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Polymerisation force of a rigid 
filament bundle: diffusive 
interaction leads to sublinear force-
number scaling
Jemseena Valiyakath1,2 & Manoj Gopalakrishnan1

Polymerising filaments generate force against an obstacle, as in, e.g., microtubule-kinetochore 
interactions in the eukaryotic cell. Earlier studies of this problem have not included explicit three-
dimensional monomer diffusion, and consequently, missed out on two important aspects: (i) the 
barrier, even when it is far from the polymers, affects free diffusion of monomers and reduces their 
adsorption at the tips, while (ii) parallel filaments could interact through the monomer density field 
(“diffusive coupling”), leading to negative interference between them. In our study, both these effects 
are included and their consequences investigated in detail. A mathematical treatment based on a set 
of continuum Fokker-Planck equations for combined filament-wall dynamics suggests that the barrier-
induced monomer depletion reduces the growth velocity and also the stall force, while the total force 
produced by many filaments remains additive. However, Brownian dynamics simulations show that the 
linear force-number scaling holds only when the filaments are far apart; when they are arranged close 
together, forming a bundle, sublinear scaling of force with number appears, which could be attributed 
to diffusive interaction between the growing polymer tips.

The cytoskeleton, a network of filaments composed of actins and microtubules forms one type of force generators 
inside a eukaryotic cell and is crucial in moving cyotoplasmic material within the cell1. One manifestation of such 
force generation includes formation of the mitotic spindle, an apparatus formed by microtubules with associ-
ated molecular motors during cell division where the genetic material (chromosome pairs) are being pulled and 
pushed by microtubules until the sister chromatids are separated to each daughter nuclei2,3. Yet another instance 
is the migration of a cell from one place to another by crawling; in this case, polymerising actin filaments pushing 
the plasma membrane of the cell provides the mechanism for motility by generating cytosplasmic projections 
called filopodia and lamellipodia4,5. A number of mathematical and computational models have been proposed 
to study poymerisation-driven force generation in microtubules6–13 and actin14–20.

Outside the cytoplasmic environment, even a minimal system comprising of biofilaments growing against a 
barrier has been shown to be capable of generating forces of the order of a few piconewtons, for rigid21–26 as well as 
elastic27–29 barrier. For instance, a single microtubule grown in vitro can generate a maximum of 5pN force against 
a rigid barrier21. Microtubules growing against obstacles, tend to bend from their straight trajectory and then 
proceed to grow; a condition known as buckling21,23. Mechanically induced changes stemming from confinement 
are observed to alter the intrinsic dynamics of microtubules23,30. The catastrophe transition becomes pronounced 
in the vicinity of the barrier30,31, while the dynamic instability is observed to be regulated by force23.

It is well known that the physical barrier (the plasma membrane or proteinous kinetochore in vivo) in contact 
with the microtubule will affect the filament dynamics, by rendering steric hindrance to further polymerisation. 
Evidence for this scenario may be found in the reduced growth velocity near the cell boundary, as reported by31 
in fission yeast cells; here, the reduction in growth velocity is speculated to be mechanical in origin. However, a 
slightly different explanation could be offered. Prior to the assembly, the monomers are diffusing in the cytoplasm 
or the available space of the experimental chamber, and any hindrance to free diffusion would have observable 
consequences; in particular, growth rate may be reduced due to hindrance to free diffusion offered by the barrier. 
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This scenario appears to be partly supported by observations which find that growth of microtubule in the inte-
rior of the cell is different from near the boundary32. This effect is distinct from the steric hindrance to monomer 
addition, which comes into play only at extremely small barrier-tip separation (of the order of monomer length). 
A clear distinction between these two cases is not apparent from the existing experimental observations.

The origin of the polymerisation force is to be traced to the free energy change associated with polymeri-
sation33. For example, the free energy released per GTP-tubulin addition to a microtubule is nearly 5–10 kBT, 
equivalent to a force of 50 pN if a microtubule grows by 8 nm; similarly the gain in free energy per GDP-tubulin 
dissociation from a microtubule is nearly 5–10 kBT26. However, experimental measurements suggest that the force 
produced by a microtubule is only a fraction of the maximum force predicted by theoretical arguments, suggest-
ing that not all the free energy available from polymerisation of the 13 protofilaments is converted to work21. A 
similar phenomenon has been observed in the context of actin filaments polymerizing against load34; here, the 
force-velocity relation for a bundle was found to lie between the theoretical extremes corresponding to (a) perfect 
load-sharing and (b) no load-sharing between the filaments. Obtaining insights into this interesting nonlinear 
scaling behaviour is another important motivation for us in undertaking the present study.

Our model consists of a bundle of N rigid filaments (like microtubules) growing from one fixed wall of a 
compartment, towards the opposite wall, which is a diffusing barrier (diffusion coefficient Dw), also being pushed 
backward with a constant force f, see Fig. 1. The filaments grow by diffusion-limited polymerisation of monomers, 
which are present in the solution at concentration C0. A filament also shrinks by random detachment of mono-
mers, with rate koff. The filaments in the bundle are identical, and have equal base separation from each other. No 
interaction is assumed to exist between the filaments or between a filament and the barrier, except that neither 
of them can penetrate each other (see12,13,15 which explicitly considers the energy of interaction between the fila-
ments). The filaments are assumed rigid, unaffected by thermal noise. We do not include the chemical switching 
activity of the monomers, e.g., hydrolysis of guanosine tri-phosphate (GTP) in microtubules, similar to some of 
the earlier studies6,8,9,12, our filaments are chemically inert.

The model is studied mathematically using Fokker-Planck equations and computationally using Brownian 
dynamics simulations. We present a systematic discussion of our methods in the next section, followed by results.

Methods
Mathematical formalism: Fokker-Planck equations. Most of the mathematical models that dealt with 
polymerisation-driven force generation do not explicitly consider the wall movements. Rather, the presence of 
wall is encapsulated in the growth rate and detachment rate of the filament8–10,12,13. In these ‘Brownian ratchet’ 
models, the filament in contact with the wall is assumed to grow with an on-rate proportional to exp (−qfδ/kBT) 
and off-rate proportional to exp (−(q − 1) fδ/kBT) with ‘q’ being the load sharing factor. Here, our approach is 
different; we adopt a formalism similar to that by Peskin et al.6. In this model, the wall executes a combination 
of diffusive (arising from thermal noise) and directed (due to the external force) one-dimensional motion. A 
continuum approximation is adopted for the filament dynamics as we find it more convenient to incorporate the 
continuous variation of on-rate with the wall-filament separation (discussed in more detail later).

The joint probability density function P (X, z; t) for the filament tip positions X ≡ {x1, x2, .., xN} and wall posi-
tion z, in the continuum limit, satisfies the diffusion-drift equation
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Equation 1 is a Fokker-Planck equation in N + 1 variables, with both xi and z lying in the interval (−∞, +∞). 
The individual probability currents corresponding to the dynamics of wall and filaments are given by
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Figure 1. Schematic diagram for a bundle of inflexible filaments pushing against a movable rigid barrier 
acted upon by a constant force f. The rigid barrier also undergoes thermal motion characterised by diffusion 
coefficient Dw.
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In the above equation, Vw is the drift velocity of the wall in response to the external applied force f, and is 
related to its diffusion coefficient Dw through the Einstein-Smoluchowski relation Vw =−fDw/kBT6. The ‘diffusion 
coefficient’ D and ‘drift velocity’ V for the filament dynamics are expressed in terms of the on- and off-rates of 
monomers by the standard expressions35
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where kon (z − xi) is the position-dependent on-rate for monomer adsorption to the filament tip, the position 
dependence arising from the modification of the steady state concentration field due to the presence of the bar-
rier (see Supplementary Information for details). koff, the off-rate of monomers is assumed to be a constant. We 
assume the presence of hard-core steric repulsion between the wall and the filaments; hence, the currents are 
subjected to reflecting boundary conditions at filament-wall contact:
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Let the instantaneous separation between the ith filament and the wall be denoted

y z x i N, [1, ] (6)i i= − ∀ ∈

which we shall refer to as ‘gaps’. Given the reflecting boundary conditions in Eq. 5, we expect the gap probability 
distribution (see Eq. 15 later) to become stationary for non-zero f, in the long-time limit. This conjecture helps us 
derive an expression for our main quantity of interest, i.e., the average filament/wall velocity, in a straightforward 
way. Considering this, we implement a change of variables in Eq. 1. All xi are thus transformed into yi by the 
relations given by Eq. 6. We denote the transformed probability density function as Π(Y, z; t), where Y = {y1, y2, 
., yN}, hence Eq. 1 becomes,
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J Y z t( , ; )w
  and  Y z t( , ; )i  satisfy the boundary conditions (for 1 ≤ i ≤ N)
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The average position of the wall is given by
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Applying Eq. 12 in Eq. 7 and using the boundary condition given by Eqs 10 and 11, we arrive at the following 
expression for the mean wall velocity

V f
dz

dt
V ND t( ) (0, ),

(13)N w w Nφ≡ = +

where φN (y, t) is the probability density for the separation y between the wall and one of the filaments (single 
filament gap size distribution), i.e.,

∫φ = Φ ... ... .y t y y y t dy dy( , ) ( , , ; ) (14)N N N2 2

The integrand Φ(Y; t), gives the joint probability distribution of gap lengths:
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∫Φ = Π .Y t Y z t dz( ; ) ( , ; ) (15)

From Eq. 6, it follows that in the long time limit (where yi are expected to become stationary variables), the 
average wall velocity becomes equal to the average filament velocity, hence it is sufficient to get an expression for 
the wall velocity using Eq. 13, using which one can study the wall-induced effects on the kinetics of polymerisa-
tion and force generation.

Brownian dynamics simulations. The mathematical formalism presented earlier has two limitations: (i) 
diffusion of monomers is not taken into account explicitly, rather, it enters through the gap-dependent on-rate of 
monomers (ii) the length of the polymers is treated as a continuous variable, ignoring the discreteness of mono-
mer addition and dissociation processes. To overcome these limitations, we also carried out Brownian dynamics 
simulations; here, the free monomers are treated as point particles, and diffuse inside a rectangular box, with the 
walls of the box acting as reflecting boundaries, see Fig. 2.

The positions of the individual monomers rm (t) and the wall (movable face of the rectangular box) are 
updated using overdamped Langevin equations. Over a small time step ∆t, the updating rules have the form,
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where η = (ηx, ηy, ηz), the latter being random numbers drawn from independent Gaussian distributions with zero 
mean and unit variance. Similarly, ηw is a Gaussian random variable with zero mean and unit variance. We used 
∆t = 10−4 s, Dw = 103 nm2 s−1 and D = 105 nm2 s−1; for diffusing monomers, this implies a mean free path 

D t 3∼ ∆  nm between successive changes in direction. A ratio of 100:1 was kept between the diffusion coeffi-
cients of the wall and the monomers since the objects that obstruct the free growth of microtubule as well as free 
diffusion of tubulins include the lipid membranes or a kinetochore, which are massive compared to tubulin mon-
omers. Three boundary conditions are imposed on the diffusing monomers, (i) reflecting boundary conditions on 
the walls of the rectangular box, (ii) reflecting boundary condition on the cylindrical wall of the filament and (iii) 
absorbing boundary condition at the circular face/tip of the filament. These boundary condtions are implemented 
as follows: if a predicted increment vector in the position of a monomer rm (t + ∆t) − rm (t) during a time interval 
∆t crosses either an outer wall or the cylindrical surface of a filament, it is “reflected” at the point of contact about 
the normal to the surface (similar to a light ray) and the monomer’s path is modified (such that the total absolute 
distance covered during ∆t is the same as what it would have been without reflection). For an absorbing surface, 
the monomer vanishes upon making contact with the surface. Although the monomers are treated as point par-
ticles when simulating their diffusion, once a monomer is adsorbed onto a polymer tip, the length of the polymer 
increases by δ (however, this requirement was waived in one set of simulations, see (i) below). The initial spatial 
distribution of free monomers is uniform, with concentration C0. In order to ensure that adsorption events at 
polymer tips do not cause depletion in the total number of monomers, every time a monomer disappeared from 
the solution by binding to a polymer tip, a new monomer was added at a random location inside the box. This 
procedure ensures that the free monomer concentration far from the absorbing tips is always C0. In the simula-
tions, we analyzed three different cases and are summarized below.

Figure 2. Schematic diagram of the cubical box, containing a bundle of filaments growing by a diffusion-
limited reaction used in Brownian dynamics simulations. One face of the cubical box facing the filament tip is 
movable (the barrier); it is acted on by a constant force f in the backward direction and also undergoes random 
motion characterised by diffusion coefficient Dw.
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 (i) On-rate of monomers binding to static disc-shaped absorbing surface
In the first set of simulations, we looked at the steady state adsorption of particles to a static filament (fila-
ment length remains the same irrespective of monomer adsorption) with all the faces of the box kept fixed, 
by varying the separation between the filament tip and the face opposite to it. Here, the filament as well as 
the wall are static in space.

 (ii) FFD filaments growing against a mobile barrier
In the second set of simulations, we studied the force-velocity relation for rigid linear polymers with 
monomeric units modeled as flat-faced discs of different radii of cross section. In addition, we also varied 
the base separation between the filaments. Unlike the earlier case, here, whenever a monomer is adsorbed, 
the length of the filament increases by δ; the mean length of a filament grows linearly with time. We also 
allow a bound monomer to occasionally detach from the filament after adsorption, and this is accounted 
for in the simulations by including a non-zero off-rate. Our simulations are done at fixed mean monomer 
concentration C0 (as explained earlier). The mean velocity of growth of a filament was measured as the 
slope of the graph of the mean length versus time, with the averaging done over 1000 independent runs. 
For different values of f, we calculated the average velocity of growth of the filament, for a = 20 nm, 10 nm 
and 2 nm, with δ = 2 nm in all the three cases. The mean velocity was plotted as a function of the force f; the 
stall force fs, the point of zero-crossing of the V − f curve, was determined by linear interpolation.

 (iii) Multi-stranded polymers with microtubule-like geometry

In the next stage, we extended our simulations to multi-stranded polymers with microtubule-like geometry 
(but without hydrolysis or dynamic instability, see the schematic, Fig. 3). Here, each polymer consists of 13 pro-
tofilaments (with each protofilament being a FFD polymer with radius a = 2.5 nm, similar to one of the cases 
studied in (ii)), arranged in a circular fashion, with outer radius 12.5 nm and inner radius 7.5 nm. Each protofila-
ment here grows and shrinks individually, with diffusion-limited binding and random detachment (off-rate koff) 
of monomers. The monomers here are circular discs of radius 2.5 nm and length δ = 8 nm. To calculate the mean 
velocity of growth, we tracked the time evolution of the length of one randomly chosen protofilament belonging 
to one of the microtubules (if there are more than one) in one simulation. The results are averaged over 500 inde-
pendent runs.

Results
Mathematical results: Gap distribution and mean filament velocity. To derive an expression for the 
mean velocity of the filament/wall, we first need to find the expression for the single filament gap distribution, φN 
(y), t. After integrating over y2, ...yN, z in the general equation for Π (Y, z; t) given by Eq. 7, using the boundary 
conditions for J Y z t( , ; )w  and Y z t( , ; )i  given by Eqs 10–11 we find
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y t
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is an effective single-filament probability current density, the boundary conditions follow from Eqs 10 and 11 
upon integration. In the long-time limit, for f > 0, the distribution φN (y, t) is expected to become stationary: 
denote φN (y, t → ∞) ≡ φN (y) and y t y( , ) ( )→ ∞ ≡  ; hence the L.H.S of Eq. 17 can be put to zero to give 
∂ ∂ =y y( )/ 0, which, when combined with the boundary conditions in Eq. 18, yields the important relation

Figure 3. A schematic diagram of a multi-stranded filament with microtubule-like geometry.
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y( ) 0 (19)=

Implementing this condition in Eq. 18 and using the defining relations in Eqs 7–11, we find that φN (y) satisfies 
the equation
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In order to calculate φN (y), we use the following mathematical forms for V (y) and D (y), obtained using the 
approximate position-dependent on-rate k k e( )[1 ]y

on on ∞ − λ−  (see Supplementary Information) for FFD pol-
ymers. Here, we expect from scaling considerations that λ ∼ a1/ , where a is the radius of the disc. It then follows 
from Eq. 4 that
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For N = 1, the gap size distribution is given by
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The normalization constant  is given by
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The corresponding results for N = 2 are given in the Supplementary Information.

Special case: λ → ∞ (constant on-rate) and general N. The simplest limit, corresponding to λ = ∞, 
is similar to the studies by Peskin et al.6; here, we have

δ
δ
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2

In this limit, the single filament gap distribution (Eq. 23) is given by
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The expression for FN (y) is a simple exponential here:
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Now, substituting Eqs 32 and 34 in Eq. S40 given in the Supplementary Information, we get
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On using the normalization condition (Eq. S39 in the Supplementary Information) in Eq. 32 we find that
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Substituting Eq. 34 with  given by Eq. 37 in Eq. 32 and performing the integration we get
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Substitution of φN (0) = ∆2, as calculated using Eq. 38, in the general expression for the average velocity given 
by Eq. 13 gives
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The stall force, corresponding to zero mean velocity, is obtained by putting VN (f) = 0 in Eq. 39, and is given as
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For constant on-rate case, the stall force scales linearly with the number of filaments, similar to earlier predic-
tions6,9,36. But the mathematical dependence of stall force on the on-rate and off-rate differ, the difference clearly 
arising from the continuum treatment in this paper as opposed to the discrete approach in van Doorn et al.9. The 
corresponding prediction of the discrete model6,9,36 is
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Note that fs (N) = 0 in both Eqs 40 and 41 when kon = koff. The latter corresponds to the state of chemical 
equilibrium of the system, where growth and detachment processes balance each other on average (with corre-
sponding drop in the free monomer concentration in solution), and there is no net growth for the polymer (hence 
no more work can be extracted). It is also easily verified that in the limit kon (∞) ≈ koff, Eq. 41 agrees with Eq. 40, 
which is to be expected, as a continuum approximation works best when the (length) increment per unit step is 
small.

In Supplementary Information, we show that the linear scaling of stall force with number holds true to (1/ ) λ , 
although both the filament velocity and the stall force are found to be reduced. These predictions are subjected to 
further examination in the following subsection.

Simulation results. Static “absorbing” disc. In the first set of simulations we studied the on-rate of mon-
omer adsorption to a static surface, in the presence of a reflecting wall, as mentioned in case (i) of Sec. 1, for 
various radii of cross-section of the circular absorbing surface. From the simulation results, it is observed that 
the on-rate of monomers is dependent on the separation between the surface and the wall; as the separation 
decreases, a substantial drop in the on-rate is seen. The data along with the analytical results is discussed in detail 
in Supplementary Information, and was used in analytical calculations in the previous subsection.

FFD filaments. In the second set of simulations, we studied the force-velocity relation for FFD filaments. The 
various parameters are summarised in Table 1. Figure 4a shows the data for a = 10 nm, for one and two filament 
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systems. In the second case, two values for the lateral base separation between filaments was studied; 0 and 
100 nm (here, zero base separation refers to the filaments touching each other). The two cases are distinguished in 
the plots as “near” and “far”. The stall force for a single filament is found to be  .1 94 pN. By comparison, Eq. 41 
predicts a stall force of .2 62  pN. The discrepancy is almost certainly arising from the barrier-induced reduction 
in the on-rate, which is significant for a = 10 nm. The inset of the same Figure shows the dimensionless on-rate for 
monomer binding onto an absorbing disc of the same radius, as a function of its distance from a reflecting barrier. 
Fitting the data to an exponential curve yields the parameter λ, which is then used to predict the force-velocity 
relation using the relevant equations from Sec. 3, viz., Eqs 28 and 13 (for N = 1) and Eq. S43 in the Supplementary 
Information (for N = 2). The theoretical predictions are also shown alongside the simulation results in the same 
Figure. For N = 1, the agreement between the theoretical curve and simulation data is excellent in the sub-stall 
regime, while significant deviation is observed post-stall. For N = 2, the far-data shows reasonable agreement with 
the theoretical curve except at very small f, but the near-data is significantly different. More importantly, while the 
two-filament stall force f f2

s s
(2) (1)  for filaments far apart, f f2

s s
(2) (1)<  for near-filaments, i.e., sublinear scaling 

of stall force with number is observed when the filaments are close together, but linear scaling is restored when 
they are far apart. This observation is in disagreement with the prediction of the Brownian ratchet model6. We 
strongly believe that the sublinear scaling arises from diffusive interaction between the filaments, a phenomenon 
that occurs whenever multiple ‘sinks’ compete for diffusing particles that form a common pool37–39.

We repeated the above investigations for a smaller radius of cross-section, a = 2 nm. The results are shown in 
Fig. 4b. The observed single filament stall force here is nearly 2.27 pN, while the theoretical prediction from Eq. 41 
of the discrete model is 2 6.  pN. The velocity-force curves predicted using the continuum model also agree with 
the simulations over a larger range of force. Coming now to two-filament data, unlike the previous case, the near 
and far cases for N = 2 are practically indistinguishable here, and both agree very well with the theoretical curve 
(here, “far” refers to a base separation of 20 nm). Finally, the two-filament stall force is very nearly twice the single 
filament force, indicating that diffusive interaction is negligible here, at least for N = 2. However, we shall see in 
the next subsection that for larger numbers, this interaction becomes significant even for a ~ 2 nm. For two fila-
ments, the observed doubling of stall force for N = 2, when the filaments are far apart, is also consistent with the 
results of the asymptotic analysis (λ → ∞) presented in Supplementary Information.

As further verification of the continuum theory presented in the last section, we also found the single-filament 
gap distribution function φN (y) (defined in Eq. 14), and compared with the theoretical predictions given in Eq. 28 

Parameter Symbol FFD MT-like geometry

Monomer length δ 2 nm 8 nm

Radius a variable 2.5 nm

Diffusion coefficient (monomer) D 105 nm2 s−1 105 nm2 s−1

Diffusion coefficient (wall) Dw 103 nm2 s−1 103 nm2 s−1

Concentration C0 3.3 µM 33.3 µM

Monomer dissociation rate koff variable 3 s−1

Table 1. Numerical values of the various parameters used in the Brownian dynamics simulation for flat-faced 
filaments (FFD) and microtubule-like geometry.

Figure 4. The force-velocity curve for a single filament versus two filaments, obtained from Brownian dynamics 
simulations, for (a) a = 10 nm and (b) a = 2 nm. For (a), the off-rate of monomers is koff = 2 s−1 while for  
(b), koff = 0.2 s−1. Analytical results are shown for best fit value of λ; 0.275 nm−1 in (a) and 0.4 nm−1 in (b). In the 
insets, fits for (scaled) separation-dependent on-rate α (d) = kon (d)/kon (∞), using the same λ are shown. The 
other parameter values are given in Table 1. Here, near means zero base separation between polymers, wheras 
far refers to a base separation 10a. The error bars are typically smaller than the size of the symbols.
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(N = 1) and Eq. S43 in the Supplementary Information (N = 2). The results are given in Fig. 5 (a = 10 nm) and 
Fig. 6 (a = 2 nm). Quantitative agreement is better for a = 10 nm compared to a = 2 nm, as expected.

Microtubule-like filaments. Figure 7 shows the force-velocity curve for one (N = 1) and two (N = 2) 
microtubule-like filaments. The observed stall force for a single microtubule is found to be nearly 5.17 pN in 
simulations for the parameters used here. For comparison, for the same set of parameters, the prediction of the 
Brownian ratchet model (Eq. 41) for the combined stall force of 13 independent protofilaments is 12.24 pN. 
Therefore, we again encounter sublinear scaling of stall force, here as a function of the number of (proto)fila-
ments, similar to the experimental observations in21. This can be explained using two different, but essentially 
equivalent arguments:

 (a) a protofilament here is part of the larger microtubule, which has an outer radius of nearly 12.5 nm, large 
enough for significant barrier-induced reduction in the on-rate, when the filament is close enough to the 
wall. This causes each protofilament to grow much slower than it would have, if it were alone in the solu-
tion. Consequently growth is stalled at a lower value of the opposing force.

 (b) each protofilament is diffusively coupled to the other protofilaments, and hence the on-rate for one is 
reduced by the presence of the others. For n disc-shaped absorbers (each with radius a) arranged uniform-
ly in a circle, with centre-to-centre separation R, it has been proposed that, for R a , the effective 
diffusion-limited on-rate for one of the discs is given by the approximate formula40

Figure 5. The gap distribution for a = 10 nm, for two forces, far from and near to stall, with (a) N = 1 and (b) 
N = 2. Fits of the analytical results, Eq. 28 for N = 1 and Eq. S43(Supplementary Information) for N = 2 are also 
shown for the best fit value λ = 0.275 nm−1, with kon (∞) = 7.5 s−1. For both (a) and (b), koff = 2 s−1. The other 
parameter values are listed in Table 1.

Figure 6. The gap distribution for a = 2 nm, for two forces, far and near to stall. (a) is shown for N = 1 and  
(b) is shown for N = 2. A fit of the analytical results (Eq. 28 for N = 1 and Eq. S43(Supplementary Information) 
for N = 2) also shown for the best fitting value of λ = 0.4 nm−1, with kon (∞) = 0.73 s−1. For both (a) and (b), 
koff = 0.2 s−1. The other parameter values are listed in Table 1.
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In a microtubule, protofilaments are tightly packed, this corresponds to the situation with R a2  in the above 
formula. However, protofilament lengths can be different in general, hence it is not clear a priori if Eq. 42 can be 
applied in this case. Nevertheless, it is remarkable that the stall force of a single microtubule calculated using 
Eq. 41, with the on-rate given by Eq. 42 (after substituting a = 2.5 nm, R = 2a, n = 13 and δ = 8 nm), turns out to 
be 3.94 pN, closer to the observed value. The velocity-force curves of two microtubule-like filaments, both near 
(base separation zero) and far (base separation 150 nm), show a surprising feature. A close inspection (see inset 
of Fig. 7) reveals that the two-filament mean velocity remains close to zero after reaching stall (|V2(f)| < 10−3 nm s−1 
for ≥f f

s
(2)). This counter-intuitive behaviour persists for forces up to 10 pN; the growth velocity remains close to 

zero for a large range of force in the super-stall regime. At present, we do not have an explanation for this obser-
vation. Nevertheless, Fig. 8 provides some insights. Here, we show comparisons of the time-dependence of the 
mean position of the barrier and a randomly chosen protofilament for N = 1 (a) and N = 2 (b and c), at super-stall 
forces. For N = 1, the wall and the filament keeps moves leftward on average, keeping a constant mean separation 
between them. Something different happens for N = 2. Here, as the force is increased, the mean positions of both 
the filament tip and the wall shifts leftwards, but settles in a new equilibrium position, with a constant, 
force-dependent mean separation between the two (Fig. 8). Since both near and far configurations show similar 
qualitative behaviour, it appears that the large number of individual (proto)filaments for N = 2 (26 in total) might 
be the crucial factor here; this issue requires further investigation. It is also likely that these new “equilibrium” 
states may be actually metastable; such metastable states have been revealed in a recent investigation of the growth 
dynamics of parallel actin bundles41.

The sub-additive nature of the stall force of a single microtubule reported in the experiments21 was also inves-
tigated theoretically by Mogilner and Oster8. Their argument was that, because of variations in the individual pro-
tofilament lengths, the mean number of protofilaments in contact with the barrier is less than the total number, 
and this leads to sublinear scaling of force with number. However, this argument was refuted by van Doorn et al.9, 
who showed that the conclusion of Mogilner and Oster7 was an artifact of their deterministic, continuum approx-
imation scheme, and that linear scaling of force with number is recovered when the discrete stochastic formalism 
is used. We show here that the sublinear scaling of stall force of a microtubule is a reality, and arises from diffusive 
interaction between growing filament tips, an effect not taken into account in van Doorn et al.9.

The deviation from linear scaling of the stall force may be characterised in simulations using a scaling param-
eter ν = f f/2

s s
(2) (1), which is always 1 for perfect linear scaling. In Table 2, we collect together the different values 

of stall forces observed in our simulations, as well as the computed ν, for FFD filaments and multi-stranded 
microtubule-like filaments.

Discussion
Polymerisation-driven force generation by filaments has many biological applications, and the problem has been 
extensively studied experimentally as well as theoretically. A central quantity of interest here is the stall force of 
a bundle of N filaments, and its scaling behavior with N. Recent years have seen a spurt of activity in theoret-
ical modeling in this field, but barring a few14,18,41, most of the models are one-dimensional in nature, and do 

Figure 7. Force-velocity relation for a single microtubule and two microtubules, both near (zero base 
separation) and far (base separation of 150 nm). The values of the parameters used in the simulation are listed 
in Table 1. The inset zooms the force range where the velocity vanishes. Note that while the single filament 
curve crosses the x-axis after touching zero at stall, the two-filament velocity remains close to zero after stall. 
In most cases, the error bars are smaller than the size of the symbols. For two filaments, ‘near’ means zero base 
separation, while ‘far’ refers to a base separation 150 nm.
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not consider explicitly (three-dimensional) monomer diffusion in space6–11, or even the dynamics of the object 
(barrier) that is being pushed by the filaments7–10. Here, we have introduced and studied a more general model 
in which the effects of polymerisation-driven growth of the filament and the presence of the physical barrier on 
monomer concentration are included, and the consequent fall in the monomer adsorption rate is estimated. We 
showed that, in general, the physical barrier affects the monomer concentration profile, causing a drop in the 
growth rate in addition to being a steric hindrance to growth, when the filament tip and the barrier are within 
a distance of approximately 3–4 times the radius of cross-section of the filament tip (imagined as having a solid 
disc-like face). We then investigated, by mathematical analysis as well as Brownian dynamics simulations, how 
the collective dynamics of a bundle of filaments is affected by this barrier-induced hindrance to free diffusion. 
In the process, we also encountered diffusive interaction between filaments that naturally appears when nearby 
filaments grow together by diffusion-limited adsorption, but its effects are particularly noticeable in the presence 
of a barrier as the latter reduces the spread in length across different filaments and thereby forces the tips to be 
close to each other.

The mathematical part of our study uses a continuum Fokker-Planck equation to describe the collective 
growth of N identical filaments against a rigid barrier, the latter’s motion including drift towards the filaments due 
to an externally applied force, and random diffusive motion powered by thermal noise. We then use an adiabatic 
approximation where the stationary monomer density profile is assumed to respond instantly to changes in the 
positions of the filament tips and the barrier. The on-rate for adsorption of monomers onto a filament tip is calcu-
lated, and also measured directly in simulations. By assuming a simple analytical form for the boundary-affected 
reduced on-rate, consistent with observations, we studied steady state properties of the filament population. In 
particular, we derived analytical expressions for the mean filament growth velocity and the stall force of an assem-
bly. These expressions involve the probability distribution for the filament tip-barrier separations (‘gaps’), which 
was calculated explicitly in a few special cases of interest. All analytical predictions were subjected to verification 
in Brownian dynamics simulations, which were also used to explore the consequences of having more complex 
microtubule-like multi-stranded structure for the filaments.

Figure 8. The time evolution of the average positions of the wall and one of the protofilaments is shown for 
(a) one microtubule, (b) two microtubules (near) and (c) two microtubules (far). In the inset of (a), the average 
position of wall alone shown. The parameters common for all the three cases are listed in Table 1. For two 
filaments, ‘near’ means zero base separation, while ‘far’ refers to a base separation 150 nm.

Filament f
s

1(pN) f
s

2(pN) ν

FFD (a = 2 nm, near) 2.27 ± 0.05 4.58 ± 0.05 1.01 ± 0.022

FFD (a = 2 nm, far) 2.27 ± 0.05 4.53 ± 0.05 0.99 ± 0.043

FFD (a = 10 nm, near) 1.94 ± 0.05 3.05 ± 0.05 0.79 ± 0.026

FFD (a = 10 nm, far) 1.94 ± 0.05 3.73 ± 0.05 0.96 ± 0.012

FFD (a = 20 nm, near) 1.88 ± 0.25 2.76 ± 0.25 0.73 ± 0.075

FFD (a = 20 nm, far) 1.88 ± 0.25 3.55 ± 0.25 0.94 ± 0.059

Microtubule-like geometry (near) 5.17 ± 0.25 6.48 ± 0.25 0.63 ± 0.18

Microtubule-like geometry (far) 5.17±0.25 8.02 ± 0.25 0.76 ± 0.14

Table 2. The stall forces for single and two filaments, and the scaling parameter ν = f f/2
s s
2 1, for N = 1 and 2, for 

flat-faced disc polymers and microtubule-like polymers. The deviation from unity indicates sublinear scaling 
with N. The error bar in the stall force data is estimated as half of the step size for force used in the simulations. 
For two filaments, ‘near’ refers to zero base separation and ‘far’ refers to base separation 10 times the radius of 
cross-section (except for the last, where the base separation is 150 nm).
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In this work, we established clearly that, in general, a physical barrier may be expected to cause reduction 
in the rate of growth of a polymer growing towards it, and this effect also reduces the stall force of the filament. 
However, as long as the filaments have sufficient lateral separation from each other, the stall force for N filaments 
increases linearly with N. Nonlinear scaling appears when the filaments are brought close together to form a 
bundle; in this case, diffusive interaction between the growing filament tips leads to a non-additive combined 
stall force of the bundle. The effects of this diffusive interaction are most visible in a multi-stranded filament like a 
microtubule; here, we show conclusively in simulations that the net stall force of the filament is much less than the 
sum of the stall forces of the individual protofilaments21. Similarly, the combined stall force for two microtubules 
is generally less than twice the stall force of one. Diffusive coupling, when significant, leads to sublinear scaling 
of stall force with the number of filaments, a notable prediction from our studies. Specifically, in microtubules, 
we report the existence of strong diffusive coupling between different protofilaments, arising by virtue of their 
tight packing, which leads to smaller combined stall force, compared to a hypothetical situation where each pro-
tofilament grows independent of the others. We also observe a remarkable phenomenon in our simulations; two 
microtubules, when growing against a super-stall force, stand their ground after retreating to a new ‘equilibrium’ 
position, and refuse to be continuously pushed backward unlike a single microtubule, or simpler (single-strand) 
flat-faced filaments. At the moment, we lack a clear understanding of the mechanism or the implications of this 
observation, and investigating it further is one of our immediate goals for the future.

Among the limitations of our study, we have treated diffusing monomers as point point particles devoid of 
size and shape; therefore, Brownian rotation of monomers and orientational constraints to their adsorption at the 
growing tip have been ignored (see, for instance, a recent computational study on the growth of actin bundles41 
where finite size of binding monomers are consequent steric effects have been included). We do not believe 
that this will impact our principal conclusions, but if taken into account, could reduce the on-rate uniformly 
everywhere. Yet another important omission in our model, in the context of microtubules, is that we have not 
included GTP hydrolysis and the consequent dynamic instability. Recent theoretical work10 has shown that the 
combined stall force of a bundle of N microtubules with dynamic instability scales superlinearly with N. Bundle 
catastrophes, observed in microtubules growing close together25 seems to be a collective catastrophe phenome-
non which could be studied further using the approach developed in this paper. Even within our model, the large 
N behaviour of the collective force produced by a filament bundle remains to be explored, both mathematically 
and computationally. In general, it would be interesting to see how the competition between diffusive coupling 
and dynamic instability, which appear to have opposite effects on the scaling of force with number, affects collec-
tive force generation and dynamic instability in a microtubule bundle.
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