
Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon
Vishwas V. Vasisht, John Mathew, Shiladitya Sengupta, and Srikanth Sastry 
 

Citation: The Journal of Chemical Physics 141, 124501 (2014); doi: 10.1063/1.4880559 

View online: http://dx.doi.org/10.1063/1.4880559 

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/141/12?ver=pdfcov 

Published by the AIP Publishing 

 

Articles you may be interested in 
Molecular dynamics study of one-component soft-core system: Thermodynamic properties in the supercooled
liquid and glassy states 
J. Chem. Phys. 138, 144503 (2013); 10.1063/1.4799880 
 
Communication: Thermodynamics of condensed matter with strong pressure-energy correlations 
J. Chem. Phys. 136, 061102 (2012); 10.1063/1.3685804 
 
Thermodynamic, dynamic, structural, and excess entropy anomalies for core-softened potentials 
J. Chem. Phys. 135, 104507 (2011); 10.1063/1.3630941 
 
Structure, dynamics, and thermodynamics of a family of potentials with tunable softness 
J. Chem. Phys. 135, 084513 (2011); 10.1063/1.3627148 
 
Effects of the attractive interactions in the thermodynamic, dynamic, and structural anomalies of a two length
scale potential 
J. Chem. Phys. 133, 244506 (2010); 10.1063/1.3511704 
 

 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.114.34.22 On: Tue, 25 Nov 2014 00:01:47



THE JOURNAL OF CHEMICAL PHYSICS 141, 124501 (2014)

Nesting of thermodynamic, structural, and dynamic anomalies
in liquid silicon

Vishwas V. Vasisht,1,a) John Mathew,2 Shiladitya Sengupta,3,b) and Srikanth Sastry1,3

1Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus,
Bengaluru 560 064, India
2Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research,
Homi Bhabha Road, Mumbai 400 005, India
3TIFR Centre for Interdisciplinary Sciences 21, Brundavan Colony, Narsingi, Hyderabad 500075, India

(Received 24 March 2014; accepted 19 May 2014; published online 22 September 2014)

Anomalous behaviour in density, diffusivity, and structural order is investigated for silicon modeled
by the Stillinger-Weber potential by performing molecular dynamics simulations. As previously re-
ported in the case of water [J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001)]
and silica [M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, Phys. Rev. E 66, 011202
(2002)], a cascading of thermodynamic, dynamic, and structural anomalous regions is also observed
in liquid silicon. The region of structural anomaly includes the region of diffusivity anomaly, which
in turn encompasses the region of density anomaly (which is unlike water but similar to silica). In
the region of structural anomaly, a tight correlation between the translational and tetrahedrality order
parameter is found, but the correlation is weaker when a local orientational order parameter (q3) is
used as a measure of tetrahedrality. The total excess entropy and the pair correlation entropy are
computed across the phase diagram and the correlation between the excess entropy and the regions
of anomalies in the phase diagram of liquid silicon is examined. Scaling relations associating the
excess entropy with the diffusion coefficient show considerable deviation from the quasi-universal
behaviour observed in hard-sphere and Lennard-Jones liquids and some liquid metals. Excess en-
tropy based criteria for diffusivity and structural anomalies fail to capture the observed regions of
anomaly. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880559]

I. INTRODUCTION

In liquid water, below T = 4 ◦C at normal pressure, the
density decreases with a decrease in temperature, and this be-
haviour is termed as anomalous—a behaviour which is oppo-
site of what is commonly observed (density monotonically in-
creases with decrease in temperature). This feature in water is
the most well known anomaly among many anomalies which
have been studied for over a century.1 Water also exhibits
anomalous behaviour in thermodynamic response functions,
the compressibility, and heat capacity. The compressibility of
water decreases with a decrease in temperature, but reaches a
minimum at 46 ◦C and below this temperature the compress-
ibility increases with a decrease in temperature. Similarly, the
specific heat capacity of liquid water decreases with a de-
crease in temperature but passes through a minimum at 36 ◦C
showing an anomalous increase at lower temperatures. To
understand these thermodynamic anomalies in water various
models and scenarios have been put forth,2–8 some of which
are based on thermodynamic constraints and novel phase be-
haviour. Along with the thermodynamic anomalies dynami-
cal anomalies have been also observed.9 It has been observed
below a certain temperature that the diffusivity of liquid wa-
ter (along an isotherm) increases with increase in pressure (or
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density)9 and this feature is termed as the diffusivity anomaly.
These anomalies in thermodynamic and dynamical properties,
which are often termed as water-like anomalies, have been
also found in various model potentials and materials includ-
ing silica10 and silicon.12, 13

In order to understand the microscopic origins of the
water-like anomalies, in recent years, many computer sim-
ulation studies (on different materials and model potentials)
have carefully looked at the relationship between the above
stated anomalies and structural ordering9, 10, 14–17 as well as
the nature of molecular interactions.18–27 In liquid water and
other liquids which exhibit orientation dependent interaction
and have locally ordered structures, the molecules (or atoms)
form an energetically stable tetrahedral open structure. To un-
derstand the dependence of anomalies in thermodynamics and
dynamics on underlying structural properties, one needs to
carefully quantify the structural ordering in a liquid. In one
of first studies along these lines, Errington and Debenedetti9

analysed the local structural ordering, in the SPC/E model of
water, using a translational order parameter (ttrans) and a tetra-
hedrality order parameter (qtetra) and found that the qtetra dis-
tribution (at a fixed density) is bimodal. This feature in the
distribution was found to be not due to the existence of two
fixed types of energetically favoured arrangements, but due to
the presence of a transient arrangement of tetrahedrally coor-
dinated molecules and distorted or non-tetrahedral molecules.
Further, using these order parameters, the authors identi-
fied a structurally anomalous region in the phase diagram
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(defined, along an isotherm, by a tetrahedrality order parame-
ter maximum at low densities and translational order parame-
ter minimum at high densities). In this structurally anomalous
region the two structural orders were found to be strictly cor-
related (for a particular value of qtetra a unique value of ttrans
is associated). The loci of structural order extrema (in the (T
− ρ) plane of phase diagram) were found to enclose the re-
gion of anomalous diffusion (demarcated by the loci of diffu-
sivity extrema), which was found in turn to enclose the region
of density anomaly, suggesting the influence of structural or-
der on the liquid anomalies. A similar analysis was carried out
by Shell et al.10 for silica (using the van Beest, Kramer, and
van Santen (BKS) model potential) and the authors found that
even though most of the features were akin to that of the wa-
ter, there were two exceptions. In the structurally anomalous
region, unlike in water, the structural order parameters were
not perfectly correlated (hypothesised to be due to the model
interaction potential which gives broader extrema in the struc-
tural order parameters) and second the loci of diffusivity ex-
trema enclosed the structural and thermodynamic anomaly re-
gions. Based on these observations the authors concluded that
structural order parameters used in the analysis do not antic-
ipate the occurrence of the diffusivity anomaly and hence do
not provide a satisfactory microscopic picture of the anoma-
lous behaviour in silica.10 Recently, similar studies have been
carried out exploring the structural origins behind the vari-
ous anomalies in different model potentials of water, ionic liq-
uids, and liquids characterised by the Stillinger-Weber poten-
tial, including silicon.24, 25 These works suggest that a strong
correlation between the density anomaly and tetrahedral or-
dering exists only in rigid-body model potentials for water
and Stillinger-Weber liquids (in a limited range of tetrahe-
drality strength), but not in ionic melts. The water-like cas-
cading of anomalous regions in the phase diagram has been
observed not only in systems having directional interactions
but also in the simulation studies of spherically symmetric
potentials18, 20, 21, 28 (and references within). These studies18

suggest a relation between length scales associated with the
interaction potential and water-like anomalies. A recent study
of a core-softened model17 shows that the order of the cas-
cading regions of anomaly can be changed by increasing the
depth of the attractive part of the potential.

To obtain a more general picture of the origins of these
anomalies, Errington et al.28 attempted to understand these
anomalies in terms of the excess entropy. These authors de-
rived various criteria based on excess entropy for observing
these anomalies (which we discuss briefly in this paper, be-
fore presenting our results). This approach has been tested in
various systems15, 16, 23, 26, 27, 29, 30 and has been able to predict
the regions of anomalies in the phase diagram.

In this paper, we present an elaborate analysis of liquid
and supercooled liquid silicon, which includes the computa-
tion of structural order parameters and excess entropy. We
have performed molecular dynamics (MD) simulations us-
ing the Stillinger-Weber (SW) potential31 to investigate the
anomalous properties of liquid and supercooled liquid silicon.
In a recent review, an extensive comparison with experimental
and ab initio data showed that the SW potential indeed cap-
tures structural and dynamics properties very well and that

the deviations from the experimental values are comparable
to the spread between different experimental results, and that
these differences are comparable to those displayed by ab ini-

tio results.32 Using the SW potential, the phase diagram of
supercooled liquid silicon has been charted out13 which in-
cludes the liquid-liquid phase coexistence line, liquid-liquid
critical point, density extrema, compressibility extrema, and
the liquid spinodal, which does not intersect the line of den-
sity maxima (which is quite similar to supercooled water6, 33

and silica34). Using this phase diagram as a guide, we have
computed diffusivity, structural order parameter, and excess
entropy in a wide range of state points. Our results show that
liquid silicon indeed has a nesting of anomalous regions in the
phase diagram. We compute the per-particle excess entropy
(sE) from thermodynamic integration and compare with the
per particle two-body excess entropy (s2) obtained from the
pair-correlation function. We have tested the scaling relations
that connect the excess entropy with the diffusion coefficient
and also verify the relation between the excess entropy and
the thermodynamics, dynamic, and structural anomalies.

This paper is organised into four sections. In Sec. II, we
discuss details of interaction potential for silicon and methods
used to compute various quantities mentioned above. In Sec.
III we present our results and we conclude in Sec. IV with a
brief discussion and summary.

II. COMPUTATIONAL DETAILS

The Stillinger-Weber potential for silicon comprises of a
two- and a three-body interaction potential and is defined as

uSW =
∑

i<j

v2(rij/σ ) +
∑

i<j<k

v3(ri/σ, rj/σ, rk/σ ), (1)

where σ is the diameter of the atoms, ri is the position of atom
i, and rij is the distance between atoms i and j. The two-body
potential is short-ranged and has the form

v2(r) =

{

Aǫ(Br−4 − 1) exp
(

1
r−a

)

r < a

0 r ≥ a
, (2)

where A = 7.049556277, B = 0.6022245584, and a = 1.8.
The repulsive three-body potential is also short-ranged, and is
given by

v3(ri, rj , rk) ≡ h(rij , rik, θjik) + h(rij , rjk, θijk)

+h(rik, rjk, θikj ), (3)

where θ jik is the angle formed by the vectors rij and rik and

h(rij , rik, θjik)= ǫλ exp

[

γ

rij − a
+

γ

rik − a

]

(cos θjik+α)2

×H (a − rij )H (a − rik), (4)

where λ = 21.0, γ = 1.20, and H(x) is the Heaviside step
function. The choice α = 1/3 in (cos θ jik + α)2 favours a tetra-
hedral arrangement of atoms as in silicon. The length and
energy scales are set by the choice σ = 2.0951 Å, ǫ = 50
kcal/mol. The strength of the three body potential is deter-
mined by the value of λ. The two body part of the potential
smoothly goes to zero at the cut off a.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.114.34.22 On: Tue, 25 Nov 2014 00:01:47



124501-3 Vasisht et al. J. Chem. Phys. 141, 124501 (2014)

In this work we report properties of liquid and su-
percooled silicon over a temperature ranging between T

= 1070 K and T = 6293 K and pressure range varying be-
tween P = −3.7 GPa and P = 15.0 GPa. The system size we
have considered is 512 atoms and the time step is 0.383 fs for
all our MD simulations. The equilibration of the system was
monitored by calculating the relaxation of intermediate scat-
tering function. At each of the state points we have performed
MD simulations for a minimum of ten relaxation times and
computed the diffusion coefficient, the structural order param-
eters, and the excess entropy, which we explain below.

A. Diffusivity

We calculate the self diffusion coefficient D from the
slope of mean square displacement in the diffusion regime
using the Einstein-Smoluchowski equation given by (for the
case of three dimensional system)

D = lim
t→∞

1

6t
〈|�r(t) − �r(0)|2〉. (5)

B. Structural order parameters

1. Translational order

The translational order parameter35 ttrans is defined as

ttrans =

∫ ξ
c

0 |g(ξ ) − 1|dξ

ξc

, (6)

where ξ = rρ(1/3) is the scaled coordinate, r is the distance be-
tween two atoms, ρ is the number density, and ξ c is a cutoff
distance beyond which the system’s radial distribution func-
tion cannot be distinguished from its asymptotic value of 1. In
all our calculations, ξ c is chosen to be 4.0 σ or 8.38 Å. Scaled
coordinates are used so that the above integral sums over an
equivalent number of coordinate shells at each density.35 For
an ideal gas, since g(r) = 1.0, ttrans is zero and for a crys-
tal (which has long range crystalline order) ttrans has a finite
value depending on the cutoff distance (at cutoff ξ c = 4.0 σ

the crystalline translational order parameter is around 0.6). In
the liquid phase ttrans will have a value in between that of the
ideal gas and a crystal. The numerical integration is carried
out using the Simpson’s 3/8th rule.

2. Tetrahedrality order

The tetrahedrality order parameter9 qtetra is defined as

qtetra = 1 −
3

8

3
∑

j=1

4
∑

k=j+1

(

cos(ψjk) +
1

3

)2

, (7)

where ψ jk is the angle formed by the lines joining a reference
atom i and its nearest neighbours j and k. The average qtetra
varies between 0 (in the case of an ideal gas) and 1 (in the
case of a cubic diamond crystal).

3. Bond orientational order

The bond orientational order parameter36 ql is defined us-
ing the spherical harmonics evaluated from the knowledge of
unit vectors to the neighbouring atoms. Two atoms are con-
sidered to be neighbours if they are within a cutoff distance
corresponding to the first minimum of g(r) (≈2.93 Å). If an
atom i has atom j as its neighbour at a distance |�rij| and with
an orientation r̂ij, then the bond orientational order parameter
for atom i is given by

qlm(i) ≡
1

Nn(i)

N
n
(i)

∑

j=1

Ylm(r̂ij ), (8)

where Nn(i) is the total number of neighbours of atom i,
Ylm(r̂ij ) ≡ Ylm(θij, φij) are the spherical harmonics calculated
along the vector r̂ij between the particles i and j, θ ij and φij
represent the polar and azimuthal angles, respectively. A ro-
tationally invariant local orientational order ql(i) is defined as

ql(i) =

(

4π

2l + 1

l
∑

m=−l

|qlm(i)|2
)(1/2)

. (9)

In case of silicon, the cubic diamond crystalline ordering as
well as the local ordering in liquid phases are well captured by
the choice of l = 3 and the average value of q3 varies between
0.2 (high temperature liquid phase) and 0.75 (cubic diamond
crystal phase). We note that if we use l = 6, the results dis-
cussed in this paper do not vary much.

C. Excess entropy

Excess entropy per atom sE (all entropies are expressed
in units of the Boltzmann constant kB, per atom; thus, sE

= SE/NkB in terms of the total excess entropy SE) is defined
as sE = s − sid, where s is the total entropy of the system
per atom and sid is the entropy per atom of an ideal gas sys-
tem. To compute the total entropy we perform thermodynamic
integration of appropriate derivatives of the free energy. The
details of the thermodynamic integration path are provided in
the Appendix.

A two body approximation to the excess entropy has been
calculated from the pair correlation function39, 40 and is given
by

s2 = −2πρ

∫ ∞

0
{g(r)ln(g(r)) − [g(r) − 1]}r2dr, (10)

where g(r) is the pair correlation function, and ρ is the number
density. Previous simulation studies on model water and silica
report that qualitatively the pair correlation entropy s2 com-
pares well with the total excess entropy sE.27, 28, 30 We present
a similar comparison of the two measures of excess entropies
in this work for liquid silicon.

III. RESULTS

From the previous study of the phase diagram of super-
cooled silicon,13 we recognise that the state points at which
we compute various quantities are in liquid and high density
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supercooled liquid phase. We begin by presenting our results
related to the anomalous behaviour in the dynamics of the
system.

A. Anomaly in diffusion coefficient

The anomalous behaviour in diffusion is characterised by
an increase in diffusivity with an increase in pressure or den-
sity. In Fig. 1 we show diffusivity as a function of density
and pressure for different temperatures. The isotherms rang-
ing between T = 1070 K and T = 2517 K show a maximum in
diffusivity and the locus of maxima, in the phase diagram, will
divide the regions of anomalous and normal behaviour in D.
For temperatures between T ≥ 2895 K and T ≤ 3147 K, we
have performed isothermal-isochoric MD simulations since
the system is prone to cavitations in isothermal-isobaric MD
simulations. For temperatures beyond 3147 K, approaching
the liquid spinodal, we do not find maximum in D before the
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FIG. 1. Diffusivity as a function of (a) density and (b) pressure for different
temperatures obtained from MD simulations of Stillinger-Weber silicon. The
maximum in diffusivity demarcates the regions of normal and anomalous
behaviour in phase diagram.

system cavitates. The locus of diffusivity minima marks the
lower bound of anomalous region and is expected to be found
at low temperatures close to the spinodal, where system’s dy-
namics is slow and crystallisation rates are high and we have
not attempted to find this locus in our study.

B. Behaviour of structural order parameters

Here we present our results related to the change in struc-
tural order parameters in the liquid and supercooled liquid
phases, with a focus on the anomalies in structural change.
In Fig. 2(a) we show the distribution of the tetrahedrality or-
der parameter qtetra obtained from equilibrium NPT MD runs
along the P = 0 GPa isobar for temperatures varying from
high T liquid phase to supercooled high density liquid (HDL)
phase to low density liquid (LDL) phase (at T = 1057 K). As
observed in previous work on water9 and silica,10 the qtetra
distribution shows a weak bimodal behaviour in the high tem-
perature phase (indicative of transient tetrahedral and non-
tetrahedral local structures). With a decrease in temperature,
approaching the liquid-liquid transition (at T = 1060 K for P

= 0 GPa), the major peak of the distribution move towards
the value 1. In the HDL phase at T = 1070 K we find a broad
qtetra distribution and in the LDL phase at T = 1057 K, since
the majority of the atoms are locally four coordinated we find
a unimodal distribution. In Fig. 2(b) we show qtetra distribu-
tion along the T = 1196 K isotherm for pressures varying
between 19.1 GPa and −1.51 GPa (approaching the Widom
line or locus of compressibility maxima). Similar to the trend
along the P = 0 GPa isobar we find a bimodal distribution at
high pressures, which weakens with a decrease in pressure. At
pressure = −1.51 GPa, even though the liquid is in the low-
density phase, we find the presence of a small percentage of
5-coordinated particles (contributing to a weak bimodal dis-
tribution). Simulation work on water has shown that the mo-
bility of water molecules has been facilitated by the defect
particles11 and it would be interesting to do similar analysis
in silicon.

In Figs. 3(a) and 3(b) we show the distribution of local
orientational order q3 along P = 0 GPa isobar and T = 1196 K
isotherm. In contrast to the qtetra distribution, we find that the
q3 distribution shows a clear bimodal distribution at all tem-
peratures and pressures. The local orientational order q3, by
definition, considers all the nearest neighbours instead of first
four nearest neighbours, and seems to capture the changes
in local environment better than the tetrahedrality order
parameter.

In Fig. 4 we show the average qtetra as a function of den-
sity and pressure for different temperatures. In the range of
temperatures varying between T = 1070 K and T = 3147 K,
we find that qtetra decreases with the increase in density (or
pressure) which is termed anomalous since normally one ex-
pects the structural order to increase with the compression.
We do not find a maximum in qtetra in the range of state
points we have analysed (which would have bound the region
of structural anomaly according to the definition of Erring-
ton and Debenedetti9). At high temperatures (T > 3776 K),
we find normal behaviour in qtetra where the order parame-
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FIG. 2. Distribution of tetrahedrality order (qtetra) obtained from MD simu-
lations of Stillinger-Weber silicon along (a) P = 0 GPa isobar for the high T
liquid, high density (HDL), and low density supercooled liquid phases. The
high T liquid and HDL phases show bimodal distributions, whereas the LDL
phase shows unimodal distribution peaked near 1. (b) T = 1196 K isotherm
for varying pressures. Bimodal distribution at high pressures weakens with a
decrease in pressure.

ter increases with density (or pressure). At high densities (ρ
> 2.6 gm/cm3), in the range of temperature varying between T

= 1070 K and T = 2140 K we find that the qtetra goes through
a minimum. At these state points, since the coordination num-
ber is around 6, an increase in tetrahedral order is unexpected.
Since the computation of qtetra considers the first four nearest
neighbours, it can be ambiguous if the first coordination shell
has more than 4 atoms at equal distances from a reference
atom. Hence an increase in tetrahedral ordering at these state
points can be an artefact of the definition of tetrahedrality or-
der parameter. Unlike qtetra, the orientational order parameter
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FIG. 3. Distribution of local orientational order parameter (q3) obtained
from MD simulations of Stillinger-Weber silicon along (a) P = 0 GPa isobar
for high T liquid, high density (HDL), and low density (LDL) supercooled
liquid phases. (b) Along T = 1196 K isotherm. Bimodal distribution is found
at all the temperatures and pressures, but is smeared out at high temperatures
and pressures.

q3 considers all the neighbouring atoms. In Fig. 5 we show the
average q3 as a function of density and pressure for different
temperatures. We find that in the whole range of state points
we have analysed, average q3 shows an anomalous behaviour
wherein the orientational order increases with the decrease in
density (or pressure) including at high densities.

In Fig. 6 we show the average translational order param-
eter ttrans as a function of density and pressure. For all tem-
peratures less than T = 2517 K, we find that with the lower-
ing of density (or pressure) the translational order decreases
and goes through a minimum. Errington and Debenedetti,9 in
their work, suggest that a minimum in the translational order
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FIG. 4. The average tetrahedrality order qtetra as a function of (a) density
and (b) pressure for different temperatures obtained from MD simulations
of Stillinger-Weber silicon. The tetrahedrality order increases with decrease
in density and pressure for temperatures varying between T = 1070 K and
T = 3147 K and at high temperatures (T > 3776 K), a normal behaviour in
qtetra is found where the order parameter increases with density and pressure.
At high densities (ρ > 2.6 gm/cm3), in the range of temperature varying be-
tween T = 1070 K and T = 2140 K the qtetra goes through a minimum.

defines the onset of anomalous behaviour in structural order.
For temperatures greater than T = 2517 K we encounter the
liquid spinodal and hence the system cavitates in the NPT MD
runs before ttrans goes through a minimum. Curiously at very
high temperatures (T > 5000 K, beyond the liquid gas crit-
ical point) we once again find that the ttrans goes through a
minimum.

Next we analyse the correlation between translational or-
der parameter and orientational order parameters. In Fig. 7
we show the parametric plot of ttrans against qtetra. We find that
in the structurally anomalous region there is tight correlation
between the two order parameters and also there are no state
points which lie below region of tight correlation, both fea-
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FIG. 5. The average local orientational order q3 as a function of (a) density
and (b) pressure for different temperatures obtained from MD simulations of
Stillinger-Weber silicon. In the whole range of state points, the local orienta-
tional shows an anomalous behaviour in which order increases with decrease
in density.

tures similar to water.9 In Fig. 8(a) we show the parametric
plot of ttrans against q3 where we find that the tight correla-
tion between the two order parameters is absent. We note that
in silica, Shell et al.10 do report a similar result and in their
work they use the tetrahedrality order parameter considering
six nearest neighbours. To obtain a better understanding of
this feature, we calculate the q3 order parameter by consider-
ing only the first four nearest neighbours (see Fig. 8(b)) and
we indeed get back the feature of correlation between the two
structural orders.

From these analyses pertaining to the structural order pa-
rameters we wish to highlight that (a) at intermediate tem-
peratures and densities, the features of the structural order
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FIG. 6. The average translational order ttrans as a function of (a) density
and (b) pressure for different temperatures obtained from MD simulations
of Stillinger-Weber silicon. At low pressures and densities, the translational
order goes through a minimum indicating at an onset of structural anomaly.
Curiously at very high temperatures (T > 5000 K, beyond the liquid gas crit-
ical point) the translation order again goes through a minimum.

parameters are similar to that of water and silica, (b) the
translational order parameter, using which onset of structural
anomaly is defined, goes through a minimum beyond the
liquid-gas critical point, (c) the tetrahedrality order parame-
ter fails to capture the precise local tetrahedral order if the
first coordination shell has more than 4 atoms at equal dis-
tances from a reference atom, and (d) the feature of structural
order parameters being related to each other in the structurally
anomalous region depends on the method of computation of
orientational order parameter.

C. Nesting of anomalies

Having computed the loci of diffusivity maxima and
translational order minima we have located the onset of dy-
namical and structural anomalies in the phase diagram of liq-
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FIG. 7. Parametric plot of translational order ttrans against the tetrahedral-
ity order ttetra for different temperatures obtained from MD simulations of
Stillinger-Weber silicon. The arrow represents the direction of increase in
pressure for each temperature. A tight correlation between the two order pa-
rameter is seen in the region of structural anomaly.

uid silicon. We note that the locus of density maxima, which
represents the onset of thermodynamic anomaly was reported
in the work of Vasisht et al.13 In Fig. 9 we show these loci,
which constitute the nesting of different anomalous regions,
in (T, ρ) and (P, T) planes. The cascading of different re-
gions of anomaly is similar to that of silica—region of dif-
fusivity anomaly encloses the region of structural anomaly
which in turn encloses the region of thermodynamic anomaly.
At low temperatures and high pressures, the regions of struc-
tural anomaly and thermodynamic anomaly reverse in order.

We next present our results related to excess entropy and
its relation with the above discussed anomalies.

D. Excess entropy

The excess entropy by definition (SE = S − Sid) char-
acterises the reduction in the accessible states relative to an
ideal gas, due to inter-particle correlations. The contribu-
tion of inter-particle correlations can be broken up into two-
body term, three-body term, etc., and the translational order
is a measure of the two-body correlations. Errington and co-
workers28 argue that the region in the phase diagram where
the excess entropy anomalously increases with decrease in
density is also the region where translational order anomaly
is observed. Hence the criterion to observe structural anoma-
lies can be written in terms of ln(ρ) as (∂sE/∂ln(ρ))T > 0.

The excess entropy is associated with the density follow-
ing the thermodynamic relation41

(

∂ρ

∂T

)

P

= ρ2

(

∂ρ

∂P

)

T

(

∂s

∂ρ

)

T

, (11)

where s is the total entropy of the system. The condition for
anomalous density is that ∂ρ/∂T|P should be greater than zero.
Since the compressibility is a positive definite quantity for
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FIG. 8. Parametric plot of translational order ttrans against (a) the local ori-
entational order parameter q3 and (b) the local orientational order calculated
using the first four nearest neighbours for different temperatures obtained
from MD simulations of Stillinger-Weber silicon. In the region of structural
anomaly, a tight correlation between ttrans and q3 is not observed. But when
q3 computed using first four nearest neighbours is used, the correlation is
evident. The arrow represents the direction of increase in pressure for each
temperature.

an equilibrium system, one can deduce from the above equa-
tion that for system showing density anomaly should satisfy
the condition (∂s/∂ρ)T > 0. Since sE = s − sid, where sid
= −ln(ρ) + C(T) with C(T) being purely temperature depen-
dent, by taking a partial derivative with respect to ln(ρ) of sE
at a constant temperature we get

(

∂sE

∂ln(ρ)

)

T

=

(

∂s

∂ln(ρ)

)

T

+ 1. (12)

The above equation shows that to observe anomalous density
variation with temperature, (∂sE/∂ln(ρ))T should be greater
than 1.
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FIG. 9. (a) Phase diagram of Stillinger-Weber silicon in (T, ρ) plane showing
the loci of density maxima, translational order minima and diffusivity max-
ima along with the liquid spinodal. (b) Phase diagram of liquid silicon in (P,
T) plane showing the loci of density maxima, translational order minima and
diffusivity maxima along other features of the phase diagram.

Even though there are no rigorous thermodynamic rela-
tions which associate the diffusivity with the excess entropy,
the empirical scaling relation proposed by Rosenfeld42 ex-
presses the diffusion coefficient as a function of the excess
entropy, as

D∗ = aD exp(bDsE), (13)

where the reduced diffusion coefficient is D*
= Dρ1/3/(kBT/m)1/2, D is the diffusion constant, m is the
mass of the particle, and ρ is the number density.

Dzugutov43 has proposed another scaling relation con-
necting the reduced diffusion coefficient, defined using the
collision frequency, D∗

z = DŴ−1σ−2 with the excess entropy
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TABLE I. The table summarising the criteria for observing the onset of den-
sity, structural, and diffusivity anomalies. The constant C is obtained from
the scaling relation which relates the diffusion coefficient with the excess
entropy.

Structural (
∂sE

∂ln(ρ) )
T

> 0

Density (
∂sE

∂ln(ρ) )
T

> 1

Diffusivity (
∂sE

∂ln(ρ) )
T

> C

sE as

D∗
z = a0 exp(sE), (14)

where the collision frequency Ŵ = 4σ 2g(σ )ρ
√

πkBT/m, σ

is the hard-sphere diameter, g(σ ) is the value of radial distri-
bution function at the contact distance. In the original paper
of Dzugutov43 the above relation was tested using the two-
body excess entropy S2. In simulations of soft spheres, σ was
interpreted as the position of first peak of radial distribution
function.

Taking the partial derivative of the scaling relation, Eq.
(13), with respect to ln(ρ) and rearranging the terms, we get

(

∂sE

∂ln(ρ)

)

T

=
C

3bD

, (15)

where C = 1 + 3( ∂ln(D)
∂ln(ρ) )T .

At the diffusivity maxima the derivative ( ∂ln(D)
∂ln(ρ) )T = 0.

Hence the criterion to observe anomalous diffusivity would be
(∂sE/∂ln(ρ))T > 1/(3|bD|). The system dependent constant bD

obtained as the exponent of Rosenfeld scaling relation varies
between 0.8 and 1.7.14, 42, 44, 45

If we extend the above argument to Dzugutov scaling re-
lation, Eq. (14), we get

(

∂sE

∂ln(ρ)

)

T

= Cz, (16)

where Cz = ( ∂ln(D)
∂ln(ρ) )T − 1. Hence the diffusivity anomaly cri-

terion should be (∂sE/∂ln(ρ))T > −1. In Table I we sum-
marise the above criteria for observing the onset of different
anomalies.

To begin with we present the per particle excess en-
tropy sE (see Fig. 10) and the pair correlation entropy s2
(see Fig. 11) as a function of pressure and density for dif-
ferent isotherms. In both the measures of excess entropy (sE
and s2) we find an anomalous region in the phase diagram
(for temperatures varying between T = 1070 K and 1762 K),
wherein the excess entropy increases with an increase in den-
sity (or pressure) at constant temperature. The estimates of
s2 are smaller in magnitude than sE which is expected (since
we are ignoring the contribution of other correlation functions
like 3-body, etc.), but the profiles as a function of density and
pressure are quite similar. To know the extent of proportion-
ality between these two measures of excess entropy, in Fig.
12(a), we show s2 against sE and the ratio s2/sE as a func-
tion of pressure in the inset of Fig. 12(a). We also show in
Figs. 12(b) and 12(c), this ratio as a function of temperature
for different isobars as well as isochores. From these plots we
infer broadly that with the increase in temperature the pro-
portionality between the two measures of excess entropy in-
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FIG. 10. Total excess entropy sE of Stillinger-Weber silicon as a function of
(a) density and (b) pressure for different temperatures obtained from thermo-
dynamic integration. Excess entropy shows an anomalous behaviour wherein
it increases with an increase in density, for temperature ranging between
T = 1070 K and 1762 K, before going through a maximum.

creases, but the ratio s2/sE increases with increasing density
for T < 3000 K whereas at higher temperatures the ratio in-
creases with decreasing density. This is expected since in the
low temperature/high density, high temperature/low density
regions (as is clear at least using qtetra), we find a reduction in
orientational order, and hence expect a reduction of its con-
tribution to excess entropy and domination of two-body cor-
relation contribution. In fact a recent work of Singh and co-
workers38 reports explicit computation of the three-body con-
tribution to excess entropy Stillinger-Weber liquids (at λ = 16
and λ = 23.15). They find that for λ = 23.15, at low temper-
atures the magnitude of three-body excess entropy is higher
than that of two-body and at temperature above the melting
point, the two-body excess entropy has a bigger magnitude
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FIG. 11. Pair correlation entropy sE of Stillinger-Weber silicon as function
of (a) density and (b) pressure for different temperatures obtained from radial
distribution function. Similar to the total excess entropy, the pair correlation
entropy anomalous behaviour for temperature ranging between T = 1070 K
and 1762 K, before going through a maximum.

than the three-body. At temperatures below 1385 K for low
pressure values (P < 1 GPa), we find that the ratio of s2 to sE
increases, which is an interesting observation which needs to
be investigated further.

Focusing back on the relation between excess entropy
and anomalies, we first present the results related to excess en-
tropy, structural anomaly, and thermodynamic anomaly. The
criterion to observe structural anomaly in the phase diagram is
∂sE/∂ln(ρ)|T > 0 and hence the onset temperature and density
for structural anomaly (corresponding to minimum in trans-
lational order) corresponds to ∂sE/∂ln(ρ)|T = 0 (maximum
in excess entropy).16, 28 Similarly the temperature and density
associated with density maxima corresponds to ∂sE/∂ln(ρ)|T
= 1.28 In Fig. 13 we show the partial derivative of ex-
cess entropy as a function of density for different isotherms.
The isotherms which intersect the horizontal lines satisfy the
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FIG. 12. (a) Pair correlation entropy against the total excess entropy for
different isotherms. (Inset) The ratio of the two measures of entropy as a
function of pressure for different isobars. (b) The ratio of the two measures
of entropy as a function of temperature for different isobars and (c) differ-
ent isochores. At low temperatures/high densities and high temperatures/low
densities, the proportionality between the two measures of excess entropy is
considerably better than at low temperatures/low densities and high tempera-
tures/high densities, respectively.
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FIG. 13. (a) Partial derivative of the total excess entropy with respect to the
logarithm of density �

E
= ∂sE/∂ln(ρ)|

T
as a function density for a set of

isotherms. The horizontal lines correspond to excess entropy based criterion
to locate the onset of different anomalies. The solid black line (S

x
) corre-

sponds to �
E

= 0, the double dashed-dotted red line (D(R)
max from Rosen-

feld scaling) corresponds to �
E

= 0.1587, the dashed-double dotted red line

(D(D)
max from Dzugutov scaling) corresponds to �

E
= −1, and the dotted blue

line (ρ) corresponds to �
E

= 1.0. (b) Partial derivative of the pair correlation
entropy with respect to the logarithm of density �2 as a function of density
for a set of isotherms. In this plot solid black line (S

x
) corresponds to �2

= 0, the double dashed-dotted red line (D
max

) corresponds to �2 = 0.0827,
and the dotted blue line (ρ) corresponds to �2 = 1.0.

criterion discussed above, using which we extract the temper-
ature and density (and pressure from the equation of state)
corresponding to onset of structural anomaly and density
maxima.

To understand the relation between excess entropy and
diffusivity anomaly, first we study the scaling relations which
relate the transport properties with the excess entropy. The
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FIG. 14. Rosenfeld scaling: The reduced diffusion coefficient against the two
measures of excess entropy for different isotherms. In both measures of en-
tropy, two branches in scaling are observed, one corresponding to normal
behaviour and another to anomalous behaviour, which suggests a non-trivial
scaling relation between the dynamics and excess entropy.

scaling relations are defined so as to remove the contributions
arising due to the change in temperature and density changes
and hence expected to obtain a set of data which collapse on to
a master curve. In Figs. 14–16, we show the reduced diffusion
coefficient D* (as defined by Rosenfeld42) as a function of two
measures of excess entropy for different isotherms, isochores,
and isobars, respectively, and similar set of plots using the
reduced diffusion coefficient D∗

Z (as defined by Dzugutov43)
in Figs. 17–19. Along different isotherms we find that the
reduced diffusion coefficients (D* and D∗

Z) against the pair
correlation entropy s2 (Figs. 14(b) and 17(b)) clearly show
two separate branches in scaling, which suggests a non-trivial
scaling relation between the dynamics and excess entropy. It
can also be a consequence of the fact that along an isotherm,
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FIG. 15. Rosenfeld scaling: The reduced diffusion coefficient against the ex-
cess entropy for different isochores. All the isochores have similar fit coef-
ficients. (Inset) The isochores collapse when the diffusivity is shifted by a
constant term (by hand) and fit to a single function with an exponent of 1.07
(using SE) and 4.08 (using S2).

the onset density of dynamical anomaly (maximum in D vs. ρ

or P) differs from the onset of excess entropy anomaly (maxi-
mum in s2 vs. ρ or P). A similar feature is also observed when
we use total excess entropy sE instead of pair correlation en-
tropy s2 (Figs. 14(a) and 17(a)). Many of the previous studies
have looked at the scaling relations along isochores instead of
isotherms.16, 20, 23, 45 In Figs. 15 and 18 we show the reduced
diffusion coefficient against excess entropy along isochores.
Similar to isotherms we do not find a collapsed data set, but
we find that all the isochores have similar exponents (which
we show in the inset of Figs. 15 and 18, where we have col-
lapsed the isochores by shifting the diffusion coefficient by
hand). We have also analysed the scaling along different iso-
bars and find that exponents obtained from the fits are similar
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FIG. 16. Rosenfeld scaling: The reduced diffusion coefficient against the ex-
cess entropy for different isobars. All the isobars have similar coefficient bD.
(Inset) The isobars collapse when the diffusivity is shifted by a constant term
(by hand) fit to a single function with a coefficient of 1.02 (using SE) and 4.38
(using S2).

to that of isochores. From the tabulated exponents in Table II
we find that using SE, the exponent varies between 1.02 and
1.37 and using S2 as a measure of excess entropy the expo-
nent varies between 2.67 and 4.86. Previous studies, using the
pair correlation entropy, show the Rosenfeld scaling exponent
varies around 0.8 for hard spheres, Lennard-Jones system,
water models,42, 45 between 1.3 and 1.7 for ionic melts.23, 45

For liquid metals, modeled by embedded atom models, using
S2 both Rosenfeld (with exponent 0.8) and Dzugutov scal-
ings have been verified.14, 44 From Table II we note that (i) the
exponents depend on the measure of excess entropy and (ii)
the exponents obtained from isochores and isobars are similar
to each other and similar to the exponents obtained from the
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FIG. 17. Dzugutov scaling: The reduced diffusion coefficient against the ex-
cess entropy for different isotherms. The collision frequency Ŵ is computed
using the amplitude and position of first peak of radial distribution function.
The Dzugutov scaling relation (D∗

z = a0 exp(sE)) works reasonably well us-
ing SE.

non-anomalous branch of isotherms (where the excess en-
tropy decreases with density). We note that liquid silicon fail-
ing to follow the Dzugutov scaling law has been reported in
two of the previous studies14, 44 using the pair correlation en-
tropy S2 and we find similar results with S2. When we use the
total excess entropy SE we find a substantial improvement in
which the Dzugutov scaling exponent is around 1.24, in the
non-anomalous branch. The collision frequency, which goes
as an input into the Dzugutov scaling relation, is obtained
from the first peak of radial distribution function, which is
an over-simplification in case of liquid silicon. At a given
state point we have computed the radial distribution func-
tion explicitly for tetrahedrally coordinated particles and 5-
coordinated particles and find an evident difference in the am-
plitude and peak position of g(r). We also find that the mobil-

-5 -4 -3 -2

S
E
/Nk

B

10
-4

10
-3

10
-2

10
-1

D
* z

 =
 D

 Γ
-1

σ
-2

ρ 2.27 gm/cm
3

ρ 2.37 gm/cm
3

ρ 2.248 gm/cm
3

ρ 2.58 gm/cm
3

ρ 2.68 gm/cm
3

ρ 2.73 gm/cm
3

-5 -4 -3 -2

S
E
/Nk

B

10
-4

10
-3

10
-2

10
-1

D
* Z

a
D
exp(S

E
/Nk

B
)

a
D
exp(1.35S

E
/Nk

B
)

-2 -1.5 -1 -0.5

S
2
/Nk

B

10
-4

10
-3

10
-2

D
* z

 =
 D

 Γ
-1

σ
-2

ρ 2.27 gm/cm
3

ρ 2.37 gm/cm
3

ρ 2.48 gm/cm
3

ρ 2.58 gm/cm
3

ρ 2.68 gm/cm
3

ρ 2.73 gm/cm
3

-2.5 -2 -1.5 -1

S
2
/Nk

B

10
-4

10
-3

10
-2

D
* Z

a
D
exp(S

2
/Nk

B
)

a
D
exp(4.79*S

2
/Nk

B
)

(a)

(b)

FIG. 18. Dzugutov scaling: The reduced diffusion coefficient against the ex-
cess entropy for different isochores. (Inset) The isochores collapse when the
diffusivity curves are shifted by a constant term (by hand) and fit to a single
function with a fit coefficient of 1.35 (using SE) and 4.79 (using S2).

ity of a tetrahedrally coordinated particle differs from parti-
cles having more than four neighbours. These observations
suggest a need for better estimation of collision frequency
which we do not attempt to do in this work.

For the purpose of understanding the relation between
excess entropy and diffusion coefficient, we use arithmetic
average of the exponents (obtained from the non-anomalous
branch) and verify the criterion to predict onset of diffusion
anomaly. The average exponent we get, using the pair cor-
relation entropy, is bD = 4.10 and using the total excess en-
tropy is bD = 1.08 (in the Rosenfeld scaling relation) and 1.24
(in the Dzugutov scaling relation). We use the criterion ob-
tained from the Rosenfeld relation (∂sE/∂ln(ρ)|T > 1/(3|bD|))
and the Dzugutov relation (∂sE/∂ln(ρ)|T > −1) to extract the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.114.34.22 On: Tue, 25 Nov 2014 00:01:47



124501-14 Vasisht et al. J. Chem. Phys. 141, 124501 (2014)

-5 -4 -3 -2

S
E
/Nk

B

10
-4

10
-2

D
* z

 =
 D

 Γ
-1

σ
-2

P -1.88 GPa
P  0 GPa
P  2.27 GPa
P  7.55 GPa

-5 -4 -3 -2

S
E
/Nk

B

10
-4

10
-3

10
-2

10
-1

D
* Z

a
D
exp(1.13*S

E
/Nk

B

a
D
exp(S

E
/Nk

B
)

-2 -1.5 -1 -0.5

S
2
/Nk

B

10
-4

10
-2

D
* z

 =
 D

 Γ
-1

σ
-2

P -1.88 GPa
P  0 GPa
P  2.27 GPa
P  7.55 GPa

-2 -1.5 -1

S
2
/Nk

B

10
-4

10
-3

10
-2

10
-1

D
* Z

a
D
exp(S

2
/Nk

B
)

a
D
exp(4.86*S

2
/Nk

B
)

(a)

(b)

FIG. 19. Dzugutov scaling: The reduced diffusion coefficient against the ex-
cess entropy for different isobars. (Inset) The isobars collapse when the dif-
fusivity curves are shifted by a constant term (by hand) and fit to a single
function with a fit coefficient of 1.13 (using SE) and 4.86 (using S2).

temperature and density (and pressure from the equation of
state) corresponding to the onset of diffusivity anomalies. In
Fig. 20 we show the phase diagram along with the loci of
anomalies obtained using the excess entropy. The excess en-
tropy predicts the onset of density anomaly but not the dif-

TABLE II. The scaling coefficients obtained along different paths in the
phase diagram. The superscripts R and D indicate Rosenfeld scaling and
Dzugutov scaling. Isotherm (n) implies the normal branch and isotherm (a)
implies the anomalous branch of the scaling curve.
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Isochore 1.07 4.08 1.35 4.79
Isobar 1.02 4.38 1.13 4.86
Isotherm(n) 1.17 3.84 1.25 4.53
Isotherm(a) 1.23 2.67 1.37 3.10
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FIG. 20. Phase diagram of liquid silicon in (a) (T, ρ) plane and (b) (P, T)
plane showing the loci of density maxima, translational order minima, and
diffusivity maxima along with the estimates of these loci obtained from ex-
cess entropy.

fusivity and structural anomalies. The estimates from excess
entropy severely underestimate the value of the onset temper-
ature and density (pressure) and are also unable to capture the
overall slopes of the loci.

IV. DISCUSSION

Understanding the relation between the structural order-
ing, dynamics, and thermodynamics is of fundamental impor-
tance. In systems like water, silica, and others systems which
show water-like anomalies these relations have been stud-
ied in the context of understanding anomalies. In this work
we have looked at two important aspects related to water-
like anomalies in the system of liquid silicon, modeled by
the Stillinger-Weber potential. The first aspect is related to
the nesting of regions of different anomalies in liquid silicon.
The thermodynamic anomaly related to the density has been
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previously reported in the work of Vasisht et al.13 In this work
we trace the boundaries of the regions of diffusivity anomaly
and structural anomaly. Following previous work on water9

and silica10 we have performed structural analysis using the
translational and tetrahedrality order parameters. In silicon we
indeed find the onset of structural anomaly (defined by the
minima in the translation order parameter), but not the end of
the structurally anomalous region (defined by the maxima in
tetrahedrality order) before reaching the liquid-gas spinodal.
The order of appearance is similar to that of silica,10 wherein
the region of diffusivity anomaly includes the region of struc-
tural anomaly, which in turn encompasses the region of den-
sity anomaly. At low temperatures, the regions of thermody-
namic anomaly and structural anomaly reverse in order. In our
analysis of translational order at very high temperatures we
observe that the average ttrans can go through a minimum be-
yond the liquid-gas critical point. We need to investigate this
feature further, since it raises questions about the definition of
the structurally anomalous region. In this work we also anal-
yse the local orientational order parameter q3 and find that at
high densities and temperatures, q3 is a better order parameter
to use. We also find that the feature of structural order param-
eters, in the anomalous region, being uniquely related to each
other weakens (a feature observed in silica10) and hence this
feature clearly depends on how one measures the orientational
order.

The second aspect of this work is related to excess en-
tropy and its relation with the anomalies. We compute the to-
tal excess entropy (using the method of thermodynamic inte-
gration) and compare it with the pair correlation entropy. The
estimates of s2 are smaller in magnitude than sE as we are
ignoring the contribution of higher order correlations but the
profile as a function of density and pressure is quite similar.
Since the orientational ordering is lower at high densities at
low temperatures, and at low densities at high temperatures
(as is clear at least using qtetra), we expect the proportional-
ity between the two measures of excess entropy to be better at
these state points, and the data indeed support the expectation.
In this context we have tested the Rosenfeld scaling relation
and also the Dzugutov scaling relation. Using the total ex-
cess entropy, we find that Dzugutov scaling works reasonably
well, and better than the one obtained using the pair corre-
lation entropy. The Rosenfeld relation also works reasonably,
in particular at high temperatures, but involves a fit coefficient
that has considerable variation as a function of density.
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APPENDIX: EXCESS ENTROPY COMPUTATION

1. Excess entropy and other excess quantities

Under constant volume and temperature (NVT) condi-
tions, the excess entropy SE of a system is naturally defined
as the total entropy of the system minus the entropy of the

monatomic ideal gas at the same density and temperature as
the system. However, the present work is mainly done under
constant pressure and temperature (NPT) conditions. Since a
liquid can be at zero or negative pressures where the ideal gas
state is not defined, the above definition is a sensible choice
even under NPT conditions. Thus, the excess entropy com-
puted in our work at a given pressure and temperature is de-
fined as

SE(P, T ) ≡ SE(ρ(P, T ), T )

= S(ρ(P, T ), T ) − Sid(ρ(P, T ), T ), (A1)

where S is the total entropy of the system (SW model), Sid is
the entropy of the ideal gas, and ρ is the density of the system
corresponding to the pressure P and temperature T.

In analogy with the above definition of excess entropy,
we also define the excess Helmholtz free energy FE, the ex-
cess Gibbs free energy GE, and the excess enthalpy HE for
later reference:

FE(P, T ) ≡ FE(ρ(P, T ), T )

= F (ρ(P, T ), T ) − Fid(ρ(P, T ), T )

= U (P, T ) − T SE(P, T ), (A2)

GE(P, T ) ≡ GE(ρ(P, T ), T )

= G(ρ(P, T ), T ) − Gid(ρ(P, T ), T )

= U (P, T ) + PV − NkBT − T SE(P, T ),

(A3)

HE(P, T ) ≡ HE(ρ(P, T ), T )

= H (ρ(P, T ), T ) − Hid(ρ(P, T ), T )

= U (P, T ) + PV − NkBT , (A4)

where F = E − TS is the total Helmholtz free energy,
G = E + PV − T S is the total Gibbs free energy, H = E +
PV is the total enthalpy of the system, and E = K + U is the
total energy of the system with K denoting the kinetic energy
and U standing for the potential energy. Symbols with the suf-
fix “id” denotes the corresponding quantities for the ideal gas.

2. Outline of thermodynamic integration employed

To compute the entropy of the system we use the
method of thermodynamic integration, in which an appropri-
ate derivative of entropy is integrated along a reversible path
from a reference state of known entropy to the target state
point. The integral gives the difference in entropy between
the target and the reference state points. By adding the value
of the entropy at the reference state point to the integral, the
entropy at the target state point is computed. The path of the
thermodynamic integration in the phase diagram was chosen
such that no first-order transition was encountered. For the
SW model at λ = 21, the path is shown in Fig. 21. However,
for the sake of completeness we also discuss the entropy cal-
culation for the modified SW model at a general λ values. The
brief outline of the method is given below and further details
are discussed separately in Subsection A 3 of the Appendix.
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FIG. 21. The path of the thermodynamic integration is shown in the P-T phase diagram for silicon.

The reference state point: We choose T = 8308 K and
P = 0 GPa (point A in Fig. 21 which is above the liquid-gas
critical point) as the reference state point where the SW model
(λ = 21) is assumed to behave as an ideal gas, i.e., the total
entropy of the system is given by that of the ideal gas and
hence the excess entropy is zero.

Step 1: Excess entropy at a reference T at zero pressure:

From the reference state point, the excess entropy at a tem-
perature T = 2391 K and at P = 0 GPa (point C in Fig. 21)
is obtained by integrating appropriate derivatives computed
from the equation of state and the potential energy data. The
density of SW model at point C is ρC = 2.41 gm/cm3. In or-
der to avoid the liquid-gas critical point, we first perform the
thermodynamic integration along the T = 8308 K isotherm
AB, going from point A to a point B with density ρB = ρC

= 2.41 gm/cm3 and then from point B to point C along the
isochore BC.

Step 2: Excess entropy at other T along zero pressure iso-

bar: From the excess entropy at T = 2391 K and at P = 0 GPa,
the excess entropy at other temperatures along the P = 0 GPa
isobar (CD in Fig. 21) is obtained by integrating appropriate
derivatives of entropy computed from the specific heat data.

Step 3a: Excess entropy to non-zero pressures along dif-

ferent isotherms: Finally, the excess entropy at a non-zero
pressure and a given temperature is computed by starting from
zero pressure value of the excess entropy obtained in the pre-
vious step and integrating the appropriate derivatives obtained
from the equation of state data along an isotherm.

Step 3b: Excess entropy to other λ values at constant P,

T: To compute the excess entropy at a general λ value, we
modify the interaction potential by tuning the parameter λ at
constant pressure and temperature to go from the SW model
at λ = 21 to a modified SW model at a general λ. We choose
a temperature T on the P = 0 GPa isobar of the SW model

(λ = 21) as the reference state point where entropy is com-
puted using the procedure described above. Then the appro-
priate derivative of entropy with respect to λ was integrated
from λ = 21 to a general λ value at constant P = 0 GPa, T to
compute the difference in entropy. Next the reference entropy
value at P = 0 GPa, T, λ = 21 was added to obtain the entropy
at a general λ value at P = 0 GPa, T.

Step 4: Excess entropy at other T along zero pressure iso-

bar at a general λ: From the excess entropy at T = T0 and at P

= 0 GPa, the excess entropy at other temperatures along the P

= 0 GPa at a general λ is obtained by integrating appropriate
derivatives of entropy computed from the specific heat data as
in Step 2.

3. Computational details of thermodynamic
integration

Step 1: Excess entropy at a reference T at zero pressure:

Along the isotherm AB and the isochore BC, the derivatives
of the excess Helmholtz free energy FE can be directly com-
puted from the excess pressure PE and potential energy U,
respectively,

[

∂FE

∂ρ

]

T ,N

=
PE

ρ2
≡

P − ρT

ρ2
along AB,

(A5)
[

∂(FE/T )

∂T

]

ρ,N

=

(

−U

T 2

)

along BC.

These identities were used to compute the change in excess
Helmholtz free energy from point A to point C. Since the SW
model is assumed to behave as an ideal gas at the point A, the
excess Helmholtz free energy at point A is zero. Hence the
excess Helmholtz free energy at point C can be computed us-
ing Eq. (A5). Finally, the excess entropy at point C is obtained
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from the excess Helmholtz free energy using the definitions
(A1) and (A2). The procedure is summarized below:

SE(P = 0, TC) ≡ SE(ρC, TC)

=
U (ρC, TC)

TC

−
FE(ρC, TC)

TC

,

FE(ρC, TC)

TC

=
FE(ρB, TB)

TB

+

∫ T
C

T
B

dT

(

−U

T 2

)

,

FE(ρB , TB) = FE(ρA, TA) +

∫ ρ
B

ρ
A

dρ
PE

ρ2
,

FE(ρA, TA) = 0, (A6)

where TA = TB = 8308 K, TC = 2391 K, ρA ≡ ρ(0, TA) is the
density of the SW model at P = 0 GPa, T = 8308 K.

Step 2: Excess entropy at other T along zero pressure iso-

bar: Along an isobar, the derivative of the total entropy can be
obtained from the specific heat CP using the identity

[

∂S

∂T

]

P,N

=
CP

T
. (A7)

Using the definition, Eq. (A1), and the identity, Eq. (A7), the
excess entropy at a temperature T along P = 0 GPa isobar is
given by

SE(0, T ) = SE(0, TC) + �SE(0, T )

= SE(0, TC) + �S(0, T ) − �Sid (0, T )

= SE(0, TC) +

∫ T

T
C

CP (T ′)

T ′
dT ′

−

[

3NkB

2
ln

(

T

TC

)

− NkB ln

(

ρ(0, T )

ρC

)]

,

(A8)

where �SE(0, T), �S(0, T) ≡ S(0, T) − S(0, TC), and
�Sid(0, T) ≡ Sid(ρ(0, T), T) − Sid(ρC, TC) are the changes
in the excess, the total, and the ideal gas entropy along the
P = 0 GPa isobar from temperature TC to T, respectively.
The ideal gas entropy at the SW liquid density ρ(0, T) on
the isobar P = 0 GPa is given by the Sackur-Tetrode formula:
S

id

Nk
B

= 3
2 − (3 ln(�) + ln(ρ) − 1), where � = ( 2π¯2

mk
B
T

)1/2.

Now, we discuss ways to rewrite Eq. (A8) to compare
with recent works37, 38 in literature where the excess entropy
in SW model under constant pressure condition was com-
puted. First, the full specific heat CP can be resolved into a
kinetic or momentum space contribution CK

P and a “configu-
ration space” contribution CC

P as

CP =
〈H 2〉 − 〈H 〉2

kBT 2

=
[〈K2〉 − 〈K〉2]

kBT 2
+

[〈H 2
C〉 − 〈HC〉2]

kBT 2

≡ CK
P + CC

P

=
3

2
NkB + CC

P , (A9)

where CK
P ≡ 〈K2〉 −〈K〉2

k
B
T 2 , CC

P ≡
〈H 2

C 〉 −〈H
C
〉2

k
B
T 2 and HC is the “con-

figurational” part of the enthalpy defined as H = K + U +
PV ≡ K + HC . Next, as a consequence of definition (A1),
the infinitesimal reversible change in excess entropy dSE

along an isobar from state point (N, P, T) to (N, P, T + dT) is
given by

T dS = CpdT ,

T dSid = dEid + PiddV

=
3

2
NkBdT + NkBT

dV

V
,

T dSE = T dS − T dSid

=

(

Cp −
3

2
NkB

)

dT − NkBT
dV

V
,

dSE =
CC

P

T
dT + NkB

dρ

ρ
, (A10)

where Eid = 3
2NkBT is the energy and Pid =

Nk
B
T

V
is the

pressure of an ideal gas at the same density and temperature
as the SW system. We note that Pid is in general different from
the SW pressure P because the SW model and the ideal gas
follow different equations of state. Hence, using Eq. (A10),
Eq. (A8) can be rewritten as

SE(0, T ) = SE(0, TC)

+

∫ T

T
C

CC
P (T ′)

T ′
dT ′ + NkB ln

(

ρ(0, T )

ρC

)

,

CC
P = CP −

3

2
NkB

=
〈H 2

C〉 − 〈HC〉2

kBT 2

=
〈H 2

E〉 − 〈HE〉2

kBT 2
. (A11)

The last relation holds because at constant (N, P, T) condition
HC = HE − NkBT differs from HE only by a constant. Next,
in analogy to the identity CP = ( dH

dT
)P for the full specific

heat, we define an excess specific heat CE
P ≡ (

dH
E

dT
)P . From

the definition, Eq. (A4), the infinitesimal reversible change in
excess enthalpy along an isobar from state point (N, P, T) to
(N, P, T + dT) will be

dH = CpdT ,

dHid =
5

2
NkBdT ,

dHE =

(

Cp −
5

2
NkB

)

dT

≡ CE
p dT , (A12)

where Hid = Eid + PidV = 5
2NkBT is the enthalpy of the

ideal gas at the same density and temperature as the SW sys-
tem. Hence, using Eqs. (A10) and (A12), Eq. (A8) can be
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rewritten as

dSE =
CE

P

T
dT + NkB

dT

T
+ NkB

dρ

ρ
,

SE(0, T ) = SE(0, TC) +

∫ T

T
C

CE
P (T ′)

T ′
dT ′

+NkB

(

ln
T

TC

+ ln
ρ(0, T )

ρC

)

,

CE
P = CP −

5

2
NkB

=

(

dHE

dT

)

P

. (A13)

We note that in Ref. 37, the excess entropy under constant
pressure condition was defined differently such that the ideal
gas was considered to be at a constant pressure. The procedure
used in Ref. 37 amounted to omitting the term NkB ln ρT

ρ
C
T

C

from Eq. (A13).
Step 3a: Excess entropy to non-zero pressures along dif-

ferent isotherms: Along an isotherm, the derivative of the
Gibbs free energy can be directly computed from the identity

[

∂G

∂P

]

T ,N

= V. (A14)

The above identity was used to compute the change in the to-
tal Gibbs free energy from P = 0 GPa to a non-zero P along
an isotherm and hence the excess Gibbs free energy GE at a
non-zero pressure. Then the excess entropy SE at a non-zero
pressure P was computed from GE using Eq. (A3). The pro-
cedure is summarized below:

SE(P, T ) =
U (P, T ) + PV − NkBT

T
−

GE(P, T )

T
,

GE(P, T ) = GE(0, T ) + �GE(P, T )

= GE(0, T ) + �G(P, T ) − �Gid (P, T )

= GE(0, T ) +

∫ P

0
V (P ′, T )dP ′

−NkBT ln

(

ρ(P, T )

ρ(0, T )

)

,

GE(0, T ) = U (0, T ) − NkBT − T SE(0, T ), (A15)

where �GE(P, T), �G(P, T) ≡ G(P, T) − G(0, T), and
�Gid(P, T) ≡ Gid(ρ(P, T), T) − Gid(ρ(0, T), T) are
the changes in the excess, the total, and the ideal gas
Gibbs free energies, respectively, along an isotherm T from
P = 0 GPa to a non-zero P. The ideal gas Gibbs free energy
at the SW system density ρ(P, T) is given by Gid(ρ(P, T), T)
= NkBTln (ρ�3).

Step 3b: Excess entropy to other λ values at constant P,

T: At constant pressure and temperature, the derivative of the
Gibbs free energy G(λ) with respect to λ can be directly com-

puted using the following identity:

∂G

∂λ
=

〈

∂U

∂λ

〉

λ

(ensemble average at fixed λ)

=

〈

∂(U2 + λU3)

∂λ

〉

λ

= 〈U3〉λ, (A16)

where U is the total SW potential energy, U2 is the part of
potential independent of λ, and λU3 is the λ-dependent part
of U. The above identity was used to compute the change in
the total Gibbs free energy from λ = 21 to a general λ at P

= 0 GPa, T and hence the excess Gibbs free energy GE(λ)
at a general λ. Then the excess entropy at a general λ at
P = 0 GPa, T is computed from using Eq. (A3). The proce-
dure is summarized below:

SE(λ, P, T )

= S(λ, P, T ) − Sid (ρ(λ, P, T ), T )

=
U (λ, P, T ) + PV (λ, P, T ) − NkBT − GE(λ, P, T )

T
,

GE(λ, P, T )

= GE(21, P , T ) + �GE(λ)

= GE(21, P , T ) + �G(λ) − �Gid (λ)

= GE(21, P , T ) +

∫ λ

21
〈U3〉λ′dλ′

−NkBT ln
ρ(λ, P, T )

ρ(21, P , T )
,

GE(21, P , T )

= U (21, P , T ) + PV (21, P , T ) − NkBT

−T SE(21, P , T ), (A17)

where Sid (ρ(λ, P, T ), T ) =
E

id
+P

id
V (λ)−G

id
(λ)

T
is the ideal gas

entropy at a general λ, �G(λ) ≡ G(λ, P, T) − G(21, P, T)
is the change in the system Gibbs free energy, and �Gid(λ)
≡ Gid(ρ(λ, P, T), T) − Gid(ρ(21, P, T), T) is the change in the
Gibbs free energy of the ideal gas from λ = 21 to a general λ

at fixed pressure and temperature.
Combining all terms and setting P = 0, Eq. (A17) can be

simplified to

SE(λ, 0, T ) = SE(21, 0, T ) +

[

�U (λ) −
∫ λ

21〈U3〉λ′dλ′

T

]

+NkB ln
ρ(λ)

ρ(21)

≡ SE(21, 0, T ) + �S(λ) − �Sid (λ), (A18)

where �S(λ) ≡ S(λ, 0, T) − S(21, 0, T) and �Sid(λ) are the
changes in the system entropy and ideal gas entropy, respec-
tively, from λ = 21 to a general λ at P = 0 GPa and a fixed
T. Note that the ideal gas part of free energy and entropy de-
pends on λ because the density ρ of the SW liquid at constant
temperature and pressure is a function of λ.
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Step 4: Excess entropy at other T along zero pressure iso-

bar at a general λ: The computational details of this step are
already discussed in step 2 in Subsection A 3 of the Appendix.
From the excess entropy at a general λ at P = 0 GPa, T, the ex-
cess entropy at other temperatures at P = 0 GPa is computed
using either Eq. (A8), (A11), or (A13) where the specific heats
CP , CC

P , CE
P and the density ρ are now functions of λ.
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