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We introduce a weaker notion of central subspace called almost central subspace, and we study Banach spaces that belong to the
class (GC), introduced by Veselý (1997). In particular, we prove that if𝑌 is an almost central subspace of a Banach space𝑋 such that
𝑌 is in the class (GC), then 𝑌 is a central subspace of𝑋∗∗. We also prove that if𝑌 is a semi𝑀-ideal in a Banach space 𝑋 such that
𝑌
⊥⊥ is an almost central subspace of 𝑋∗∗, then 𝑌 is an𝑀-ideal in 𝑋. Certain stability results for quotient spaces, injective tensor

product spaces, and polyhedral direct sums of Banach spaces are also derived.

1. Introduction

In [1], Veselý studied a new class of Banach spaces, namely,
the class (GC), which were defined in terms of the existence
of weighted Chebyshev centers (see below for definition and
details). In the same paper, he characterized such spaces
using intersection properties of balls. In [2], Bandyopadhyay
and Rao considered some general results about the class
(GC) by introducing a new class of subspaces called “cen-
tral subspaces” of Banach spaces. Using this concept, they
characterized the class (GC) and produced several examples
of Banach spaces which belong to the class (GC) (see [2]
for details). In this paper, we introduce and study a weaker
notion of central subspace called almost central subspace (see
Section 2 for definition and details). Using this concept, we
obtain some new results about the class (GC) and also about
some of the other types of intersection properties of balls
studied in the literature.

For a Banach space 𝑋, we denote by 𝐵
𝑋
(𝑥, 𝑟) the closed

ball in 𝑋 of radius 𝑟 > 0 around 𝑥 ∈ 𝑋 and by 𝐵
𝑋
the

closed unit ball of 𝑋. In this paper, we restrict ourselves to
real scalars and all subspaces we consider are assumed to
be closed. Under the canonical embedding, we will consider
𝑋 as a subspace of 𝑋

∗∗. Also, if a Banach space 𝑌 is
isometric to a subspace of the Banach space𝑋, then, without
loss of generality, we will consider 𝑌 as a subspace of 𝑋.
Our notations are otherwise standard. Any unexplained
terminology can be found in [3].

We now recall the definition of the class (GC) from
[1].

Definition 1. Let𝑋 be a Banach space. Let 𝑎
1
, . . . , 𝑎

𝑛
∈ 𝑋 and

𝜂
1
, . . . , 𝜂

𝑛
> 0. Minimizers of the function 𝜙 : 𝑋 → R

defined by 𝜙(𝑥) = max
1≤𝑖≤𝑛

𝜂
𝑖
‖𝑥 − 𝑎

𝑖
‖ are called weighted

Chebyshev centers with the weight 𝜂 = (𝜂
1
, . . . , 𝜂

𝑛
). Classical

Chebyshev centers are the weighted Chebyshev centers with
the weight 𝜂 = (1, . . . , 1).

Theorem 2 (see [1, Theorem 2.7]). For a Banach space𝑋 and
𝑎
1
, . . . , 𝑎

𝑛
∈ 𝑋, the following assertions are equivalent.

(i) If 𝑟
1
, . . . , 𝑟

𝑛
> 0 and ⋂

𝑛

𝑖=1
𝐵
𝑋
∗∗(𝑎
𝑖
, 𝑟
𝑖
) ̸= 0, then

⋂
𝑛

𝑖=1
𝐵
𝑋
(𝑎
𝑖
, 𝑟
𝑖
) ̸= 0.

(ii) 𝑎
1
, . . . , 𝑎

𝑛
admits weighted Chebyshev centers for all

weights 𝜂 = (𝜂
1
, . . . , 𝜂

𝑛
), where 𝜂

𝑖
> 0 for all 𝑖.

Definition 3 (see [1, Definition 2.8]). One shall denote by
(GC) the class of all Banach spaces 𝑋 such that for every
positive integer 𝑛 and every 𝑎

1
, . . . , 𝑎

𝑛
∈ 𝑋, one of the

equivalent conditions (i) or (ii) of Theorem 2 is satisfied.

Next we recall the definition of a central subspace which
generalizes the notion of (GC).

Definition 4 (see [2, Definition 2.1]). Let𝑋 be a Banach space.
One says that a subspace 𝑌 ⊆ 𝑋 is a central subspace of 𝑋
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if every finite family of closed balls with centers in 𝑌 that
intersects in𝑋 also intersects in 𝑌.

Clearly𝑋 ∈ (GC) if and only if𝑋 is a central subspace of
𝑋
∗∗. It follows from [2, Proposition 2.2(a)] that 𝑌 is a central

subspace of a Banach space 𝑋 if and only if, for any finite set
{𝑦
𝑖
}
𝑛

𝑖=1
⊂ 𝑌 and 𝑥 ∈ 𝑋, there exists a𝑦 ∈ 𝑌 such that ‖𝑦−𝑦

𝑖
‖ ≤

‖𝑥 − 𝑦
𝑖
‖ for 1 ≤ 𝑖 ≤ 𝑛.

An infinite version of central subspace called almost
constrained subspace was investigated in [4, 5].

Definition 5. A subspace 𝑌 of a Banach space 𝑋 is said to be
an almost constrained (AC) subspace of 𝑋 if any family of
closed balls centered at points of 𝑌 that intersects in 𝑋 also
intersects in 𝑌.

We recall that a subspace 𝑌 of a Banach space 𝑋 is
called 1-complemented in 𝑋 if there exists a projection of
norm one on 𝑋 with range 𝑌. One can easily observe that
1-complemented subspaces are AC-subspaces, and hence
they are also central subspaces. The notion of an “ideal,”
which is weaker than being a 1-complemented subspace, was
introduced by Godefroy et al. in [6].

Definition 6. A subspace 𝑌 of a Banach space 𝑋 is said to be
an ideal in 𝑋 if 𝑌⊥ is the kernel of a norm one projection on
𝑋
∗.

Clearly 1-complemented subspaces are ideals. Also, every
Banach space is an ideal in its bidual. For, if 𝑋 is a Banach
space, then the projection 𝑃 : 𝑋

∗∗∗

→ 𝑋
∗∗∗ defined by

𝑃(Λ) = Λ|
𝑋
is a projection of norm one with kernel 𝑋⊥. It is

well known that 𝑐
0
is an ideal in ℓ

∞
but it is not the range of

a projection of norm one in ℓ
∞
.

An important concept in the 𝑀-structure theory which
is closely related to ball intersection properties is the well
known concept called𝑀-ideal (see [7] for details).

Definition 7. A projection 𝑃 on a Banach space𝑋 is called an
𝑀-projection (𝐿-projection) if ‖𝑥‖ = max{‖𝑃𝑥‖, ‖𝑥 − 𝑃𝑥‖}

(‖𝑥‖ = ‖𝑃𝑥‖ + ‖𝑥 − 𝑃𝑥‖) for all 𝑥 ∈ 𝑋. A subspace 𝑌 of 𝑋 is
called an 𝑀-summand (𝐿-summand) if it is the range of an
𝑀-projection (𝐿-projection). A subspace 𝑌 of 𝑋 is called an
𝑀-ideal if𝑌⊥ is an 𝐿-summand in𝑋∗. For two Banach spaces
𝑋 and 𝑍, one denotes by𝑋⨁

1
𝑍 and𝑋⨁

∞
𝑍 the direct sum

of𝑋 and𝑍, equippedwith the ℓ
1
-norm and supremumnorm,

respectively.

For 𝑛 ∈ N, we recall that a subspace 𝑌 of a Banach space
𝑋 is said to have the (strong) 𝑛-ball property if, given 𝑛

closed balls {𝐵
𝑋
(𝑎
𝑖
, 𝑟
𝑖
)}
𝑛

𝑖=1
in 𝑋 such that ⋂𝑛

𝑖=1
𝐵
𝑋
(𝑎
𝑖
, 𝑟
𝑖
) ̸= 0

and𝑌⋂𝐵
𝑋
(𝑎
𝑖
, 𝑟
𝑖
) ̸= 0 for all 𝑖, then𝑌⋂(⋂𝑛

𝑖=1
𝐵
𝑋
(𝑎
𝑖
, 𝑟
𝑖
+𝜀)) ̸= 0

for every (𝜀 ≥ 0) 𝜀 > 0. It is well known that 𝑀-ideals
are precisely the subspaces having the 𝑛-ball property for all
𝑛 ∈ N (see [7, Chapter I, Theorem 2.2] for details). There
is a weaker notion of 𝑀-ideal called semi 𝑀-ideal, which is
precisely the subspace having the 2-ball property (see [7, Page
43] for details).

In Section 2, we define an almost central subspace of a
Banach space by a relative intersection property of balls. We
will use this to give some sufficient conditions for subspaces
to be central. We also consider some general results about
the class (GC). In particular, we prove that an almost central
subspace of a Banach space𝑋 is in the class (GC) if and only if
it is a central subspace of𝑋∗∗.We also derive several sufficient
conditions for a semi 𝑀-ideal to be an 𝑀-ideal in terms of
these intersection properties of balls.

In Section 3, we prove the stability of some of the
ball intersection properties in quotient spaces, direct sums,
vector-valued continuous function spaces, and injective ten-
sor product spaces (see Chapter VIII of [3] for the theory
of injective tensor product spaces). In quotient spaces, we
prove that for Banach spaces 𝑋,𝑌, and 𝑍 with 𝑍 ⊆ 𝑌 ⊆

𝑋, if 𝑌 is almost central or ideal in 𝑋, then 𝑌/𝑍 is almost
central or ideal in 𝑋/𝑍, respectively, and we also prove the
converse when 𝑋 is an 𝐿

1
-predual (that is 𝑋∗ = 𝐿

1
(𝜇),

for some positive measure 𝜇) and 𝑍 is an 𝑀-ideal in 𝑋.
In the case of injective tensor product spaces, we show that
if 𝑍 is an 𝐿

1
-predual space, then, for any almost central

subspace 𝑌 of a Banach space𝑋, the injective tensor product

𝑍

∨

⨂ 𝑌 is an almost central subspace of 𝑍
∨

⨂ 𝑋.
We also prove that properties of being a central subspace
and an AC-subspace are stable under a recently introduced
concept called polyhedral direct sums of Banach spaces (see
[8, Definition 2.1]).

2. Almost Central Subspaces

Webegin this sectionwith the definition of an “almost central
subspace” of a Banach space which is the generalization of the
concept central subspace, defined in [2].

Definition 8. A subspace 𝑌 of a Banach space 𝑋 is called an
almost central subspace if, for every finite set {𝑦

1
, . . . , 𝑦

𝑛
} ⊆ 𝑌,

𝑥 ∈ 𝑋, and 𝜀 > 0, there exists a 𝑦
𝜀
∈ 𝑌 such that ‖𝑦

𝜀
− 𝑦
𝑖
‖ ≤

‖𝑥 − 𝑦
𝑖
‖ + 𝜀 for 1 ≤ 𝑖 ≤ 𝑛.

Remark 9. Clearly central subspaces of Banach spaces are
almost central. As in the case of central subspace, it is easy to
observe that𝑌 is an almost central subspace of a Banach space
𝑋 if and only if, for each family {𝐵

𝑌
(𝑦
𝑖
, 𝑟
𝑖
)}
𝑛

𝑖=1
of closed balls in

𝑌 having nonempty intersection in 𝑋, the family {𝐵
𝑌
(𝑦
𝑖
, 𝑟
𝑖
+

𝜀)}
𝑛

𝑖=1
of closed balls in 𝑌 has nonempty intersection in 𝑌

for all 𝜀 > 0. On the other hand, by a weak∗-compactness
argument, it is easy to see that weak∗-closed almost central
subspace of a dual space is a central subspace. Moreover, if 𝑍
is an almost central subspace of a Banach space 𝑌 and 𝑌 is
an almost central subspace of a Banach space𝑋, then 𝑍 is an
almost central subspace of𝑋.

Lemma 10. Let 𝑋 be a Banach space and let 𝑌 be an ideal in
𝑋. Then 𝑌 is an almost central subspace of 𝑋.

Proof. Let {𝑦
1
, . . . , 𝑦

𝑛
} ⊆ 𝑌, 𝑥 ∈ 𝑋, and 𝜀 > 0. Choose

an 𝜂 > 0 such that 𝜂‖𝑥 − 𝑦
𝑖
‖ ≤ 𝜀 for all 𝑖 ∈ {1, . . . , 𝑛}.
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Define 𝐹 = span{𝑦
1
, . . . , 𝑦

𝑛
, 𝑥}. Since 𝑌 is an ideal in 𝑋, by

[9, Theorem 1], there exists an operator 𝑇
𝜂
: 𝐹 → 𝑌 such

that

𝑇
𝜂
(𝑦) = 𝑦 for 𝑦 ∈ 𝐹 ∩ 𝑌,

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜂

󵄩󵄩󵄩󵄩󵄩
≤ 1 + 𝜂. (1)

Now define 𝑦
𝜂
= 𝑇
𝜂
(𝑥). Then 𝑦

𝜂
∈ 𝑌 and for 1 ≤ 𝑖 ≤ 𝑛,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝜂
− 𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜂
(𝑥) − 𝑇

𝜂
(𝑦
𝑖
)
󵄩󵄩󵄩󵄩󵄩
≤ (1 + 𝜂)

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖

󵄩󵄩󵄩󵄩 + 𝜀.

(2)

Hence 𝑌 is an almost central subspace of𝑋.

Since every Banach space is an ideal in its bidual, we have
the following result.

Corollary 11. Every Banach space is almost central in its
bidual.

Since every 𝑀-ideal is an ideal, by Lemma 10, 𝑀-ideals
are almost central. We now give an example to show that a
semi𝑀-ideal may not be an almost central subspace.

Example 12. Let ℓ3
1
denote the three-dimensional space R3,

endowed with the norm ‖𝑥‖ = |𝑥(1)| + |𝑥(2)| + |𝑥(3)| for
𝑥 = (𝑥(1), 𝑥(2), 𝑥(3)) ∈ R3. Now consider the subspace 𝐺 of
ℓ
3

1
defined as 𝐺 = {(𝑥(1), 𝑥(2), −𝑥(1) − 𝑥(2)) : 𝑥(1), 𝑥(2) ∈

R} ⊆ ℓ
3

1
. Then, by [7, Chapter I, Remark 2.3(a)], 𝐺 is a semi

𝑀-ideal in ℓ
3

1
. But 𝐺 is not a central subspace of ℓ3

1
. For, let

𝑔
1
= (−1, −1, 2), 𝑔

2
= (−1, 2, −1), 𝑔

3
= (2, −1, −1), and let

𝑥 = (−1, −1, −1). Then 𝑔
1
, 𝑔
2
, 𝑔
3
∈ 𝐺 and 𝑥 ∈ ℓ

3

1
. Clearly

‖𝑔
𝑖
− 𝑥‖ = 3 for all 𝑖. Suppose there is an 𝛼 ∈ 𝐺 such that

‖𝛼 − 𝑔
𝑖
‖ ≤ 3 for all 𝑖. Then

|𝛼 (1) + 1| + |𝛼 (2) + 1| + |𝛼 (1) + 𝛼 (2) + 2| ≤ 3, (3)

|𝛼 (1) + 1| + |𝛼 (2) − 2| + |𝛼 (1) + 𝛼 (2) − 1| ≤ 3, (4)

|𝛼 (1) − 2| + |𝛼 (2) + 1| + |𝛼 (1) + 𝛼 (2) − 1| ≤ 3. (5)

But (3) shows that both of 𝛼(1) and 𝛼(2) cannot be positive.
But the symmetric inequalities (4) and (5) rule out other
possibilities. Thus 𝐺 is not a central subspace of ℓ3

1
. Then, by

a compactness argument, we can see that 𝐺 is not an almost
central subspace of ℓ3

1
.

In [1, Example 5.6], Veselý gave an example of a three-
dimensional Banach space 𝑋 such that 𝐶([0, 1], 𝑋) is not a
central subspace of its bidual. Since every Banach space is an
ideal in its bidual, the same example shows that an ideal (in
particular, an almost central subspace) need not be a central
subspace. We now give a sufficient condition for an almost
central subspace to be a central subspace.

Theorem 13. Let 𝑌 be an almost central subspace of a Banach
space𝑋 such that 𝑌 ∈ (GC). Then 𝑌 is a central subspace of𝑋.

Proof. Let {𝑦
1
, . . . , 𝑦

𝑛
} ⊆ 𝑌 and 𝑥 ∈ 𝑋. Since 𝑌 ∈ (GC), by

[2, Proposition 2.9], it is enough to show that⋂𝑛
𝑖=1

𝐵
𝑌
(𝑦
𝑖
, ‖𝑥−

𝑦
𝑖
‖ + 𝜀) ̸= 0 for all 𝜀 > 0.

Now let 𝜀 > 0. Choose 𝜂 > 0 such that 𝜂‖𝑥 − 𝑦
𝑖
‖ ≤ 𝜀 for

all 𝑖 ∈ {1, . . . , 𝑛}. Since 𝑌 is an almost central subspace of 𝑋,
there exists a 𝑦 ∈ 𝑌 such that ‖𝑦 −𝑦

𝑖
‖ ≤ (1 + 𝜂)‖𝑥 −𝑦

𝑖
‖ for all

𝑖 ∈ {1, . . . , 𝑛}. Hence ‖𝑦−𝑦
𝑖
‖ ≤ ‖𝑥−𝑦

𝑖
‖+𝜀 for all 𝑖 ∈ {1, . . . , 𝑛},

and the result follows.

Our next result gives a sufficient condition for an almost
central subspace to be an AC-subspace.

Proposition 14. Let 𝑌 be an almost central subspace of a
Banach space 𝑋 such that 𝑌 is isometric to the range of a
projection of norm one in some dual space. Then 𝑌 is an AC-
subspace of𝑋.

Proof. Let 𝑍 be a Banach space and 𝑃 : 𝑍
∗

→ 𝑍
∗ be a

projection of norm one such that 𝑌 is isometric to range(𝑃).
Let 𝜙 : 𝑌 → range(𝑃) be the corresponding onto isometry.
Now let {𝐵

𝑌
(𝑦
𝛼
, 𝑟
𝛼
)}
𝛼∈𝐼

be any family of closed balls in 𝑌 and
𝑥 ∈ 𝑋 be such that ‖𝑥 − 𝑦

𝛼
‖ ≤ 𝑟

𝛼
for all 𝛼 ∈ 𝐼. Consider

the family {𝐵
𝑌
(𝑦
𝛼
, 𝑟
𝛼
+ 𝜀)}
𝛼∈𝐼,𝜀>0

. Since 𝑌 is an almost central
subspace of 𝑋, any finite collection of balls from this family
has nonempty intersection in𝑌. Hence any finite collection of
balls from the family {𝐵

𝑍
∗(𝜙(𝑦
𝛼
), 𝑟
𝛼
+𝜀)}
𝛼∈𝐼,𝜀>0

has nonempty
intersection in range(𝑃). Now, by weak∗ compactness, there
exists a Λ ∈ 𝑍

∗ such that ‖Λ − 𝜙(𝑦
𝛼
)‖ ≤ 𝑟

𝛼
+ 𝜀 for all 𝛼 ∈ 𝐼

and for all 𝜀 > 0. Hence ‖Λ − 𝜙(𝑦
𝛼
)‖ ≤ 𝑟

𝛼
for all 𝛼 ∈ 𝐼. Now

define 𝑦 = 𝜙
−1

(𝑃(Λ)). Then, for all 𝛼 ∈ 𝐼, we have

󵄩󵄩󵄩󵄩𝑦 − 𝑦𝛼
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝜙
−1

(𝑃 (Λ)) − 𝜙
−1

(𝜙 (𝑦
𝛼
))
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃 (Λ) − 𝜙 (𝑦𝛼)

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑃 (Λ − 𝜙 (𝑦

𝛼
))
󵄩󵄩󵄩󵄩

≤ 𝑟
𝛼
.

(6)

Hence 𝑌 is an AC-subspace of𝑋.

Wenowgive a class of Banach spaceswhere almost central
subspaces are central. We recall that a Banach space𝑋 whose
dual 𝑋∗ is isometric to 𝐿

1
(𝜇) for some positive measure 𝜇 is

called an 𝐿
1
-predual.

Proposition 15. Let𝑋 be an𝐿
1
-predual and let𝑌 be an almost

central subspace of 𝑋. Then 𝑌 is an 𝐿
1
-predual. In particular,

𝑌 is a central subspace of𝑋.

Proof. Let {𝐵
𝑌
(𝑦
𝑖
, 𝑟
𝑖
)}
𝑛

𝑖=1
be any family of 𝑛 balls in𝑌 such that

any two of them intersect in 𝑌. Since 𝑋 is an 𝐿
1
-predual, by

[10,Theorem 6.1], there exists an 𝑥 ∈ 𝑋 such that ‖𝑥−𝑦
𝑖
‖ ≤ 𝑟
𝑖

for all 𝑖. Also, since 𝑌 is an almost central subspace of 𝑋,
⋂
𝑛

𝑖=1
𝐵
𝑌
(𝑦
𝑖
, 𝑟
𝑖
+ 𝜀) ̸= 0 for all 𝜀 > 0. Then, by [10, Lemma 4.2

andTheorem 6.1], it follows that 𝑌 is an 𝐿
1
-predual. Now let

{𝐵
𝑌
(𝑦
𝑖
, 𝑟
𝑖
)}
𝑛

𝑖=1
be a family of 𝑛 balls in 𝑌 that has nonempty

intersection in 𝑋. It is well known that two balls intersect if
and only if the distance between the centers is less than or
equal to the sum of the radii. Thus {𝐵

𝑌
(𝑦
𝑖
, 𝑟
𝑖
)}
𝑛

𝑖=1
is a pairwise

intersecting family in 𝑌. Since 𝑌 is an 𝐿
1
-predual, by [10,

Theorem 6.1], it follows that {𝐵
𝑌
(𝑦
𝑖
, 𝑟
𝑖
)}
𝑛

𝑖=1
intersects in 𝑌.

Hence 𝑌 is a central subspace of𝑋.
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Remark 16. Following the same line of argument as in the
proof of [2, Theorem 3.3], we can observe that a Banach
space𝑋 is an 𝐿

1
-predual if and only if𝑋 is an almost central

subspace of every Banach space that contains it.

Since every ideal is almost central, our next result gener-
alizes Proposition 14 of [11].

Proposition 17. Let 𝑌 be an almost central subspace of a
Banach space 𝑋. Then 𝑌 is a central subspace of 𝑋∗∗ if and
only if 𝑌 ∈ (GC).

Proof. If 𝑌 is a central subspace of𝑋∗∗, then, by [2, Proposi-
tion 2.2(d)], 𝑌 ∈ (GC).

Conversely suppose 𝑌 ∈ (GC). Since 𝑌 is an almost
central subspace of 𝑋 and 𝑋 is an almost central subspace
of𝑋∗∗, by Remark 9, 𝑌 is an almost central subspace of𝑋∗∗.
Hence, by Theorem 13, it follows that 𝑌 is a central subspace
of𝑋∗∗.

By a similar transitivity argument used in the proof
of the Proposition 17, we can easily observe the following
corollaries.

Corollary 18. Let 𝑌 be a subspace of 𝑋 such that 𝑌⊥⊥ is an
almost central subspace of 𝑋∗∗. Then 𝑌 is an almost central
subspace of 𝑋∗∗. In addition, if 𝑌 ∈ (GC), then 𝑌 is a central
subspace of𝑋∗∗.

It is well known that a semi 𝑀-ideal need not be an 𝑀-
ideal (see [7, Chapter I, Remarks 2.3(a)] for example). Our
next theorem gives a sufficient condition for a semi𝑀-ideal
to be an𝑀-ideal.

Theorem 19. Let 𝑌 be a semi 𝑀-ideal in a Banach space 𝑋
such that 𝑌⊥⊥ is an almost central subspace of 𝑋∗∗. Then 𝑌 is
an𝑀-ideal in 𝑋.

Proof. Since 𝑌 is a semi𝑀-ideal, by [12, Theorem 6.14], 𝑌⊥⊥
is a semi 𝑀-ideal in 𝑋∗∗. Also, since 𝑌⊥⊥ is a weak∗-closed
almost central subspace of 𝑋∗∗, 𝑌⊥⊥ is an AC-subspace of
𝑋
∗∗. Hence, for any Λ ∉ 𝑌

⊥⊥, by [4, Proposition 2.2], 𝑌⊥⊥
is 1-complemented in span{𝑌⊥⊥, Λ} and hence is an ideal in
span{𝑌⊥⊥, Λ}. Now, for any Λ ∉ 𝑌

⊥⊥, since 𝑌⊥⊥ is a semi𝑀-
ideal in span{𝑌⊥⊥, Λ}, by [11, Proposition 23], it follows that
𝑌
⊥⊥ is an 𝑀-ideal in span{𝑌⊥⊥, Λ}. Hence, by [7, Chapter

I, Theorem 2.2], 𝑌⊥⊥ is an 𝑀-ideal in 𝑋
∗∗. Since 𝑌⊥⊥ is a

weak∗-closed 𝑀-ideal in 𝑋
∗∗, by [7, Chapter II, Corollary

3.6], 𝑌⊥⊥ is an𝑀-summand in𝑋∗∗. Hence, by [7, Chapter I,
Theorem 1.9], there exists an 𝐿-summand 𝑉 in 𝑋∗ such that
𝑋
∗∗

= 𝑌
⊥⊥

⨁
∞
𝑉
⊥. Then, by the duality between 𝐿- and𝑀-

projections, we get𝑋∗ = 𝑌
⊥

⨁
1
𝑉 and hence 𝑌 is an𝑀-ideal

in𝑋.

We now give a sufficient condition for a semi𝑀-ideal to
be an𝑀-summand.

Theorem 20. Let 𝑌 be an AC-subspace of a Banach space 𝑋.
Then 𝑌 is a semi 𝑀-ideal in 𝑋 if and only if 𝑌 is an 𝑀-
summand in𝑋.

Proof. Suppose 𝑌 is a semi 𝑀-ideal in 𝑋 and is an AC-
subspace of 𝑋. Since 𝑌 is an AC-subspace of 𝑋, by [4,
Proposition 2.2], 𝑌 is 1-complemented in span{𝑌, 𝑥} for all
𝑥 ∈ 𝑋. Also, since 𝑌 is a semi𝑀-ideal in 𝑋, 𝑌 is a semi𝑀-
ideal in span{𝑌, 𝑥} for all 𝑥 ∈ 𝑋. Thus, by [11, Proposition
23], 𝑌 is an𝑀-ideal in span{𝑌, 𝑥} for all 𝑥 ∈ 𝑋. Then, by [7,
Chapter I, Corollary 1.3], 𝑌 is an𝑀-summand in span{𝑌, 𝑥}
for all 𝑥 ∈ 𝑋. Hence, by [7, Chapter II, Proposition 3.2], 𝑌 is
an𝑀-summand in𝑋.

Our next theorem gives another sufficient condition for a
semi 𝑀-ideal to be an 𝑀-ideal. In fact, this result improves
Proposition 23 of [11].

Theorem 21. Let 𝑌 be a subspace of a Banach space 𝑋 such
that 𝑌 is an ideal in span{𝑌, 𝑥} for all 𝑥 ∈ 𝑋. Then 𝑌 is a semi
𝑀-ideal in𝑋 if and only if 𝑌 is an𝑀-ideal in𝑋.

Proof. Suppose 𝑌 is a semi 𝑀-ideal in 𝑋 and is an ideal in
span{𝑌, 𝑥} for all 𝑥 ∈ 𝑋. Then, by [11, Proposition 23], 𝑌 is an
𝑀-ideal in span{𝑌, 𝑥} for all 𝑥 ∈ 𝑋. Hence, by [7, Chapter I,
Theorem 2.2], it follows that 𝑌 is an𝑀-ideal in𝑋.

We now recall the following theorem of Bandyopadhyay
and Dutta that characterizes an AC-subspace of finite codi-
mension in the space 𝐶(𝐾) of all continuous real-valued
functions on a compactHausdorff space𝐾, endowedwith the
supremum norm.

Theorem 22 (see [5, Theorem 1.1]). Let 𝐾 be a compact
Hausdorff space and𝑌 be a subspace of codimension 𝑛 of𝐶(𝐾).
Then the following are equivalent.

(i) 𝑌 is an AC-subspace of 𝐶(𝐾).
(ii) 𝑌 is 1-complemented in 𝐶(𝐾).
(iii) There exist measures 𝜇

1
, . . . , 𝜇

𝑛
on 𝐾 and distinct

isolated points 𝑘
1
, . . . , 𝑘

𝑛
of 𝐾 such that

(a) 𝑌 = ⋂
𝑛

𝑖=1
ker(𝜇
𝑖
),

(b) ‖𝜇
𝑖
‖ ≤ 2|𝜇

𝑖
({𝑘
𝑖
})|, 𝑖 = 1, . . . , 𝑛.

In our next proposition, we observe a simple proof for the
implication (iii) ⇒ (ii) ofTheorem 22when𝐾 is an extremely
disconnected space.

We recall that a compact Hausdorff space 𝐾 is extremely
disconnected if the closure of each open set in𝐾 is again open
in 𝐾 (see [13, Section 7] for details).

For any infinite discrete set Γ, ℓ
∞
(Γ) denotes the space

of all bounded real-valued functions on Γ, endowed with the
supremum norm, and 𝑐

0
(Γ) denotes its subspace consisting

of all functions 𝑓 ∈ ℓ
∞
(Γ) such that the set {𝛾 ∈ Γ : |𝑓(𝛾)| ≥

𝜀} is finite for all 𝜀 > 0. Also, for any infinite discrete set Γ,
ℓ
1
(Γ) denotes the space of all functions 𝑓 : Γ → R such that

∑
𝛾∈Γ

|𝑓(𝛾)| < ∞ with the norm ‖𝑓‖
1
= ∑
𝛾∈Γ

|𝑓(𝛾)|.
The following lemma is the uncountable version of the

main theorem of [14] for the space ℓ
∞
(Γ). As the proof is

similar to that of the theorem of [14], we omit the proof
here.
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Lemma 23. Let Γ be any infinite discrete set and 𝑌 be a sub-
space of codimension 𝑛 in ℓ

∞
(Γ). Then 𝑌 is 1-complemented in

ℓ
∞
(Γ) if and only if there exist 𝑛 distinct elements 𝑡

1
, . . . , 𝑡

𝑛
in Γ

and 𝑛 linearly independent functionals 𝑓
1
, . . . , 𝑓

𝑛
in (ℓ
∞
(Γ))
∗

such that

(a) 𝑓
𝑖
= ℎ
𝑖
+ 𝑔
𝑖
with ℎ

𝑖
∈ 𝑙
1
(Γ), 𝑔
𝑖
∈ 𝑐
0
(Γ)
⊥

, 𝑖 = 1, . . . , 𝑛,
(b) 𝑌 = ⋂

𝑛

𝑖=1
𝑓
−1

𝑖
(0),

(c) ‖𝑔
𝑖
‖ ≤ 2|ℎ

𝑖
(𝑡
𝑖
)| − ‖ℎ

𝑖
‖
1
, 𝑖 = 1, . . . , 𝑛.

Our next result shows that the space ℓ
∞
(Γ) cannot have

a finite codimensional 1-complemented subspace containing
𝑐
0
(Γ).

Corollary 24. Let 𝑋 be a Banach space such that 𝑐
0
(Γ) ⊂

𝑋 ⊂ ℓ
∞
(Γ) for some infinite discrete space Γ. If 𝑋 is a

finite codimensional subspace of ℓ
∞
(Γ), then 𝑋 cannot be 1-

complemented in ℓ
∞
(Γ).

Proof. Suppose 𝑋 is 1-complemented in ℓ
∞
(Γ). Then, by

Lemma 23, there exist 𝑛 distinct elements 𝑡
1
, . . . , 𝑡

𝑛
in Γ and 𝑛

linearly independent functionals 𝑓
1
, . . . , 𝑓

𝑛
in (ℓ
∞
(Γ))
∗ such

that

(a) 𝑓
𝑖
= ℎ
𝑖
+ 𝑔
𝑖
with ℎ

𝑖
∈ 𝑙
1
(Γ), 𝑔
𝑖
∈ 𝑐
0
(Γ)
⊥

, 𝑖 = 1, . . . , 𝑛,
(b) 𝑋 = ⋂

𝑛

𝑖=1
𝑓
−1

𝑖
(0),

(c) ‖𝑔
𝑖
‖ ≤ 2|ℎ

𝑖
(𝑡
𝑖
)| − ‖ℎ

𝑖
‖
1
, 𝑖 = 1, . . . , 𝑛.

Since 𝑋⊥ ⊆ 𝑐
0
(Γ)
⊥, 𝑓
𝑖
∈ 𝑐
0
(Γ)
⊥ for all 𝑖 ∈ {1, . . . , 𝑛}. Hence

ℎ
𝑖
= 𝑓
𝑖
− 𝑔
𝑖
∈ 𝑐
0
(Γ)
⊥ for all 𝑖 ∈ {1, . . . , 𝑛}. Since ℓ

∞
(Γ)
∗

=

ℓ
1
(Γ)⨁

1
𝑐
0
(Γ)
⊥, we get ℎ

𝑖
= 0 for all 𝑖 ∈ {1, . . . , 𝑛}. Then,

by (c), 𝑔
𝑖
= 0 and hence 𝑓

𝑖
= 0 for all 𝑖 ∈ {1, . . . , 𝑛}. This

contradiction proves that 𝑋 cannot be 1-complemented in
ℓ
∞
(Γ).

Let 𝐾 be a compact Hausdorff space and 𝐸 be a closed
subset of𝐾. Also, letB(𝐾) be the class of Borel subsets of𝐾.
Now, for 𝜇 ∈ 𝐶(𝐸)

∗, we define 𝜇 ∈ 𝐶(𝐾)
∗ as

𝜇 (𝐵) = {
𝜇 (𝐵) , if 𝐵 ∈ B (𝐾) , 𝐵 ⊂ 𝐸,

0, if 𝐵 ∈ B (𝐾) , 𝐵⋂𝐸 = 0.
(7)

Lemma 25. Let 𝐾 be a compact Hausdorff space and let 𝐸 be
a closed subset of𝐾 such that there exists a continuous map 𝜑 :

𝐾 → 𝐸 which is identity on 𝐸 and let 𝜇
𝑖
∈ 𝐶(𝐸)

∗

(1 ≤ 𝑖 ≤ 𝑛).
If⋂𝑛
𝑖=1

ker(𝜇
𝑖
) is 1-complemented in𝐶(𝐾), then⋂𝑛

𝑖=1
ker(𝜇
𝑖
) is

1-complemented in 𝐶(𝐸).

Proof. Let 𝑃 : 𝐶(𝐾) → 𝐶(𝐾) be a projection of norm one
with range⋂𝑛

𝑖=1
ker(𝜇
𝑖
).

Now define 𝑃󸀠 : 𝐶(𝐸) → 𝐶(𝐸) by

𝑃
󸀠

(𝑓) = 𝑃 (𝑓 ∘ 𝜑)
󵄨󵄨󵄨󵄨𝐸

for 𝑓 ∈ 𝐶 (𝐸) . (8)

Since

∫
𝐸

𝑃
󸀠

(𝑓) 𝑑𝜇
𝑖
= ∫
𝐸

𝑃 (𝑓 ∘ 𝜑)
󵄨󵄨󵄨󵄨𝐸
𝑑𝜇
𝑖
= ∫
𝐾

𝑃 (𝑓 ∘ 𝜑) 𝑑𝜇
𝑖

= 0 ∀𝑓 ∈ 𝐶 (𝐸) ,

(9)

we get 𝑃󸀠(𝑓) ∈ ⋂
𝑛

𝑖=1
ker(𝜇
𝑖
) and hence 𝑃󸀠 is well defined.

Clearly 𝑃󸀠 is a linear map.
Now let𝑓 ∈ ⋂

𝑛

𝑖=1
ker(𝜇
𝑖
). Since 𝜑 is identity on𝐸, we have

∫
𝐾

𝑃 (𝑓 ∘ 𝜑) 𝑑𝜇
𝑖
= ∫
𝐸

𝑓𝑑𝜇
𝑖
= 0 ∀𝑖. (10)

Thus, 𝑓 ∘ 𝜑 ∈ ⋂
𝑛

𝑖=1
ker(𝜇
𝑖
) and 𝑃(𝑓 ∘ 𝜑) = 𝑓 ∘ 𝜑. Therefore

𝑃
󸀠

(𝑓) = 𝑓 ∘ 𝜑|
𝐸
= 𝑓 and hence 𝑃󸀠 is a projection on 𝐶(𝐸)

with range⋂𝑛
𝑖=1

ker(𝜇
𝑖
). Now, since ‖𝑃󸀠(𝑓)‖ = ‖𝑃(𝑓 ∘ 𝜑)|

𝐸
‖ ≤

‖𝑃(𝑓∘𝜑)‖ ≤ ‖𝑓∘𝜑‖ = ‖𝑓‖, ‖𝑃󸀠‖ = 1. Hence 𝑃󸀠 is the required
projection.

Proposition 26. Let 𝐾 be an extremely disconnected space. If
there existmeasures 𝜇

1
, . . . , 𝜇

𝑛
on𝐾 and distinct isolated points

𝑘
1
, . . . , 𝑘

𝑛
of 𝐾 such that ‖𝜇

𝑖
‖ ≤ 2|𝜇

𝑖
({𝑘
𝑖
})| for 1 ≤ 𝑖 ≤ 𝑛, then

⋂
𝑛

𝑖=1
ker(𝜇
𝑖
) is 1-complemented in 𝐶(𝐾).

Proof. Let Γ be a dense subset of𝐾. Since each 𝑘
𝑖
’s are isolated

points of 𝐾, 𝑘
𝑖
∈ Γ for all 𝑖. Now consider Γ with the

discrete topology and its Stone-Čech compactification 𝛽(Γ).
Then, by [13, Section 7, Lemma 3 and Theorem 3], 𝐾 is
homeomorphically embedded into 𝛽(Γ), and also there exists
a continuous map 𝜑 : 𝛽(Γ) → 𝐾 such that 𝜑 is identity on
𝐾. Now consider measures 𝜇

𝑖
on 𝛽(Γ) such that 𝜇

𝑖
(𝐷) = 0 for

any Borel set 𝐷 disjoint from 𝐾 and 𝜇
𝑖
(𝐷) = 𝜇

𝑖
(𝐷) for any

Borel set 𝐷 ⊂ 𝐾. Since 𝑘
𝑖
∈ Γ, 2|𝜇

𝑖
({𝑘
𝑖
})| ≥ ‖𝜇

𝑖
‖ = ‖𝜇‖. Since

𝐶(𝛽(Γ)) is isometric to ℓ
∞
(Γ), by Lemma 23, ⋂𝑛

𝑖=1
ker(𝜇
𝑖
) is

1-complemented in ℓ
∞
(Γ). Then, by Lemma 25, ⋂𝑛

𝑖=1
ker(𝜇
𝑖
)

is 1-complemented in 𝐶(𝐾).

In an 𝐿
1
-predual space, we do not know whether every

AC-subspace of finite codimension is the range of a norm
one projection and/or is the intersection of AC-subspaces of
codimension one.

3. Stability Results

Coming to quotient spaces, one can easily observe that if
𝑌 is 1-complemented in a Banach space 𝑋, then, for any
subspace 𝑍 of 𝑌, 𝑌/𝑍 is 1-complemented in𝑋/𝑍. Motivated
by this, we consider the following problem. Let 𝑌 be a
subspace of a Banach space 𝑋 having some property (𝑃) in
𝑋. If 𝑍 is a subspace of 𝑌, then when can we say that 𝑌/𝑍
has the property (𝑃) in 𝑋/𝑍? We study this problem when
the property (𝑃) under consideration is almost constrained,
almost central, central, and ideal.

For a subspace 𝑌 of a Banach space 𝑋 and 𝑥 ∈ 𝑋,
we denote by [𝑥] the equivalence class in 𝑋/𝑌 containing
𝑥.

Our next result solves the above problem for AC-sub-
spaces.

Proposition 27. Let 𝑌 be an AC-subspace of𝑋 and let 𝑍 be a
subspace of 𝑌. Then 𝑌/𝑍 is an AC-subspace of𝑋/𝑍.
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Proof. Let {𝐵
𝑌/𝑍

([𝑦
𝑖
], 𝑟
𝑖
)}
𝑖∈𝐼

be a family of balls in 𝑌/𝑍 and
also let 𝑥 ∈ 𝑋 be such that [𝑥] ∈ ⋂

𝑖∈𝐼
𝐵
𝑌/𝑍

([𝑦
𝑖
], 𝑟
𝑖
). Then, for

each 𝜀 > 0 and 𝑖 ∈ 𝐼, there exists a 𝑧
𝜀,𝑖
∈ 𝑍 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩[𝑥] − [𝑦𝑖]
󵄩󵄩󵄩󵄩 + 𝜀 ≤ 𝑟

𝑖
+ 𝜀 ∀𝑖 ∈ 𝐼, 𝜀 > 0.

(11)

We now consider the family {𝐵
𝑌
(𝑦
𝑖
−𝑧
𝜀,𝑖
, 𝑟
𝑖
+𝜀)}
𝑖∈𝐼,𝜀>0

of closed
balls in 𝑌. Clearly 𝑥 ∈ ⋂

𝑖∈𝐼,𝜀>0
𝐵
𝑌
(𝑦
𝑖
− 𝑧
𝜀,𝑖
, 𝑟
𝑖
+ 𝜀). Since 𝑌

is an AC-subspace of 𝑋, there exists a 𝑦 ∈ 𝑌 such that 𝑦 ∈

⋂
𝑖∈𝐼,𝜀>0

𝐵
𝑌
(𝑦
𝑖
− 𝑧
𝜀,𝑖
, 𝑟
𝑖
+ 𝜀). Then, for 𝑖 ∈ 𝐼, we have

󵄩󵄩󵄩󵄩[𝑦] − [𝑦𝑖]
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 ≤ 𝑟
𝑖
+ 𝜀 ∀𝜀 > 0. (12)

Therefore ‖[𝑦] − [𝑦
𝑖
]‖ ≤ 𝑟

𝑖
for all 𝑖 ∈ 𝐼, and hence 𝑌/𝑍 is an

AC-subspace of𝑋/𝑍.

We now prove the stability of ideals in quotient spaces.

Proposition 28. Let𝑌 be an ideal in𝑋 and let𝑍 be a subspace
of 𝑌. Then 𝑌/𝑍 is an ideal in𝑋/𝑍.

Proof. Since 𝑌 is an ideal in 𝑋, by [9, Theorem 1], 𝑌⊥⊥ is 1-
complemented in 𝑋

∗∗. Then 𝑌
⊥⊥

/𝑍
⊥⊥ is 1-complemented

in 𝑋∗∗/𝑍⊥⊥. But 𝑋∗∗/𝑍⊥⊥ is isometric to (𝑋/𝑍)∗∗, and this
isometry takes 𝑌⊥⊥/𝑍⊥⊥ onto (𝑌/𝑍)⊥⊥. Hence (𝑌/𝑍)⊥⊥ is 1-
complemented in (𝑋/𝑍)

∗∗. Then, again by [9, Theorem 1],
𝑌/𝑍 is an ideal in𝑋/𝑍.

Our next result proves the stability of almost central
subspaces in quotient spaces.

Proposition 29. Let 𝑌 be an almost central subspace of𝑋 and
let𝑍 be a subspace of𝑌.Then𝑌/𝑍 is an almost central subspace
of𝑋/𝑍.

Proof. Let [𝑥] ∈ 𝑋/𝑍, {[𝑦
1
], . . . , [𝑦

𝑛
]} ⊆ 𝑌/𝑍 and 𝜀 > 0.Then,

for 1 ≤ 𝑖 ≤ 𝑛, there exists an element 𝑧
𝜀,𝑖
∈ 𝑍 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩[𝑥] − [𝑦𝑖]
󵄩󵄩󵄩󵄩 +

𝜀

2
. (13)

Since 𝑌 is an almost central subspace of 𝑋, there exists an
element 𝑦

𝜀
∈ 𝑌 such that

󵄩󵄩󵄩󵄩𝑦𝜀 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 +

𝜀

2
for 1 ≤ 𝑖 ≤ 𝑛. (14)

Now, for 1 ≤ 𝑖 ≤ 𝑛, we have

󵄩󵄩󵄩󵄩[𝑦𝜀] − [𝑦𝑖]
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝜀 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖 + 𝑧𝜀,𝑖
󵄩󵄩󵄩󵄩 +

𝜀

2

≤
󵄩󵄩󵄩󵄩[𝑥] − [𝑦𝑖]

󵄩󵄩󵄩󵄩 + 𝜀.

(15)

Hence 𝑌/𝑍 is an almost central subspace of𝑋/𝑍.

Now, for Banach spaces𝑋,𝑌,𝑍with𝑍 ⊆ 𝑌 ⊆ 𝑋, our next
set of results give some sufficient conditions for 𝑌/𝑍 to be a
central subspace of𝑋/𝑍.

Combining Proposition 29 and Theorem 13, we get the
following.

Corollary 30. Let 𝑌 be an almost central subspace of 𝑋 and
let 𝑍 be a subspace of 𝑌. If 𝑌/𝑍 ∈ (GC), then 𝑌/𝑍 is a central
subspace of𝑋/𝑍.

As a consequence of the above corollary, we have the
following result.

Corollary 31. Let𝑌 be a subspace of𝑋 and let𝑍 be a subspace
of𝑌 such that𝑌/𝑍 ∈ (GC). If𝑌⊥⊥ is an almost central subspace
of𝑋∗∗, then 𝑌/𝑍 is a central subspace of 𝑋/𝑍.

Proof. By Corollary 18, 𝑌 is an almost central subspace of
𝑋
∗∗. Hence𝑌 is an almost central subspace of𝑋. Since𝑌/𝑍 ∈

(GC), by Corollary 30, 𝑌/𝑍 is a central subspace of𝑋/𝑍.

We recall that a subspace 𝑌 of a Banach space 𝑋 is said
to be a factor reflexive subspace if the quotient space 𝑋/𝑌 is
reflexive. Since any reflexive spaces are in the class (GC), the
following corollary is easy to see.

Corollary 32. Let 𝑌 be a subspace of a Banach space 𝑋 such
that 𝑌⊥⊥ is an almost central subspace of 𝑋∗∗. Then, for any
factor reflexive subspace 𝑍 of 𝑌, 𝑌/𝑍 is a central subspace of
𝑋/𝑍.

Wenow prove the converse of Proposition 29 under some
additional assumptions.

Proposition 33. Let 𝑋 be an 𝐿
1
-predual, let 𝑍 be an𝑀-ideal

in𝑋, and let𝑌 be a subspace of𝑋 such that𝑍 ⊆ 𝑌 ⊆ 𝑋. If𝑌/𝑍
is almost central in𝑋/𝑍, then 𝑌 is a central subspace of 𝑋.

Proof. Let 𝑥 ∈ 𝑋, 𝑦
1
. . . , 𝑦
𝑛
∈ 𝑌, and 𝜀 > 0. Then, by

assumption, there exists a 𝑦
𝜀
∈ 𝑌 such that

󵄩󵄩󵄩󵄩[𝑦𝜀] − [𝑦𝑖]
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩[𝑥] − [𝑦𝑖]
󵄩󵄩󵄩󵄩 +

𝜀

2
≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑖

󵄩󵄩󵄩󵄩 +
𝜀

2
. (16)

Let 𝑧
𝜀,𝑖

∈ 𝑍 be such that ‖𝑦
𝜀
− 𝑦
𝑖
− 𝑧
𝑖
‖ ≤ ‖𝑥 − 𝑦

𝑖
‖ + 𝜀 for

all 𝑖 ∈ {1, . . . , 𝑛}. Now consider the finite collection of balls
{𝐵
𝑋
(𝑦
𝜀
− 𝑦
𝑖
, ‖𝑥 − 𝑦

𝑖
‖ + 𝜀)}

𝑛

𝑖=1
in 𝑋. Since this is a pairwise

intersecting family of balls in 𝑋 and 𝑋 is an 𝐿
1
-predual,

⋂
𝑛

𝑖=1
𝐵
𝑋
(𝑦
𝜀
−𝑦
𝑖
, ‖𝑥−𝑦

𝑖
‖+𝜀) ̸= 0. Also, since𝑋 is an𝐿

1
-predual,

by [12, Proposition 6.5], it follows that𝑍 has the strong 𝑛-ball
property in𝑋. Hence there exists an element 𝑧

𝜀
∈ 𝑍 such that

‖𝑧
𝜀
−𝑦
𝜀
+𝑦
𝑖
‖ ≤ ‖𝑥−𝑦

𝑖
‖+𝜀 for all 𝑖 ∈ {1, . . . , 𝑛}. Therefore𝑌 is

an almost central subspace of𝑋 and hence, by Proposition 15,
𝑌 is a central subspace of𝑋.

The following corollary is the converse of Proposition 28
under some additional assumptions.

Corollary 34. Let𝑋 be an 𝐿
1
-predual, let 𝑍 be an𝑀-ideal in

𝑋, and let 𝑌 be a subspace of 𝑋 such that 𝑍 ⊆ 𝑌 ⊆ 𝑋. If 𝑌/𝑍
is an ideal in𝑋/𝑍, then 𝑌 is an ideal in𝑋.

Proof. Since 𝑌/𝑍 is an ideal in 𝑋/𝑍, by Lemma 10, 𝑌/𝑍 is
almost central in𝑋/𝑍. Thus, by Proposition 33, 𝑌 is a central
subspace of 𝑋. Then, by Proposition 15, 𝑌 is an 𝐿

1
-predual.

Hence, by [15, Proposition 1], 𝑌 is an ideal in𝑋.
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We recall that, for any collection {𝑋
𝛼
: 𝛼 ∈ Γ} of Banach

spaces, ℓ
∞
-sum of 𝑋

𝛼
(𝛼 ∈ Γ) and 𝑐

0
-sum of 𝑋

𝛼
(𝛼 ∈ Γ) are

defined as ⨁
∞
𝑋
𝛼
= {𝑥 ∈ ∏𝑋

𝛼
: ‖𝑥‖ = sup ‖𝑥(𝛼)‖ < ∞}

and⨁
𝑐
0

𝑋
𝛼
= {𝑥 ∈ ∏𝑋

𝛼
: for all 𝜀 > 0, {𝛼 ∈ Γ : ‖𝑥(𝛼)‖ >

𝜀} is finite}, respectively, and equip both spaces with supre-
mumnorm. For a finite family of Banach spaces {𝑋

1
, . . . , 𝑋

𝑘
},

ℓ
∞
-sum of𝑋

𝑖
(1 ≤ 𝑖 ≤ 𝑘) is denoted by (𝑋

1
⨁⋅ ⋅ ⋅⨁𝑋

𝑘
)
ℓ
𝑘

∞

.

Remark 35. It is easy to observe that, for any family {𝑋
𝛼
: 𝛼 ∈

Γ} of Banach spaces, if 𝑌
𝛼
is an almost central subspace of a

Banach space 𝑋
𝛼
, then⨁

∞
𝑌
𝛼
is an almost central subspace

of⨁
∞
𝑋
𝛼
.

We now prove the stability of almost central subspaces
in vector-valued continuous function spaces. For a compact
Hausdorff space 𝐾 and a Banach space 𝑋, we denote by
𝐶(𝐾,𝑋) the space of all 𝑋-valued continuous functions
defined on 𝐾, endowed with the supremum norm.

Let𝐾 be a compactHausdorff space and let𝑋 be a Banach
space. Then, for 𝑓 ∈ 𝐶(𝐾) and 𝑥 ∈ 𝑋, an element 𝑓 ⊗ 𝑥 ∈

𝐶(𝐾,𝑋) is defined as (𝑓 ⊗ 𝑥)(𝑘) = 𝑓(𝑘)𝑥 for 𝑘 ∈ 𝐾.

Proposition 36. Let 𝑌 be an almost central subspace of
Banach space𝑋 and let𝐾 be a compact Hausdorff space. Then
𝐶(𝐾, 𝑌) is an almost central subspace of 𝐶(𝐾,𝑋).

Proof. Let 𝑓
1
, . . . , 𝑓

𝑛
∈ 𝐶(𝐾, 𝑌), 𝑓 ∈ 𝐶(𝐾,𝑋), and 𝜀 > 0.

Then, by the proof of [10, Page 43, Corollary 2], for the finite
family {𝑓

1
, . . . , 𝑓

𝑛
}, there exists a partition of unity {𝜑

𝑗
}
𝑚

𝑗=1
and

a closed subspace𝐵 of𝐶(𝐾, 𝑌) spanned by the elements of the
form∑

𝑚

𝑗=1
𝜑
𝑗
⊗𝑦
𝑗
with 𝑦

𝑗
∈ 𝑌 such that 𝑑(𝑓

𝑖
, 𝐵) < 𝜀/4 for 1 ≤

𝑖 ≤ 𝑛 and 𝐵 is isometric to (𝑌⨁ ⋅ ⋅ ⋅⨁𝑌)
ℓ
𝑚

∞

. Similarly for 𝑓,
there exists a partition of unity {𝜑󸀠

𝑙
}
𝑘

𝑙=1
and a closed subspace

𝐵
󸀠 of𝐶(𝐾,𝑋) spanned by the elements of the form∑

𝑘

𝑙=1
𝜑
󸀠

𝑙
⊗𝑥
𝑙

with 𝑥
𝑙
∈ 𝑋 such that 𝑑(𝑓, 𝐵󸀠) < 𝜀/4, and 𝐵󸀠 is isometric to

(𝑋⨁ ⋅ ⋅ ⋅⨁𝑋)
ℓ
𝑘

∞

. Now let 𝑓 ∈ 𝐵
󸀠 be such that ‖𝑓 − 𝑓‖ < 𝜀/4

and let 𝑓
𝑖
∈ 𝐵 be such that ‖𝑓

𝑖
− 𝑓
𝑖
‖ < 𝜀/4 for 1 ≤ 𝑖 ≤ 𝑛.

Case 1 (𝑚 ≤ 𝑘). Since 𝐵 is isometric to (𝑌⨁ ⋅ ⋅ ⋅⨁𝑌)
ℓ
𝑚

∞

, 𝐵
is an 𝑀-summand in (𝑌⨁ ⋅ ⋅ ⋅⨁𝑌)

ℓ
𝑘

∞

(up to an isometry).
Since𝑀-summands are central, by Remark 35 and Remark 9,
𝐵 is an almost central subspace of𝐵󸀠.Then there exists a𝑔 ∈ 𝐵

such that ‖𝑔 − 𝑓
𝑖
‖ ≤ ‖𝑓 − 𝑓

𝑖
‖ + 𝜀/4 for 1 ≤ 𝑖 ≤ 𝑛. Hence we

have
󵄩󵄩󵄩󵄩𝑔 − 𝑓𝑖

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑔 − 𝑓
𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖
− 𝑓
𝑖

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓i

󵄩󵄩󵄩󵄩󵄩
+
𝜀

4
+
𝜀

4

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑓 − 𝑓

𝑖

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖
− 𝑓
𝑖

󵄩󵄩󵄩󵄩󵄩
+
𝜀

2

≤
󵄩󵄩󵄩󵄩𝑓 − 𝑓

𝑖

󵄩󵄩󵄩󵄩 + 𝜀.

(17)

Case 2 (𝑘 < 𝑚). In this case, we can isometrically embed
𝐵
󸀠 into (𝑋⨁ ⋅ ⋅ ⋅⨁𝑋)

ℓ
𝑚

∞

. Since 𝐵 is isometric to (𝑌⨁ ⋅ ⋅ ⋅

⨁𝑌)
ℓ
𝑚

∞

, by Remark 35, 𝐵 is an almost central subspace of

(𝑋⨁ ⋅ ⋅ ⋅⨁𝑋)
ℓ
𝑚

∞

(up to an isometry). Then there exists an
element 𝑔 ∈ 𝐵 such that ‖𝑔−𝑓

𝑖
‖ ≤ ‖𝑓−𝑓

𝑖
‖+𝜀/4 for 1 ≤ 𝑖 ≤ 𝑛.

Hence we have
󵄩󵄩󵄩󵄩𝑔 − 𝑓𝑖

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑔 − 𝑓
𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖
− 𝑓
𝑖

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑓 − 𝑓

𝑖

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖
− 𝑓
𝑖

󵄩󵄩󵄩󵄩󵄩
+
𝜀

2

≤
󵄩󵄩󵄩󵄩𝑓 − 𝑓

𝑖

󵄩󵄩󵄩󵄩 + 𝜀.

(18)

Therefore in all cases there exists a 𝑔 ∈ 𝐵 ⊆ 𝐶(𝐾, 𝑌) such that
‖𝑔 − 𝑓

𝑖
‖ ≤ ‖𝑓 − 𝑓

𝑖
‖ + 𝜀 for 1 ≤ 𝑖 ≤ 𝑛. Hence 𝐶(𝐾, 𝑌) is an

almost central subspace of 𝐶(𝐾,𝑋).

For a central subspace 𝑌 of a Banach space 𝑋 and for a
compact Hausdorff space𝐾, it is not known whether𝐶(𝐾, 𝑌)
is a central subspace of 𝐶(𝐾,𝑋). But if 𝐶(𝐾, 𝑌) ∈ (GC)
and 𝑌 is almost central in 𝑋, then, by Proposition 36 and
Theorem 13, 𝐶(𝐾, 𝑌) is a central subspace of 𝐶(𝐾,𝑋). Now
for a Banach space 𝑋, Theorem 3.6 of [8] gives a sufficient
condition for𝐶(𝐾,𝑋) to be in the class (GC). Precisely, if𝑋 is
a polyhedral Banach space such that𝑋 ∈ (GC) and {𝑓 ∈ 𝐵

𝑋
∗ :

𝑓(𝑥) = 1}⋂ ext(𝐵
𝑋
∗) is finite for each 𝑥 ∈ 𝑋 with ‖𝑥‖ = 1,

then 𝐶(𝐾,𝑋) ∈ (GC) (by ext(𝐵
𝑋
∗), we denote the set of all

extreme points of𝐵
𝑋
∗ and a Banach space is called polyhedral

if the unit ball of each of its finite dimensional subspace is
a polytope). In particular, by [8, Fact 1.3(e)], if 𝑋 is a finite
dimensional polyhedral space, then 𝐶(𝐾,𝑋) ∈ (GC). This
information together with Proposition 36 give the following
corollary.

Corollary 37. Let𝑌 be an almost central subspace of a Banach
space 𝑋 and let 𝐾 be a compact Hausdorff space. If 𝑌 is a
polyhedral Banach space such that 𝑌 ∈ (GC) and {𝑔 ∈ 𝐵

𝑌
∗ :

𝑔(𝑦) = 1}⋂ ext(𝐵
𝑌
∗) is finite for each 𝑦 ∈ 𝑌 with ‖𝑦‖ = 1,

then 𝐶(𝐾, 𝑌) is a central subspace of 𝐶(𝐾,𝑋). In particular, if
𝑌 is a finite dimensional polyhedral central subspace of𝑋, then
𝐶(𝐾, 𝑌) is a central subspace of 𝐶(𝐾,𝑋).

We now discuss the stability problem in injective tensor
product spaces.

Proposition 38. Let 𝐾 be a compact Hausdorff space and let
𝐴 be an almost central subspace of𝐶(𝐾). Then, for any Banach

space 𝑋, the injective tensor product 𝐴
∨

⨂ 𝑋 is almost central
in 𝐶(𝐾,𝑋).

Proof. Since 𝐴 is an almost central subspace of 𝐶(𝐾), by
Proposition 15, 𝐴 is an 𝐿

1
-predual. Then, by [15, Proposition

1], 𝐴 is an ideal in 𝐶(𝐾). Hence, by [15, Lemma 2], 𝐴
∨

⨂ 𝑋

is an ideal in 𝐶(𝐾)
∨

⨂ 𝑋. Since 𝐶(𝐾,𝑋) = 𝐶(𝐾)

∨

⨂ 𝑋 (up

to an isometry), by Lemma 10, 𝐴
∨

⨂ 𝑋 is almost central in
𝐶(𝐾,𝑋).

Theorem 39. Let 𝐾 be a compact Hausdorff space and let 𝐴
be an almost central subspace of𝐶(𝐾). If 𝑌 is an almost central
subspace of a Banach space𝑋, then the injective tensor product
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𝐴

∨

⨂ 𝑌 is an almost central subspace of 𝐶(𝐾)
∨

⨂ 𝑋. In parti-

cular, 𝐴
∨

⨂ 𝑌 is an almost central subspace of 𝐴
∨

⨂ 𝑋.

Proof. By Proposition 38, 𝐴
∨

⨂ 𝑌 is almost central in

𝐶(𝐾)

∨

⨂ 𝑌 = 𝐶(𝐾, 𝑌). Then, by Proposition 36 and

Remark 9,𝐴
∨

⨂ 𝑌 is an almost central subspace of𝐶(𝐾,𝑋) =

𝐶(𝐾)

∨

⨂ 𝑋. Since 𝐴
∨

⨂ 𝑌 ⊆ 𝐴

∨

⨂ 𝑋 ⊆ 𝐶(𝐾,𝑋), 𝐴
∨

⨂ 𝑌 is

an almost central subspace of 𝐴
∨

⨂ 𝑋.

Corollary 40. Let 𝑍 be an 𝐿
1
-predual. Then, for any almost

central subspace 𝑌 of a Banach space 𝑋, the injective tensor

product 𝑍
∨

⨂ 𝑌 is an almost central subspace of 𝑍
∨

⨂ 𝑋.

Proof. Since 𝑍 is an 𝐿
1
-predual, by [15, Proposition 1], 𝑍 is

isometric to an ideal in 𝐶(𝐾) for some compact Hausdorff
space𝐾. Then, by Lemma 10,𝑍 is an almost central subspace

of 𝐶(𝐾) (up to an isometry).Therefore, byTheorem 39,𝑍
∨

⨂

𝑌 is an almost central subspace of 𝑍
∨

⨂ 𝑋.

We now answer a question raised in [2] and also improve
Theorem 6 of [11].

Proposition 41. Let Γ be an index set and let 𝑋
𝛼

(𝛼 ∈ Γ) be
Banach spaces. Then⨁

𝑐
0

𝑋
𝛼
is a central subspace of⨁

∞
𝑋
𝛼
.

Proof. Let 𝑥 ∈ ⨁
∞
𝑋
𝛼
and 𝑦

1
, . . . , 𝑦

𝑛
∈ ⨁
𝑐
0

𝑋
𝛼
. Let 𝑟 =

min
1≤𝑖≤𝑛

‖𝑥 − 𝑦
𝑖
‖. Since 𝑦

1
, . . . , 𝑦

𝑛
∈ ⨁
𝑐
0

𝑋
𝛼
, there exists a

finite set 𝐴 such that ‖𝑦
𝑖
(𝛼)‖ ≤ 𝑟 whenever 𝛼 ∉ 𝐴.

Define 𝑧 ∈ ⨁
𝑐
0

𝑋
𝛼
as

𝑧 (𝛼) = {
𝑥 (𝛼) , if 𝛼 ∈ 𝐴,

0, if 𝛼 ∉ 𝐴.
(19)

Now for 1 ≤ 𝑖 ≤ 𝑛,

if𝛼 ∈ 𝐴, then ‖𝑧(𝛼)−𝑦
𝑖
(𝛼)‖ = ‖𝑥(𝛼)−𝑦

𝑖
(𝛼)‖ ≤ ‖𝑥−𝑦

𝑖
‖

and
if 𝛼 ∉ 𝐴, then ‖𝑧(𝛼) −𝑦

𝑖
(𝛼)‖ = ‖𝑦

𝑖
(𝛼)‖ ≤ 𝑟 ≤ ‖𝑥−𝑦

𝑖
‖.

Hence ‖𝑧 − 𝑦
𝑖
‖ ≤ ‖𝑥 − 𝑦

𝑖
‖ for all 𝑖.

Corollary 42. The class (GC) is stable under 𝑐
0
-direct sum of

Banach spaces.

Proof. If 𝑋
𝛼
∈ (GC) for all 𝛼 ∈ Γ, then, by [2, Theorem

4.7] and Proposition 41, ⨁
𝑐
0

𝑋
𝛼
is a central subspace of

⨁
∞
𝑋
∗∗

𝛼
= (⨁

𝑐
0

𝑋
𝛼
)
∗∗. Hence the result follows.

In [8], Veselý defined a new direct sum called polyhedral
direct sum. We now prove the stability of some ball intersec-
tion properties under polyhedral direct sums.

Definition 43 (see [8]). A norm 𝜋 on R𝑛
+
is called polyhedral

if it is of the form 𝜋(𝑡) = max
1≤𝑗≤𝑚

𝑔
𝑗
(𝑡), where 𝑔

1
, . . . , 𝑔

𝑚
∈

(R𝑛)
∗. In this case, we say that the family {𝑔

1
, . . . , 𝑔

𝑚
}

generates 𝜋. Now Lemma 1.5 of [8] shows that if {𝑔
1
, . . . , 𝑔

𝑚
}

is a minimal family generating 𝜋, then 𝑔
𝑗
(𝑖) ≥ 0 for all

𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚.
We say that a Banach space𝑋 is the polyhedral direct sum

of Banach spaces𝑋
1
, . . . , 𝑋

𝑛
if𝑋 = 𝑋

1
⊕⋅ ⋅ ⋅⊕𝑋

𝑛
and the norm

on𝑋 is of the form ‖𝑥‖
𝑋
= 𝜋(‖𝑥(1)‖, . . . , ‖𝑥(𝑛)‖), where 𝜋 is a

polyhedral nondecreasing norm onR𝑛
+
. In this case, we write

𝑋 = (𝑋
1
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑛
)
𝜋
.

Our next theorem proves that the property of being a
central subspace is stable under polyhedral direct sums.

For 𝑛 ∈ N and 1 ≤ 𝑖 ≤ 𝑛, we denote by 𝑒
𝑖
the 𝑖th canonical

unit vector of R𝑛.

Theorem 44. Let 𝑋 be a polyhedral direct sum of Banach
spaces 𝑋

𝑖
(1 ≤ 𝑖 ≤ 𝑛) and let 𝑌

𝑖
be a subspace of 𝑋

𝑖
(1 ≤ 𝑖 ≤

𝑛). Let 𝜋 be the corresponding polyhedral norm and suppose
𝜋(𝑒
𝑖
) ̸= 0 for all 𝑖. Then the polyhedral sum 𝑌 of 𝑌

𝑖
(1 ≤ 𝑖 ≤ 𝑛)

is a central subspace of 𝑋 if and only if 𝑌
𝑖
is a central subspace

of𝑋
𝑖
for all 𝑖.

Proof. Suppose 𝑌 is a central subspace of 𝑋. Fix an 𝑚 ∈

{1, . . . , 𝑛}. Let 𝑥
𝑚
∈ 𝑋
𝑚
and 𝑦

𝑚,𝑘
∈ 𝑌
𝑚
(1 ≤ 𝑘 ≤ 𝑝). Define

𝑥 ∈ 𝑋 and 𝑦
𝑘
∈ 𝑌 (1 ≤ 𝑘 ≤ 𝑝) as

𝑥 (𝑖)={

𝑥
𝑚
, if 𝑚=𝑖,

0, otherwise,
𝑦
𝑘
(𝑖)={

𝑦
𝑚,𝑘

, if 𝑚=𝑖,

0, otherwise.
(20)

Then there exists a 𝑦 ∈ 𝑌 such that ‖𝑦 − 𝑦
𝑘
‖
𝑋
≤ ‖𝑥 − 𝑦

𝑘
‖
𝑋

for 1 ≤ 𝑘 ≤ 𝑝. Therefore, for 1 ≤ 𝑘 ≤ 𝑝, we have

󵄩󵄩󵄩󵄩𝑦 (𝑚) − 𝑦𝑘 (𝑚)
󵄩󵄩󵄩󵄩 𝜋 (𝑒𝑚)

= 𝜋 (
󵄩󵄩󵄩󵄩𝑦 (𝑚) − 𝑦𝑘 (𝑚)

󵄩󵄩󵄩󵄩 𝑒𝑚)

≤ 𝜋 (
󵄩󵄩󵄩󵄩𝑦 (1) − 𝑦𝑘 (1)

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑦 (𝑛) − 𝑦𝑘 (𝑛)

󵄩󵄩󵄩󵄩)

≤ 𝜋 (
󵄩󵄩󵄩󵄩𝑥 (1) − 𝑦𝑘 (1)

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩𝑥 (𝑛) − 𝑦𝑘 (𝑛)

󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑥 (𝑚) − 𝑦𝑘 (𝑚)

󵄩󵄩󵄩󵄩 𝜋 (𝑒𝑚) .

(21)

Since 𝜋(𝑒
𝑖
) ̸= 0 for all 𝑖, we get ‖𝑦(𝑚) − 𝑦

𝑚,𝑘
‖ ≤ ‖𝑥(𝑚) − 𝑦

𝑚,𝑘
‖

for 1 ≤ 𝑘 ≤ 𝑝. Hence 𝑌
𝑚
is a central subspace of𝑋

𝑚
.

Conversely suppose 𝑌
𝑖
is central in 𝑋

𝑖
for all 𝑖. Let 𝑥 ∈ 𝑋

and 𝑦
𝑘
∈ 𝑌 (1 ≤ 𝑘 ≤ 𝑝). Then, for 1 ≤ 𝑚 ≤ 𝑛, there exists

a 𝑦
𝑚

∈ 𝑌
𝑚
such that ‖𝑦

𝑚
− 𝑦
𝑘
(𝑚)‖ ≤ ‖𝑥(𝑚) − 𝑦

𝑘
(𝑚)‖ for

1 ≤ 𝑘 ≤ 𝑝. Define 𝑦 ∈ 𝑌 as 𝑦(𝑖) = 𝑦
𝑖
(1 ≤ 𝑖 ≤ 𝑛). Now, by the

monotonicity of 𝜋,

󵄩󵄩󵄩󵄩𝑦 − 𝑦𝑘
󵄩󵄩󵄩󵄩𝑋

≤ 𝜋 (
󵄩󵄩󵄩󵄩(𝑥 − 𝑦𝑘) (1)

󵄩󵄩󵄩󵄩 , . . . ,
󵄩󵄩󵄩󵄩(𝑥 − 𝑦𝑘) (𝑛)

󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑘

󵄩󵄩󵄩󵄩𝑋
for 1 ≤ 𝑘 ≤ 𝑝.

(22)

Hence 𝑌 is a central subspace of𝑋.

An argument similar to the one used to proveTheorem 44
gives the following.
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Theorem 45. Let 𝑋 be a polyhedral direct sum of Banach
spaces 𝑋

𝑖
(1 ≤ 𝑖 ≤ 𝑛) and let 𝑌

𝑖
be a subspace of 𝑋

𝑖
(1 ≤ 𝑖 ≤

𝑛). Let 𝜋 be the corresponding polyhedral norm and suppose
𝜋(𝑒
𝑖
) ̸= 0 for all 𝑖. Then the polyhedral sum 𝑌 of 𝑌

𝑖
(1 ≤ 𝑖 ≤ 𝑛)

is an AC-subspace of 𝑋 if and only if 𝑌
𝑖
is an AC-subspace of

𝑋
𝑖
for all 𝑖.
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