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1 Introduction

In the last twenty years, many examples of dualities between different quantum field the-

ories in three and four space-time dimensions have been discovered. In particular, follow-

ing [1], many examples of pairs of theories that are the same at low energies have been

found, both in three and in four space-time dimensions.

A particular class of interesting gauge theories in three space-time dimensions is U(Nc)

gauge theories with matter fields in the fundamental representation and with a Chern-

Simons (CS) coupling for the gauge field.1 These theories can either be defined as the

low-energy limit of gauge theories which have both the Yang-Mills kinetic term and the

Chern-Simons term (these theories can flow to non-trivial conformal field theories at low

energies if all relevant couplings are tuned to zero), or directly (without a Yang-Mills term)

as conformal field theories in which all beta functions vanish. In either case at low energies

the gauge field is not dynamical, but the matter fields are dynamical and their couplings

are affected by the Chern-Simons gauge fields.

For theories of this type with N = 2 supersymmetry, dualities were discovered in [9] for

the case with Nf chiral superfields in the fundamental representation, and Na = Nf chiral

superfields in the anti-fundamental representation of U(Nc) (this duality can be derived by

adding real mass terms to the duality without Chern-Simons coupling that was discovered

in [10]). This was later generalized in [11] to the case with Na 6= Nf .

Theories of this type without supersymmetry were studied in [5, 6], and this led to a

conjecture that they also satisfy a duality between U(Nc)k theories (k > 0) with Nf scalar

matter fields and U(k−Nc)−k+
Nf
2

theories with Nf fermion matter fields; this duality was

presented explicitly in [12].2 In the non-supersymmetric theories it is only known how to

perform explicit computations at weak coupling or in the large Nc ’t Hooft limit, so the

evidence for the non-supersymmetric dualities at finite Nc is much weaker. It was shown

in [13] that one can flow (at least for large enough Nc) from the N = 2 dualities to the

non-supersymmetric dualities, providing evidence for the validity of the latter at finite Nc.

The statement of the duality is that in the low-energy conformal field theory (CFT),

all operators should match (including their scaling dimensions), and all their correlation

functions as well. In the supersymmetric case, it is possible to check that all chiral operators

agree between the two theories by computing their “superconformal index” [14–16] which

is a sum over all chiral operators. This index, proportional to the partition function on

S2×S1 with appropriate background fields, can be computed [17, 18] using localization in

terms of the high-energy degrees of freedom, and indeed in all cases that have been checked

the index agrees between pairs of dual theories [19–22]. It is not known how to compare

non-chiral operators (or any operators in the non-supersymmetric case at finite Nc), since

it is not known how to compute their dimension except at weak coupling.

1One reason that these theories are interesting is that in the ’t Hooft large Nc limit with a finite number

of matter fields, they are believed [2–7] to be dual to classical high-spin gravity theories on AdS4 [8].
2Here we use the convention for k that is natural from the low-energy point of view, as in [12]. In the

non-supersymmetric theories this differs by a shift of k by Nc sign(k) from the high-energy value of k in

Yang-Mills-Chern-Simons theories, so that we always have |k| > Nc.
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In this paper we discuss “monopole operators” in these CFTs. A monopole operator is

defined as a point-like defect such that there is some magnetic flux on the S2 surrounding

it (this flux can be chosen to be in the Cartan subalgebra of U(Nc)). It is related by the

state-operator mapping to a state of the conformal field theory on S2 which has a non-zero

gauge field flux on the S2. In theories without Chern-Simons couplings, such operators were

studied extensively in the literature (see e.g. [23–27]). Their dimensions can be computed

at weak coupling, but in non-supersymmetric theories essentially nothing is known about

them at higher values of the coupling. In general gauge theories (say, with SU(Nc) gauge

group) it is not even clear how to identify monopole operators at strong coupling. However,

in U(Nc) theories there is a ‘topological’ U(1)J global symmetry whose current is the dual

of the diagonal U(1) field strength, and monopoles (and only monopoles) are charged under

this symmetry. This enables a simple identification of monopole operators even away from

weak coupling.

In Chern-Simons theories there is an extra complication. The Chern-Simons term im-

plies that monopole operators carry an electric charge, so that to form a gauge-invariant op-

erator they must be dressed with extra charged fields. For example, the simplest monopoles

in the U(Nc)k theory break U(Nc) → U(1)×U(Nc−1) and carry ±k units of charge under

the U(1), and this charge must be balanced by extra fields carrying ∓k units of charge.

In a theory that contains scalar fields ϕ in the fundamental and anti-fundamental rep-

resentation, one would expect the lightest (lowest dimension) monopole operator to arise

from a product of the monopole defect operator X with |k| scalar fields in the fundamen-

tal or anti-fundamental representation (depending on the sign of k and on the monopole

charge), so that it takes the form Xϕ|k|. At weak coupling (large |k|) this naively gives an

operator with a dimension of order |k|. Note that in the theory on S2 the lowest energy

scalar states charged under the U(1) have spin 1
2 in the monopole background [28], so this

product is actually not a scalar but an operator with spin |k|
2 .

If there are no scalar fields of the appropriate representation (which happens on one-

side of the non-supersymmetric duality) one needs to put in |k| fermions ψ, but then because

of anti-symmetry one needs to add also O(k
3
2 ) derivatives in the large |k| limit (see ap-

pendix B) to form a non-vanishing operator of the schematic form (Xψ∂ψ∂2ψ · · · ). At weak
coupling this operator seems to have a dimension of order |k| 32 . For the non-supersymmetric

duality one needs to map monopoles with scalars to monopoles with fermions, but this

seems problematic since their classical scaling dimensions are very different from each

other, and even scale differently with Nc in the ’t Hooft limit (in which one takes large

Nc with fixed ’t Hooft coupling λ ≡ Nc/k). Recall that the dualities match the U(1)J
symmetries on the two sides, so monopoles must map to monpoles under the duality. Pre-

sumably the monopoles acquire large anomalous dimensions at strong coupling that make

this matching work, but the needed anomalous dimensions do not satisfy the usual large

Nc scaling, and it would be interesting to understand where they come from.3

3The duality actually maps the free scalar theory coupled to Chern-Simons to a Gross-Neveu model

coupled to Chern-Simons, but we do not expect going from the free theory to the critical one to affect the

large Nc scaling of the monopole dimensions.
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In order to shed more light on this one can look at similar questions in N = 2 super-

symmetric theories, where at least for chiral monopole operators we have more control. In

supersymmetric theories such a monopole looks like a chiral field of the form (say) V+Φ
|k|,

where V+ is the standard chiral monopole operator with the minimal positive monopole

charge (see [23, 24, 29, 30]) and Φ is a chiral superfield in the fundamental representation

(if there are several such fields they could all appear). This seems to give a chiral operator

of spin |k|
2 . It is easy to compute the classical dimension of this operator, and for the chiral

operator one expects this dimension to be protected. Thus, naively we would expect the

dimensions of the V+Φ
|k| operators to match across supersymmetric dualities. However, it

is easy to see that because of the different scaling dimensions of the monopole operators

V+ this is not the case, both in the dualities of [9] and in the more general dualities of [11].

How is this possible, given that the indices of the two theories, and thus all chiral

operators, match? A deeper look at the index reveals that in many cases the operators

V+Φ
|k| do not appear in the index (namely, there is no contribution to the index with

the corresponding quantum numbers), implying that they are actually not chiral. When

a naively chiral operator does not appear in the index, this means that it can join with

another operator to form a non-chiral multiplet, and generically we expect this to happen

whenever it can. As we discuss in detail below, from the point of view of the index which

is computed in the UV theory, there are other operators with the same quantum numbers

as V+Φ
|k| that involve gluinos, which can join together with these operators to form long

(non-chiral) multiplets of the superconformal algebra. From the point of view of the low-

energy theory that contains no gluinos (and no other naively chiral operators with the

same quantum numbers) this non-chirality is more surprising, but this theory is generally

strongly coupled.

In this paper we study in detail the spectrum of chiral monopole operators in U(Nc)k
theories, focusing for simplicity on the two cases Na = Nf and Na = 0. The latter case is

particularly interesting because it is used (for Nf = 1) to flow to the non-supersymmetric

duality [13]. We will show that in some cases the naive chiral operators are chiral, but

in other cases they are not, and for every value of Nc, Nf and k we identify the lightest

monopole operator that appears in the index. Our results are based partly on a numerical

evaluation of the index for small values of Nc, Nf and k, which we use to conjecture the

general result, and partly on analytic arguments that are valid for some ranges of values of

Nc, Nf and k. We verify that these lightest operators match across the duality, as implied

by the equality of the indices of dual theories. Note that in general the lightest monopole

operators carry a non-zero spin.

In some cases we find that the lightest chiral monopole operator has a dimension of

order N2
c in the ’t Hooft large Nc limit. This implies that all the naive chiral monopole

operators with dimensions of order Nc are actually not chiral. We then go back to the ap-

parent mismatch in non-supersymmetric theories, and argue that already at weak coupling

in the scalar theory, the monopole operators could get large anomalous dimensions that

may change their Nc-scaling in the ’t Hooft large Nc limit.

We begin in section 2 with a review of background material about monopole opera-

tors, superconformal indices, and how to read off the charges and field content of chiral
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monopole operators from the index. In section 3 we present a conjecture (based on numer-

ical evaluations of the index) for the dimensions and flavour representations of the lowest

monopole operators for the case of Na = Nf , and in section 4 we do the same for Na = 0.

In section 5 we discuss the ’t Hooft large Nc limit of our results. We use the duality between

CS-matter theories in this limit and high-spin gravity theories to argue that the latter the-

ories should not have classical charged solutions. In section 6 we prove our conjecture for

the form of the lowest chiral monopole operator in a simple case; other cases are analyzed

in appendix A. In section 7 we briefly discuss the duals of non-chiral monopole operators

under the supersymmetric dualities. In section 8 we discuss the perturbative corrections to

dimensions of monopole operators in non-supersymmetric Chern-Simons-matter theories,

and argue that they can be as large as O(k
3
2 ). We summarize our results in section 9.

Several appendices contain technical details.

2 The superconformal index and BPS monopole operators

The superconformal index I of a 3d N = 2 supersymmetric theory [16–18, 31, 32] is defined

as a weighted sum over the Hilbert space of the theory on S2 as follows:

I = Tr

[

(−1)F e−β{Q,S}xǫ+j3
∏

n

tfnn

]

, (2.1)

where

• F is a fermion number operator and (−1)F gives (+1) for bosonic and (−1) for

fermionic states.

• Q and S are particular supercharges in the superconformal algebra which satisfy

{Q,S} = ǫ− j3 −R ≥ 0, (2.2)

where ǫ is the energy in units of the radius of the S2, j3 is the charge under the

Cartan subalgebra of the Spin(3) rotation group of the S2, and R is the R-charge of

the N = 2 superconformal algebra. Under radial quantization Q are S are Hermitian

conjugates of each other and (2.2) is positive semi definite.

• Only states with {Q,S} = 0 contribute to I, so it is actually independent of β.

• I is a non-trivial function of x and of all the other fugacities for global symmetries

tn, and fn are the charges under these symmetries.

• I is invariant under continuous deformations of the theory which preserve the super-

conformal symmetry of the theory.

Up to an overall factor related to the vacuum energy of the theory on S2, I is equal to

the partition function of the theory on S2 × S1 with appropriate background fields. Thus,

it can be evaluated by a path integral of the theory on S2 × S1, with periodic boundary

conditions for both fermions and bosons, and with the relevant chemical potentials turned

– 5 –
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on. This is a supersymmetric quantity and can be evaluated via supersymmetric local-

ization on S2 × S1. Since the index does not change under renormalization group flow

(except possibly for changes in the R-symmetry that sits in the superconformal algebra),

it can be defined even for theories which are not conformal, as long as they have an exact

U(1)R symmetry, and in asymptotically free theories it can be easily computed in the UV.

In particular, in our case, it can computed in a Yang-Mills-Chern-Simons theory that is

weakly coupled at high energies.

In this paper we are interested in U(Nc) CS theories at level k coupled to Nf chiral

multiplets Φa in the fundamental and Na chiral multiplets Φ̃b̃ in the anti-fundamental

representation of U(Nc).
4 The flavour symmetry group of these theories is given by

(U(Nf )×U(Na))/U(1), with a combination of the two U(1)’s being a part of the gauge sym-

metry. We will take Φa (Φ̃b̃) to be in the fundamental representation of U(Nf ) (U(Na)). It

will be convenient to write the fugacities of the global symmetry SU(Nf )×SU(Na)×U(1)A

as ta, t̃b̃, y, respectively, satisfying
∏Nf

a=1 ta =
∏Na

b̃=1
t̃b̃ = 1. In the special case Nf = 0 or

Na = 0 there is no U(1)A symmetry, so one must set y = 1. There is also a topological

U(1)J symmetry, whose current includes ǫµνρ tr(Fνρ), and whose fugacity we denote by w.

With these definitions, the superconformal index takes the following explicit form:

I=
∑

{mi}∈Z
(−1)

∑

(−kmi− 1
2
(Nf−Na)|mi|)w

∑

mi

(sym)

∮
(

Nc∏

i=1

dzi
2πizi

z−kmi

i

)

Zg





Nf∏

a=1

ZΦa









Na∏

b̃=1

ZΦ̃
b̃



 ,

Zg=

Nc∏

(i 6=j)=1

x−|mi−mj |/2
(

1− zi
zj
x|mi−mj |

)

,

ZΦa =

Nc∏

i=1



(x1−rz−1
i t−1

a y−1)|mi|/2
∞∏

j=0

(1− z−1
i t−1

a y−1x|mi|+2−r+2j)

(1− zi ta y x|mi|+r+2j)



 ,

ZΦ̃
b̃
=

Nc∏

i=1



(x1−r̃zit̃
−1

b̃
y−1)|mi|/2

∞∏

j=0

(1− zit̃
−1

b̃
y−1x|mi|+2−r̃+2j)

(1− z−1
i t̃b̃ y x

|mi|+r̃+2j)



 ,

(2.3)

where (sym) is the dimension of the subgroup of the SNc Weyl group that is unbroken by

the monopole background with fluxes {mi} (i = 1, · · · , Nc) on S
2 in the Cartan of U(Nc),

r is the R-charge of the Φa, and r̃ of the Φ̃b̃ (these charges may be modified by mixing

them with other global symmetry charges, using the appropriate fugacities5). We include

the phase factor (−1)
∑

(−kmi− 1
2
(Nf−Na)|mi|) which was pointed out in [37] and which plays

a crucial role in the factorization properties of the index studied in [38, 39].

As the Chern-Simons-matter theory we are studying is superconformal [40], there is a

one-to-one map between local operators on R
3 and states on S2 × R. In the sector with

4For convenience we will use the shorthand notation U(Nc)k(Nf , Na) for these theories.
5The precise R-symmetry of the superconformal theory in the IR can in principle be found by F-

maximization [33–36], but this will not play any role in our analysis. Note that the IR R-symmetry can

contain also accidental symmetries that are not captured by the index [36], but the index must still match

between IR-dual theories.

– 6 –
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fluxes {mi} on S2, the U(Nc) gauge symmetry of the theory is broken to a subgroup which

keeps the flux invariant. The flux state on S2, which carries gauge charge {−kmi} due to

the CS coupling, is dual to a local operator on R
3 which is charged under the unbroken

gauge symmetry. This is referred to as the ‘bare’ monopole operator. This operator can

be dressed with charged fields to make gauge-invariant monopole operators.

It is useful to keep track of the basic fields (‘letters’) which have the correct charges

to contribute to the index. When we compute the contribution to the index from a sector

with fluxes {mi}, we need to take into account how this shifts the quantum numbers of the

various fields; we determine this from the states of each field in the monopole background

on S2, by using the state/operator correspondence. Note that here we need to use the

supersymmetric monopole background, which involves also an expectation value for the

scalar field in the vector multiplet [24]. We denote the scalar and fermion components of

Φa (Φ̃b̃) by φa and ψa (φ̃b̃ and ψ̃b̃), respectively. The quantum numbers (ǫ, j3, R;A) of

the basic letters with R-charge R and U(1)A charge A, in the flux background {mi}, are
given by:

φai :

(

r +
1

2
|mi|,

1

2
|mi|, r; 1

)

,

φ̃i
b̃
:

(

r̃ +
1

2
|mi|,

1

2
|mi|, r̃; 1

)

,

¯̃
ψb̃
+i :

(
3

2
− r̃ +

1

2
|mi|,

1

2
(1 + |mi|), 1− r̃;−1

)

,

ψ̄i
+a :

(
3

2
− r +

1

2
|mi|,

1

2
(1 + |mi|), 1− r;−1

)

,

(λ−)
i
j with mi 6= mj :

(
1

2
(|mi −mj |+ 1),

1

2
(|mi −mj | − 1), 1; 0

)

,

∂++ : (1, 1, 0; 0) ,

(2.4)

where i, j = 1, · · · , Nc, and λij are the gauginos of the high-energy Yang-Mills-Chern-

Simons theory, which contribute only for mi 6= mj . The ±’s denote which component we

are considering, according to its charge under the Cartan subalgebra of the Spin(3) rotation

group, before taking into account the shift by the monopole background. Here we only

wrote down the ‘letters’ which obey an equality in (2.2), since others do not contribute to

the index; whenever we write down a field contributing to an operator from here on, we

will mean the specific component of the field which is listed in (2.4). Operators containing

(say) (∂jφai )
n are identified by having a contribution to the index from the appropriate

term in the Taylor expansion of the denominator of ZΦa , and ∂
jψ̄i

a’s by contributions from

the numerator.6 Note that the gauginos are not expected to be part of the low-energy

CS-matter theory, so the interpretation of their contributions from the point of view of

6When we write down operators with derivatives, they should always be interepreted as gauge-covariant

derivatives.
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this theory is not clear,7 but we will still write our operators using these gauginos (since

this is how we can identify their form from the index, by contributions from Zg).

The quantum numbers of the bare chiral monopole operator V{mi} can be computed

as in [29], and they can also be read off from the Index. This operator is rotationally

symmetric (j3 = 0), invariant under the SU(Nf )×SU(Na) flavour symmetry, and it carries

R-charge and axial charge8

ǫ(V{mi}) = R(V{mi}) = −
Nc∑

(i 6=j)=1

|mi −mj |
2

+ (Nf (1− r) +Na(1− r̃))

Nc∑

i=1

|mi|
2
,

A(V{mi}) = (−1)(Nf +Na)

Nc∑

i=1

|mi|
2
.

(2.5)

For simplicity let us first consider U(Nc)k(Nf , Nf ) theories, in which r̃ = r. Naively,

for k > 0 the lightest BPS monopole operator (namely, the one with the lowest value of

ǫ+ j3) with unit topological charge is then9

M
(1,

−→
0 )

= V
(1,

−→
0 )
(φ1)

k, contributing a factor xNf−Nc+1+k+r(k−Nf ) (2.6)

for all choices of flavours of the φ1 operators. It turns out that this is not always the case.

As we will discuss in later sections, in many cases this operator cancels with other operators

in the index, and is thus presumably not chiral. One can also see that this has to be the

case from the Giveon-Kutasov (GK) duality in these theories [9]. The GK duality relates

the U(Nc)k(Nf , Nf ) theory with Rφ = r and Aφ = 1 to a U(|k| + Nf − Nc)−k(Nf , Nf )

theory with Rφ = 1 − r and Aφ = −1 and with N2
f extra gauge-singlet chiral superfields

M . For consideration of the lightest monopole operator, M is irrelevant. This implies that

if (2.6) is always the lightest monopole operator then its index contribution must match

with the GK dual. This is easily seen not to be the case.

The above observation implies that in some theories the naive leading chiral monopole

operator must cancel in the index (since if not it would be below the lightest monopole

operator in the dual theory), and is thus not chiral. This leads to the following questions:

• When does the naive leading monopole operator (2.6) survive?

• What is the leading non-canceling monopole operator in the cases when (2.6) is not

chiral?

In the following sections we will answer these questions in detail, and further verify that

the leading operators match across the GK duality.

Before proceeding to our computations, we would like to make a remark on different

ways of computing the integral in (2.3). The index is represented as a contour integral

7This is possible since this theory has non-zero couplings. The gauginos become auxiliary fields at

low energies, that can be written as combinations of the basic fields of the schematic form φψ̄. These

combinations differ from the naively chiral combinations of φ and ψ̄ from (2.4) that contribute independently

to the index, but apparently (for mi 6= mj) they are chiral operators in the low-energy CS-matter theory.
8The axial U(1) is a symmetry only when both Nf and Na are non zero.
9Monopole operators from other GNO sectors turn out to be heavier.
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over the unit circle in the complex plane for the holonomy variables zi. The integrand has

an infinite number of simple poles coming from the contributions ZΦa , ZΦ̃
b̃
of fundamental

charged letters and their derivatives. Apart from these poles there are poles at zi = 0 or

∞ as well, depending on the value of Nf , Na and k. Naively the integral can be evaluated

by summing over the residues at these poles, and this has been done for U(Nc)k(Nf , Na)

theories in [38]. However, in many cases this procedure does not work (see the revised

version of [39]), since it is not clear precisely how to take into account the poles at zi = 0

and zi = ∞. Thus, we will not use this method. Instead we will evaluate the Index by

performing a Laurent expansion of the integrand for small chemical potential x.

3 Conjecture for the leading chiral monopoles in the
∑

i mi = 1 sector

of U(Nc)k(Nf , Nf) theories

In this section we compute the lowest monopole operator (namely, the one with least ǫ+j3)

which survives in the index of “non-chiral” theories (with Nf = Na), in the sector with

charge +1 under U(1)J (namely,
∑

imi = 1). We do this by expanding the Index (2.3)

order by order in x using Mathematica and identifying the lowest power of x which survives.

The results of Mathematica suggest that the lowest nontrivial operator occurs (as expected)

in the sector with GNO charges (1, 0, 0, · · · ). Note that the global symmetries do not

distinguish sectors with different GNO charges {mi} and the same U(1)J charge
∑

imi,

and these can mix (even though they appear separately in (2.3)). For simplicity we give

the results for k > 0, from which the result for k < 0 can easily be obtained, as will be

explained in section 3.1.

These operators all come with a factor of w+1. The other global symmetries are

SU(Nf )l×SU(Nf )r (whose fugacities are (t1, . . . tNf
) and (t̃1, . . . t̃Nf

), respectively),10 along

with the axial U(1)A symmetry (whose fugacity is y).

Using the results above, the x power, gauge charge and flavour charges of some basic

relevant objects are11

V+ → z−k
1 xNf−Nc+1−rNf y−Nf ,

{φa1, λi1φai } → z1x
1+ry ta.

(3.1)

One can easily see that the lightest gauge-neutral monopole operator is obtained by dressing

V+ by k φ1’s. However, in a somewhat surprising result, we find that this operator does

not usually survive in the index, because the operators (λi1φ
a
i ) have the same quantum

numbers as φa1 and come with an opposite sign. In fact, we find four regimes of Nc, k,Nf

(called Cases 1, 2, 3, 4) where we find different monopole operators giving the leading

contribution to the index.

Table 1 gives the results found using a numerical evaluation of the Index in Mathemat-

ica (extrapolated from small values of Nc, Nf and k), where Nd
c ≡ |k|+Nf −Nc. In some

10With the condition
∏Nf

a=1 ta = 1 =
∏Nf

a=1 t̃a.
11From here on we use the shorthand notation V± ≡ V

(±1,
−→
0 )

for the simplest monopole operator. This

monopole breaks U(Nc) → U(1)×U(Nc − 1), and from here on sums over i run over the U(Nc − 1) index,

from 2 to Nc.
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Region Operator: w
∑

i mixǫ+j3yA SU(Nf )l × SU(Nf )r flavour rep.

1 Nf > Nc, k ≥ Nc

V+φ
k−Nc+1
1 (λi1φi)

Nc−1 :

wxN
d
c +1+r(k−Nf )yk−Nf






Nc



















k−Nc+1
︷ ︸︸ ︷

· · ·

...

, 1








2 k ≥ Nc ≥ Nf

V+φ
k−Nc+1
1 (λi1φi)

Nf−1(λi1
˜̄ψi)

Nc−Nf :

wxk−Nf+Nc+1+r(Nd
c −Nc)yN

d
c −Nc

(
k−Nc

︷ ︸︸ ︷

· · ·
,

Nc−Nf
︷ ︸︸ ︷

· · ·

)

3 Nc ≥ Nf , Nc > k
V+φ1(λ

i
1φi)

Nd
c −1(λi1

˜̄ψi)
Nc−Nf (φiφ̃

i)Nc−k :

wxk−Nf+Nc+1+r(Nf−k)yNf−k







1,

k+Nf−Nc



















Nc−Nf+1
︷ ︸︸ ︷

· · ·

...








4 Nf ≥ Nc ≥ k
V+(λ

i
1φi)

k(φiφ̃
i)Nc−k :

wxN
d
c +1+r(Nc−Nd

c )yNc−Nd
c




Nc



















...

,Nc−k



















...






Table 1. The leading M+ monopole operator in U(Nc)k(Nf , Nf ) theories in various parameter

ranges.

cases we can confirm these results by analytic methods, as described below. The charges

of the lowest monopole operators which survive12 in various regimes are listed in the third

column, along with a typical operator (there are generally other operators with the same

charges, this is just a representative). The flavour representation of the leading surviving

operator is given in the last column. Note that in all cases the results are continuous at

the boundaries of the different regimes, k = Nc and Nf = Nc.

Some more details are given in appendix A, where we compute the lowest monopole

operator in the Index analytically for several cases. The spins and R-charges of these

monopoles are listed in appendix C.

3.1 Consistency with duality

Given the result for non-chiral U(Nc)k theories with k > 0, it is easy to read off the

results for k < 0. Let us denote the Index contribution in the GNO sector {mi} of the

U(Nc)k(Nf , Nf ) theory with RΦ = RΦ̃ = r as I
{mi}
Nc,k,Nf ,Nf

(r;x, y, w, ta, t̃a). From (2.3) it is

easy to see that

I
{mi}
Nc,−k,Nf ,Nf

(r;x, y, w, ta, t̃a) = I
{mi}
Nc,k,Nf ,Nf

(r;x, y, w, t̃a, ta). (3.2)

Therefore for U(Nc)−k theories, the same operator survives as in table 1, except that the

flavour Young tableaux are interchanged. Note also that the Index of U(Nc)−k in the {mi}
sector is the same as the Index of U(Nc)k in the {−mi} sector, except for the power of w

(so the full indices are the same up to w ↔ w−1).

12One can verify that the lowest surviving operator is independent of the choice of 0 < r < 1.
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As a consistency check, we can now confirm that the results we obtained are consistent

with the GK duality. Under the duality, Case 2 and Case 4 map into themselves, and

Case 1 and Case 3 map into each other. This is consistent with the observation that

specific monopole operators like V+φ
k
1 do not map to themselves under the duality. The

results in table 1 for the lowest surviving monopole operators are consistent with the GK

duality, along with r → 1− r, y → y−1, accompanied by complex-conjugating the flavour

representation, as expected. More precisely, the lowest surviving operator is consistent

with the duality relation

INc,k,Nf ,Nf
(r;x, y, w, ta, t̃a) = INd

c ,−k,Nf ,Nf
(1− r;x, y−1, w, t−1

a , t̃−1
a )

= INd
c ,k,Nf ,Nf

(1− r;x, y−1, w, t̃−1
a , t−1

a )
(3.3)

(this is not a precise equality in general because of the extra singlet meson operators that

need to be added on the right-hand side).

k = 0 is a special case. In this case the bare monopole operators V± are gauge-invariant

by themselves and need not be dressed by charged matter fields. Since all other operators

in the
∑
mi = ±1 sectors have larger values of ǫ+j3, V± itself has the lowest non-canceling

contribution in the index. The matching of the lightest monopole across the duality also

works differently in this case. The dual theories contain extra singlet chiral superfields V±
charged under U(1)J , along with superpotential terms for their monopole operators Ṽ±

W = Ṽ+V− + Ṽ−V+. (3.4)

These superpotential terms make the bare monopole operators Ṽ± of the dual theory Q-

exact and remove them from the chiral spectrum, while the gauge singlets V± map to V±
of the original theory [10].

3.2 Other GNO sectors

In previous sections we presented the lowest monopole operator in the sector with GNO

charge (1, 0, · · · ). One might be worried whether sectors with different GNO charges but the

same topological charge
∑

imi = 1 (say (2,−1, 0, · · · )) could give rise to a lower monopole

operator, or cancel the contributions of the monopoles we presented. Using our numeric

code (for low values of Nc, Nf , k and the GNO charges) we explicitly checked that this

is not the case. The fact that the duality is consistent with the results of the previous

subsection also suggests that this is not the case.

In the simplest case (case 1), when the lowest surviving monopole operator has the

same power of x as V+φ
k
1, we can explicitly show that this is indeed the lowest monopole

operator with
∑

imi = 1. Consider a monopole operator with GNO charge {mi}, where
mi are ordered by |m1| ≥ |m2| ≥ · · · . The naive gauge-invariant monopole operator13 in

this case is

V{mi}
(
φm1
1 · · ·φmNc

Nc

)k
: ǫ+ j3 = −

∑

i 6=j

|mi −mj |
2

+Nf (1− r)
∑

i

|mi|+ k
∑

i

|mi|(r+ |mi|),

(3.5)

13Note that this might not always survive in the index. Also assume k > 0 for simplicity.
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where for any mi < 0, we should use (φ̃i)kmi instead of φkmi

i . Using the triangle inequality

|mi +mj | ≤ |mi|+ |mj |, we find that for this operator

ǫ+ j3 ≥
∑

i

|mi|(Nd
c + 1 + (k −Nf )r) + k

∑

i

|mi|(|mi| − 1). (3.6)

It is now obvious that the only way we can minimize this charge keeping
∑
mi = 1 for

arbitrary r charge is to choose m1 = 1 and mi = 0 for i > 1 (in this case there is equality

in (3.6)).

4 Conjecture for the leading chiral monopoles in the
∑

i mi = ±1 sectors

of U(Nc)k(Nf , 0) theories

Let us now turn to a chiral case, U(Nc)k with (Nf , 0) matter fields. Note that one has

to set y = 1 in the general formula (2.3), since the axial symmetry is part of the gauge

symmetry in this case. One can again perform a series of computations (similar to the

non-chiral case) to find the lowest monopole operators in the sectors
∑

imi = ±1. We find

that the lowest operator occurs at GNO charge (±1, 0, . . .). Note that in this case there

is no relation between the operators with {mi} and with {−mi} for the same value of k.

In particular, unlike the non-chiral case, the monopole operators with
∑

imi = 1 are very

different from
∑

imi = −1.

Another important feature of these theories is that the duality works differently de-

pending on the sign of (k − 1
2Nf ) [11]:

k − 1

2
Nf ≥ 0: U(Nc)k(Nf , 0)

dual
⇆ U

(

|k|+ 1

2
Nf −Nc

)

−k

(0, Nf ),

k − 1

2
Nf ≤ 0: U(Nc)k(Nf , 0)

dual
⇆ U(Nf −Nc)−k(0, Nf ),

(4.1)

where for k 6= Nf

2 no extra singlet operators are needed for the duality. We will call the

two cases in (4.1) Case 1 and Case 2, respectively. It will turn out that each of these cases

has further subcases, where the lowest monopole operator surviving in the index has a

different form.

4.1 Monopole GNO charge (1, 0, . . .) sector

The charges of the bare monopole V+ correspond to a contribution to the index of the form

V+ → z
−k−Nf

2
1 x−(Nc−1)+(1−r)

Nf
2 . (4.2)

In table 2 we give the results of Mathematica for the lowest monopole operator appearing

in the index (again, these results are based on extrapolating numerical evaluations of the

index for small values of Nc, Nf and k, and in some cases they can be verified by analytic

arguments).

Depending on the sign of k− Nf

2 we have Case 1 and Case 2, which are further divided

into subcases. Note that the results for Cases 1a and 2b are almost the same as the non-

chiral Case 1 analyzed in the previous section, except for some shifts in the monopole
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Region Operator: w
∑

mixǫ+j3 SU(Nf ) flavour rep.

1a

(
k > 1

2Nf , k +
1
2Nf > Nc

)
;

Nf ≥ Nc

V+φ
k+

Nf
2

−Nc+1

1

(
λi1φi

)Nc−1
:

wxk+Nf−Nc+1+kr Nc



















k+
Nf
2

−Nc+1
︷ ︸︸ ︷

· · ·

...

1b

(
k > 1

2Nf , k +
1
2Nf > Nc

)
;

Nf ≤ Nc < 2Nf − 1

V+φ
k− 1

2
Nf+1

1

(
λi1φi

)Nf−1 (
φiψ̄

i
)Nc−Nf :

wxk−Nf+Nc+1+kr Nc+1−Nf



















k+ 1
2
Nf−Nc

︷ ︸︸ ︷

· · ·

...

1c

(
k > 1

2Nf , k +
1
2Nf > Nc

)
;

Nc + 1 = (n+ 1)Nf +m, with

n ≥ 1, 0 ≤ m < Nf

V+φ
Nd

c +nNf+m
1

(
λi1φi

)Nf−1 (
φiψ̄

i
)Nf−1

(
∂φiψ̄

i
)Nf

(
∂2φiψ̄

i
)Nf . . .

(
∂n−1φiψ̄

i
)Nf

(
∂nφiψ̄

i
)m

:

wxk+Nf−Nc−1+Nfn(n+1)+2m(n+1)+kr

k+ 1
2
Nf−(Nc+1)

︷ ︸︸ ︷

· · ·
×m



















...

2a

(
k ≤ 1

2Nf , Nf ≥ Nc

)
;

k + 1
2Nf < Nc

V+φ1
(
λi1φi

)k+ 1
2
Nf−1 (

φiψ̄i
)Nc−(k+ 1

2
Nf) :

wx−k+Nc+1+kr Nf−Nc



















Nc+1−(k+ 1
2
Nf)

︷ ︸︸ ︷

· · ·

...

2b

(
k ≤ 1

2Nf , Nf ≥ Nc

)
;

k + 1
2Nf ≥ Nc

V+φ
k+

Nf
2

−Nc+1

1

(
λi1φi

)Nc−1
:

wxk+Nf−Nc+1+kr Nc



















k+ 1
2
Nf−Nc+1

︷ ︸︸ ︷

· · ·

...

Table 2. The leading M+ monopole operator in U(Nc)k(Nf , 0) theories in various parameter

ranges.

charges. The typical lowest operator here consists of a bare monopole operator dressed by

operators with the same charges as (φ
k+

Nf
2

1 ) so as to cancel the gauge charge. In other

cases these operators do not survive, and the lowest one which does survive has more gauge-

invariants attached to it (some appropriate number of φiψ̄
i’s). We analytically analyze the

contributions of the simplest monopole operators in section 6 below, while some of the

other cases are analyzed in appendix A.

4.2 Monopole GNO charge (−1, 0, . . .) sector

The charges of the bare monopole V− now correspond to

V− → z
k−Nf

2
1 x−(Nc−1)+(1−r)

Nf
2 . (4.3)

In table 3 we give the results of Mathematica for the lowest monopole operator in each

case. Again, depending on the sign of k − Nf

2 , we have Case 1 and Case 2, which are

further divided into subregimes. The typical operator consists of a bare monopole operator
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Region Operator: w
∑

mixǫ+j3 SU(Nf ) flavour rep.

1 a

k +
Nf

2 −Nc > 0

k >
Nf

2

Nf ≥ Nd
c ≡ k +

Nf

2 −Nc

V−ψ̄1(λ1i ψ̄
i)k−

1
2
Nf−1(φiψ̄

i)Nc−k+
Nf
2 :

w−1xk+Nc+1−kr k+
Nf
2

−Nc



















Nc+1
︷ ︸︸ ︷

· · ·

...

1 b

k +
Nf

2 −Nc > 0

k >
Nf

2

2Nf − 1 > Nd
c ≥ Nf

V−(ψ̄1)k−
1
2
Nf−Nc+1(λ1i ψ̄

i)Nc−1 :

w−1x3k+1−Nc−Nf−kr k−Nf
2

−Nc+1



















Nc
︷ ︸︸ ︷

· · ·

...

1 c

k +
Nf

2 −Nc > 0

k >
Nf

2

Nd
c + 1 = (n+ 1)Nf +m

where n ≥ 1, 0 ≤ m < Nf

V−(λ1i ψ̄
i)Nc−1(ψ̄1)Nf (∂ψ̄1)Nf . . .

(∂n−1ψ̄1)Nf (∂nψ̄1)m :

w−1x3k−Nc+1+Nf (n
2−n−1)+2mn−kr

Nc−1
︷ ︸︸ ︷

· · ·
×m



















...

2 a

Nf

2 − k > 0, Nf > Nc

k +
Nf

2 < Nf −Nc ≡ Nd
c

V−φ
Nf
2

−k−Nc+1

1 (λi1φi)
Nc−1 :

w−1xNf−k+1−Nc−kr Nc



















Nf
2

−k−Nc+1
︷ ︸︸ ︷

· · ·

...

2 b

Nf

2 − k > 0, Nf > Nc

k +
Nf

2 ≥ Nf −Nc ≡ Nd
c

V−φ1(λi1φi)
Nf
2

−k−1(φiψ̄
i)
Nc−

(

Nf
2

−k
)

:

w−1xk+Nc+1−kr Nf−Nc



















k−Nf
2

+Nc+1
︷ ︸︸ ︷

· · ·

...

Table 3. The leading M
−

monopole operator in U(Nc)k(Nf , 0) theories in various parameter

ranges.

dressed with fermions (bosons) if the sign of k − Nf

2 is positive (negative), so as to cancel

the gauge charge of the bare monopole. Note that for k =
Nf

2 the bare monopole V− is

gauge-invariant by itself, and does not need to be dressed. The details of the spins and

R-charges of these operators are given in appendix C.

4.3 Consistency with duality

From our results above we can easily derive the result for U(Nc)−k(0, Nf ) theories. Again,

denoting the index of U(Nc) CS theories with Nf fundamental and Na antifundamental

chiral multiplets by INc,k,Nf ,Na
(r;x,w, ta, t̃a), one can see from (2.3) that

INc,k,Nf ,0(r;x,w, ta, ∗) = INc,k,0,Nf
(r;x,w−1, ∗, ta) = INc,−k,Nf ,0(r;x,w

−1, ta, ∗). (4.4)

Now we can check that the results in the tables for the lowest surviving monopole

operators with
∑
mi = ±1 are consistent with the expected dualities [11] (here these are
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exact dualities when k 6= Nf

2 , not just for the lowest monopole operators):

Case 1: k ≥ 1

2
Nf , Nd

c = k +
1

2
Nf −Nc

INc,k,Nf ,0(r;x,w, ta, ∗) = INd
c ,−k,0,Nf

(

1− r;x, x−
Nf
2 w−1, ∗, t−1

a

)

,

= INd
c ,k,Nf ,0

(

1− r;x, x−
Nf
2 w−1, t−1

a , ∗
)

,

Case 2: k ≤ 1

2
Nf , Nd

c = Nf −Nc

INc,k,Nf ,0(r;x,w, ta, ∗) = INd
c ,−k,0,Nf

(1− r;x, x−kw−1, ∗, t−1
a ),

= INd
c ,k,Nf ,0

(1− r;x, x−kw−1, t−1
a , ∗).

(4.5)

The last equality implies that the duality should map the operators of table 2 to the ones

of table 3 for the same value of k, up to complex conjugation of the flavour representation

and a shift in the power of x. We find that in these theories all the different subcases map

to themselves under the duality.

The case |k| = 1
2Nf is special as the bare monopole operator V−,14 is gauge-invariant

in this case and hence survives in the
∑
mi = −1 sector as the lightest operator. Further,

as in the non-chiral case with k = 0, the duality matching works differently for V− as it

maps (using the bottom lines of (4.5)) to an extra singlet chiral superfield V+ in the dual

theory, while the singlet Ṽ− is removed from the chiral spectrum of the dual theory by

the superpotential W = V+Ṽ−.15 The leading contribution in the
∑

imi = 1 sector of the

original theory is given by Case 1a (or 2b) of table 2 for k = 1
2Nf . To find its dual one has

to take into account the contribution of the gauge-singlet chiral multiplet V+ in the dual

theory. Using the results from a Mathematica computation, we claim that the dual of M+

of the original theory actually comes from the {mi} = 0 sector (recall that the singlet V+
also carries a U(1)J charge), and has the same charges as

M− : ψ̄V+(φiψ̄
i)N

d
c . (4.6)

Note that even though ψ̄V+ is non-chiral as described above, this is not necessarily true for

its descendants or its products with other operators; for instance, descendants by deriva-

tives appear in the index for ψ̄V+ but not for Ṽ−, and the latter operator can be separately

multiplied by (φ1ψ̄
1) which is a singlet of U(1) ×U(Nd

c − 1), while the former operator in

the {mi} = 0 sector cannot.

5 The leading chiral monopole operators in the ’t Hooft large Nc limit

The N = 2 supersymmetric Chern-Simons-matter theories described above are particularly

interesting in the ’t Hooft large Nc limit (keeping fixed λ = Nc/k and Nf ); in this limit

14Recall that we assume k > 0. For k < 0, V+ is gauge-invariant.
15More precisely, the superpotential means that Ṽ− cancels in the index with a fermionic component ψ̄V+

of V̄+, which sits in the same non-chiral multiplet.
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their thermal partition function can be computed exactly [41], and for finite large Nc we

can flow from the supersymmetric dualities to non-supersymmetric dualities [13].

For non-chiral theories in the ’t Hooft limit, the relevant case is Case 2 in table 1. Note

that in this case the leading monopole operator does not take the naively expected form,

and includes a large number of fermions. In this case, the scaling dimension of the lowest

chiral monopole operator scales as Nc in the ’t Hooft limit, as expected.

For chiral theories in the ’t Hooft limit, the relevant case is Case 1c of tables 2 and 3.

Also in this case the monopole operators do not take the naive form, and include a large

number of fermions. Notice that for these theories the scaling dimension of the lowest

chiral monopole operators scales as N2
c in the ’t Hooft limit (since n in the tables scales as

Nc), unlike the non-chiral case. This implies that for this case all monopole operators with

a dimension scaling as Nc are not actually chiral. The difference between the two cases is

that in the non-chiral case we can use the operators φ̃ to construct chiral operators, but

these are not available in our chiral case.

These conclusions can be avoided if we keep (k −Nc) fixed in the large Nc limit (and

in particular take λ = 1). For instance, in the non-chiral case if we take k < Nc but also

Nc − k < Nf (as required to preserve supersymmetry), then we are actually in Case 3 of

table 1. The dual theory in this case has finite Nd
c so it is not in the ’t Hooft limit.

5.1 The mapping to high-spin gravity theories

As we mentioned in the introduction, CS-matter theories are believed to be dual to high-

spin gravity theories, such that their ’t Hooft large Nc limit corresponds to classical high-

spin gravity theories (see [42] for a review). States with high-spin gravity particles cor-

respond to operators with dimensions of order 1 in the large Nc limit, while classical

solutions of the high-spin gravity theories correspond to operators with dimensions of or-

der Nc (recall that the coupling constants in these theories are of order 1/Nc). The same

non-supersymmetric high-spin gravity theories are dual to the CS-scalar and CS-fermion

theories, and they have a parameter θ0 that corresponds to the ’t Hooft coupling constant

of these theories (there is also a choice of boundary conditions that determines whether the

dual is a free theory coupled to CS, or a critical one). The supersymmetric versions of these

high-spin theories have similar properties, and map to various supersymmetric CS-matter

theories (chiral or non-chiral) [7].

The U(1)J global symmetry that the monopoles are charged under maps on the gravity

side to the U(1) gauge field in the high-spin multiplet (this multiplet, in the “non-minimal”

high-spin theory, contains gauge fields of all integer spins). This is true both in the super-

symmetric and in the non-supersymmetric cases. We thus expect classical solutions that

carry this charge to correspond to monopole operators with dimensions of order Nc.

However, our arguments imply that such solutions should not exist in many high-spin

gravity theories. In the CS-fermion theories we argued (see appendix B) that there are no

monopole operators with dimensions of order Nc at large Nc, so no such solutions should

exist in the original non-supersymmetric high-spin theory. In the N = 2 supersymmetric

theories such monopole operators may exist (and they certainly exist in the non-chiral

theories), but we argued that for the Na = 0 chiral theories all chiral monopole operators
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have dimensions at least of order N2
c . Thus, the corresponding high-spin gravity theories

should not have any classical BPS charged solutions. Note that even in the cases where

monopoles do exist with dimensions of order Nc, we expect these dimensions at weak

coupling to be at least of order k = Nc/λ, such that they diverge in the λ→ 0 limit (which

corresponds to θ0 = 0, π2 ; note that the coupling in the gravity theory goes as 1/Nc rather

than 1/k in this limit). Thus, in any high-spin gravity theory we do not expect to have

classical charged solutions in the parity-preserving θ0 = 0, π2 theories. Note that we cannot

say if specific monopole operators correspond to classical gravity solutions or not, but when

there is no monopole operator there cannot be a corresponding gravity solution.

Some classical solutions of the non-supersymmetric high-spin gravity theories were

found in [43], and were generalized to supersymmetric cases (including some of our chiral

and non-chiral theories) in [43, 44]. A linearized analysis suggests that these solutions

carry a charge under the U(1) gauge symmetry in the high-spin multiplet, but it is difficult

to verify this. Our arguments above imply that these solutions actually cannot carry

this charge (assuming that the duality to CS-matter theories is correct), and it would be

interesting to verify this directly.

Note that one way to avoid these arguments would be if the gravity theories are

actually dual to SU(Nc) CS-matter theories, rather than to U(Nc) theories; as far as we

know, none of the computations performed up to now can distinguish between these two

cases. However, the U(1) global symmetry has a very different interpretation in the SU(Nc)

theories, where it is a baryon number symmetry (and there is no global symmetry carried

by monopoles). So, the arguments above do not rule out classical charged solutions if the

dual gauge theories are SU(Nc) theories. Naively, such theories should always have baryons

with dimensions of order Nc, which could correspond to classical charged solutions on the

gravity side. However, in the CS-scalar theories this is actually not the case, because the

baryon operator must be anti-symmetric in the color index. An argument similar to the one

in appendix B then implies that when Nf ≪ Nc it must have a dimension at least of order

N
3
2
c . Thus, even if the gauge group is SU(Nc), we still claim that the non-supersymmetric

high-spin theories cannot have classical charged solutions (and in particular this still means

that the solutions of [43] cannot be charged).

6 Analytic arguments for chirality of V+φ
k
1
and related operators

The results presented in tables 1, 2 and 3 for the lowest lying monopole operators for

non-chiral and chiral theories, respectively, are conjectural and based on extrapolating

Mathematica computations done for low values of Nc, k and Nf . In this section we present

analytic arguments for the simplest operators of the schematic form V+φ
k
1.

16

Let us consider the GNO sector {mi} = {+1,
−→
0 } in the U(Nc)k(Nf , Nf ) theory. The

relevant supersymmetric letters to build gauge-invariant operators with the same (ǫ + j3)

16Here we assume k > 0. For a more detailed discussion, and for similar arguments for some other

operators, see appendix A.
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and axial charge as V+φ
k
1 (in this monopole background) have (ǫ, j3, R) equal to:

φ1 →
(
1

2
+ r,

1

2
, r

)

, φi → (r, 0, r), λi1 → (1, 0, 1). (6.1)

Using these letters we want to construct U(1) ×U(Nc − 1) gauge-invariant operators.

Notice that replacing any of the φ1’s with λ
i
1φi keeps the x and y charges. Since there

are only (Nc − 1) λi1’s, and they are anti-commuting, the maximum number of φ1’s that

one can replace with λi1φi is min(Nc − 1, k). It is easy convince oneself that the operators

generated in this way exhaust all the naively chiral operators at this level (this power of x).

Furthermore, each such replacement flips the sign of (−1)F and also changes the SU(Nf )l
flavour representation, since the φ’s are symmetric in flavour, while the (λφ)’s are anti-

symmetric. Thus there are potential cancellations, and whether or not any contribution

survives at this level depends on whether all these flavour representations cancel or not.

Whenever there is a cancellation we expect that the corresponding bosonic and fermionic

operators (that have the same global charges) join together into a single non-chiral multiplet

of the superconformal algebra. In this section we perform this analysis.

The total Index contribution of all the operators at this level can be schematically

written as
min(Nc−1,k)
∑

n=0

(−1)n(φa1)
k−n(λi1φ

a
i )

n. (6.2)

Note that for n > Nf these operators vanish due to anti-symmetry of the last factor in

SU(Nf )l. Since the x and y charges of all these operators are the same, looking only at

the SU(Nf )l flavour representations (these operators are singlets of SU(Nf )r), we get

=

min(Nc−1,k,Nf )∑

n=0

(−1)n






k−n
︷ ︸︸ ︷

· · ·
⊗n



















...






=

min(Nc−1,k,Nf )∑

n=0

(−1)n






n+1



















k−n
︷ ︸︸ ︷

· · ·

...

⊕
n



















k−n+1
︷ ︸︸ ︷

· · ·

...








=







(−1)Nc−1
Nc



















k−Nc+1
︷ ︸︸ ︷

· · ·

...

if k ≥ Nc and Nf ≥ Nc

0 if k < Nc or Nf < Nc







.

(6.3)

In the first line the (k − n)-box symmetric representation comes from (φa1)
k−n, while the

n-box antisymmetric representation comes from (λi1φ
a
i )

n (taking into account the anticom-

mutation of the λi1’s). The second line gives the decomposition into irreducible representa-

tions of the tensor product in the first line. The third line uses the fact that representations

cancel pairwise between the n’th and (n+1)’th terms, and the only (if at all) non-canceling
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contribution comes from the last term in the series when n = Nc − 1. This is precisely

Case 1 of table 1.

For two of the remaining three cases, namely Cases 2 and 4 listed in table 1, we will

present similar but slightly more involved analytic arguments in appendix A.

The argument presented above can be straightforwardly applied for similar operators

in chiral theories as well. In a U(Nc)k(Nf , 0) theory the corresponding operators are

V+φ
k+ 1

2
Nf

1 , as the gauge charge of the bare monopole operator V+ is −(k + 1
2Nf ). The

only difference here is thus a shift of k by 1
2Nf . The above argument then implies that a

non-vanishing contribution at this level occurs for

k +
1

2
Nf ≥ Nc and Nf ≥ Nc, (6.4)

and the surviving SU(Nf ) representation is

Nc



















k+ 1
2
Nf−Nc+1

︷ ︸︸ ︷

· · ·

...

. (6.5)

This gives Cases 1a and 2b in table 2. Notice that the conditions in (6.4) imply that the rank

of the dual gauge theory is non-negative, which is required for unbroken supersymmetry.

In appendix A.2 we present similar arguments for a subset of the other cases listed in

tables 2 and 3.

7 A possible dual of V+φ
k
1
when it is not chiral

In this section we discuss the dual operator to V+φ
k
1 in non-chiral U(Nc)k(Nf , Nf ) theories,

when this operator is not chiral (which is true for all Nc > 1). Since the dualities in Chern-

Simons-matter theories are strong-weak dualities, in the case where the operator V+φ
k
1

is not chiral, the operator dual to it will in general have a very different weak coupling

scaling dimension. But it must have the same values of the other global charges, namely

spin, axial charge and flavour representation. Moreover, since we expect V+φ
k
1 to be the

lowest operator with the same quantum numbers even when it is not chiral, we expect it

to be dual to the lowest operator with these quantum numbers in the dual theory, because

there should be no level-crossing of the operators in a fixed representation.17

For Nc > 1, the operator V+φ
k
1 sits in the k-box symmetric SU(Nf )l flavour repre-

sentation and is not chiral. To find its dual we need to look for operators in the U(Nd
c )k

theory which have

• j3 =
1
2k,

17This argument is not rigorous, because in CS-matter theories the coupling constant that we use to go

from weak to strong coupling is discrete, rather than continuous. However, we do expect it to be valid at

least in the ’t Hooft large Nc limit, where this parameter becomes effectively continuous.
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• A conjugate symmetric k-box representation under the SU(Nf ) flavour symmetry

acting on the φ̃’s of the dual theory,

• Axial charge = k −Nf ,

• R-charge = Nf −Nc + 1 + r(k −Nf ),

where the axial charge and R-charge are those of the original theory. Note that when the

operator V+φ
k
1 is not chiral, there is no reason for the dual operator to be constructed

out of only the supersymmetric letters that we discussed until now. Allowing for non-

supersymmetric letters of the dual theory (taken to have level k as in the second line

of (3.3)) the simplest possible operator with the same axial charge, R-charge, j3 and flavour

representation is

V †
−(

˜̄φ1)
kλi1λ

1
i . (7.1)

Since V †
− and λi1λ

1
i have j3 = 0 and are flavour singlets, the spin and flavour representations

match trivially (if we choose the ˜̄φ1’s in the monopole background to have j3 = 1
2). Note

that the gauge charge of V †
− is −k. The λi1λ1i factor is just to compensate for the R-charge.

So, we conjecture that this operator is dual to V+φ
k
1 in the original theory.

In the chiral U(Nc)Nf ,0 case, the above argument goes through except for the minor

change that here the original theory has the operator V+φ
k+

Nf
2

1 . In the dual theory (taken

to have level k as in (4.5)), we look for operators with topological charge
∑
mi = −1.

The only subtlety is that the R-charge of the dual theory is shifted by
Nf

2 as in (4.5)

compared to the original theory. Keeping track of this shift, the obvious candidate for the

dual operator is

V †
+(φ̄1)

k+
Nf
2 λi1λ

1
i . (7.2)

Note that the gauge charge of V †
+ is k +

Nf

2 . The spin matches if we again choose the φ̄1’s

in the monopole background to have j3 =
1
2 .

8 Perturbative corrections to V+φ
k
1
in Chern-Simons-scalar theories

In this section, we return to our original motivation of understanding the mismatch of the

Nc scaling of the classical dimensions of monopole operators under the non-supersymmetric

Chern-Simons duality in the ’t Hooft large Nc limit.

Consider the monopole operator V+φ
k
1 in a U(Nc)k Chern-Simons theory coupled to

a single scalar field (the analysis is similar for theories with fermions, except that there

already the classical dimension scales as |k| 32 for large |k|). Using radial quantization, the

scaling dimension of any local operator in the flat space theory is mapped to the energy

of the corresponding state on S2. The operator V+φ
k
1 corresponds to a state with unit

magnetic flux on S2, with k lowest energy scalar φ1 modes excited to neutralize the charge

of the bare flux state.

For operators of this type, whose classical energy scales as Nc in the ’t Hooft large Nc

limit (in which λ ≡ Nc/k is kept fixed), one expects perturbation theory not to be valid, and

perturbative corrections to the energy to also be of order Nc (see, for instance, [45]; this is
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the case even when classical solutions for these monopoles exist in the Chern-Simons-matter

theory, as in [45, 46]18). The general arguments are very similar to the analysis of baryons

in the large Nc limit of QCD [47], and we will discuss this analogy further below. However,

at least in some cases one expects such operators to correspond to classical solutions of

some ‘master field’ theory whose coupling constants scale as 1/Nc (an example of this is

the Skyrme model description of baryons in QCD; in our theories the role of this ‘master

field’ theory is played by the dual high-spin gravity theory). In this context one may expect

corrections to the dimensions coming from the classical solutions (which are of order Nc)

to be suppressed by powers of 1/Nc, such that the energy of these configurations would

remain of order Nc in the ‘t Hooft large Nc limit. In our case, as we discussed, such a

scaling does not seem to be consistent with duality. In this section we will argue that the

perturbative corrections to the anomalous dimensions of monopole operators might violate

the naive large Nc counting, even at very weak coupling (this implies that these operators

do not correspond to classical solutions of any ‘master field’ theory).

We will work with a normalization of the action where the gauge propagators come

with k−1, while the scalar propagators and interaction vertices have no factors of k or Nc

(the 3-gluon vertex scales as k). In the ’t Hooft large Nc limit at weak coupling (λ → 0)

we can restrict to planar diagrams with no loops (each loop comes with a factor of λ and

hence is suppressed at weak coupling). Thus, the leading contribution to the ground state

energy of a unit flux state comes from the diagrams of the form shown in figure 1a, 1b, 1c

with an arbitrary number of horizontal gluon propagators.19 The k vertical lines here

are scalar propagators, which all have the same color index. We will show below that

all these diagrams have a contribution to the energy that has the same scaling with k at

large k; note that the connections between different scalar lines do not have to be planar

(as figure 1c illustrates). Furthermore, the diagrams can be divided into two subclasses:

“connected” and “disconnected”. The diagrams which are “connected” have the property

that one can reach any of the gluons from any other gluon by only moving along the vertical

scalar propagators and the horizontal gluon propagators, without having to go through the

horizontal lines at the top or bottom. All other diagrams are “disconnected”. When

computing the evolution of the monopole state for a time T , the “connected” diagrams

scale as T (compared to figure 1a), while all other diagrams scale as higher powers of

T . Thus, diagrams which are “connected” in the above sense contribute to the energy

of the state directly, while those which are “disconnected” result from the expansion of

the exponential of “connected” diagrams (they give eiHT in the partition function with

a time-difference T ). Some leading “connected” diagrams are shown in figures 1a, 1b, 1c

while figure 1d is an example of a “disconnected” diagram.

18The appendix of [46] constructs classical BPS monopole solutions for the N = 2 supersymmetric theories

we discuss in this paper, that correspond to operators like V+Φ
k. As discussed above, in most cases we

expect this operator not to be chiral in the full theory, and then the corresponding classical solutions could

also acquire large quantum corrections.
19The Chern-Simons-scalar theories also have (|φ|2)3 couplings whose coefficients scale as 1/k2 in the small

λ limit [5]. Thus, there are also diagrams with vertices of this type and with no loops, which contribute at

the same order as the diagrams with gluons, and do not modify our qualitative arguments.
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(a) (b)

(c) (d)

Figure 1. Some of the diagrams contributing to the energy of the lowest flux state, which is related

to the dimension of the leading monopole operator.

Even within the restricted class of “connected” diagrams, the number of diagrams

with a given number of gluon propagators grows very fast.20 We will not compute these

diagrams explicitly but just perform an estimate of a subset of these diagrams to show that

quantum corrections can potentially change the large k scaling of the dimension of V+φ
k
1

(we assume here that there is no reason for these corrections to all cancel, as would be the

case for chiral monopole operators in supersymmetric theories).

Let us normalize the contribution of the leading diagram without gluon propagators,

figure 1a, to be k! (this is just the number of ways of contracting k φ’s with k φ̄’s). Let

us also restrict to the subset of diagrams of the type shown in figure 1b. Such a diagram

with n gluons comes with a combinatoric factor of

(k(k − 1) · · · (k − n))2

2kn
(k − n− 1)! = k(k!)

n∏

l=1

(

1− l

k

)

. (8.1)

Each factor of k(k− 1) · · · (k−n) comes from the need to choose which scalar (anti-scalar)

connects to the first gluon line, which to the second gluon line, and so on (and we get a

factor of 1
2 by inverting the order of the gluon lines). The factor of kn in the denominator

comes from the gluon propagators, and the factor of (k − n− 1)! comes from the possible

contractions of all the scalars that are not attached to gluon lines. Thus, dividing by the

20One can estimate that for n gluon propagators, the number of relevant diagrams is related to the

number of integer partitions of n, which grows exponentially for large n.
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diagram of figure 1a, any such diagram with n ≪
√
k gives a contribution of order k to

the energy, which is the expected scaling of the monopole dimension. Note that this has

no powers of λ, so these diagrams contribute even at very weak coupling (namely, in the

limit of large k with finite Nc).

For the purpose of our estimation we assume that the full contribution from such a

diagram differs from the above combinatoric factor by an O(1) number, since there are

no obvious large factors involved. The contribution to the monopole energy from these

diagrams is then estimated by summing over the contributions of this subset of “connected”

diagrams. We expect that the approximation of the sum over “disconnected” diagrams

by the exponential of the “connected” diagrams should be good at least for “connected”

diagrams with up to
√
k gluon propagators. Assuming that all extra factors are equal for

all these diagrams, they sum up to

√
k∑

n=1

k(k!)

n∏

l=1

(

1− l

k

)

∼ k
3
2 (k!). (8.2)

It is easy to verify numerically that correcting this sum by a similar contribution from

diagrams with a higher number of gluon propagators (by including “connected” diagrams

in (8.2) with a number of gluon propagators larger then
√
k) does not affect the leading

large k behaviour of the sum.

As described above, this is just an estimate for a very small subset of the leading

diagrams at large k. Taking into account all of the other leading diagrams could generate

an even larger change in the large k scaling of the monopole ground state energy compared

to the “classical” value. On the other hand, clearly there is no reason to expect all these

diagrams to be equal (or even to have the same sign) as we assumed. But anyway, this

shows that quantum corrections could affect the scaling dimensions of these monopole

operators in a very drastic way in the large k limit. In particular, we see that quantum

corrections can potentially lead to a change in the k scaling of the dimension of monopole

operators, which could resolve the puzzle stated in the introduction regarding the difference

in the large k (large Nc) scaling of the naive dimensions of the leading monopole operators

across the dual pair of bosonic and fermionic Chern-Simons theories.

Note that the analysis above is very similar to the analysis of the masses of baryons

in large Nc QCD [47]. At weak coupling and leading order in large Nc the masses of

baryons are O(Nc). All the diagrams shown above will also contribute to the masses of

baryons (note that in the baryon case the quarks that replace the scalars all have different

color indices, but because they are contracted with an epsilon symbol, their wave function

is eventually symmetric, just like the one of the scalars in our case). Though the same

diagrams are suppressed by a factor of λn, where λ is the ’t Hooft coupling,21 they are all

comparable for a coupling of O(1), and the above argument would suggest that the masses

of baryons could change from O(Nc) to some higher power of Nc (at least when their spin

is of order Nc). It is widely believed that this is not the case for baryons in the large Nc

21In large Nc QCD the gluon propagator goes as g2Y M rather than as 1/Nc, while the combinatorics is

the same as above.
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limit [47], and there is substantial evidence for this. However, there are various differences

between our case and that of baryons that could lead to a difference in the scaling of the

two cases.

9 Summary

In this paper we discussed monopole operators in Chern-Simons-matter theories. We dis-

cussed in detail the chiral monopole operators in such theories with N = 2 supersymmetry,

and showed that in many cases the lowest monopole operator is rather different from the

simplest naively-chiral monopole operator. In the non-supersymmetric case we noted that

duality implies large corrections to the dimensions of monopole operators, which are naively

inconsistent with the ’t Hooft large Nc limit. We argued that these operators could have

large perturbative corrections to their dimensions, that may invalidate the usual large Nc

counting. It would be interesting to make these arguments more precise, and perhaps even

to compute the monopole dimensions for large Nc and to verify that they are consistent

with non-supersymmetric dualities.

There are many possible generalizations of our analysis. We analyzed only theories

with Na = Nf or Na = 0, and the generalization to arbitrary values of Na and Nf should

be straightforward. We also discussed only the simplest monopole operators with U(1)J
charge

∑
mi = ±1, and it would be interesting to generalize our analysis to higher charges.

It would be interesting to study the chiral rings in these theories including the monopole

operators, as done for some theories in [20].22 It is not clear if all chiral monopoles with
∑
mi = 1 are products of the leading chiral monopoles we found with operators in the

∑
mi = 0 sector, and if all chiral monopoles with

∑
mi > 1 can be written as products

of chiral monopoles with
∑
mi = 1. One can also use similar methods to study theories

with product gauge groups. Theories of this type with a larger amount of supersymmetry

were analyzed in detail in the literature, but most of the discussion in the literature (ex-

cept [46]) is about monopoles that have rather different properties from the monopoles we

discuss here.

For gauge groups that do not involve U(Nc), it is not obvious how to identify the

monopole operators, since there is no U(1)J symmetry. Nevertheless, the index in these

theories is still written as a sum over monopole sectors with different GNO charges, and it

would be interesting to try to possibly identify and match different monopole states also

for such other gauge groups. In particular it would be interesting to do this for SU(Nc)

gauge theories, noting that their analysis is completely different from the U(Nc) analysis we

22Naively, one may expect to find a moduli space whenever there is a scalar chiral operator (appearing

in the chiral ring). In the case of monopole operators, the corresponding branch of the moduli space would

include a vacuum expectation value for the scalar in the vector multiplet, but we know that in the theories

we discuss with k 6= 0 there is no such moduli space. Hence, we expect that even if some of our theories

have scalar chiral monopole operators, the chiral ring would not be freely generated by these operators, but

rather they have to vanish when raised to some power. In our analysis of the lightest monopole operators,

we only found a scalar operator in Case 4, and in this case it is easy to believe that this operator raised to

some power would vanish because fermions are explicilty involved in its construction.
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presented here. In these theories there is no U(1)J symmetry, but there is a U(1)B baryon-

number symmetry whose gauging leads to the U(Nc) theory, and it would be interesting

to use the index to understand which baryon operators are chiral.
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A Analytic arguments for chirality of monopole operators

In this section we present analytic arguments for the leading chiral monopole operators in

the (±1,
−→
0 ) sector, for the cases when the leading operator does not involve derivatives or

gauge-invariants of the form (φiψ̄
i) attached to gauge-invariant monopole operators.

The monopole operators with the background flux (1,
−→
0 ) break the U(Nc) gauge sym-

metry to U(1)×U(Nc−1). In this background we have (in the weakly coupled high-energy

Yang-Mills-Chern-Simons theory which is used to compute the Index) 2(Nc − 1) light-

est gaugino states coming from λi1, λ
1
i , with j3 = 0, transforming under the unbroken

U(1)⊗U(Nc − 1) as

λi1 : (−1, Nc − 1), λ1i : (+1, Nc − 1). (A.1)

The contribution of these operators corresponds to the following factor in the Index:

Nc∏

i=2

(

1− z1
zi
x

)(

1− zi
z1
x

)

. (A.2)

The other similar factors from the product over i 6= j > 1 constitute the Haar measure

for the unbroken U(Nc − 1). Thus, in the (1,
−→
0 ) sector, the gauge-invariant operators are

constructed as U(1) ⊗ U(Nc − 1)-invariants with λi1 and λ1i as additional supersymmetric

letters (compared to the zero flux sector).

A.1 U(Nc)k(Nf , Nf) theories

Our strategy to construct gauge-invariant chiral monopole operators will be exactly the

same as the usual construction of local gauge-invariant chiral non-monopole operators in

perturbative gauge theories, i.e. to first identify the basic supersymmetric letters that
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can contribute to the index,23 and then to form combinations of these letters that give

U(1)×U(Nc − 1)-invariant operators.

To proceed, let us first identify the basic supersymmetric letters in the (1,
−→
0 ) sector,

satisfying ǫ = j3 +R. Using (2.4), their (ǫ, j3, R) values are:

φ1, φ̃
1 →

(
1

2
+ r,

1

2
, r

)

,

φi, φ̃
i → (r, 0, r) ,

ψ̄1
+,

˜̄ψ1
+ → (2− r, 1, 1− r),

ψ̄i
+,

˜̄ψi
+ →

(
3

2
− r,

1

2
, 1− r

)

,

(λ−)
i
1, (λ−)

1
i → (1, 0, 1),

∂++ → (1, 1, 0). (A.3)

Since the bare monopole operator is charged only under the U(1) and is invariant under

U(Nc − 1), combinations of basic letters which are U(Nc − 1) invariant but carry U(1)

charges are relevant for our counting purpose. Apart from these we also have combinations

of letters invariant under the full U(1)×U(Nc − 1) gauge group which we need to use. All

these combinations and their charges and flavour representations relevant for the Index are

listed in table 4.

In this subsection we concentrate on monopole operators with
∑

imi = +1. This is

due to the invariance of the Index of these non-chiral theories under

{mi} → {−mi}, {zi} → {z−1
i }, {w → w−1}, {ta ↔ t̃a}. (A.4)

This just says that for each operator in a given {mi} sector one can obtain a monopole

operator with {−mi} by interchanging

(φ, ψ̄) ↔ (φ̃, ˜̄ψ). (A.5)

Another useful property of the Index is its invariance under a second set of transfor-

mations,

k → −k, {mi} → {−mi}, {w → w−1}. (A.6)

Using this property we can restrict to k > 0.

Yet another useful property of the Index of these theories is the fact that the R-charge

in these theories can be shifted by mixing it with the U(1)A. Specifically, y → yxr0 shifts

the R-charge by r → r+ r0. This freedom can be used to set the R-charge r of φ, φ̃ to any

convenient value, but we will not use this here.

23Including the “bare” monopole operator, transforming under some gauge group representation.
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Operator U(1) ǫ+ j3 A (SU(Nf )l, SU(Nf )r)

V
1,
−→
0

−k (1− r)Nf −Nc + 1 −Nf (I, I)

φ1, λ
i
1φi +1 1 + r 1 (Nf , I)

φ̃1, λ1i φ̃
i −1 1 + r 1 (I, Nf )

ψ̄1, λ1i ψ̄
i −1 3− r −1 (N̄f , I)

˜̄ψ1, λ1i
˜̄ψi +1 3− r −1 (I, N̄f )

∂++ 0 2 0 (I, I)

φiψ̄
i 0 2 0 (I ⊕ adj, I)

φ̃i
¯̃
ψi 0 2 0 (I, I ⊕ adj)

Table 4. Some of the basic U(Nc − 1)-invariant combinations of supersymmetric letters and their

gauge and global charges. Summations over the index i run from 2 to Nc.

A.1.1 Case 1: k ≥ Nc and Nf ≥ Nc

This case has already been discussed in section 6. The surviving SU(Nc)l flavour represen-

tation in this case is

(−1)Nc−1

Nc



















k−Nc+1
︷ ︸︸ ︷

· · ·

...

. (A.7)

This representation survives only when

k ≥ Nc and Nf ≥ Nc. (A.8)

If any of these two conditions is violated, cancellation at this level is complete and we have

to look for other lightest operators.

In the next two subsubsections we give arguments for the lightest monopole operators

in the non-chiral theories for Cases 4 and 2, respectively.

A.1.2 Case 4: m ≡ Nc − k > 0 and Nf ≥ Nc

In this case we will show that the leading monopole operator appears at the level of

V+φ
k
1(φ̃

iφi)
m. The Index contribution of all the operators of this general form can be

schematically arranged as the following series:

∑

n

(φ̃iφi)
n

(
k∑

l=0

(−1)lφk−l
1 (λi1φi)

l

)

. (A.9)
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Naively from the above series it looks like that the Index contribution at this level also

vanishes, as the series in the bracket vanishes for k < Nc, using the arguments given earlier

for Case 1 in section 6. But notice that to actually evaluate the Index contribution of this

series we have to take the tensor product of the flavour representations of each term in the

series with that of the φni , taking into account that we only have (Nc − 1) different φi’s,

and hence more than this number cannot be antisymmetrized in constructing the flavour

representations. This makes a difference only when the total number of φi’s in the operator

exceeds Nc − 1. This shows that all operators at the level of V+φ
k
1(φ̃

iφi)
n cancel in the

index for n < m = Nc − k.

For n = m, the first special case arises. This happens because in the tensor product

of flavour representations of φmi from (φ̃iφi)
Nc−k, and of φki from the (λi1φi)

k in the last

term in the sum over l, the totally antisymmetric representation vanishes. This leads to

a non-canceling contribution from the penultimate term in the series, namely the totally

antisymmetric representation of φ1φ
Nc−1
i . All other representations cancel as for n < m.

Thus, the lightest surviving operator in this case has the SU(Nf )l × SU(Nf )r flavour

representation 


Nc



















...

,Nc−k



















...




 , (A.10)

since the φ̃i must also be multiplied anti-symmetrically.

For completeness we now show that the operators at the level of φk−n
1

¯̃
ψn
1 with n > 0,

which could be lighter than the operators considered above, actually vanish. The index

contribution at this level, for a fixed value of n, is given schematically by the sum

n∑

l=0

¯̃
ψn−l
1 (λi1

¯̃
ψi)

l





k−n∑

p=0

(−1)n−l+pφk−n−p
1 (λi1φi)

p



 . (A.11)

Notice that the summation over p, for a fixed value of l in the outer summation, is exactly

the Index contribution of operators at the level of operators φk
′

1 in a U(N ′
c)k′ theory with

N ′
c = Nc − l, k′ = k − n. Since N ′

c − k′ = (Nc − k) + (n − l) > 0, the contribution of this

series vanishes for each allowed value of n ≥ l ≥ 0, and hence the whole series vanishes

including the sum over l.

A.1.3 Case 2: k ≥ Nc and m ≡ Nc − Nf > 0

In this case we show that the operators at the leading order occur at the level of V+
¯̃
ψn
1φ

k−n
1

for n = m, while for n < m they all cancel. The Index contribution at this level for fixed

n > 0 is given by the following series

n∑

l=max(0,n−Nf )

¯̃
ψn−l
1 (λi1

¯̃
ψi)

l





min(k−n,Nc−1−l,Nf )∑

p=0

(−1)n−l+pφk−n−p
1 (λi1φi)

p



 . (A.12)

Now for n < m = Nc −Nf and k ≥ Nc we have

min(k − n,Nc − 1− l, Nf ) = Nf , (A.13)
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which results in the vanishing of the series in brackets for each value of l in the outer sum,

using the arguments above.

For n = l = m = Nc −Nf though, we have

min(k −m,Nc − 1− l, Nf ) = Nf − 1. (A.14)

In this case as well the series inside the brackets in (A.12) vanishes for all terms in the

outer sum except the last one, l = m, for which the flavour representation is easily obtained

from (A.7). Including the SU(Nf )r representation of the
¯̃
ψ’s we get

(
k−Nc

︷ ︸︸ ︷

· · ·
,

Nc−Nf
︷ ︸︸ ︷

· · ·

)

. (A.15)

Again for completeness we now argue that the operators at the level of V+φ
k
1(φ̃

iφi)
n

do not contribute for all n > 0. The Index contribution at this level is given by the series:

(φ̃iφi)
n





Nf∑

l=0

(−1)lφk−l
1 (λi1φi)

l



 . (A.16)

Here, since Nc > Nf , all possible representations in the flavour tensoring of φni with

(λi1φi)
l are present, and hence the sum cancels identically due to the arguments above for

the vanishing of the series inside the brackets.

A.2 U(Nc)k(Nf , 0) theories

In these “chiral” theories, since we only have chiral multiplets in the fundamental repre-

sentation of the gauge group, we only have as supersymmetric letters positively charged

φ’s and negatively charged ψ̄’s under the Cartan of the gauge group. Thus, in contrast

to U(Nc)k(Nf , Nf ) theories, the positively charged bare monopole operators have to be

dressed with φ’s, while negatively charged bare monopole operators have to be dressed

with ψ̄’s and are thus very different.

Another important feature of these theories is that the duality for these theories works

differently depending on the sign of (k − 1
2Nf ):

k − 1

2
Nf ≥ 0: U(Nc)k(Nf , 0) ⇆ U

(

|k|+ 1

2
Nf −Nc

)

−k

(0, Nf ),

k − 1

2
Nf ≤ 0: U(Nc)k(Nf , 0) ⇆ U(Nf −Nc)−k(0, Nf ).

(A.17)

In the following subsections we will analytically determine the leading monopole oper-

ators (M±) for a subset of the possible cases, including all cases where the leading operator

does not involve derivatives or (φiψ̄
i) factors.

For convenience we tabulate the relevant charges of the basic supersymmetric letters

and the bare monopole operators in these theories in table 5.
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Operator U(1) ǫ+ j3 SU(Nf )

V+ −k − 1
2Nf

1
2(1− r)Nf −Nc + 1 I

V− k − 1
2Nf

1
2(1− r)Nf −Nc + 1 I

φ1, λ
i
1φi +1 1 + r Nf

ψ̄1, λ1i ψ̄
i −1 3− r N̄f

φiψ̄
i 0 2 Nf × N̄f

Table 5. Some basic U(Nc−1)-invariant supersymmetric letters and their gauge and global charges

in U(Nc)k(Nf , 0) theories.

A.2.1 M
−

for k > 1

2
Nf

In this subsection we analyze the operators of the schematic form M− = V−ψ̄
k− 1

2
Nf

1 ,

possibly with derivatives sprinkled over the ψ̄’s. This case can be divided into subcases,

depending on the comparison between k − 1
2Nf and Nc.

Nc − 1 ≥ k− 1

2
Nf > 0. The Index contribution at the level of the lowest possible M−

is given by the following series

k− 1
2
Nf

∑

l=max(0,k− 3
2
Nf)

(−1)l(ψ̄1)
k− 1

2
Nf−l(λi1ψ̄i)

l. (A.18)

Again, as in previous subsections, since the “x charge” of the operator in each term is

the same, we can just work with the fermion number and SU(Nf ) representation of the

operators. This is given by

k− 1
2
Nf

∑

l=max(0,k− 3
2
Nf)

(−1)l




k− 1

2
Nf−l



















...

⊗
l

︷ ︸︸ ︷

· · ·






=

k− 1
2
Nf

∑

l=max(0,k− 3
2
Nf)

(−1)l






k− 1

2
Nf−l+1



















l
︷ ︸︸ ︷

· · ·

...

⊕
k− 1

2
Nf−l



















l+1
︷ ︸︸ ︷

· · ·

...








= 0.

(A.19)

Since the level considered above vanishes, we have go to higher levels by sprinkling

derivatives over the ψ’s, and/or attaching gauge-invariants (φiψ̄
i) on top of the above

operators. We will not perform this analysis, but in section 4 we give a conjecture for the
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leading operators in this case (Case 1a) based on Mathematica, and show its consistency

with the dualities discussed in [11].

Nf +Nc − 1 ≥ k− 1

2
Nf ≥ Nc. In this case (Case 1b) one of the operators at the level

discussed in the previous case survives cancellation. The Index contribution is given by

Nc−1∑

l=max(0,k− 3
2
Nf)

(−1)l(ψ̄1)
k− 1

2
Nf−l(λi1ψ̄i)

l

=

Nc−1∑

l=max(0,k− 3
2
Nf)

(−1)l




k− 1

2
Nf−l



















...

⊗
l

︷ ︸︸ ︷

· · ·






=

Nc−1∑

l=max(0,k− 3
2
Nf)

(−1)l






k− 1

2
Nf−l+1



















l
︷ ︸︸ ︷

· · ·

...

⊕
k− 1

2
Nf−l



















l+1
︷ ︸︸ ︷

· · ·

...








= (−1)Nc−1

k− 1
2
Nf−Nc+1



















Nc
︷ ︸︸ ︷

· · ·

...

. (A.20)

k − 1

2
Nf = (nNf + m) + (Nc − 1) with n ≥ 1 and Nf > m ≥ 0. In this case

(Case 1c) there is a unique operator present at the minimal level,

M− = V−(λ
i
1ψ̄i)

Nc−1(ψ̄1)
Nf (∂ψ̄1)

Nf . . . (∂n−1ψ̄1)
Nf (∂nψ̄1)

m. (A.21)

Notice that in this operator none of the ψ̄1’s can be replaced with λi1ψ̄i, as the resulting

operator would vanish due to antisymmetry of more than (Nc − 1) λi1’s. Furthermore,

none of the ∂’s can be replaced with φiψ̄i, as the resulting operators would vanish due to

antisymmetry of more then Nf ψ̄1’s. This proves that this is the unique leading operator

in this case.

To determine the flavour representation of this operator note that each of the (∂lψ̄1)
Nf

factors forms a flavour singlet, while the remaining factors give the representation






Nc−1
︷ ︸︸ ︷

· · ·
⊗m



















...




 . (A.22)

A.2.2 M
−

for k < 1

2
Nf

Since in this case k − 1
2Nf < 0, we need to dress V− by φ1’s (as opposed to ψ̄1’s in the

previous cases) to make it gauge-invariant. Schematically we have

M− = V−(φ1)
1
2
Nf−k. (A.23)
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A straightforward application of the arguments presented in section A.1.1 gives us the

following results for the operator of this form contributing to the index in this case:

M− = 0 for
1

2
Nf − k < Nc,

M− =
Nc



















1
2
Nf−k−Nc+1
︷ ︸︸ ︷

· · ·

...

for
1

2
Nf − k ≥ Nc.

(A.24)

The second case is Case 2a, for which we have found the leading monopole operator. For

the first case (Case 2b) we need to add derivatives and/or gauge-invariants on top of the

operator (A.23). We will not do this here, but we give a general conjecture based on results

obtained using Mathematica for low values of (k,Nc, Nf ) in table 3.

A.2.3 M+ for k > 1

2
Nf

From table 5 we see that the naive lowest M+ in this case is of the schematic form

V+(φ1)
k+ 1

2
Nf . A straightforward application of the arguments presented above gives the

contribution at this level

M+ =
Nc



















k+ 1
2
Nf−Nc+1

︷ ︸︸ ︷

· · ·

...

for Nc ≤ Nf , k +
1

2
Nf −Nc ≥ 0. (A.25)

Notice that the second condition in (A.25) above is the same as the condition for the

existence of a supersymmetric vacuum in these theories. Thus, within the set of theories

possessing a supersymmetric vacuum, this level survives in the Index for Nf ≥ Nc (Case 1a,

as we saw in section 6).

For Nf < Nc (Cases 1b and 1c), this level vanishes and we need to consider operators

with derivatives and/or gauge invariants (φiψ̄i). The analytic analysis for this gets com-

plicated and we will not pursue it here. Instead we present a conjecture for these cases in

table 2, based on Mathematica evaluations at low values of k,Nc and Nf .

A.2.4 M+ for k < 1

2
Nf

For k < 1
2Nf , the condition for the existence of a supersymmetric vacuum is Nf ≥ Nc.

Thus the condition for the V+(φ1)
k+ 1

2
Nf level to survive is k+ 1

2Nf −Nc ≥ 0 in (A.25) (this

is Case 2b that we analyzed already in section 6). For k+ 1
2Nf−Nc < 0 (Case 2a), this level

vanishes in the Index and we need to consider operators with derivatives and/or gauge-

invariants (φiψ̄i). Again, we will not pursue this exercise here, but present a conjecture in

table 2, based on Mathematica evaluations for low values of the parameters.
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B Dimensions of the lowest monopole operators in a Chern-Simons-

fermion theory

In this section we discuss the lowest monopole operators in (non-supersymmetric) theories

of fermions in the fundamental representation coupled to a U(Nc)k Chern-Simons theory.

For simplicity we focus on the case of a single flavour, for which k must be half-integer. As

mentioned in the introduction, in a theory with only fundamental fermions, we expect the

lowest monopole operator to arise from a product of a bare (1,~0) monopole operator with

|k| − 1
2 fermions. In this appendix we will compute the naive scaling dimension of such an

operator. We are mostly interested in how this dimension scales for large |k|.
The main point is that in the case of fermions, because of Fermi statistics, one cannot

just add ψk− 1
2 to a bare monopole operator. One necessarily has to include fermions

dressed with derivatives to construct a product with more than two fermions. If we needed

to construct an operator of the form ψk− 1
2 without the monopole background (ignoring

the fact that this would not be gauge-invariant), we would use the fact that the fermion

operators with n derivatives Dα1β1 · · ·Dαnβn
ψα form a spin (n+ 1

2) representation.
24 Hence

their number is given by 2(n+ 1
2) + 1 = 2n+ 2. Thus the schematic operator is

(ψ)2 · · · (Dnψ)2n+2 · · · . (B.1)

We see that in an operator with order k fermions, we must have factors Dnmaxψ with nmax

at least of order
√
k. The total number of derivatives acting on all k fermions in such an

operator is then at least of order n3max ∼ k
3
2 . Each operator Dnψ has classical dimension

(n+ 1). Hence, the naive scaling dimension of such an operator is O(k
3
2 ).

The only modification in the monopole background is that now the spectrum of

fermions is shifted down by a half, namely they have spins n = 0, 1, 2, · · · , with the energy

on S2 equal to the spin [28]. First, this means that there is now a fermionic zero mode, so

there are two bare monopole operators with the lowest dimension and with charges k ± 1
2 .

Second, this means that the product in (B.1) involves operators with multiplicity 2n + 1

for n = 1, 2, · · · . However, this does not modify the analysis above for large k, so we still

find that the dimension of the lowest monopole operator is naively of order k
3
2 .

As discussed in section 8, these naive dimensions may have large corrections that we

do not know how to control.

C Additional charges of monopoles and their matching

In this appendix we give the global charges of the chiral monopole operators presented in

sections 3 and 4, beyond the SU(Nf ) charges discussed there. We also show that the global

charges of the dual operators match across the GK duality. We have already presented one

combination of the global charges 2j3 +R, appearing in the index, in sections 3 and 4.

24Antisymmetrizations between derivative and fermion indices are removed by the equation of motion

which fixes ǫβγDαβψγ . Spin singlet derivatives D2ψα vanish for the same reason. Since the derivatives

commute, the only remaining representation is the symmetrized product of fermions and derivatives that

has spin n+ 1
2
.
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Region (j3, R,A)

1 Nf > Nc, k ≥ Nc

(
k−Nc+1

2 , Nf + r(k −Nf ), k −Nf

)

2 k ≥ Nc ≥ Nf

(
k−Nf+1

2 , Nc(1− r) +Nd
c r, N

d
c −Nc

)

3 Nc ≥ Nf , Nc > k
(
Nc−Nf+1

2 , k + r(Nf − k), Nf − k
)

4 Nf ≥ Nc ≥ k
(
0, Nd

c (1− r) + rNc + 1, Nc −Nd
c

)

Table 6. Global charges of the leading M+ monopole operators in U(Nc)k(Nf , Nf ) theories in

various parameter ranges.

Region N = 2 primary charges: ǫ, (j3, R,A)

1 Nf > Nc, k ≥ Nc ǫ = j3 +R+ 1 ,
(
k−Nc

2 , Nf − 1 + r(k −Nf ), k −Nf

)

2 k ≥ Nc ≥ Nf ǫ = j3 +R+ 1 ,
(
k−Nf

2 , Nc(1− r) +Nd
c r − 1, Nd

c −Nc

)

3 Nc ≥ Nf , Nc > k ǫ = j3 +R+ 1 ,
(
Nc−Nf

2 , k + r(Nf − k)− 1, Nf − k
)

4 Nf ≥ Nc ≥ k ǫ = R ,
(
0, Nd

c (1− r) + rNc + 1, Nc −Nd
c

)

Table 7. Global charges of the N = 2 superconformal primary corresponding to the M+ monopole

operator in U(Nc)k(Nf , Nf ) theories in various parameter ranges.

Let us start with the nonchiral case. The global charges are (j3, R,A) as mentioned

in section 2. For the monopole operators listed in table 1, we give these global charges in

table 6. Here Nd
c = k+Nf −Nc is the rank of the dual group. Note that we cannot read off

the j3 and R-charges just from the index. For Cases 1, 2 and 4, the value of j3 is computed

from the form of the leading monopole operator that we found analytically. One can verify

that the charges of Cases 2 and 4 map correctly under the duality. For Case 3 we use the

operator that we conjectured in table 1, and one can check that this is consistent with the

duality to Case 1. For completeness, we mention that for k = 0, the naive chiral operator

V+ survives, whose charges are (j3, R,A) = (0, Nf (1− r)−Nc+1,−Nf ). We also note the

charges of the superconformal primary from which the corresponding monopole operator

descends in table 7, using the rules mentioned in [48].

Let us now consider the chiral case. Some of the charges of the two monopole operators

(M+,M−) which survive in this case were given in table 2 and table 3. With the same

conventions for regions, we give the global charges (j3, R) in table 8. Again, in the cases

in which we computed the monopole operator explicitly, the charge we give is based on
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M+ charges (j3, R) M− charges (j3, R)

1a
(
Ñc+1

2 ,
Nf

2 + kr
) (

Nc+1
2 , k(1− r)

)

1b
(
k+Nc− 3

2
Nf+1

2 , 12Nf + kr
) (

k − 1
2Nf − 1

2Nc +
1
2 , k(1− r)

)

1c
(
Nd

c −1
2 + n(n+1)

2 Nf +m(n+ 1), 12Nf + kr
) (

Nc−1
2 + n(n+1)

2 Nf +m(n+ 1), k(1− r)
)

2a
(
Nc−k− 1

2
Nf+1

2 , 12Nf + kr
) ( 1

2
Nf−k−Nc+1

2 , 12Nf − kr
)

2b
(
k+ 1

2
Nf−Nc+1

2 , 12Nf + kr
) (

k+Nc− 1
2
Nf+1

2 , 12Nf − kr
)

Table 8. Global charges of the leading M+,M−
monopole operators in U(Nc)k(Nf , 0) theories.

N = 2 primary (j3, R); ǫ = j3 +R+ 1 N = 2 primary charges (j3, R); ǫ = j3 +R+ 1

1a
(
Ñc

2 ,
Nf

2 + kr − 1
) (

Nc

2 , k(1− r)− 1
)

1b
(
k+Nc− 3

2
Nf

2 ,
Nf

2 + kr − 1
) (

k − 1
2Nf − 1

2Nc, k(1− r)− 1
)

1c
(
Nd

c −2
2 + n(n+1)

2 Nf +m(n+ 1),
Nf−2

2 + kr
) (

Nc−2
2 + n(n+1)

2 Nf +m(n+ 1), k(1− r)− 1
)

2a
(
Nc−k− 1

2
Nf

2 ,
Nf

2 + kr − 1
) ( 1

2
Nf−k−Nc

2 ,
Nf

2 − kr − 1
)

2b
(
k+ 1

2
Nf−Nc

2 ,
Nf

2 + kr − 1
) (

k+Nc− 1
2
Nf

2 ,
Nf

2 − kr − 1
)

Table 9. Global charges of the N = 2 superconformal primary corresponding to the M+,M−

monopole operators in U(Nc)k(Nf , 0) theories in various parameter ranges.

this operator. In the other cases the charge we give is based on our conjectures in tables 2

and 3, and one can verify that in all cases it is consistent with the duality. We also note the

charges of the superconformal primary from which the corresponding monopole operator

descends in table 9, using the rules mentioned in [48].

Note that j3 matches straightforwardly under the duality, while for the R charge one

needs an extra shift by −Nf

2 for Cases 1a, 1b, 1c, and by −k in Cases 2a, 2b, as explicitly

given in (4.5).25

As discussed in the main text, k = 1
2Nf is a special case and to find the lightest M+

monopole operator on the dual side one needs to take into account the contribution of the

25These shifts in R-charge, required for duality matching, are from the side of the original theory. The

corresponding shifts from the dual side are just the negatives of these.
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gauge singlet chiral multiplet V+. Here we present the charges of the operator in (4.6) of

the dual U(Nd
c )− 1

2
Nf

(0, Nf ) theory, which are

(
1

2
(Nd

c + 1), Nf (1− r)

)

. (C.1)

With a shift of 1
2Nf in the R-charge these match precisely with those of M+ in Case 1a

(or 2b) for k = 1
2Nf . Further it is easily verified that our proposed dual operator (4.6) con-

tains, in its flavour decomposition, the flavour representation of the corresponding operator

in the original theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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