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Abstract

We study the existence of a positive radial solution to the nonlinear eigenvalue

problem –�u = λK1(|x|)f (v) in �e, –�v = λK2(|x|)g(u) in �e, u(x) = v(x) = 0 if |x| = r0
(> 0), u(x) → 0, v(x) → 0 as |x| → ∞, where λ > 0 is a parameter, �u = div(∇u) is the

Laplace operator, �e = {x ∈R
n | |x| > r0,n > 2}, and Ki ∈ C1([r0,∞), (0,∞)); i = 1, 2 are

such that Ki(|x|) → 0 as |x| → ∞. Here f ,g : [0,∞) → R are C1 functions such that

they are negative at the origin (semipositone) and superlinear at infinity. We establish

the existence of a positive solution for λ small via degree theory and rescaling

arguments. We also discuss a non-existence result for λ ≫ 1 for the single equations

case.

MSC: 34B16; 34B18

Keywords: superlinear; semipositone; positive solutions; existence; non-existence;
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1 Introduction

We consider the nonlinear elliptic boundary value problem

–�u = λK(|x|)f (v) in �e,

–�v = λK(|x|)g(u) in �e,

u(x) = v(x) =  if |x| = r (> ),

u(x)→ , v(x)→  as |x| → ∞,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(.)

where λ >  is a parameter, �u = div(∇u) is the Laplace operator, and �e = {x ∈ R
n | |x| >

r,n > } is an exterior domain. Here the nonlinearities f , g : [,∞) → R are C functions

which satisfy:

(H) f () <  and g() <  (semipositone).

(H) For i = ,  there exist bi >  and qi >  such that lims→∞
f (s)
sq

= b, and lims→∞
g(s)
sq

= b.

Further, for i = , , the weight functions Ki ∈ C([r,∞), (,∞)) are such that Ki(|x|)→ 

as |x| → ∞. In particular, we are interested in the challenging case, where Ki do not decay

too fast. Namely, we assume

(H) There exist d̃ > , d̃ > , ρ ∈ (,n – ) such that for i = , 

d̃

|x|n+ρ
≤ Ki

(

|x|
)

≤ d̃

|x|n+ρ
for |x| ≫ .
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We then establish the following.

Theorem . Let (H)-(H) hold. Then (.) has a positive radial solution (u, v) (u > ,

v >  in �e) when λ is small, and ‖u‖∞ → ∞, ‖v‖∞ → ∞ as λ → .

We prove this result via the Leray-Schauder degree theory, by arguments similar to those

used in [] and []. The study of such eigenvalue problemswith semipositone structure has

been documented to be mathematically challenging (see [, ]), yet a rich history is devel-

oping starting from the s (see [–]) until recently (see [–]). In [, ] the authors

studied such superlinear semipositone problems on bounded domains. In particular, in

[] the authors studied the system

–�u = λf (v) in �,

–�v = λg(u) in �,

u = v =  on ∂�,

⎫

⎪

⎬

⎪

⎭

where � is a bounded domain in R
n, n ≥ , and establish an existence result when λ is

small. The main motivation of this paper is to extend this study in the case of exterior

domains (see Theorem .).

We also discuss a non-existence result for the single equation model:

–�u = λK(|x|)f̃ (u) in �e,

u(x) =  if |x| = r (> ),

u(x) →  as |x| → ∞,

⎫

⎪

⎬

⎪

⎭

(.)

for large values of λ, when f̃ , K satisfy the following hypotheses:

(H) f̃ ∈ C([,∞),R), f̃ ′(z) >  for all z > , f̃ () < , and there exists m >  such that

limz→∞
f̃ (z)
z

≥ m.

(H) The weight function K ∈ C([r,∞), (,∞)) is such that s
–(n–)
n– K(rs


–n ) is decreas-

ing for s ∈ (, ].

We establish the following.

Theorem . Let (H)-(H) hold. Then (.) has no nonnegative radial solution for λ ≫ .

We establish Theorem . by recalling various useful properties of solutions established

in [], where the authors prove a uniqueness result for λ ≫  for such an equation in the

case when f̃ is sublinear at∞. However, the properties we recall from [] are independent

of the growth behavior of f̃ at∞. Non-existence results for such superlinear semipositone

problems on bounded domain also have a considerable history starting from the work in

the s in [] leading to the recent work in []. Here we discuss such a result for the

first time on exterior domains.

http://www.boundaryvalueproblems.com/content/2014/1/198
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Finally, we note that the study of radial solutions (u(r), v(r)) (with r = |x|) of (.) corre-
sponds to studying

–(rn–u′(r))′ = λrn–K(r)f (v(r)) for r > r,

–(rn–v′(r))′ = λrn–K(r)g(u(r)) for r > r,

u(r) = v(r) =  if r = r (> ),

u(r) → , v(r)→  as r → ∞,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

which can be reduced to the study of solutions (u(s), v(s)); s ∈ [, ] to the singular system:

–u′′(s) = λh(s)f (v(s)),  < s < ,

–v′′(s) = λh(s)g(u(s)),  < s < ,

u() = u() = , v() = v() = ,

⎫

⎪

⎬

⎪

⎭

(.)

via the Kelvin transformation s = ( r
r
)–n, where hi(s) =

r
(n–)

s
–(n–)
(n–) Ki(rs


–n ), i = ,  (see

[]).

Remark . The assumption (H) implies that lims→+ hi(s) = ∞, for i = , ,

ĥ = inft∈(,){h(t),h(t)} > , and there exist d > , η ∈ (, ) such that hi(s)≤ d
sη
for s ∈ (, ],

and for i = , . When in addition (H) is satisfied, h is decreasing in (, ].

We will prove Theorem . in Section  by studying the singular system (.), and The-

orem . in Section  by studying the corresponding single equation

–u′′(s) = λh(s)f̃ (u(s)),  < s < ,

u() = u() = .

}

(.)

2 Existence result

We first establish some useful results for solutions to the system

–u′′(s) = bh(s)|v(s) + l|q ,  < s < ,

–v′′(s) = bh(s)|u(s) + l|q ,  < s < ,

u() = u() = , v() = v() = ,

⎫

⎪

⎬

⎪

⎭

(.)

where l ≥  is a parameter. (Clearly, any solution (ul, vl) of (.) for l >  must satisfy

ul(s) > , vl(s) >  for s ∈ (, ). This is also true for any nontrivial solution when l = .)

We prove the following.

Lemma .

(i) There exists l >  such that . has no solution if l ≥ l.

(ii) For each l ∈ [, l), there existsM >  (independent of l) such that if (ul, vl) is a

solution of (.), then max{‖ul‖∞,‖vl‖∞} ≤ M.

Proof of (i) Let λ := π, φ := sin(πs). Here λ is the principal eigenvalue and φ a corre-

sponding eigenfunction of –φ′′(s) = λφ(s) in (, ) with φ() =  = φ(). Let a > λ√
bbĥ

, c > 

be such that (s + l)qi ≥ as – c for all s ≥  and for i = , . Now let (ul, vl) be a solution of

http://www.boundaryvalueproblems.com/content/2014/1/198
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(.). Multiplying (.) by φ and integrating, we obtain

λ

∫ 



ulφ ds = b

∫ 



h(s)(vl + l)qφ ds ≥ b

∫ 



h(s)(avl – c)φ ds

and

λ

∫ 



vlφ ds = b

∫ 



h(s)(ul + l)qφ ds≥ b

∫ 



h(s)(aul – c)φ ds.

By Remark ., ĥ = inft∈(,){h(t),h(t)} > , and ‖hi‖ :=
∫ 


hi(s)ds < ∞ for i = , . Then

from the above inequalities we obtain

∫ 



vlφ ds ≤ 

abĥ

(

λ

∫ 



ulφ ds + bc‖h‖
)

and

∫ 



ulφ ds≤ 

abĥ

(

λ

∫ 



vlφ ds + bc‖h‖
)

.

Hence we deduce that

∫ 



ulφ ds≤ m

m
:=m,

wherem := (abĥ –
λ

abĥ
), andm :=

λc‖h‖
aĥ

+ bc‖h‖. This implies

∫ 



(vl + l)qφ ds ≤ λm

bĥ
:=m.

In particular, this implies
∫






lqds ≤ m
inf

[  ,

 ]

φ
. Since m is independent of l, clearly this is

a contradiction for l ≫ , and hence there must exists an l >  such that for l ≥ l, (.)

has no solution.

Proof of (ii) Assume the contrary. Then without loss of generality we can assume there

exists {ln} ⊂ (, l) such that ‖uln‖∞ → ∞ as n → ∞. Clearly u′′
ln
(s) < , and v′′

ln
(s) <  for

all s ∈ (, ). Let s(ln) ∈ (, ), s(ln) ∈ (, ) be the points at which uln and vln attain their

maximums. Now since u′′
ln
(s) <  for all s ∈ (, ), we have

uln (s)≥

⎧

⎨

⎩

suln (s(ln))

s(ln)
for s ∈ (, s(ln)),

(–s)uln (s(ln))

–s(ln)
for s ∈ (s(ln), ).

Hence uln (s)≥ min{ s‖uln‖∞
s(ln)

,
(–s)‖uln‖∞

–s(ln)
}, and in particular, for s ∈ [ 


, 

],

uln (s)≥ min

{




‖uln‖∞,




‖uln‖∞

}

=



‖uln‖∞.

http://www.boundaryvalueproblems.com/content/2014/1/198
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Let ˜sln , ¯sln ∈ [ 

, 

] be such that min[  ,


 ]
uln (s) = uln ( ˜sln ), and min[  ,


 ]
vln (s) = vln ( ¯sln ). Now

for s ∈ [ 

, 

],

vln (s)≥ bĥm̃

∫ 





∣

∣uln (t) + l
∣

∣

q dt,

where m̃ := min[  ,

 ]×[  ,


 ]
G(s, t) (> ), andG is theGreen’s function of –Z′′ withZ() =  =

Z(). In particular, vln ( ¯sln ) ≥ bĥ
m̃

(uln ( ˜sln ))q . Similarly uln ( ˜sln ) ≥ bĥ

m

(vln ( ¯sln ))q . Hence,

there exists a constant A >  such that

uln ( ˜sln ) ≥ A
(

uln ( ˜sln )
)qq .

This is a contradiction since qq >  and uln ( ˜sln ) ≥ 

‖uln‖∞ → ∞ as n → ∞. Thus (ii)

holds. �

Proof of Theorem . We first extend f and g as even functions onR by setting f (–s) = f (s)

and g(–s) = g(s). Then we use the rescaling, λ = γ δ , w = γu, and w = γ θv with γ > ,

θ = q+
q+

, and δ = qq–
q+

. With this rescaling, (.) reduces to

–w′′
 (s) = F(s,γ ,w),  < s < ,

–w′′
(s) =G(s,γ ,w),  < s < ,

w() = w() = , w() = w() = ,

⎫

⎪

⎬

⎪

⎭

(.)

where

F(s,γ ,w) := γ +δh(s)

(

f

(

w

γ θ

)

– b

∣

∣

∣

∣

w

γ θ

∣

∣

∣

∣

q
)

+ b|w|qh(s), and

G(s,γ ,w) := γ θ+δh(s)

(

g

(

w

γ

)

– b

∣

∣

∣

∣

w

γ

∣

∣

∣

∣

q
)

+ b|w|qh(s).

Note that by our hypothesis (H), F(s,γ ,w) → b|w|qh(s) and G(s,γ ,w) → b|w|q ×
h(s) as γ → .Hencewe can continuously extend F(s,γ ,w) andG(s,γ ,w) to F(s, ,w) =

b|w|qh(s) andG(s, ,w) = b|w|qh(s), respectively. Note that proving (.) has a pos-

itive solution for λ small is equivalent to proving (.) has a solution (w,w) with w > ,

w >  in (, ) for small γ > . We will achieve this by establishing that the limiting equa-

tion (when γ = )

–w′′
 (s) = F(s, ,w) = bh(s)|w|q ,  < s < ,

–w′′
(s) =G(s, ,w) = bh(s)|w|q ,  < s < ,

w() = w() = , w() = w() = 

⎫

⎪

⎬

⎪

⎭

(.)

(which is the same as (.) with l = ) has a positive solution w > , w >  in (, ) that

persists for small γ > .

Let X = C[, ] × C[, ] be the Banach space equipped with ‖w‖X = ‖(w,w)‖X =

max{‖w‖∞,‖w‖∞}, where ‖ · ‖∞ denotes the usual supremum norm in C([, ]). Then

for fixed γ ≥ , we define the map S(γ , ·) : X → X by

S(γ ,w) := w –
(

K
(

F(s,γ ,w)
)

,K
(

G(s,γ ,w)
))

,

http://www.boundaryvalueproblems.com/content/2014/1/198
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whereK(H(s,γ ,Z(s))) =
∫ 


G(t, s)H(t,γ ,Z(t))dt. Note that F(s,γ , ·),G(s,γ , ·) : C([, ]) →

L(, ) are continuous and K : L(, )→ C
([, ]) is compact. Hence S(γ , ·) is a compact

perturbation of the identity. Clearly for γ > , if S(γ ,w) = , then w = (w,w) is a solution

of (.), and if S(,w) = , then w = (w,w) is a solution of (.).

We first establish the following.

Lemma . There exists R >  such that S(,w) =  for all w = (w,w) ∈ X with ‖w‖X = R

and deg(S(, ·),BR(), ) = .

Proof Define Sl(,w) : X → X by

Sl(,w) := w –
(

K
(

bh(s)|w + l|q
)

,K
(

bh(s)|w + l|q
))

for l ≥ . (Note S(,w) = S(,w).) By Lemma ., if l ≥ l then Sl(,w) =  and if

Sl(,w) =  for l ∈ [, l), then ‖w‖X ≤ M. This implies that there exists R ≫  such that

Sl(,w) =  for w ∈ ∂BR() for any l ≥ . Also, since (.) has no solution for l ≥ l,

deg(Sl (, ·),BR(), ) = . Hence, using the homotopy invariance of degree with the pa-

rameter l ∈ [, l] we get

deg
(

S(, ·),BR(), 
)

= deg
(

Sl (, ·),BR(), 
)

= . �

Next we establish the following.

Lemma . There exists r ∈ (,R) small enough such that S(,w) =  for all w = (w,w) ∈
X with ‖w‖X = r and deg(S(, ·),Br(), ) = .

Proof Define Tτ (,w) : X → X by

Tτ (,w) := w –
(

K
(

τbh(s)|w|q
)

,K
(

τbh(s)|w|q
))

for τ ∈ [, ]. Clearly T (,w) = S(,w), and T(,w) = I is the identity operator. Note that

Tτ (,w) =  if w = (w,w) is a solution of

–w′′
 (s) = τbh(s)|w|q ,  < s < ,

–w′′
(s) = τbh(s)|w|q ,  < s < ,

w() = w() = , w() = w() = ,

⎫

⎪

⎬

⎪

⎭

(.)

and for τ = , (.) coincides with (.). Assume to the contrary that (.) has a solution

w = (w,w) with ‖w‖X = r̃ > . Without loss of generality assume ‖w‖∞ = r̃. Now,

w(s) = τ

∫ 



G(s, t)bh(s)|w|q ds.

Then ‖w‖∞ ≤ C̃‖w‖q∞ for some constant C̃ >  independent of τ ∈ [, ]. Similarly

‖w‖∞ ≤ Ĉ‖w‖q∞ for some constant Ĉ > . This implies that

r̃ = ‖w‖∞ ≤ C‖w‖qq∞ = Cr̃qq

http://www.boundaryvalueproblems.com/content/2014/1/198
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for some constant C > . But qq > , and hence this is a contradiction if r̃ >  is small.

Thus there exists small r >  such that (.) has no solution w with ‖w‖X = r for all

τ ∈ [, ]. Now using the homotopy invariance of degree with the parameter τ ∈ [, ],

in particular using the values τ =  and τ = , we obtain

deg
(

S(, ·),Br(), 
)

= deg
(

T (, ·),Br(), 
)

= deg
(

T(, ·),Br(), 
)

= . �

By Lemma . and Lemma ., with  < r < R, we conclude that

deg
(

S(, ·),BR() \ Br(), 
)

= –,

and hence (.) has a solution w = (w,w) with w > , w >  in (, ), and r < ‖w‖X < R.

Now we show that the solution obtained above (when γ = ) persists for small γ >  and

remains positive componentwise.

Lemma . Let R, r be as in Lemmas ., ., respectively. Then there exists γ >  such

that:

(i) deg(S(γ , ·),BR() \ Br(), ) = – for all γ ∈ [,γ].

(ii) If S(γ ,w) =  for γ ∈ [,γ] with r < ‖w‖X < R, then w > , w >  in (, ).

Proof of (i) We first show that there exists γ >  such that S(γ ,w) =  for all w = (w,w) ∈
X with ‖w‖X ∈ {R, r}, for all γ ∈ [,γ]. Suppose to the contrary that there exists {γn}
with γn → , S(γn,wn) =  and ‖wn‖X ∈ {r,R}. Since K = (K ,K) : L(, ) × L(, ) →
C
([, ])×C

([, ]) is compact, and {F(s,γn,wn),G(s,γn,wn)} are bounded in L(, )×
L(, ), wn → Z = (Z,Z) ∈ C

([, ]) × C
([, ]) (up to a subsequence) with ‖Z‖X = R

or r and S(,Z) = . This is a contradiction to Lemma . or . and hence there exists

a small γ >  satisfying the assertions. Now, by the homotopy invariance of degree with

respect to γ ∈ [,γ],

deg
(

S(γ , ·),BR()\Br(), 
)

= deg
(

S(, ·),BR()\Br(), 
)

= –

for all γ ∈ [,γ].

Proof of (ii) Assume to the contrary that there exists γn →  and a corresponding solution

wn = (wn,wn) such that r < ‖wn‖X < R and

�n :=
{

x ∈ (, ) | wn(x)≤  or wn(x)≤ 
}

= ∅.

Arguing as before, wn → Z ∈ C
([, ])×C

([, ]) with S(,Z) =  (up to a subsequence).

Note that Z ≡  since ‖Z‖X ≥ r > . By the strong maximum principle Z > , Z > ,

Z′
() > , Z′

() > , Z′
() <  and Z′

() < . Now suppose there exists {xn} ∈ (, ) with

{xn} ∈ �n and wn(xn) ≤ . Then {xn} must have a subsequence (renamed as {xn} itself )
such that xn → x̃ ∈ [, ]. But Z >  in (, ) implies that x̃ ∈ {, }. Suppose x̃ = . Since

wn(xn)≤  andwn() = , there exists yn ∈ (,xn) such thatw
′
n(yn) ≤ , and hence taking

the limit as n→ ∞we will have Z′
() ≤ , which is a contradiction since Z′

() > . A sim-

ilar contradiction follows if x̃ = , using the fact that Z′
() < . Further, contradictions can

http://www.boundaryvalueproblems.com/content/2014/1/198
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be achieved if there exists {xn} ∈ � with {xn} ∈ �n and wn(xn) ≤  using the facts that

Z′
() >  and Z′

() < . This completes the proof of the lemma. �

We now easily conclude the proof of Theorem .. From Lemma ., since w = (w,w)

is a positive solution of (.) for γ small, (u, v) = (γ –w,γ
–θw) with θ = q+

q+
is a posi-

tive solution of (.) for λ = γ δ where δ = qq–
q+

. Further, since w >  and w >  in (, )

for γ ∈ [,γ], ‖u‖∞ → ∞ and ‖v‖∞ → ∞ as λ(= γ δ) → . This completes the proof of

Theorem .. �

3 Non-existence result

We first recall from [] that, when (H) is satisfied, one can prove via an energy analysis

that a nonnegative solution u of (.) must be positive in (, ) and have a unique interior

maximum with maximum value greater than θ , where θ is the unique positive zero of

F̃(s) =
∫ s


f̃ (y)dy. Further, for λ ≫  and s, ŝ ∈ (, ) such that ŝ > s, u(s) = u(ŝ) = β (see

Figure ), where β >  is the unique zero of f̃ , there exists a constant C such that s ≤ Cλ– 


and (– ŝ) ≤ Cλ– 
 . Hence we can assume (ŝ– s) >



for λ ≫ . Nowwe provide the proof

of Theorem ..

Proof of Theorem . Let v := u – β . Then v >  in (s, ŝ) and satisfies

–v′′ = λh(s)
f̃ (u)
u–β

v, s < s < ŝ,

v(s) = v(ŝ) = .

}

Note that φ(s) = –(sin(π (s–s)
(ŝ–s)

)) >  in (s, ŝ), φ(s) = φ(ŝ) = , and it satisfies –φ′′ = π

(ŝ–s)
φ

in (s, ŝ). Hence using the fact that
∫ ŝ
s
(–φv′′ + vφ′′)ds = , we obtain

∫ ŝ

s

(

λ
f̃ (u)

u – β
h(s) –

π

(ŝ – s)

)

vφ ds = .

In particular,

λ
f̃ (u(sλ))

u(sλ) – β
h(sλ) =

π

(ŝ – s)
, for some sλ ∈ (s, ŝ). (.)

Figure 1 Graph of u.

http://www.boundaryvalueproblems.com/content/2014/1/198
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But ĥ = inf(,) h(s) > , and (ŝ – s) >


for λ ≫ . Thus clearly (.) can hold when

λ → ∞, only if Z = u(sλ) → ∞ with
f̃ (u(sλ))
u(sλ)–β

→ . But by (H), this is not possible since

limZ→∞
f̃ (Z)
Z

≥ m > . Hence the nonnegative solution cannot exist for λ ≫ . �
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