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We present a TCAD compatible multiscale model of phonon-assisted band-to-band tunneling (BTBT) in
semiconductors, that incorporates the non-parabolic nature of complex bands within the bandgap of the
material. This model is shown capture the measured current-voltage data in silicon, for current transport
along the [100], [110] and [111] directions. Our model will be useful to predict band-to-band tunneling
phenomena to quantify on and off currents in Tunnel FETs and in small geometry MOSFETs and FINFETs.
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I. INTRODUCTION

The on-current in Tunnel FETs and gate induced off-
state drain current in small geometry MOSFETs are due
to the tunneling of electrons between valence and con-
duction bands. This work deals with the process of
phonon-assisted band-to-band tunneling (BTBT) across
an indirect bandgap. One approach to compute phonon-
assisted BTBT current is based on the Non-Equilibrium
Green’s function (NEGF) technique, for e.g. Refs. 1 and
2 using a basis of atomic orbitals. Electron transport
is not ballistic, since scattering due to phonons is the
driving force for BTBT current. The atomistic NEGF
approach, though rigorous and accurate, requires the use
of supercomputers3 to simulate realistically sized devices,
especially when the effect of electron-phonon coupling4 is
included. More efficient quantum transport algorithms
such as the Wavefunction Method5 cannot be used since
scattering is present. An alternate approach is to use
the conventional drift-diffusion equations of semiconduc-
tor transport with a suitably calibrated model (eg. Refs.
6–8) describing the process of tunneling. Most commer-
cially available semiconductor device simulators (TCAD)
are based on this latter approach.
BTBT occurs via evanescent states corresponding to

the conduction and valence bands. The properties of
evanescent states are described by the complex band-
structure of the material. TCAD compatible models for
BTBT in an indirect bandgap semiconductor9–13 use a
simple parabolic approximation for the complex band-
structure within the bandgap, since the curvatures of
the real and complex bands are identical at the band
extrema14,15. However, this approximation can intro-
duce large errors in BTBT currents, since the tunneling
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current depends exponentially on the action for tunnel-
ing, which in turn depends on the complex bandstruc-
ture over the entire bandgap, not merely at the band
extrema (see Ref. 16 and Section IV). A first attempt
to include the effect of non-parabolic complex bands to
compute BTBT across an indirect bandgap7 ignored the
role of phonons, and used the Esaki-Tsu formula17 meant
for electron tunneling between conduction bands, leading
to a prefactor which is independent of the valence band
effective mass. We present a physically consistent, multi-
scale model that incorporates both the non-parabolicity
of the complex bands and the physics of the electron-
phonon interaction. The non-parabolicity is captured us-
ing energy dependent effective masses7, which connect a
computation carried out on an atomistic scale (using an
sp3d5s∗ tight binding scheme) with a tunneling model
that is formulated using effective mass wave functions
describing much larger length scales. Our model is sym-
metric with respect to the valence and conduction band
parameters. This model can easily be implemented in a
conventional TCAD tool. Finally, our model is shown
to capture the measured current-voltage data18 in sili-
con for current transport along the [100], [110] and [111]
directions.

This paper is organized as follows. In section II, we
describe and derive the multiscale BTBT model. Section
III compares the results of our model with experimental
data. Section IV demonstrates the inadequacy of using
a parabolic approximation to the complex bands while
computing BTBT currents. Section V summarizes the
important conclusions. Finally, the appendices provide
supplementary information that will be useful to imple-
ment our model.

II. MODEL

Our approach is motivated by a combination of Refs.
7, 10, and 19. We restrict our attention to a 1-D prob-
lem. For definiteness, let x represent the transport di-
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rection. Then, in brief, Ref. 10 uses a simple WKB
form (∼ eιS(x)/~, where the action S(x) is correct up to
O(~0)) to describe the electronic wavefunctions within
the bandgap, whereas Ref. 19 improves this description
by including the first order term with respect to ~ in
S(x). We include the idea of a position dependent effec-
tive mass from Ref. 7 in Ref. 19, and use a WKB form

(∼
(

∂E/∂k
)−1/2

eιS(x)/~, with ∂E/∂k understood to be

position dependent) appropriate to this situation20. It is
useful to note that this modified WKB form can be de-
rived from a transfer matrix method21 by ignoring reflec-
tions. Finally, based on this insight, we use the transfer
matrix method to correct for errors caused by the WKB
based approach. Note that we do not consider the non-
parabolic nature of real energy bands in this work. This
allows a simple evaluation of integrals corresponding to
the density of states involved in tunneling. We believe
that this is a reasonable approximation while comput-
ing BTBT currents, since the density of states scales as
∼ mass1.5, unlike the tunneling probability which de-
pends exponentially on the effective masses of the com-
plex bands, via the action for tunneling.
We begin by extracting energy dependent effec-

tive masses mV B(E), mCB(E) of the imaginary
parts of the valence and conduction bands from a
computation22,23 of the direction-dependent complex
bandstructure k‖(E;k⊥) in an sp3d5s∗ tight binding
scheme. The valence band maxima are assumed to be
at k = 0 to simplify the description that follows. Note
that k‖ is parallel or antiparallel to the transport direc-
tion, and k⊥ is chosen by projecting the positions of all
the conduction band valleys onto the k‖ = 0 plane; k‖ is
the magnitude of k‖. Note also that we have flipped
the definitions of ⊥ and ‖ as used in Refs. 22 and
23, in order to remain consistent with Ref. 10. For
each valence band, there are as many tunneling paths
as there are conduction valleys, each tagged by a dif-
ferent value of k⊥. Within the bandgap EV B max <
E < ECB min, we extract the masses using the defi-
nitions Im[k‖(E;0)] =

√

2mV B(E;0)(E − EV B max)/~

and Im[k‖(E;k⊥)] =
√

2mCB(E;k⊥)(ECB min − E)/~
for the imaginary valence and complex conduction bands
constituting a tunneling path. Near the band edges, the
masses are extracted from the curvature of the bands.
Fig. 1 shows the energy band diagram of a p-n diode

for a general case of non-uniform (and possibly degen-
erate) doping. We consider a large enough tunneling
window so that tunneling current computed is indepen-
dent of its extent. Following Ref. 10 (also see Table
1, Appendix A), the electronic wavefunction is written
as ψ(x, y, z) = ux(x)uy(y)uz(z), where uy(y), uz(z) are
plane waves with position-independent effective masses
my, mz. The extent of the device in y, z directions is
denoted by ly, lz. An additional subscript v, c is used to
denote quantities on the p, n sides of the junction respec-
tively. Beyond the classical turning points (x < a, x > b),
ux(x) is also assumed to be a plane wave. However, we
modify the x dependent part of the wavefunctions (uvx,

Ec⊥
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FIG. 1. Definition of quantities for BTBT model, following
Refs. 10 and 19. The energies Ec, Ev as drawn demonstrate
phonon absorption due to electron transfer from v → c. The
shaded region shows the tunneling window. The potential
energy U(x) ≡ EV B(x).

ucx for an electron in the valence and conduction bands
respectively) within the region a < x < b to include the
effect of a position dependent effective mass and write

uvx(x) =

√

kvx − k0vx
|κvx(x)|

mvx(x)

mvx

exp(ιk0vx(x− a))√
lvx

× exp−
(
∫ x

a

κvx(x
′)dx′

)

(1a)

ucx(x) =

√

kcx − k0cx
|κcx(x)|

mcx(x)

mcx

exp(ιk0cx(x− b))√
lcx

× exp−
(

∫ b

x

κcx(x
′)dx′

)

(1b)

where κvx(x) =
√

2mvx(x)(Evx − U(x))/~, and

κcx(x) =
√

2mcx(x)(Eg + U(x)− Ecx)/~. Here, k0vx,
k0cx refer to the positions of the band extrema; lvx, lcx are
the lengths of the regions outside the tunneling window
on the p and n sides respectively (see Fig. 1); mvx, mcx

are the effective masses at the band edges; and mvx(x),
mcx(x) refer to the position dependent effective masses
within the bandgap, obtained from mV B(E), mCB(E)
respectively. The terms kvx − k0vx, kcx − k0cx are under-
stood to be evaluated at x = a− and x = b+ respectively.
Note that the products mcxmcymcz and mvxmvymvz re-
main invariant of the transport direction24. We now fol-
low the procedure used in Ref. 10. The essential dif-
ferences are presented below. A detailed derivation is
provided in Appendix B.
The combined wavefunction of the electron-phonon

system is written as |i〉 = |ψi〉·|. . . ni
q,µ . . .〉, where i = c, v

and ni
q,µ gives the occupation number of the phonon

mode µ with wavevector q. The electron-phonon inter-
action Hamiltonian10 is

We−ph =
∑

q,µ

Mq,µ√
Ω

(

aq,µe
ιq·r + a†

q,µe
−ιq·r) , (2)
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where a†
q,µ, aq,µ are phonon destruction, creation oper-

ators and Mq,µ is the strength of the electron-phonon

interaction. From Ref. 25, Mq,µ =
√

~

2ρsωq

Dq,µ, where

ρs is the density of the semiconductor, and Dq,µ is the
intervalley deformation potential. ~ωq is energy of the
phonon and Ω is the volume of the device≈ (lcx+lvx)lylz.
There are four processes to be modeled in order to com-
pute BTBT current – phonon emission or absorption (de-
noted e/a) driving the transfer of an electron either from
the valence to the conduction band (denoted v → c) or
from the conduction to the valence band (c → v). Since
We−ph is Hermitian, |〈c|We−ph|v〉|2 = |〈v|We−ph|c〉|2; i.e.
given electronic states with energies Ev, Ec (that are as-
sumed to be appropriately filled/empty to allow electron
transfer) and phonon occupations nv

q,µ, n
c
q,µ, the trans-

fer {v → c; e} is equally likely as {c → v; a} within the
framework of Fermi’s golden rule. For want of a bet-
ter alternative, we seek to replace the phonon occupa-
tion numbers by their expectation values given by the
Bose-Einstein distribution. In doing so, it is important
to recognize the subtle point that one cannot set both
nv
q,µ, n

c
q,µ to be equal to Nq,µ, the expectation value. We

thus set nv
q,µ = Nq,µ for a v → c transfer and nc

q,µ = Nq,µ

for a c → v transfer. The implicit assumption is that
there exists a quick phonon relaxation process (not mod-
eled by our Hamiltonian) that drives the phonon popu-
lation to its equilibrium value after the electron transfer.
Consider first the processes {v → c; e/a}. We then

have the electron phonon interaction as

〈c|We−ph|v〉e/a =
∑

qx,µ

[

Re/a

√

Nq,µ +
1

2
± 1

2

]

#

, (3a)

Re/a =
Mq,µ√

Ω

1√
lcxlvx

×
∫ b

a

√

αc(x)αv(x)e
−fe/a(x)/~dx (3b)

with

fe/a(x) =

∫ x

a

√

2mvx(x′)(Evx − U(x′))dx′

+

∫ b

x

√

2mcx(x′)(Eg + U(x′)− Ecx)dx
′

+ ιQe/ax+ ι~(k0vxa− k0cxb),

(4a)

Qe/a =~(±qx + k0cx − k0vx), (4b)

αc(x) =
kcx − k0cx
|κcx(x)|

mcx(x)

mcx
, (4c)

αv(x) =
kvx − k0vx
|κvx(x)|

mvx(x)

mvx
and (4d)

Nq,µ =
1

exp(~ωq,µ)/kBT )− 1
. (4e)

The overbar in eq. (3) indicates the use of the expecta-
tion value Nq,µ for the phonon occupation number. The

# in eq. (3) specifies the condition qy = ±(kvy − kcy),
qz = ±(kvz − kcz). This condition is obtained from
the fact for example that

∫

exp(ι(qy − (kcy − kvy)))dy =
lyδqy ,kcy−kvy and the assumption thatMq,µ is weakly de-
pendent on q. The upper (lower) sign in ± in eqs. (3),
(4) corresponds to the first (second) process in e/a (i.e
phonon emission/absorption) in the transfer of an elec-
tron from the valence band to the conduction band.
The integral involving e−fe/a(x) is next evaluated using

the saddle point method. Extending x to the complex
plane w, we have

Re/a =
Mq,µ√

Ω

√

2π~

lcxlvx

√

αc(wσ)αv(wσ)
√

∣

∣

∣

d2fe/a(wσ)

dw2

∣

∣

∣

exp

(

− fe/a(wσ)

~

)

(5)

with
dfe/a(wσ)

dw = 0. The prefactor
√

αc(x)αv(x) in the in-
tegral is approximated with its value at the saddle point.
Next consider the processes {c→ v; e/a}, leading to

〈v|We−ph|c〉e/a =
∑

qx,µ

[

R′
e/a

√

Nq,µ +
1

2
± 1

2

]

#′

. (6)

The ′ denotes the reversal of the transfer direction. #′

implies qy = ∓(kvy − kcy), qz = ∓(kvz − kcz). Using the
Hermiticity of We−ph, we can show that |Re/a| = |R′

a/e|
for a given pair of energies Ev, Ec and phonon energy
ωq,µ. This relationship allows us to describe all the four
processes in terms of quantities derived for the two {v →
c; e/a} processes.
We now derive the net number of electrons, Nt, trans-

ferred per unit time from v → c (including spin) using
Fermi’s golden rule. As mentioned earlier, each pair of
intersecting complex valence and conduction bands con-
stitutes a tunneling path. Based on the symmetry of the
crystal, there can be a multiplicity of νp different values

of k‖ within the first Brillouin zone (and hence νp tunnel-

ing paths) that give the same complex bands k⊥(E;k‖)
(see Appendix C). Denoting Re/a evaluated in eq. (5)
along tunneling path p as Re/a,p, we have

Nt =2
∑

p

∑

kvx,kvy ,kvz

kcx,kcy,kcz

∑

qx,µ

∑

e/a

νp
2π

~

∣

∣

∣
Re/a,p

∣

∣

∣

2

#
×

[

(

Nq,µ +
1

2
± 1

2

)

#
× fv(Ev)

(

1− fc(Ec)
)

−
(

Nq,µ +
1

2
∓ 1

2

)

#
× fc(Ec)

(

1− fv(Ev)
)

]

×
[

δ(Ec ± ~ωq,µ − Ev)
]

#
.

(7)

where fv(Ev), fc(Ec) are the Fermi functions evaluated
on the two sides. As described in Appendix B, the current
density J = −eNt/lylz is then
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J =
∑

p

eνp
22.25π2.5~8.5

√

mp
cym

p
czm

p
vym

p
vz

×
∑

µ,e/a

(mp
cx(x

p
0)m

p
vx(x

p
0))

1.25

(mp
cx(x

p
0) +mp

vx(x
p
0))

0.75

(Eg ± ~ω)0.25

|κcx(xp0)κvx(xp0)|
[

Mq,µ
2
]

∗

[

−dU
dx

]−0.5

x0

×
Emax
∫

Emin±~ω

dEvxT (Evx)
[

Ē2
⊥ − Ē⊥(Ē⊥ + Evx ∓ ~ω − Emin)e

−(Evx∓~ω−Emin)/Ē⊥

]

×

[

(

Nq,µ +
1

2
± 1

2

)

∗
× fv(Evx)

(

1− fc(Evx ∓ ~ω)
)

−
(

Nq,µ +
1

2
∓ 1

2

)

∗
× fc(Evx ∓ ~ω)

(

1− fv(Evx)
)

]

,

(8)

with T (Evx) = e−Λ,

Λ =
2

~

[

∫ xp
0

a

√

2mp
vx(x′)(Evx − U(x′))dx′

+

∫ b0

xp
0

√

2mp
cx(x′)(Eg ± ~ω − (Evx − U(x′))dx′

]

,

(9a)

where the crossover point xp0 is a solution of

mp
vx(x

p
0)

mp
cx(x

p
0)

=
(Eg ± ~ω − (Evx − U(xp0)))

(Evx − U(xp0))
, (9b)

and U(b0) = Evx − (Eg ± ~ω). The scaling factor

Ē⊥ = ~

/

∫ b0

xp
0

√

2mcx(x′)

Eg ± ~ω − (Evx − U(x′))
dx′ (9c)

and the ∗ refers to the condition qx = ±(kp0vx − kp0cx),
qy = ±(kp0vy − kp0cy), qz = ±(kp0vz − kp0cz). The effective

masses mp
cx(x

p
0), m

p
vx(x

p
0) and the wavevectors κpcx(x

p
0),

κpvx(x
p
0) are obtained from the complex bandstructure of

the material. Note that we have used ω to mean ωq,µ|∗
in order to avoid tedious notation.
The expression in eq. (8) is symmetric with respect

to the conduction and valence band masses. The term
T (Evx) = e−Λ is independent of Ec⊥, Ev⊥ and is simi-
lar in spirit to the transmission coefficient T (Ex) com-
puted with a transfer matrix method in Ref. 7. To
correct for errors introduced by neglecting reflections21

in assuming the WKB forms eq. (1a) and eq. (1b),
we use the transfer matrix method to compute the term
equivalent to T (Evx). We also include the velocity ratio
(kcx − k0cx)mvx/(kvx − k0vx)mcx in the formula for T .
We find that the inclusion of the transfer matrix method
changes the current by a factor approximately between
1− 2 (see Appendix D). The deviation between a WKB

calculation and more accurate computational methods is
known to be dependent on doping (and hence electric
field). A similar trend of WKB underestimating the tun-
neling probability, as observed here, has been reported in
Ref. 26 (in the case of BTBT in a direct bandgap mate-
rial for moderate doping, see Fig. 6(c) therein) and Ref.
27 (in the case of tunneling through a triangular barrier).

III. RESULTS

We now test our model against experimental data18

available for BTBT in silicon. This data is unique in that
the same doping profile has been used to study BTBT
along the [100], [110] and [111] directions. We imple-
ment our model in the open source drift-diffusion based
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FIG. 2. Effective masses mCB , mV B (solid lines) and imagi-

nary wavevectors Im[k‖] (dashed lines) corresponding to the

tunneling path that minimizes area
∫

Eg
Im[k‖(E)]dE bounded

by the imaginary parts of the valence and conduction bands,
in silicon along the [100], [110] and [111] directions.
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FIG. 3. Comparison between our model and experimental
data (doping Q2 of Ref. 18). Note that the term T (Evx) in
eq. (8) has been computed using transfer matrices.

TCAD code pyEDA28. We also modify the pyEDA code
to include the effects of degenerate doping and incom-
plete ionization of dopants. Information regarding the
phonon energies, modes and electron-phonon deforma-
tion potentials are taken from Ref. 29. Owing to the
conservation condition ∗ in eq. (8), we only require the
phonon modes along the ∆ ≡ Γ−X direction in silicon.
To summarize, there is one longitudinal optical (LO) and
acoustic (LA) mode, and two doubly degenerate trans-
verse optical (TO) and acoustic (TA) phonon modes with
energies 61.2, 47.4, 59.0, 19.0 meV and deformation po-
tentials 6.0, 5.9, 6.0, 5.9 ×108 eV/cm respectively. The
density ρs = 2.328 g/cm3 is taken from Ref. 25. The
TA mode provides the largest contribution to the BTBT
current (for example, ≈ 83% of the total current at re-
verse bias of 2.0 V for the [110] direction in the device
considered here.) In order to simplify computation, we
restrict ourselves to the ν tunneling paths (and hence
values of k⊥) that minimize the area

∫

Eg Im[k‖(E)]dE

bounded by the imaginary parts of the valence and con-
duction bands involved in tunneling. Other tunneling
paths enclose much larger areas and are hence expected
to contribute negligibly to tunneling current, due to the
term e−Λ in eq. (8). Further, these ν paths all happen to
originate from the valence band for light holes. The mul-
tiplicity ν = 4, 2, 6 for transport along the [100], [110] and
[111] directions respectively (Appendix C) in silicon. Fig.
2 shows the energy dependent effective mass computed
using an sp3d5s∗ tight binding scheme22 and parame-
ters from Ref. 30. The invariant product mcxmcymcz

is 0.891m0× 0.201m0× 0.201m0, written using a coordi-
nate system aligned with the major and minor axes of any
one of the six conduction band ellipsoids. Similarly, the
product mvxmvymvz is 0.214m0 × 0.152m0 × 0.144m0,
corresponding to the effective masses of the light holes
mlh,[100], mlh,[110] and mlh,[111] along the three orthog-
onal [100], [110] and [111] directions respectively. The
value of mcymcz and mvymvz in eq. (8) are obtained

from these invariant products and the values ofmcx, mvx

in Fig. 2 at the band edges. Fig. 3 shows that the results
of our model agree very well with the experimental data.
We have assumed a bandgap Eg = 0.92 eV , correspond-
ing to a bandgap narrowing of ∼ 0.2eV , by fitting the re-
sults of our model with the experimental data (We found
this to be a better strategy than calculating the bandgap
narrowing apriori, since the value of bandgap narrow-
ing is dependent on doping, which is non-uniform for the
devices we have considered here. The model for BTBT
that we have derived assumes a uniform bandgap.) This
value of narrowing is consistent with studies on bandgap
narrowing in space charge regions31,32 for the doping lev-
els considered here. Further, based on a result obtained
using k · p theory33 that m ∝ Eg, we have scaled all
the effective masses by the factor Eg/Eg0, where Eg0 is
the bandgap for moderate doping. At low values of re-
verse bias, our model underestimates the experimentally
observed value of current (for e.g., for transport along
[100], at Vbias = 0.25V , Iexpt. ≈ 3×10−4 A/cm2 whereas
Imodel ≈ 4.7× 10−5 A/cm2). It is likely that some other
mechanism of current transport (such as tunneling via
traps, or SRH recombination via traps) could possibly
explain the difference between our simulations and ex-
perimental data at small values of reverse bias (see for
e.g. Fig. 7 of Ref. 12). It is possible that the trap distri-
bution/energies are different in the experimental samples
that we have compared our model against for transport
along the different directions, leading to a better match
between the experimental data and the model for the
[110] direction. A detailed analysis of this deviation could
be the focus of future work.

IV. ERROR DUE TO PARABOLIC APPROXIMATION

OF COMPLEX BANDS

We now demonstrate the inadequacy of using a
parabolic approximation to the complex bandstructure
while computing BTBT currents. Fig. 4(a) shows
a parabolic approximation (dashed lines) to the com-
plex bands (solid lines, obtained from an sp3d5s∗ cal-
culation) along the tunneling path that minimizes A =
∫

Eg
Im[k‖(E)]dE. The curvatures of the imaginary and

real bands are identical at the band extrema. The values
of ml, mt and mlh are from Ref. 30. The expressions for
mle are from Ref. 7, based on the theory in Ref. 24. The
areas A in the sp3d5s∗ method and parabolic approxima-
tions are listed in Fig. 4(b); the errors due to a parabolic
approximation with respect to the sp3d5s∗ results are
indicated in Fig. 4(a). Note that the error is largest
along the [111] direction. A simple result for the trans-
mission (setting the phonon energy to 0, assuming a uni-
form field F , and using a WKB approximation) gives16

T = νe−2A/eF , where ν is the multiplicity of tunneling
paths. As indicated in Fig. 4(b), the parabolic approxi-
mation underestimates the tunneling current by a factor
of 44.3 along the [111] direction. Finally, Fig. 4(c) shows
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FIG. 4. (a) Parabolic approximation (dashed) to complex bands (solid) showing the errors in estimating A =
∫

Eg
Im[k‖(E)]dE.

(b) Comparison of results for the case of a uniform field F using a simple WKB expression (c) Comparison of results using our
BTBT model for parabolic complex bands. Note that we use the TM method with the same bandgap (and scaling of masses)
as in Fig. 3.

the results of using the parabolic approximation in our
BTBT model (as usual, T (Evx) is computed using trans-
fer matrices). We use the same bandgap (and scaling
of masses) as in Fig. 3. Clearly, the parabolic approx-
imation does not capture the measured data. Further,
it significantly underestimates the difference between the
currents in the [111] and [100] directions. We would like
to clarify that though the choice of effective energy gap
can increase or decrease the absolute values of the cur-
rent levels, it cannot correctly predict the difference in
currents between the [111] and [100] directions. This can
been seen from Fig. 4(a), where error in the action for
tunneling along the [111] direction is significantly greater
than that along the [100] direction.

V. CONCLUSION

In conclusion, we have presented a multiscale model
for phonon assisted BTBT that accounts for the complex

bandstructure within the bandgap of an indirect semicon-
ductor. We have shown that the predictions of this model
compare very well with experimental data for BTBT in
silicon along different orientations. We have shown that
including the effect of non-parabolic complex bands is
important to capture the correct difference between tun-
neling currents observed along the [100], [110] and [111]
directions. The framework presented here can be used
to modify Tanaka’s results10 on BTBT across a direct
bandgap to include the effect of an energy dependent ef-
fective mass. Such an extension will find application in
treating BTBT in materials such as germanium, where
the direct bandgap is only about 0.15 eV larger than the
indirect bandgap.

Appendix A: Description of wavefunctions and energies

The wavefunctions within the effective mass approxi-
mation are written as Ψv(x, y, z) = uvx(x)uvy(y)uvz(z)
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TABLE I. Description of wavefunctions assumed, following Ref. 10.

Region Wavefunction Energy

ψv(x, y, z) = uvx(x)uvy(y)uvz(z) Ev = Evx − Ev⊥

VB

−∞ < x < b uvy(y) = eιkvyy/
√

ly , uvz(z) = eιkvzz/
√
lz Ev⊥ = ~

2(kvy − k0vy)
2/2mvy + ~

2(kvz − k0vz)
2/2mvz

−∞ < x < a uvx(x) = eιkvx(x−a)/
√
lvx Evx = Emax − ~

2(kvx − k0vx)
2/2mvx

a < x < b uvx(x) — eq. (1a)

[

−
~
2

2mvx

(

−ι
d

dx
− k0vx

)2

+ U(x)

]

uvx(x) = Evxuvx(x)

ψc(x, y, z) = ucx(x)ucy(y)ucz(z) Ec = Ecx + Ec⊥

CB

a < x <∞ ucy(y) = eιkcyy/
√

ly, ucz(z) = eιkczz/
√
lz Ec⊥ = ~

2(kcy − k0cy)
2/2mcy + ~

2(kcz − k0cz)
2/2mcz

a < x < b ucx(x) — eq. (1b)

[

~
2

2mcx

(

−ι
d

dx
− k0cx

)2

+ Eg + U(x)

]

ucx(x) = Ecxucx(x)

b < x <∞ ucx(x) = eιkcx(x−b)/
√
lcx Ecx = Emin + ~

2(kcx − k0cx)
2/2mcx

and Ψc(x, y, z) = ucx(x)ucy(y)ucz(z) for an electron in
the valence and conduction bands respectively. The ex-
tents of the device in the y, z directions are ly, lz. As
shown in Fig. 1, the component of the energy of an elec-
tron corresponding to its motion in the yz plane is desig-
nated Ev⊥ in the valence band and Ec⊥ in the conduction
band. Note that Ev⊥, Ec⊥ ≥ 0.
Further, following Ref. 10, uvy, ucy and uvz, ucz are

plane waves. On the other hand, uvx and ucx are assumed
to be plane waves outside the classical turning points
(i.e. x < a and x > b). This corresponds to making the
approximation (see Fig. 1(b) of Ref. 10) that the energy
bands are flat until x = a− (with the valence band edge
at Emax) and beyond x = b+ (with the conduction band
edge at Emin). Table I summarizes the expressions for
the wavefunctions and energies in different regions.

Appendix B: Derivation of tunneling current

The summations in eq. (7) are first converted into in-

tegrals, for e.g.
∑

kcx
→ lcx

2π

∫

dkcx,
∑

kcy
→ ly

2π

∫

dkcy.

Further, the integrals are rewritten in terms of ener-
gies using the relationship between k and E outside
the region of tunneling, for e.g.

∫

dkcx = mcx√
2~

∫

dEcx√
Ecx

,
∫

dkcydkcz =
2π

√
mcymcz

~2

∫

dEc⊥. In order to determine
the limits of integration, we impose the conditions that
Ec ≥ Emin and Ev ≤ Emax . By definition, Ec, Ev ≥ 0.
Anticipating the physical reality that tunneling will be
dominated by states with E⊥ = Ec⊥ +Ev⊥ → 0, we also
impose conditions that Ecx ≥ Emin and Evx ≤ Emax .
This gives the limits of integration. The current density
J = −eNt/lylz is

J =
∑

p

eνp
4π3~8

√

mp
cym

p
czm

p
vym

p
vz

∑

µ,e/a

mp
cx(w

p
σ)m

p
vx(w

p
σ)

|κpcx(wp
σ)κ

p
vx(w

p
σ)|

∫

dqx

Emax
∫

Emin±~ω

dEvx

Evx∓~ω−Emin
∫

0

dEv⊥

Emax∓~ω−Emin
∫

0

dEc⊥

×
Emax∓~ω−Ec⊥

∫

Emin

dEcx

[

M2
q,µ

]

#

∣

∣

∣

∣

d2fe/a(w
p
σ)

dw2

∣

∣

∣

∣

−1 ∣
∣

∣

∣

exp

(

−2fe/a(w
p
σ)

~

)∣

∣

∣

∣

δ (Ecx − (Evx ∓ ~ω − Ec⊥ − Ev⊥))

×
[

(

Nq,µ +
1

2
± 1

2

)

#
fv(Evx − Ev⊥)

(

1− fc(Ecx + Ec⊥)
)

−
(

Nq,µ +
1

2
∓ 1

2

)

#
fc(Ecx + Ec⊥)

(

1− fv(Evx − Ev⊥)
)

]

(B1)
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FIG. 5. Multiplicity ν of tunneling paths in silicon along the [100], [110] and [111] directions. The plane k
‖ = 0 is shown

shaded. The red (solid) paths provide a higher tunneling probability than the blue (dashed) paths.

where the summation over qx has also been converted
to an integral. Ecx is eliminated from eq. (B1) due to
the delta function. Further simplification requires mak-
ing the assumption that only states with small values of
Ec⊥, Ev⊥ and hence E⊥ = Ec⊥ +Ev⊥ contribute signif-
icantly to tunneling. Tanaka10 approximates an integral

of the form
∫X0

0

∫ Y0

0
F (X + Y )dXdY ≈

∫ Y0

0
V F (V )dV

where V = X + Y (and X ≡ Ec⊥, Y ≡ Ev⊥) for the
case that F (V ) is significant only for small V . However,
Tanaka’s expressions do not include the Fermi functions
as in eq. (B1). We drop Ev⊥ in the arguments of the
Fermi functions fc, fv and write

J =
∑

p

eνp
4π3~8

√

mp
cym

p
czm

p
vym

p
vz

∑

µ,e/a

mp
cx(w

p
σ)m

p
vx(w

p
σ)

|κpcx(wp
σ)κ

p
vx(w

p
σ)|

×
∫

dqx

Emax
∫

Emin±~ω

dEvx

Evx∓~ω−Emin
∫

0

E⊥dE⊥

×
[

Mq,µ
2
]

#

∣

∣

∣

∣

d2fe/a(w
p
σ)

dw2

∣

∣

∣

∣

−1 ∣
∣

∣

∣

exp

(

−2fe/a(w
p
σ)

~

)∣

∣

∣

∣

×
[

(

Nq,µ +
1

2
± 1

2

)

#
× fv(Evx)

(

1− fc(Evx ∓ ~ω)
)

−
(

Nq,µ +
1

2
∓ 1

2

)

#
× fc(Evx ∓ ~ω)

(

1− fv(Evx)
)

]

.

(B2)

Finally, following Ref. 10, wp
σ and hence fe/a(w

p
σ) are

functions of Qe/a, E⊥. We expect that the dominant con-
tribution to tunneling will be for Qe/a = 0, E⊥ = 0. We

thus expand fe/a(w
p
σ) using a Taylor approximation

fe/a(w
p
σ) ≡fe/a(Qe/a, E⊥) = fe/a(0, 0) +

∂fe/a(0, 0)

∂Qe/a
Qe/a

+
1

2

∂2fe/a(0, 0)

∂Q2
e/a

Q2
e/a +

∂fe/a(0, 0)

∂E⊥
E⊥.

(B3)

To determine the coefficients in the above equation, we
make the approximation that mp

cx(x), m
p
vx(x) are gen-

tly varying functions of x, and hence ignore their spatial
derivatives. This allows reuse of many of the expres-
sions derived in Ref. 10 with minor modifications. Then
xp0 = wp

σ(0, 0) is a solution of the equation

√

2mp
vx(x)(Evx − U(xp0)) =

√

2mp
cx(x)(Eg ± ~ω − (Evx − U(xp0))

(B4a)

and represents the point of intersection of the imaginary
parts of the complex valence and conduction bands. We
have

Λ =
2fe/a(0, 0)

~
(B4b)

which gives eq. (9a). The coefficient
∂fe/a(0,0)

∂Qe/a
= ιxp0 is

purely imaginary and hence can be ignored. Further,

∂2fe/a(0, 0)

∂Q2
e/a

= 2

√

2mrx0
(Eg ± ~ω)

mp
cx(x

p
0) +mp

vx(x
p
0)

/

[

−dU
dx

]

xp
0

(B4c)

where mrx0
is a reduced mass given by

mrx0
=

mp
cx(x

p
0)m

p
vx(x

p
0)

mp
cx(x

p
0) +mp

vx(x
p
0)
. (B4d)
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Also,

∂fe/a(0, 0)

∂E⊥
=

1

2

∫ b0

xp
0

√

2mp
cx(x′)

Eg ± ~ω − (Evx − U(x′))
(B4e)

and

d2fe/a(0, 0)

dw2
=
mp

cx(x0) +mp
vx(x0)

√

2mrx0
(Eg ± ~ω)

[

−dU
dx

]

xp
0

. (B4f)

Finally, from eqs. (B2), (B3), (B4a) - (B4f), we get
eq. (8). Note that the Gaussian integral over qx
converts the condition # into the condition ∗ since
∫

[Mq,µ]# exp(−βQ2)dqx ≈ [Mq,µ]∗
√

π/β by the method
of steepest descent.

Appendix C: Multiplicity of tunneling paths

The conduction band minima in silicon are along the
six equivalent 〈100〉 directions. As described in Ref. 22,
the positions of these valleys are used to determine the
values of k⊥ to compute the complex bands k‖(E;k⊥).
The value k‖(E;k⊥) represents the magnitude of the
component of the wavevector, parallel or antiparallel to
the transport direction, oriented along the direction of
an arrow through the valley corresponding to k⊥, as
shown in Fig. 5. Paths having the same k‖(E;k⊥) are
shown in the same color. Further, the paths shown solid
in red have complex bands that enclose a smaller area
∫

Eg
Im[k‖(E)]dE bounded by the imaginary parts of the

valence and conduction bands than those shown dashed
in blue. It is necessary to consider valleys that lie on both
sides of the k‖ = 0 plane (shown shaded). Fig. 5 gives
the multiplicity ν for the [100], [110] and [111] directions.

Appendix D: Transfer Matrix Method as an improvement

over the WKB approximation

In order to use the transfer matrix method, we define
points dj , j = 0, 1, . . . , N + 1 as shown in Fig. 6(a),
so that the values of the wavevector are available at the
midpoints of intervals [dj , dj+1], 0 ≤ j ≤ N . There are
N interfaces (1 ≤ j ≤ N) between the classical turning
points x = a and x = b0 . For each of these interfaces,
we have7 a transfer matrix [Mj], given by

[Mj ] =
1

2Kjmj+1

[

Cje
ι(Kj+1−Kj)dj Dje

−ι(Kj+1+Kj)dj

Dje
ι(Kj+1+Kj)dj Cje

−ι(Kj+1−Kj)dj

]

(D1)

with Cj = Kjmj+1 + Kj+1mj and Dj = Kjmj+1 −
Kj+1mj. Kj is defined in Fig. 6(a); mj is similarly
evaluated from mvx(x) or mcx(x), based on whether
the wavevector corresponds to the valence or conduction
bands respectively. Note that Ecx = Evx ∓ ~ω for the

TM WKB
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ιmin[κvx(d), κcx(d)]

where d =
dj+dj+1

2
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2mcx(Ecx−Emin)

h̄
, j = N

KN (real)Kj (imag.)
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(b)

FIG. 6. (a) Description of the transfer matrix (TM) method.
(b) Comparison of using the transfer matrix and WKB meth-
ods in the final expression for BTBT current for the devices
described in eq. (8).

situation Qe/a = 0, E⊥ = 0 described in eq. (B3). The
transmission T (Evx) is then

T (Evx) =
1

∣

∣[M ]1,1
∣

∣

2 × kcx − k0cx
kvx − k0vx

mvx

mcx
, where (D2a)

[M ] = [M1][M2] . . . [M3]. (D2b)

Also note that K0 ≡ kvx − k0vx and KN ≡ kcx − k0cx
based on the assumption that the energy bands are flat
outside the classical turning points.

A comparison of using the transfer matrix method
to compute T (Evx) instead of using the WKB result
T (Evx) = e−Λ in eq. (8) is shown in Fig. 6(b). The
transfer matrix method predicts a higher current over
most of the bias range.
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