-assembly, suggesting that the variability of the

sequences of class I hydrophobins may translate into different

mechanisms of rodlet formation [18]. Nevertheless, the surface

tension seems to be the driving force to recruit class I

hydrophobins to the air–water interface where the structural

changes from the soluble form to the rodlet conformation take

place [21].

Hydrophobins and Fungus–Host Interactions

The surface rodlet-layer has a critical role in masking the

immunogenicity of airborne fungal spores [22]. By covering the

spore surface, the rodlet-layer imparts immunological inertness to

the spores and ensures that pathogen-associated molecular

patterns (PAMPs) are not recognized by innate and adaptive

immune cells, thus preventing the activation of host immune

system, inflammation, and tissue damage [22,23,24,25, Reference

Figure 1. Fungal hydrophobins. Fungal hydrophobins are unique amphipathic proteins with multiple roles in the fungal life cycle and in
mediating interactions between fungus and host. There is diversity in the primary sequences of hydrophobins but they share a similar core three-
dimensional structure and a pattern of four disulfide bonds (shown in amber) that stabilize the structures. Increasingly, these proteins show potential
for modification of hydrophobic nanomaterials and in solubilizing lipophilic drugs.
doi:10.1371/journal.ppat.1002700.g001
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S4 in Text S1]. Several lines of evidence suggest that the rodlet-

layer, which covers the spores of both pathogenic and non-

pathogenic fungal species, prevents immune recognition

[22,23,25] (Figure 1). In opportunistic pathogen A. fumigatus, the
rodlet-layer made up of RodA imparts resistance to NETosis (a

process associated with disruption of neutrophil-membranes and

release of a mixture of nuclear DNA with a granular content that

acts as a neutrophil extracellular trap [NET]) and killing by

alveolar macrophages [23,26]. However, removal of RODA and

RODB did not affect pathogenicity of A. fumigatus [Reference S5 in

Text S1].

In plant-/entomo-pathogenic fungi, hydrophobins are also

described as pathogenicity factors, but their precise role in fungal

virulence remains to be understood. In the rice blast fungus M.
grisea, the hydrophobin Mpg1 is suggested to function as a

developmental sensor for appresorium formation, since it is

involved in the interaction with hydrophobic leaf surfaces

necessary for establishing the pathogenicity [13]. Deletion of the

MPG1 gene resulted in a mutant of M. grisea with reduced

virulence; the deletion of another hydrophobin gene in M. grisea,
MHP1, led also to a loss of viability and a reduced capacity to

infect and colonize a susceptible rice cultivar [27]. In Beauveria

bassiana, the non-specific hydrophobic interaction between the

fungal spore coat hydrophobin and the insect epicuticle is involved

in establishing the pathogenicity of the fungus [28].

Prospective Applications of Hydrophobins

The potential applications of hydrophobins rely on their ability

to reverse the hydrophilic-hydrophobic character of a surface and/

or their surfactant capacity. Several biotechnological applications

of hydrophobins have been proposed [29, Reference S6–S12 in

Text S1]. However, the large-scale applications of hydrophobins

might be difficult to implement due to the production cost of

recombinant proteins and/or the large-scale requirements of the

proteins. In contrast, in the pharmaceutical or in the nanotech-

nology industry, where the returns of investment are high, it is

possible to envisage a potential development for these proteins. For

example, the foam and air-/oil-filled emulsion-forming capacity of

hydrophobins has been exploited in protecting nanoparticles and

drug formulations [30, Reference S13–S16 in Text S1] (Figure 1).

From a therapeutic point of view, the degradation-resistance and

immunologically inert properties of hydrophobins could be used to

generate hydrophobin-based nanoparticles with embedded ther-

apeutic proteins and molecules that have to be slowly released

within the host or transported to a specific body location without

being recognized by the host immune system.

Many questions, however, remain unsolved in the study of

hydrophobins: for instance, how is the 3D rodlet-structure

organized? How are hydrophobins transported to the cell surface?

How is the rodlet-layer attached to the spore surface? What are the

signals that trigger germination of the spores covered by a rodlet

layer? Addressing these questions will reveal the mechanism by

which hydrophobins accomplish their multiple roles in the fungal

life cycle.
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