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Abstract

Motivation: In the analysis of metabolism, two distinct and complementary approaches are frequently

used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the

main modes of variability in a set of experiments and does not make many prior assumptions about the

data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux

analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other

hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis

of single samples at a time, and not best suited for exploratory analysis on a large sets of samples.

Results: We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux

Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant

regularized optimization framework. In short, the method incorporates a variance maximization objective

form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any

flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours

flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and

capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network

in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust

on out-of-steady steady-state experimental data than competing flux mode analysis approaches.

Availability: Matlab software for PMFA and SPMFA and data set used for experiments are available in

https://github.com/aalto-ics-kepaco/PMFA.

Contact: sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi;

Supplementary information: Detailed results are in Supplementary files. Supplementary data are

available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

1 Introduction

Principal component analysis (PCA) is one of the most frequently applied

statistical methods in systems biology (Ma and Dai, 2011; Yao et al., 2012;

Barrett et al., 2009). PCA is used to reduce the dimensionality of the data

while retaining most of the variation in the data-set. This reduction is

done by identifying linear combinations of variables, called the principal

components, that maximally explain the variation in the data. By using a

few such components, each sample can be represented by relatively few

variables compared to thousands of features. It also helps us to distinguish

between biologically relevant variables and noise.

In the context of transcriptomics and fluxomics, PCA has been widely

applied (Yao et al., 2012; Barrett et al., 2009), where a principal component

(PC) identifies linear combinations of genes or enzymatic reactions whose

activity changes explain a maximal fraction of variance within the set of

samples under analysis. The main goals of PCA in fluxomic data are (i) to

identify which parts of the metabolism retain the main variability in flux

data and (ii) to relate them to the samples, i.e. behaviour of the organism

for particular experimental condition.

However, in the context of fluxomics, PCA has a few limitations

(Folch-Fortuny et al., 2016): PCA considers reactions independently

without considering any other structure or relationship among reactions,

including stoichiometric relations implied by metabolic pathways. PCA

simply extracts a set of reactions that are important to describe sample
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variance. Moreover, the principal components output by PCA are known

to be generally dense, thus including most of the variables, which precludes

their interpretation of pathways of any kind. It would be more useful for

modelling and biological interpretation if the sample variance captured

by the model could be expressed in terms of metabolic pathways or flux

modes.

In this paper we propose a novel method to find metabolic flux modes

that explains the variance in gene expression or fluxomic data collected

from heterogeneous environmental conditions without requiring a fixed

set of predefined pathways to be given. The proposed method is called

as principal metabolic flux mode analysis (PMFA). Here each principal

component, called principal metabolic flux mode (PMF), is found by

selecting a set of reactions which represents a metabolic flux mode which

is approximately in steady state and explains most of the data variability. In

addition, we propose a sparse variant, called Sparse Principal Metabolic

Flux Mode analysis (SPMFA), to further help the interpretation of the

principal components.

Our method differs from existing methods in the literature such as

Flux Balance Analysis (FBA) (Orth et al., 2010) as well as more recent

proposals as our method aims to explain the sample variability, while

existing methods aim to extract flux modes that maximize an objective such

as growth as in FBA, or a dominant flux modes active in a set of samples

(Stosch et al., 2016; Folch-Fortuny et al., 2016). Related to our approach,

Folch-Fortuny et al. (2015) has previously proposed multivariate curve

resolution-alternating least squares to improve the biological interpretation

of the principal components. Their method incorporates a few constraints

such as non-negativity and selectivity when constructing the output. In

addition, their method requires a fixed set of metabolic pathways to be

defined as a initial step. Very recently, the Principal Elementary Mode

Analysis (PEMA) was proposed (Stosch et al., 2016; Folch-Fortuny

et al., 2016) where each component or principal elementary mode are

selected from the complete set of elementary modes (EMs) (Pey and

Planes, 2014) of the metabolic network such that the selected EMs are

responsible for expression levels in a global data. This method needs to

derive all possible elementary flux modes explicitly which prevents it to

be applicable to genome-scale networks. Moreover, Folch-Fortuny et al.

(2016, 2015) considered that all fluxes are in steady state, which restricts

the applicability of the method in experiments containing transients,

perturbations or high measurement noise (Baxter et al., 2007).

The structure of this paper is as follows. The methods section describes

the theory and development of a novel method to analysis fluxomic and

gene expression data. The section includes the descriptions of data, means,

and algorithms by which the new method has been benchmarked. In the

results section, we report a comparative study on the similarities and

differences of PCA, SPCA, FBA, PMFA, SPMFA, and PEMA. The study

highlights four experiments. In the first experiment, we compare PMFA

to PEMA in the retrieval of active elementary flux modes on a data set for

which the ground truth is known. In the second experiment, we study the

effect of stoichiometric regularization on the fraction of test set variance

explained by PMFA and alternative methods (PEMA, PCA) with Leave-

One-Out (LOO) cross-validation. In the third experiment, SPMFA is used

for the recovery of sparse flux modes from whole-genome Saccharomyces

cerevisiae gene expression data where the performance is measured in

terms of normalized variance captured. In the fourth experiment, elaborates

on the biological findings obtained using SPMFA to analyze the variance in

the mitochondrial subsystem of whole-genome Saccharomyces cerevisiae

metabolic network. We conclude the paper with discussion.

2 Methods

2.1 Basic methods

Here we shortly review the existing basic methods for the analysis of

fluxomic data.

Principal component analysis: We assume X ∈ R
N×Nr be the

data matrix of flux of N samples and Nr reactions, with each entry

corresponding to a estimated reaction rate for a particular reaction in a

particular experiment. We assume throughout the paper that all variables

have been centered to have zero empirical mean. The empirical covariance

matrix is then given by Σ = 1
N
XTX. Denoting Σ1 = Σ, the 1st

principal component (PC) w1 can be found by solving

w1 = argmax
w∈RNr

w
TΣ1w, s.t. ‖w‖2 = 1 (1)

Above, ‖w‖2 =
√
wTw is the l2 norm of the vector w. The second PC

can be found by applying Eq.(1) on updated the covariance matrix using

deflation as Σ2 = (1−w1w
T
1 )Σ1(1−w1w

T
1 ) (Mackey, 2009).

The weights, also called the loadings, of the principal component

w ∈ R
Nr can be interpreted as the importance of reactions in explaining

the variance in fluxomic data. The principal components are generally

dense, containing most of the reactions of the metabolic network. Sparse

PCA (Zou et al., 2006) aims to increase the interpretabilty of PCA by

finding principal components that have a small number of non-zero weights

through solving the following optimization problem

max
w

w
TΣw − λ‖w‖1, s.t. ‖w‖2 = 1 (2)

where λ is a user defined hyper-parameter which controls the degree of

sparsity on PC. However, the principal components extracted by neither

method represent metabolic flux modes, and will not in general adhere to

thermodynamic constraints on reaction directions.

Stoichiometric modelling: The metabolic balance of the metabolic system

is described using the exchange stoichiometric matrix S ∈ R
Nm×Nr

(Raman and Chandra, 2009) which contains transport reactions for inflow

of nutrients and output flow of products, but does not contain any external

metabolites (as they cannot be balanced). Rows of this matrix represent

the Nm internal metabolites, columns present the Nr metabolic reactions

including transport reactions and each element Sm,r shows participation

of themth metabolite in the rth reaction:Sm,r = 1 ( or−1) indicates that

reaction r produces (or consumes) the metabolitem. The valueSm,r = 0

indicates metabolite m is not involved in the reaction r. For a flux vector

w, Sw gives the change of metabolic concentration for all metabolites.

The metabolic steady-state is assured by imposing a constraint Sw = 0.

Elementary modes: The concept of an elementary mode (EM) (Pey and

Planes, 2014; Trinh et al., 2009; Ruppin et al., 2010) is key for the analysis

of metabolic networks. An EM is defined as a minimal set of cellular

reactions able to operate at the steady-state, with each reaction weighted

by the relative flux that they need to carry for the mode to function.

An EM also satisfies the reaction directionality constraints arising from

thermodynamics.

Flux balance analysis (FBA): FBA (Orth et al., 2010) finds steady state

flux modes maximizing objective function. Typically, FBA is done with

an objective of maximizing biomass production by solving following

optimization problem

max
w

cTw s.t.Sw = 0 and l ≤ w ≤ u (3)

Here cT indicates the row from the stoichiometric matrix corresponding

to biomass production.
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2.2 Principal Metabolic Flux Mode Analysis (PMFA)

Here we describe our approach, Principal Metabolic Flux Mode Analysis

(PMFA), that combines the PCA and stoichiometric modelling views of

metabolism.

To obtain meaningful solutions of steady state flux distributions as PC

loading one can impose two additional constraints in PCA formulation:

(1) the weights associated with irreversible reactions should always be

positive, i.e., wir ≥ 0, where ir is an index of an irreversible reaction.

(2) System is in a steady state, where the internal metabolite

concentrations do not change, i.e. the metabolite producing and consuming

fluxes cancel each other out: Sw = 0.

Considering (1) and (2) the modified optimization problem for doing

PCA with structural constraint is as following

max
w

w
TΣw

s.t. Sw = 0 (stoichiometric steady state)

wir ≥ 0 (irreversible reactions can have only positive flux)

‖w‖2 = 1 (4)

The constraint ‖w‖2 = 1 restricts the spurious scaling up of the weights

in the solution. Here, Sw = 0 is a hard constraint and in practise imposes

too much restriction, due to noise in the data, or when the data does

not actually arise from steady-state conditions, e.g. given transients or

perturbations of the fluxes during the experiment. Numerically one needs

to solve a set of linear equation of sizeNM×NR which makes the problem

also computationally hard to solve Eq.(4). Hence instead of considering

this hard constraint on the PC loadings we introduce a soft constraint

which penalizes the deviation from the steady state. Our aim is to find

a flux which optimizes a combination of (1) maximal explained sample

variance wTΣw and (2) minimal deviation from a steady-state condition,

expressed in the l2 norm: ‖Sw−0‖22 = ‖Sw‖22. This entails solving the

following optimization problem:

max
w

w
TΣw − λ‖Sw‖22

s.t. wir ≥ 0

‖w‖2 = 1 (5)

Here λ imposes the degree of hardness of the steady-state constraint.

For λ = 0 the Eq.(5) produces loadings similar to PCA with the

exception of the reaction directionality constraint. The model will be

henceforth denoted as PMFA(l2). If desirable, we can make our model

to disregard reaction directionality simply by dropping the inequality

constraints wir > 0. We denote this version of the method as rev-PMFA.

The l2 norm on Sw in Eq.(5) has the tendency to penalize large steady

state deviations in individual metabolites, at the cost of favoring small

deviations in many metabolites. This is probably the desired behaviour in

case the data comes from conditions where there is no subsystems that is

considerably farther from steady state than other parts of the system. In

order to capture the opposite scenario, where a small subset of metabolites

have large deviation from steady state, one can use l1 norm regularizer

on Sw. The l1 norm regularizer ‖Sw‖1 in Eq.(5) puts the emphasis

of pushing most of the steady-state deviations to zero, whilst allowing a

few outliers, metabolites that markedly deviate from steady state. Using

l1 regularizer and a trade-off parameter λ we get to solve the following

optimization problem:

max
w

w
TΣw − λ‖Sw‖1

s.t. wir ≥ 0

‖w‖2 = 1 (6)

Here λ imposes the degree of hardness of the steady-state constraint.

Similarly to Eq.(5) for λ = 0 the Eq.(6) also produces loadings similar

to PCA with selective non-negative constraint. The model will be hence

forth denoted as PMFA(l1) .

2.3 Sparse principal metabolic flux mode analysis

The above formulation of PCA with stoichiometric constraint still

suffers from the fact that each principal component is typically a linear

combination of all possible reaction activities, thus it is often difficult to

interpret the results. This problem can be avoided by a variant of PMFA,

the sparse principal metabolic flux mode analysis (SPMFA) using an l1
regularizer on w to produce modified principal components with sparse

loadings.

max
w

w
TΣw − λ‖Sw‖∗

s.t. wir ≥ 0

‖w‖1 = C (7)

where ‖·‖∗ can be any of the l2 and l1 norm andC is a used defined hyper-

parameter which controls the degree of sparsity in principal metabolic

flux (PMF) loadings. Similarly to PMFA, Sparse PMFA can also be made

to consider all reaction reversible by dropping the inequality constraints

wir ≥ 0. We call this variant rev-SPMFA.

2.4 Analysis of metabolic subsystems

One can apply our method to focus on variance within a subsystem of

the whole metabolic network (e.g. central carbon metabolism, redox

subsystem, lipid metabolism) by restricting the covariance matrix in

objective function to the fluxes in the subsystem, while keeping the

stoichiometric regularizer the same as before. Similarly, when some flux

measurements are missing, one can change the covariance matrix in the

objective function to exclude the measurements that are missing.

For example, to study the variation within the redox subsystem, let

Xrdx contain the columns of X corresponding to reactions containing

redox co-factors, and let wrdx represent the corresponding part of w. We

will consider Σrdx = 1
N
XT

rdx
Xrdx for finding variance maximizing

directions. Hence need to solve

max
w

w
T
rdxΣrdxwrdx − λ‖Sw‖∗

s.t. wir ≥ 0 and ‖w‖2 = 1 (8)

2.5 Algorithms

The objective function of Eq.(5) can be interpreted as difference of two

differentiable convex functions. This type of optimization problem is

known as Difference of Convex functions (DC) program. We used the

convex-concave procedure (CPP), a local heuristic that utilizes the tools of

convex optimization to find local optima of difference of convex functions

(DC) programming problems (Lipp and Boyd, 2016). Using CCP method

we solved Eq.(5) by solving following convex approximation (a Quadratic

Program) in each iteration t:

w
t+1 = argmin

w

λ

2
‖SwT ‖q −w

tT ΣEw

s.t. wir ≥ 0 (9)

followed by projecting wt+1 on ‖w‖p = C. The norms p, q ∈ {1, 2}
are chosen according to the desired model.
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To find a good local optimum, we repeat the above optimization with

different random starting points, and take the best local minimum as the

solution. In our experiments we used 100 repetitions.

To obtain a multi-factor PMFA model, i.e. a model containing several

PMFs jointly representing the data, we follow a approach similar to

some PCA algorithms, namely the deflation of the covariance matrix.

However, due to additional stoichiometric constraint here we deal with

a sequence of non-orthogonal vectors, [w1, . . . ,wd] hence we must take

care to distinguish between the variance explained by a vector and the

additional variance explained, given all previous vectors. We have used

orthogonal projections for deflating the data matrix (Mackey, 2009). This

also maintains the positive definiteness of covariance. For every iteration

d+ 1 we first transfer already found principal flux modes W ∈ R
NR×d

to a set of orthogonal vectors, {q1, . . . , qd}.

qd =
(I −Qd−1Q

T
d−1)wd

‖(I −Qd−1Q
T
d−1)wd‖

(10)

where, q1 = w1, and q1, . . . , qd form the columns of Qd. q1, . . . , qd
form an orthonormal basis for the space spanned by w1, . . . ,wd. Then

the Schur complement deflation of covariance matrix is done by

Σd+1 = Σd −
Σdqdq

T
d
Σd

qT
d
Σdqd

(11)

3 Results

We report a comparative study on following methods.

• PCA : Principal component analysis as given by Eq.(1). PCAdir

denotes the PCA augmented with reaction directionality constraints.

• SPCA : Sparse PCA corresponding to Eq.(2). SPCAdir is the SPCA

augmented with reaction directionality constraints.

• FBA: Flux balance analysis with an objective of maximizing biomass

production given by (3).

• PMFA : Principal Flux Mode Analysis as described in Section 2.2.

PMFA(l2) denotes l2 regularization on the stoichiometric constraint

Eq.(5) while PMFA(l1) denotes l1 regularization on stoichiometric

constraint Eq.(6).

• SPMFA : Sparse Principal Flux Mode Analysis as given

by Eq.(7). Again, SPMFA(l2) denotes l2 regularization on

stoichiometric constraint, while SPMFA(l1) denotes l1 regularization

on stoichiometric constraint.

• Principal Elementary Mode Analysis (PEMA) (Stosch et al., 2016;

Folch-Fortuny et al., 2016): It uses the set of EMs as the candidates

for the PCs. It models the flux matrix X is as follows:

X = ΛPT
em + E.

Above, Pem is the Nr × Nf principal elementary mode matrix,

formed by a subset of Nf EMs from the entire EM matrix; Λ is the

is the N ×Nf non negative weighting matrix; and E is the N ×Nr

residual matrix. Pem is found by iteratively selecting important EMs.

We only used PEMA on small metabolic networks since as calculation

of all EMs for genome-scale metabolic networks is impractically time

consuming (Pey and Planes, 2014).

Data centralization. PCA, SPCA, PMFA, and SPMFA aim at explaining

the main variability in data using a few PCs. If the original variables have

strongly different means and/or variances, the PCs may focus on explaining

only the variables with the highest values and/or variances, disregarding the

small variance associated with the rest of variables. Hence before applying

all of them, we need to centralize the expression and fluxomic data.

Selection of optimal level of regularization. We selected the optimum

levels of the regularization parameterλ for PMFA and SPMFA and level of

sparsity for SPMFA by cross-validation maximizing the fraction of sample

variance explained on test samples

Fraction of variance =
wTΣw

Trace(Σ)
,

which is a classic measure used with PCA and related approaches. Above,

w is the PC computed from the training data, and Σ is the co-variance

matrix of the test sample. Leave-One-Out (LOO) cross-validation was

used on smaller datasets and 5-fold cross-validation was used on the large

whole genome dataset.

3.1 Datasets

Pichia pastoris simulation case study. We have used data generated by

Stosch et al. (2016). It is based on the metabolic network of Pichia pastoris,

which originates from Tortajada et al. (2010). It describes the central

carbon metabolism of P. pastoris during growth on glucose, glycerol

and methanol, comprising the Embden-Meyerhoff-Parnas pathway, citric

acid cycle, penthose phosphate and fermentation pathways. It contains 45

compounds (36 of which are internal metabolites, which can be balanced

for growth) and 44 reactions, yielding a total number of 98 EMs (Stosch

et al., 2016; Tortajada et al., 2010). Flux data was generated simulating

the growth of Pichia pastoris for twelve different cultivation conditions

Stosch et al. (2016) by choosing appropriate sets of active EMs. Each

active EM was drawn a random flux, and thus the flux distribution of each

sample was a random linear combination of the fluxes of the active EMs.

Hence we can compare PMF identified by PMFA to the ground truth

"active EMs" that were used for data generation.This case study also

enables the study of the impact of noise on the EMs identification and

performance. For this study we add random Gaussian noise to fluxomic

data, where noise variances are 2%, 5%, 10% and 20% of original values.

From the flux data and the deviation reported in supplementary material of

Quek et al. (2009) we observed that most the reported fluxes have deviation

associated with it and the deviations are in range of 2-5% of their reported

value along with few reactions with deviations even more than 12% of

their value.

Saccharomyces cerevisiae experimental case study. A metabolic

network for Saccharomyces cerevisiae proposed by Hayakawa et al. (2015)

and 13C isotopic tracer based fluxome data used in (Stosch et al., 2016;

Hayakawa et al., 2015; Frick and Wittmann, 2005) was analyzed in this

study. The network describes the central cytosolic and mitochondrial

metabolism of S. cerevisiae, comprising glycolysis, the pentose phosphate

pathway, anaplerotic carboxylation, fermentative pathways, the TCA

cycle, malic enzyme and anabolic reactions from intermediary metabolites

into anabolism (Stosch et al., 2016). The network contains 42 compounds

(30 of which are internal metabolites, which can be balanced for growth)

and 47 reactions of which 39 are intracellular. The objective in this case

study is to evaluate the performance of PMFA Eq.(5) on fluxome data and

compare it with PEMA and PCA. For PEMA we have used 1182 EMs

provided by Stosch et al. (2016).

Saccharomyces cerevisiae whole-genome metabolic network case

study. The objective of experiment described in this section is to evaluate

the performance of the proposed PMFA Eq.(5) and SPMFA Eq.(7)

on whole-genome metabolic network in both steady-state and transient

conditions. We used Yeast community model v. 7.5 ( YCM 7.5), which

contains 3494 reactions among 2220 compound and catalysed by 909

genes.

The steady state transcriptomic data has been generated by Rintala

et al. (2009) where Saccharomyces cerevisiae grown in glucose-limited

chemostat culture with 0%, 0.5%, 1.0%, 2.8%, or 20.9% oxygen in
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the inlet gas (D= 0.10 /h, pH5, 30C) (Wiebe et al., 2008). The normalized

transcription dataset is available in the Gene Expression Omnibus (GEO)

database (Barrett et al., 2011) with the accession number GSE12442. It

contains four steady state samples for 0,0.5,2.8 and 20.9% oxygen and

six steady state samples for 1% oxygen. This data-set is combined with

time-series transcriptomic data generated by Rintala et al. (2011) where

time series analysis starting from two (1% and 20.9%) levels of oxygen

provision. Seven time points at 0, 0.2, 3, 8, 16, 24, 72/79 hours from

both time series and two biological replicates from each time point were

analysed. The microarray data can be accessed through GEO accession

number GSE22832 (Barrett et al., 2011).

We converted gene expression data to a expression level per reaction

by with help of gene rules defined in metabolic network (Jensen et al.,

2011; Herrgård et al., 2006). Gene rules are Boolean rules that determine

the effect of the expression of regulatory genes on the activity of reactions

in the metabolic network. Let us denote XG as gene expression matrix

with size N ×NG where NG is number of genes and the gth column of

XG, xG
g is the expression vector corresponding to gene g. Then,

• if gene association with reaction r is denoted as ’g1 or g2’ then

expression value for reaction r, i.e. Er = xG
g1

+ xG
g2

.

• otherwise if gene association with reaction r is denoted as ’g1 and

g2’ then expression value for reaction r, i.e. Er = min(xG
g1

,xG
g2

).

3.2 Prediction of active EMs using PFMA

In our first experiment we evaluated the predictive performance the

proposed PMFA and PEMA in correctly retrieving underlying active

elementary flux modes. We used the Pichia pastoris simulation case study

data, where the elementary flux modes that are part of the ground truth are

known. For the evaluation, area under ROC curve (AUC) and area under

precision recall curve (AUPR). The precision/recall metrics, widely used

in information retrieval, is to assess how well the flux modes computed

by PEMA and PMFA correlate with the ground truth active EMs. The

PFM loadings are reported in supplementary file PFMloading.ods in

PichiaPastorisResultAndAnalysis.zip

For each PMF, we computed its correlation with respect to all 98

elementary flux modes of the Pichia pastoris metabolic network. We

then sort the EMs in descending order of correlation and consider first

i = 1 . . . , 98 EMs as the predicted EMs by the model. Precision and

recall is then computed for each i, by considering ground truth active EMs

within the first i EMs as true positives and other EMs with the top i as

false positives. A precision/recall curve can be then plotted by taking the

precision/recall values for all is, in the order of the descending correlation

in the sorted list. The AUPR is denoted as area under the precision recall

curve and AUC is denoted as area under receiver operating characteristic

curves (Hanley and McNeil, 1983).

In a PMFA model with k principal flux modes, to compute a precision-

recall value for the model we considered the maximum correlation of

an EM with any of the k principal flux modes as a final correlation of

an EMs with the PMFA model. Then, we sorted all EMs according to

descending order of their maximum correlations. With PEMA model we

used an analogous approach: for a PEMA model containing k EMs, for

each i we included the top i correlated EMs (according to the maximum

correlation of EMs with any of the k EM’s chosen by PEMA) as the models

prediction and used those for computing the precision/recall values for each

i = 1, . . . , 98.

Figure 1 shows (a-b) Receiver operating characteristic curves (ROC),

(c-d) precision-recall curves and (e) total AUC and (f) total AUPR achieved

by the different models for different amount of additional noise. It shows

that PMFA is robust with respect to noise in the fluxomic data, with both

AUPR and AUC metrics only slowly decreasing as a function of increasing

Fig. 1. The graph the first 3 components of models and shows (a) ROC for PMFA, (b) ROC

for PEMA,(c) and precision-recall curves for PMFA and (d) PEMA for different noise

levels. (e) and (f) plots respectively AUC and AUPR values obtained by different models

for different noise levels.

noise, until noise level of 10%. In this regime, adding more factors to

PMFA models also increases performance monotonically both in AUC

and AUPR metrics, showing that the additional factors recover EMs that

were not captured by the first factor. In the high noise regime (> 10%) we

observe that the performance of the 3-factor PMFA model drops suggesting

that the last factor likely starts to capture noise.

In the noise free case, PEMA performs comparatively to PMFA,

especially in terms of the AUC metric and when using a high enough

number of factors in the model. However, the performance of PEMA

deteriorates quickly upon increased noise. The decrease of performance is

particularly apparent in the AUPR metric.

3.3 Explaining test set variance with PMFA

In this experiment we focused on the ability of PMFA to explain variance

on data in a predictive setting, that is, on new data that has not been used

for model estimation. We focused on the amount of variance explained in

the test set in a Leave-One-Out (LOO) cross-validation setting.

We studied the effect of stoichiometric regularization (λ‖Sw‖22)

on the fraction of sample variance captured by PMFA and alternative

models (PEMA, PCA). Figure 2 shows the fraction of sample variance

explained by the first PMFs and PCs as a function of deviation from

steady state (‖Sw‖22) in test data of two fluxomic data-sets (S. cerevisiae

and P. pastoris). The deviation from the steady-state is controlled by the

regularization parameter λ ≥ 0: high values of λ give low deviation from

steady-state and vice-versa.
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Fig. 2. Depicted is for two fluxomic data-sets the fraction of variance on test data in LOO

setting as a function of deviation from steady state (‖Sw‖2
2

) captured by PCA, directional

PCA (PCAdir ), 1-, 5- and 10-factor PEMA, as well as PMFA and rev-PMFA using different

amount of Stoicihiometric regularization. The markers ‘∗’ and ‘o’ indicate the optimal level

of regularization for PMFA and rev-PMFA .

In particular on the fluxomic datasets, relatively heavy regularization

can be applied without decrease of variance explained, indicating that the

data can be well explained by steady-state flux modes.

By change of the regularisation parameter λ, the statistics of PMFA

exhibit a continuous transition from fully steady state flux modes

(‖Sw‖22 = 0) to the PCAdir , i.e. PCA augmented with reaction

directionality constraints (corresponding to λ = 0 in PMFA). The

transition for rev-PMFA is not as smooth as PMFA with the directionality

constraint. It is apparent that the directionality constraint increases the

stability of PMFA without reducing much explained variance on test data.

Compared to PEMA, The fraction of variance explained the first PMF

from rev-PMFA is higher than 1-, 5- and 10-factor PEMA regardless of the

amount of stoichiometric regularization or application of the directionality

constraints. The amount of variance explained by the first PMF from PMFA

is also much higher than 1-factor PEMA even with high Stoichiometric

regularization, while the 5- and 10-factor PEMA reach the level of PMFA

for both data sets.

Fig. 3. Depicted is for the P. pastoris simulated data-set the fraction of variance on test

data in LOO setting as a function of additional noise level captured by PCA, PCAdir 1-,

5- and 10-factor PEMA, as well as PMFA (with optimum regularization parameter).

Figure 3 shows the explained fraction of variance on test data in

a Leave-One-Out (LOO) cross-validation setting, where both test and

training data is contaminated with various amount of the noise. The test set

variance captured by first component of PMFA only very slightly decreases

upon increasing noise. In contrast, the test set variance captured by PEMA

drops considerably when the noise level increases. Higher order PEMA

models are here somewhat more resistant than the 1-factor PEMA but still

not competitive with PMFA. In addition, we note that PCA is not able to

explain test set variance as well as PMFA regardless of the noise level. To

understand this result, we note that within the training set, by definition

we expect PCA to explain the variance the best. However, when analysing

new data not seen in the training phase, the stoichiometric information

used by PMFA helps to attain a better predictive performance.

3.4 Recovery of sparse flux modes from full genome data

by SPMFA

Fig. 4. Figure shows variance (left) and normalized variance (right) on test data in 5 fold

cross validation setting as a function of steady state deviation (‖Sw‖2
2

) on the whole

genome gene expression data (containing both steady-state and transient samples) for PMFA

SPMFA and FBA. The markers ‘∗’ indicate the optimal level of regularization.

In this experiment, we evaluated the Sparse Principal Metabolic

Flux Mode Analysis, SPMFA, in discovery of sparse flux modes,

i.e. only few reactions with non-zero coefficients. We focus on

the full genome data, i.e., all steady-state and transient samples

of S. cerevisiae containing a total of 3494 reactions for, making

dense principal components and flux modes difficult to interpret. The

SPFM loadings along with the amount of inter-cellular metabolites

produced or consumed by SPFM for various degree of steady state

constraints are reported in supplementary file SPFM-geneexpression.ods

in SPFMoxygenseriesResultandAnalysis.zip.To quantify the fraction of

explained variance normalized by the complexity of the extracted flux

mode, we measure the normalized fraction of variance, calculated as

Normalized variance =
Fraction of variance explained

‖w‖0/Nr

.

Above, ‖w‖0 denotes the l0 norm , i.e. the cardinality of non-zero

elements of w Figure 4 shows variance (left) and normalized variance

(right) as the function of deviation from steady state (‖Sw‖22).

At the maximum, PMFA captures slightly more explained variance

than SPMFA at (Figure 4, left). Correspondingly, SPMFA is vastly more

effective in capturing normalized variance, achieving more than double the

rate of PMFA at any level of deviation from steady state ((Figure 4, right).

SPMFA statistics can be seen to smoothly approach the (directional) sparse

PCA statistics when the deviation from steady-state is let to increase.

The variant SPMFA(l1) which is regularized by the l1 stoichiometric

regularizer (‖Sw‖1), also exhibit a smooth transition, but captures less

variance at the maximum, albeit the fraction of normalized variance

captured is similar to SPMFA. PMFA(l1) exhibits a phase change,

following PMFA at high steady state distances (small λ) but switching

to SPMFA regime as regularization is increased. This reflects the fact that

with small λ the model is not yet sparse but sparsity quickly emerges once

λ is increased.

It is notable that on this large heterogeneous data-set, all methods

fail to capture meaningful amounts of normalized sample variance in the

vicinity the steady state (‖Sw‖22 = 0). This is also true for FBA, which

we have included as a comparison (maximum biomass production as the

FBA objective). The FBA solution is sparse but the fraction of variance

captured is very small, causing as the normalized variance captured by

FBA to be small compared to SPMFA solution when the stoichiometric

regularization is relaxed. This illustrates the importance of being able to

relax the steady-state assumption when analyzing real-world experiments.
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3.5 Analysis of SPMFA on S. cerevisiae oxygen series

gene expression data-set

In this experiment, we analyze the Principal Metabolic Flux Modes found

by SPMFA when analysing the variance in the subsystem composed of the

reactions in the mitochondrion of the S. cerevisiae whole-genome network.

The availability of oxygen limits the amount of ATP the cell can generate.

Oxidative phosphorylation occurs in the mitochondrion. The mitochondria

are unique organelles that replicate, transcribe enzymes, and possibly adapt

to changes in oxygenation level somewhat independently from the rest of

the organism. Therefore, we elected to study this organelle in more detail.

We used the method described in Section 2.4 for the analysis, where

the covariance matrix is obtained from the 166 mitochondrial reactions

in the combined data consisting of the time-series and steady-state

samples. For the stoichiometric regularizer the stoichiometric matrix of

the whole-genome network of a total of 3494 reactions was used. We use

regularization level λ = 1 as it gave the most interpretable results. The

PFM corresponding to all mitocondrion reactions and metabolites changes

due to this flux are reported in Table 2-4 and table 5 in supplementary file

PMFAsup.pdf.

Figure 5 depicts the scores of the samples in the first two PMFs. The two

components clustered the initial (0h) time-series samples with the steady-

state samples with oxygenation, the early time-series samples (0.2h-3h)

together as well as the late time-series samples (24h-79h) with the steady-

state sample without oxygenation.

1st PMF correlated the best with late time-series samples, where the

system approached the new anaerobic steady state, as well as the anaerobic

steady state sample. In addition, the 1st PMF correlates negatively with

the early time-series samples (0.2h-3h) representing a state shortly after the

loss of oxygen. The 2nd PMF discriminates among samples with different

oxygen level in the environment, with samples correlating with the 2nd

PMF the better the less oxygen is available. This is evident in the monotonic

decreasing correlation of the steady-state samples based on the oxygen

level, as well as the generally increasing correlation of the time-series

samples as a function of time (and decreasing oxygen).

Fig. 5. Figure shows the correlation of expression data for corresponding samples with

first two SPMFs at expert chosen λ. Here we have considered PMFA with L2 constrain on

Sw on all samples but only mitochondrion reactions of S. cerevisiae oxygen series gene

expression data-set.

Six metabolic pathways emerged upon closer inspection of the

individual reactions associated with 1st PMF and 2nd PMF. Two of these

pathways were associated with the 1st PMF while four pathways were

associated with the 2nd PMF. The main reactions and their loadings are

shown in table 1. The pathways are denoted by the following letters: A.

Malic pathway, B. Acetaldehyde pathway, C. Malate shuttle, D. Oxidative

phosphorylation, E. Tetrahydrofolate pathway, and F. ATP pathway.

The Malic pathway (A) associated with the 1st PMF consisted of

malate import, dehydrogenation to produce NADPH and/or NADH,

pyruvate export, and acetolactate synthesis from pyruvate. The ATP

pathway (F) associated with the 1st PMF included oxoglutarate import,

TCA cycle reactions from oxoglutarate to succinyl-CoA, succinate export,

and two means to extract the ATP-equivalent stored in succinyl-CoA.

The negative loading of Succinyl-CoA:acetate CoA transferase may

indicate a switch from this reaction to other reactions generating ATP

more explicitly. This hypothesis is supported by the full set of reactions

in the supplementary PMFAsup.pdf Table 2-4. However, Succinyl-

CoA:acetate CoA transferase produce a non-negligible amount of acetyl-

CoA, which is subsequently converted to acetoacetyl-CoA by Acetyl-CoA

acetyltransferase. The ATP pathway also included the direct transport of

ATP between the cytosol and the mitochondrion. The Malic pathway’s

capability to provide the mitochondrion with reducing equivalents in the

form of NADPH and NADH, and the ATP pathway’s capability to provide

the mitochondrion with ATP are apparently captured by the PMF.

The Acetaldehyde pathway (B) associated with the 2nd PMF

represents the conversion of acetaldehyde to acetate with the generation

of NADPH, and the sequestration of the formed acetate to acetyl-CoA and

further to hydroxymethylglutaryl-CoA, an intermediate in the mevalonate

and the ketogenesis pathways. The 2nd PMF contained the Malate shuttle

for generating mitochondrial NADPH. The 2nd PMF also contained the

reactions for the electron transport chain and oxidative phosphorylation

(D), possibly for the removal of residual oxygen. In (E), a pathway

catabolizing pyruvate via Glycine hydroxymethyltransferase, the Glycine

cleavage complex, Methylene-THF dehydrogenase, and Methenyl-THF

cyclohydrolase is captured. The Tetrahydrofolate pathway (E) ended with

Methionyl-tRNA formyltransferase, thus producing one NADH and one

NADPH per pyruvate catabolized. The four pathways associated with the

2nd PMF appear to capture the generation of mitochondrial NADPH, a

vital cofactor for metabolic adaptation by biosynthesis.

4 Discussion

In this paper we have proposed a novel method for the analysis of metabolic

networks, called the Principal Metabolic Flux Analysis, PMFA, through

the combination of stoichiometric flux analysis and principal component

analysis, finds flux modes that explain most of the variation in fluxes in

a set of samples. Unlike most stoichiometric modeling methods, PMFA

is not tied to the steady-state assumption, but can automatically adapt—

by the change of a single regularization parameter—to deviations from

the stoichiometric steady-state, whether they are due to measurement

errors, biological variation, or other causes. Our experiments showed that

the method is more robust to the steady-state violations than competing

approaches, and can compactly capture the variation in the data by a few

factors. For the analysis of whole-genome metabolic networks, we further

proposed Sparse Principal Flux Mode Analysis, SPMFA that allows us to

discover flux modes with a small fraction of reactions activated, thus could

be interpreted as pathways. Our experiments showed that our methods

are more efficient in capturing the variance in sets of experiments than

methods based on elementary flux mode analysis or flux balance analysis.

The efficient Concave Convex Procedure optimization allows the method

to scale up to whole-genome models unlike methods based on search in

the space of elementary flux modes.

Analysis of cultivation data on the whole-genome metabolic network

of Saccharomyces cerevisiae showed that PMFA was able to identify

six mitochondrial pathways responsive to changes in oxygen availability.

In addition, the analysis grouped these pathways in easily interpretable

pathways.
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Table 1. Tables shows the loadings for few selected reactions corresponding

to the first and second PMFs while taking l2 regularization on amount

of metabolites produced or consumed. Pathways can be called as A.

Malic pathway, B. Acetaldehyde pathway, C. Malate shuttle, D. Oxidative

phosphorylation, E. Tetrahydrofolate pathway, and F. ATP pathway

Pathways Reactions 1
st PMF 2

nd PMF

A Malic enzyme (NAD) 1.40 0

A Malic enzyme (NADP) 1.65 0

A Acetolactate synthase 1.72 0

A Pyruvate transport 1.90 0

A Malate transport 2.58 0.83

B Hydroxymethylglutaryl CoA synthase 0 0.52

B Acetyl-CoA synthetase 0 0.83

B Acetaldehyde dehydrogenase (NADP) 0.10 0.83

C Aspartate-glutamate transport 0 0.83

C Glutamate transport 0 0.83

C Malate dehydrogenase 0.71 0.83

C Oxoglutarate/malate exchange 0.96 0.83

D Ubiquinol:ferricytochrome c reductase 0 0.83

D Ferrocytochrome-c:oxygen oxidoreductase 0 0.83

D ATP synthase 0.16 0.83

D Succinate dehydrogenase (ubiquinone-6) 0.52 0.83

E Glycine-cleavage complex (lipoylprotein) 0 0.65

E Glycine hydroxymethyltransferase -0.34 0.66

E Glycine-cleavage complex (lipoylprotein) 0.14 0.70

E MethenylTHF cyclohydrolase -0.29 0.71

E Glycine-cleavage complex (lipoylprotein) 0 0.83

E MethyleneTHF dehydrogenase (NADP) -0.56 0.83

E Methionyl-tRNA formyltransferase 1.12 0.83

F Acetyl-CoA acetyltransferase 1.42 0

F Oxoglutarate dehydrogenase (lipoamide) 1.20 0.83

F Oxoglutarate dehydrogenase 1.26 0.83

F Succinyl-CoA:acetate CoA transferase -1.98 0.12

F ADP/ATP transport 2.23 -0.83

F Succinate transport 2.48 0.10

F 2-Oxoglutarate transport 2.62 0.38

Total variance captured (%) 25.20 26.57

Total steady state deviation ‖Sw‖2

2
22.15 4.01

The Malic pathway’s capability to provide the mitochondrion with

reducing equivalents in the form of NADPH and NADH, and the

ATP pathway’s capability to provide the mitochondrion with ATP were

apparently captured by the 1st PMF. The four pathways associated with

the2nd PMF appeared to capture the generation of mitochondrial NADPH,

a vital cofactor for metabolic adaptation by biosynthesis.
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