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This paper investigates the performance of a new robust tracking control on the basis of pro-
portional-derivative observer-based backstepping control applied on a three degrees of freedom
underwater spatial manipulator. Hydrodynamic forces and moments such as added mass effects,
damping effects, and restoring effects can be large and have a significant effect on the dynamic
performance of the underwater manipulator. In this paper, a detailed closed-form dynamic model
is derived using the recursive Newton-Euler algorithm, which extended to include the most
significant hydrodynamic effects. In the dynamic modeling and simulation, the actuator and
sensor dynamics of the system are also incorporated. The effectiveness of the proposed control
scheme is demonstrated using numerical simulations along with comparative study between
conventional proportional-integral-derivative (PID) controls. The results are confirmed that the
actual states of joint trajectories of the underwater manipulator asymptotically follow the desired
trajectories defined by the reference model even though the system is subjected to external
disturbances and parameter uncertainties. Also, stability of the proposed (model reference control)
control scheme is analyzed.

1. Introduction

The underwater manipulator has turned into a critical part/tool of underwater vehicles for
performing deep-sea works such as opening and closing of valves, cutting, drilling, sampling,
coring, and laying in the fields of scientific research and ocean systems engineering.

Autonomous manipulation, which is major focus of researches on manipulators
mounted on underwater vehicles. Due to unstructured properties of deep-sea work, a good
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understanding of the dynamics of a robotic manipulator mounted on a moving underwater

vehicle is one of the important aspects of these kinds of deep-sea applications [1, 2].

During the last decade, most of the researches on underwater manipulator have

focused and dedicated on the study of its dynamics and modeling, mechanical development,

estimating parameters, and control schemes [1–7]. These manipulators are certainly different

from the industrial and/or land-based manipulators; it is very demanding and difficult to

control an underwater manipulator due to its nonlinear and time varying dynamics nature,

variations in the hydrodynamic effects, external disturbances such as underwater current

and waves. In addition to this, actuator and sensor characteristics, and their limitations make

the controller design much more complicated. Therefore, the control scheme should be more

robust and adaptive in nature. Several advanced control schemes have been proposed in the

literature [8–15], either mounted on a movable and fixed platforms such as nonlinear feed-

back control, adaptive control, hybrid position and force control, coordinated motion control,

model reference control, neural network-based control, and sliding mode control. In addition

to this, most of the previous attempts have been made with planar manipulators. In order to

make suitable control scheme for the manipulators, almost all the states are needed; however,

as for the cost effectiveness and the reliability of the system, very few states only can be meas-

ured through sensors at the real time. The focus of this paper is on performance analysis of the

underwater manipulator by considering all hydrodynamic effects and suggesting an effective

scheme for controlling the manipulator motion which ensure the required performance in

the presence of external disturbances and parameter variations. With the development of

adaptive and robust backstepping designs in nonlinear systems, many fuzzy adaptive control

schemes have been developed for unknown nonlinear systems not satisfying the matching

conditions. Stable fuzzy adaptive backstepping controller design schemes were proposed for

unknown nonlinear MIMO systems [16–19]. Though these control schemes had its own ad-

vantages over the other, in the real-time practice and applications, still traditional schemes

such as PD, PI, PID schemes and sliding mode schemes are only used.

In this paper, a proportional-derivative observer-based backstepping control is pro-

posed for a three degrees of freedom (dof) spatial underwater manipulator. One advantage

of using this scheme is that the manipulator joint positions are only required from the real

system (acquiring joint positions is a simple task and potentiometer can be used for this

purpose), and the proposed system compensates all the nonlinearities in the system by

introducing nonlinear elements in the input side, thus making the controller design more

flexible. The manipulator states are estimated using this observer, which will be utilized by

the controller. In this work, the dynamic model of the underwater manipulator is obtained

using the iterative Newton-Euler method (it is extended from the basic scheme, which is

applicable to the land based robots [20]) which includes all the hydrodynamic effects. The

effectiveness of the proposed control scheme is confirmed with numerical simulations, and in

the numerical study, the actuator and sensor characteristics such as time constant, efficiency,

saturation limits, update rate, and sensor noises are considered. The Lyapunov analysis and

its treatment on stability and robustness of the proposed scheme under parameter uncertain-

ties are not explicitly dealt, which is left in this work for the scope of future work.

The reminder of this paper is organized as follows. The dynamic modeling of a 3 dof

underwater manipulator is derived in Section 2. In Section 3, a nonlinear controller for the

underwater manipulator based on observer-based backstepping control scheme is discussed.

Detailed performance analysis of the underwater manipulator with different operating

conditions is presented in Section 4. Finally, Section 5 holds the conclusions.
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2. Modelling of the Underwater Manipulator

2.1. Kinematic Model of the Underwater Manipulator

The kinematic model of the underwater manipulator consists of two parts such as forward
and inverse kinematics which are derived in this section as follows.

2.1.1. Forward Kinematics of the Underwater Manipulator

The mathematical relations of the end effector position/tool center point (TCP) or manipula-
tor tip position with the known joint angles are derived here. The mathematical (kinematic)
descriptions of the underwater manipulator are developed based on the Denavit-Hartenberg
(D-H) parameters notation [20]. The establishment of the link coordinates system, as shown
in Figure 2, yielded the D-H parameters shown in Table 1. On the basis of the underwater link
parameters in Table 1, the homogeneous transformation matrix [20] is derived, that specifies
the location of the end-effector or TCPwith respect to the base coordinate system is expressed
as

T0
4 =

[
R0

4 P0
4

0 0 0 1

]
= T0

1T
1
2T

2
3T

3
4 ,

Tk−1
k =

⎡
⎢⎢⎢⎢⎢⎣

cos θk − sin θk 0 ak−1

sin θk cosαk−1 cos θk cosαk−1 − sinαk−1 − sinαk−1dk

sin θk sinαk−1 cos θk sinαk−1 cosαk−1 cosαk−1dk

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (2.1)

The matrix R0
4 and the vector P0

4 = [px py pz]
T are the rotational matrix and the position

vector from the base coordinates to the end-effector, respectively. px, py, and pz are the
manipulator tip positions on the x, y, and z axes, respectively. θ is the joint angle, α is the
link offset or twist angle, d is the joint distance, and a is the link length.

From the above homogeneous transformation matrix, the end-effector’s position for
feedback control and the elements for solving Jacobian matrix can be obtained. On the basis
of the experimental underwater manipulator parameters (refer to Table 1), the forward kine-
matic solutions are obtained and as given below:

px = cos θ1(L1 + L2 cos θ2 + L3 cos(θ2 + θ3)),

py = sin θ1(L1 + L2 cos θ2 + L3 cos(θ2 + θ3))

pz = d1 + L2 sin θ2 + L3 sin(θ2 + θ3),

, (2.2)

where θ1, θ2, and θ3 are the joint angles of the corresponding underwater manipulator links,
respectively. L1, L2, and L3 are the link lengths of the corresponding underwater manipulator
links, respectively.
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Table 1: D-H parameters of the 3dof underwater manipulator.

Joint axis (k) Link offset (ak−1) Link length (ak−1) Joint distance (dk) Joint angle (θk)

1 0◦ 0 d1 = 0.1m θ1

2 90◦ L1 = 0.1m 0 θ2

3 0◦ L2 = 0.4m 0 θ3

4 0◦ L3 = 0.4m 0 θ4 = 0◦

2.1.2. Inverse Kinematics of the Underwater Manipulator

In the workspace-control system, each joint of the underwater manipulator is controlled by
the joint angle command calculated from the differential inverse kinematics solutions on the
basis of the known cartesian coordinates. The closed form inverse kinematic solutions of the
3dof underwater manipulator are described as

θ1 = atan 2
(
py, px

)
,

θ2 = atan 2(ab − bc, ac + bd)

θ3 = atan 2(sin θ3, cos θ3),

, (2.3)

where

cos θ3 =
a2 + b2 − L2

2 − L2
3

2L2L3
, sin θ3 =

√
1 − cos2θ3,

a =
px

cos θ1
− L1, b = pz − d1,

c = L3 cos θ3 + L2, d = L3 sin θ3.

(2.4)

2.2. Dynamic Model of the Underwater Manipulator

The dynamic model of an underwater manipulator is developed through the recursive
Newton-Euler algorithm. In this work, it is assumed that the underwater manipulator is
buildup of cylindrical element. The effect of the hydrodynamic forces on circular cylindrical
elements are described in the section, which mainly consist of added mass effects, frictional
forces (such as linear skin friction, lift, and drag forces), munk moments (due to current
loads), and buoyancy effects [21]. The force and moment interaction between two adjacent
links are given below [20]:

kfk = Rk+1
k

k+1fk+1 + Fk −mkgk + bk + pk,

ktk = Rk+1
k

k+1tk+1 +dk/k+1 × Rk+1
k

k+1fk+1 +dk/kc × (Fk −mkgk + pk) + Tk + dk/kb × bk,

pk = FLk + FDk + FSk,

FSk = Dk
s
kvk ,

FDk =
∣∣∣kvk

∣∣∣
T
Dk

D
kvk,

FLk =
∣∣∣kvk

∣∣∣
T
Dk

D
kvk,
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nk=
kvk ×

(
Mk

kvk
)
,

Fk = Mk

(
kak +

k
αk ×

kdk/kc +
k
ωk ×

(
k
ωk ×

kdk/kc

))
,

Tk = Ik
k
αk +

k
ωk ×

(
Ik

k
ωk

)
,

k+1
ωk+1 = Rk

k+1
k
ωk + zT q̇k+1,

k+1
αk+1 = Rk

k+1

(
k
αk +

k
ωk × zTqk

)
+ zT q̈k+1,

k+1vk+1 = Rk
k+1

kvk +
k+1

ωk+1 ×
k+1dk/kc,

k+1ak+1 = Rk
k+1

kak +
k+1

αk+1 ×
k+1dk+1/k +

k+1
ωk+1 ×

(
k+1

ωk+1 ×
k+1dk+1/k

)
,

Mk =

⎡
⎢⎢⎢⎣

mk +
πρrk

2Lk

10
0 0

0 mk + πρrk
2Lk 0

0 0 mk + πρrk
2Lk

⎤
⎥⎥⎥⎦,

Ik =

⎡
⎢⎢⎢⎢⎢⎣

Ix 0 0

0 Iy +
πρrk

2Lk
3

12
0

0 0 Iz +
πρrk

2Lk
3

12

⎤
⎥⎥⎥⎥⎥⎦
,

(2.5)

where Rk+1
k

is the rotation matrix, fk is the resultant force vector, tk is the resultant moment
vector, pk is the linear and quadratic hydrodynamic friction forces, FSk is the linear skin fric-
tion force vector, FDk is the quadratic drag force vector, FLk is the quadratic lift force vector,
Dk

s is the linear skin friction matrix,Dk
L is the diagonal matrix which contains lift coefficients,

Dk
D is the diagonal matrix which contains drag coefficients, gk is the gravity force vector, bk

is the buoyancy force vector, nk is the hydrodynamic moment vector, dk/kb is the vector from
the center of buoyancy of the link, dk/kc is the vector from the center of gravity of the link,
dk/k+1 is the vector from joint k to k + 1, Fk is the vector of total forces acting at the center of
mass of link, Tk is the vector of total moments acting at the center of mass of link, ak is the
linear acceleration vector, αk is the angular acceleration vector, vk is the linear velocity vector,
ωk is the angular velocity vector, mk is the mass of the link, Mk is the mass and added mass
matrix of the link (located at the center of mass), and Ik is the moment of inertia and added
moment of matrix of the link (located at the center of mass).

The joint torques of each axis is represented as

τRk = zT
k
tk, (2.6)

where zT is the unit vector along the z-axis. The iterative Newton-Euler dynamics algorithm
for all links symbolically yields the equations of motion for the underwater manipulator. The
result of the equations of motion can be written as follows:

MR

(
q
)
q̈ + CR

(
q, q̇

)
q̇ +DR

(
q, q̇

)
q̇ + gR

(
q
)
= τR, (2.7)
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where q is the vector of joint variables, q = [θ1 θ2 θ3]
T , θ1, θ2, θ3 are the joint angles of

the corresponding underwater manipulator links, MR(q)q̈ is the vector of inertial forces and
moments of the manipulator, CR(q, q̇)q̇ is the vector of Coriolis and centripetal effects of
the manipulator, DR(q, q̇)q̇ is the vector of damping effects of the manipulator, gR(q) is the
restoring vector of the manipulator, τR = τRC + τRO is the input vector, τRC is the control
input vector, and τRO is the observer input vector.

3. Observer-Based Backstepping Control

Our long-term objective is to develop a real-time, model-based, robust, and adaptive onboard
nonlinear motion controller for an autonomous underwater vehicle-manipulator system
(UVMS) to improve the manipulation autonomy so as to enable it to carry out complex inter-
vention tasks involving energy transfer between the UVMS and the environment. Such a
controller can overcome the issues associatedwith the parameter variations such as buoyancy
variation, model uncertainties, disturbances, and noises. The first step in the development of
such a real-time controller is the development of a model-based, robust, nonlinear controller
for the underwater manipulator. In this paper, a novel nonlinear control technique is pro-
posed and developed using the direct knowledge of referencemanipulator dynamics through
an observer. The robustness and performance of the proposed control technique are demon-
strated with the help of numerical simulations. The details of controller development and
simulation studies are presented below.

The dynamic model in (2.7) comprises nonlinear functions of state variables and char-
acterizes the behaviour of the manipulator states. This feature of the dynamic model might
lead us to believe that given any controller, the differential equation that models the control
system in closed-loop should also be composed of nonlinear functions of the corresponding
state variables. This perception applies to most of the conventional control laws. Neverthe-
less, there exists a controller which is nonlinear in the state variables but which leads to a
closed-loop control system described by linear differential equations. In the following section,
a novel observer-based backstepping control (refer to Proposition 3.1) which is capable of
fulfilling the tracking control objective with proper selection of its design parameters is
proposed.

Proposition 3.1. Consider the system whose governing equations are given by (2.7).
Let one defines a positive definite Lyapunov function as

V
(
q̃, ˙̃q, q̃obs,

˙̃qobs

)
=

1

2

[
˙̃q + εq̃

]T[
˙̃q + εq̃

]
+
1

2
q̃T
[
Kp + εKD − ε2I

]
q̃

+
1

2
˙̃q
T

obsM(q̂) ˙̃qobs +
1

2
q̃TobsLq̃obs +

∫ q̃obs

0

gTq̃obs
(ς)dς.

(3.1)

Choosing the control input vector and the observer input vector of the forms on the basis of
backstepping control and proportional derivative schemes is given by

τRC = M
(
q̂
)(

q̈d +Kpq̃ +KD
˙̃q
)
+ C

(
q̂, ˙̂q

)
˙̂q +D

(
q̂, ˙̂q

)
˙̂q + g(q̂),

τRO = −LD
˙̃qobs − Lq̃obs

(3.2)
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will lead to the manipulator tracking (controller) and observer errors tending to zero asymptotically.
That is the vehicle will follow the given desired trajectory.

Here, L, LD,KD, andKP are symmetric positive definite (SPD) design matrices, ε is a positive
constant, which satisfies λmin{KD} > ε > 0, and λmin is the minimum Eigen value of the matrix
KD. q̃ = qd − q̂ denotes the vector of joint position errors of the estimated states, ˙̃q = q̇d − ˙̂q denotes
the vector of joint velocity errors, q̃obs = q − q̂ denotes the vector of observer errors, and ˙̃qobs is the
vector of observer error derivatives. q̂ and ˙̂q are the vectors of estimated states of joint positions and
velocities, respectively. qd, q̇d and q̈d, are the vector of desired values of joint positions, velocities, and
accelerations, respectively.

Proof. The stability analysis of the closed-loop equation is analysed using Lyapunov’s direct
method [22].

Considering λmin{KD} > ε > 0, where x ∈ R
n is any nonzero vector, we obtain

xTλmin{KD}x > xTεx. (3.3)

Since KD is by design a symmetric positive definite matrix,

xT (KD − εI)x > 0, ∀x/= 0 ∈ R
n. (3.4)

Thismeans that thematrix (KD−εI) is symmetric positive definite; that is, (KD−εI) > 0.
Considering all of this, the matrix KP is symmetric positive definite and constant ε also posi-
tive by design; therefore,

(
KP + εKD − ε2I

)
> 0. (3.5)

MatricesM(q̂) and L are positive definite by property [21] and by design, respectively,
and the last term in the Lyapunov function is the potential energy of the system. Therefore,
the candidate Lyapunov function is positive definite for all time. That is, V (q̃, ˙̃q, q̃obs, ˙̃qobs) ≥ 0.
However, for proving the asymptotically stable nature of the proposed system and errors
convergence, the Lyapunov function V (q̃, ˙̃q, q̃obs, ˙̃qobs) is differentiated with respect to time
along the state trajectories, and it yields

V̇
(
q̃, ˙̃q, q̃obs, ˙̃qobs

)
= ˙̃q

T ¨̃q + q̃T
[
Kp + εKD

]
˙̃q + ˙̃q

T
ε ˙̃q + ˙̃q

T
ε ¨̃q

+ ˙̃q
T

obs

(
M
(
q̂
)
¨̃qobs + Lq̃obs + g

(
q̃obs

))
+
1

2
˙̃q
T

obsṀ
(
q̂
)
q̃obs.

(3.6)

However, ¨̃q = q̈d − ¨̂q, and ¨̂q = M−1
R (q̂)(τRC −C(q̂, ˙̂q) ˙̂q−D(q̂, ˙̂q) ˙̂q−g(q̂)). Similarly,MR(q̂) ¨̃qobs =

τRO−(C(q̂, ˙̂q) ˙̃qobs−D(q̂, ˙̂q) ˙̃qobs−g(q̃obs)), and
˙̃q
T

obs(Ṁ(q̂)−2C(q̂, ˙̂q)) ˙̃qobs = 0 ⇒ Ṁ(q̂) = 2C(q̂, ˙̂q).
Substituting ¨̃q, other above relations, the control and the observer vectors from (3.2) in (3.6),
and simplifying the equation, it becomes

V̇
(
q̃, ˙̃q, q̃obs, ˙̃qobs

)
= − ˙̃q

T
[KDR − εI] ˙̃q − εq̃TKPRq̃ − ˙̃q

T

obs

(
LDR +D

(
q̂, ˙̂q

))
˙̃qobs,

V̇
(
q̃, ˙̃q, q̃obs, ˙̃qobs

)
≤ 0.

(3.7)
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Since the matrices LDR, (KD − εI) and KP are symmetric positive definite matrices
by design, and D(q̂, ˙̂q) damping matrix is positive definite by property [21], therefore, the
function V̇ (q̃, ˙̃q, q̃obs, ˙̃qobs) in (3.7) is a negative definite function. From Lyapunov’s stability
theorem, the closed loop equation is uniformly asymptotically stable [22, 23], and therefore,

lim
t→∞

˙̃q(t) = 0,

lim
t→∞

q̃(t) = 0.
(3.8)

From (3.7), it can be observed that the tracking errors converge to zero asymptotically;
however, V̇ (q̃, ˙̃q, q̃obs, ˙̃qobs) = 0 if and only if ˙̃q = 0, ˙̃q = 0, and ˙̃qobs = 0. From Barbalat’s and
modified LaSalle’s lemmas [22, 23], it is necessary and sufficient that q̃ = 0, ˙̃q = 0, and ˙̃qobs = 0
for all time (t ≥ 0) [22]. Therefore, it must also hold that ¨̃qobs = 0 for all t ≥ 0. Taking this into
account, it can show from the closed loop equation that

0 = M
(
q̂
)−1(

Lq̃obs + g
(
q̃obs

))
. (3.9)

Moreover, the observer gain matrix L is an SPD matrix by design and has been chosen
in such a way that λmin{L} > ‖∂g(q̃obs)/∂q̃obs‖. Hence, q̃obs = 0 for all t ≥ 0 is its unique
solution, and it can be observed that the observer errors also converge to zero asymptotically
[22, 23]. That is,

lim
t→∞

˙̃qobs(t) = 0,

lim
t→∞

q̃
obs

(t) = 0.
(3.10)

Note 1. The proposed control scheme in (3.2) makes use of the knowledge of the system
matrices M(q̂),C(q̂, ˙̂q), and D(q̂, ˙̂q) and of the vector g(q̂) for calculating the control input
τRC and hence referred to as model reference control (MRC) scheme. The block diagram that
corresponds to the proposed controller is shown in Figure 2. The proposed Lyapunov analysis
does not contain explicit treatment of the parametric uncertainties and external disturbance
while taking temporal derivative along the closed-loop system trajectories.

4. Performance Analysis

4.1. Description of Tasks and the Underwater Manipulator

We have accomplished widespread computer-based numerical simulations to explore the
tracking performance of the proposed observer-based backstepping control scheme. The ma-
nipulator used for this study consists of three dof spatial manipulator (refer Figure 1). The
manipulator links are cylindrical in shape and the radii of links 1, 2, and 3 are 0.1m, 0.1m,
and 0.1m, respectively. The lengths of link 1, 2, and 3 are 0.1m, 0.4m, and 0.4m, respectively.
The link masses (along with oil conserved motors) are 3.15 kg, 15.67 kg, and 15.67 kg, res-
pectively. Here, the links are considered as cylindrical shape, because such shape provides
uniform hydrodynamic reactions and is one of the primary candidates for possible link
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geometry for underwater manipulators. Although it is cylindrical, our mathematical frame-
work does not depend on any particular shapes, and it can be easily accommodated in
any other shapes. Indeed, cylindrical underwater manipulators are available in the present
market [24].
Hydrodynamic parameters of the manipulator were estimated using empirical relations
based on strip theory. This method is verified using available literature; therefore, these
values are reliable and can be used for further developments. Some parameters like inertia,
centre of gravity, and centre of buoyancy are calculated from the geometrical design of the
manipulator. We have compared our results with that of traditional PID controller, and the
following control vector is considered for the manipulator and given by

τRC = KD
˙̃q +KP q̃ +KI

∫
q̃dt, (4.1)

where, KP , KI, and KD are the proportional, integral, and derivative gain matrices.
There are two basic trajectories that have been considered for the simulations, a

straight line trajectory with a length of 0.52m and a circular trajectory with a diameter of
0.4m in 3D space. This is for the reason that most of the underwater intervention tasks in-
volved these types of trajectories and any spatial trajectory can be arranged by combining
these trajectories. In the performance analysis, the sensory noises in joint position measure-
ments are considered as Gaussian noise of 0.01 rad mean and 0.01 rad standard deviation for
the joint position measurements. The actuator characteristics also incorporated in the sim-
ulations. All the actuators are considered as an identical one, and the following actuator
characteristics are considered for the analysis: the response delay time is 200ms, efficiency is
95%, and saturation limits of the actuators are ±5Nm. The controller update rate and sensor
response time are considered as 100ms each.

4.2. Results and Discussions

The controller gain values for both proposed MRC and traditional PID schemes are tuned
based on a combined Taguchi’s method and genetic algorithms (GA) with the minimization
of integral squared error (ISE) as the cost/objective function [25, 26], and here, we have con-
sidered both proposed and PID control performances are almost equal in the ideal situation,
which makes the controller performance comparison quite reasonable for the further analysis
and gives much better way of understanding between these controller performances. The
combined Taguchi’s method and GA scheme makes tuning the controller parameters much
more simple and effective. In this method, the initial step is to finding the limits of controller
gain values for GA tuning scheme, which obtained through Taguchi’s method. It makes the
GA performance with less iterations and faster convergence. The controllers parameters are
obtained through this method are given in Table 2. The same set of controller parameters are
used throughout the entire performance analysis. The observer settings are common for both
controllers and these values tuned through the above method and are given in Table 2.

In the initial set of simulations, only nonzero initial errors have considered, and all
other conditions are considered as an ideal one, that is, the observer model exactly equivalent
to the system, no external disturbances, and no sensor noises. The manipulator commanded
to track a straight-line trajectory in the 3D space about a length of 0.52m, from (0.2, 0.6, 0.5)m
to (0.5, 0.3, 0.2)m with the time span of 10 s. The manipulator initial position errors in task
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Figure 3: Time trajectories of the joint position errors for the straight line trajectory in an ideal condition.

Table 2: Controller parameter settings for simulations.

PID controller parameters Values Proposed controller parameters Values

KP diag(60, 80, 75) KPR diag(5, 10, 12)

KD diag(35, 40, 50) KDR diag(3, 5, 8)

KI diag(1, 1.5, 2)

PD observer parameters

L diag(10, 16, 18) LDR diag(8, 10, 11)

space (x, y, and z) are 0.1m, 0.3m, and 0.25m, respectively. Both the controller performances
are presented in Figures 3 to 5. Figure 3 shows the time trajectories of tracking and observer
errors of the joint positions, Figure 4 shows the time histories of tracking and observer errors
of the manipulator task space coordinates, and Figure 5 shows the 3D space desired and
actual task space trajectories. From the results, it is observed that both the controllers are
working almost similar fashion and produced satisfactory results. In a deeper observation, it
shows that the PID controller performance little far better than the proposed controller. This
is mainly to make fair comparison between these two controllers in the presence of external
disturbances, parameter uncertainties, and sensor noises and illustrate the effectiveness of
the proposed controller.
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Figure 4: Time trajectories of the task space (xyz) errors for the straight line trajectory in an ideal condition.
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Figure 6: Time trajectories of the joint position errors for the straight line trajectory in an uncertain and
disturbed condition.

In order to demonstrate the adaptability and robustness of the proposed controller, an
uncertain condition is considered for the simulations, where the manipulator parameters are
assumed to be 10% of uncertainties, a payload of 10 kg is considered, and the manipulator
tracking the given desired task space trajectories in the presence of an unknown underwater
current (with an average current speed of 0.5m/s, side slip and angle of attack are 45◦ each)
and the sensory noises in joint position measurements are considered as Gaussian noise
of 0.01 rad mean and 0.01 rad standard deviation. The simulation results for both straight
line and circular trajectories in the presence of disturbances and uncertainties are presented
in Figures 6, 7, 8, 9, 10, and 11, and from these results, it is observed that the proposed
observer-based backstepping controller is good in adapting the uncertainties and external
disturbances (refer to task space trajectories in Figures 8 and 11). In both trajectory tracking
cases, themanipulator actuator torques are not exceeding ±1Nm (except initial stage, because
during this stage the nonzero initial errors are compensated; therefore, in the initial stage, the
actuator reaches its saturation limits ±5Nm), which are well with the range of actuators.

In this work, we have provided numerical simulation results to investigate the per-
formance and to demonstrate the effectiveness of the proposed control scheme. These results
are intuitive, promising, and point out the prospective of the proposed approach. Therefore,
this work can be extended to autonomous underwater vehicle-manipulator system, and it can
also be extended to develop a coordinated control scheme for the same. On the other hand,
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Figure 7: Time trajectories of the task space (xyz) errors for the straight line trajectory in an uncertain and
disturbed condition.
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Figure 8: Task space (xyz) trajectories for the straight line trajectory in an uncertain and disturbed
condition.
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Figure 9: Time trajectories of the joint position errors for the circular trajectory in an uncertain and
disturbed condition.

these results are based on numerical simulations; therefore, it is important that extensive real-
time experiments need to be conducted to validate the advantages of the proposed scheme
which will be available in near future.

5. Conclusion

The tracking performance of the proportional-derivate observer-based backstepping con-
trolled spatial underwater manipulator is investigated. The simulation results demonstrate
that the actual joint trajectories asymptotically follow the desired trajectories defined by the
reference observer model. Despite the effects of hydrodynamics on the manipulator, param-
eter uncertainties, and external disturbances (underwater current), the tracking performance
of the proposed control scheme produced better performance and is also confirmed to be
good and satisfactory. The proposed proportional-derivative observer has shown its impor-
tance to estimating the state variables, and in this work, we have considered only the joint
positions (i.e., only corresponding potentiometer outputs)which is cost effective. The values
of proposed controller and PID controller gains are tuned on the basis of combined Taguchi’s
method and genetic algorithms. It is worth to design such scheme to obtain optimal values
which probably improves the controller performance. The proposed scheme effectiveness has
been demonstrated only with computer simulations, whereas this is an important first step
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Figure 10: Time trajectories of the task space (xyz) errors for the circular trajectory in an uncertain and
disturbed condition.
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before preceding the actual real-time experiments in order to understand the challenges asso-
ciated with the system. Therefore, as a future work, the proposed scheme can be validated
through real-time experiments. The Lyapunov analysis does not contain any explicit treat-
ment of the parametric uncertainties and external disturbance while taking temporal deriv-
ative along the closed-loop system trajectories. Therefore, as a future work, the proposed
scheme stability and its robustness can be proved in the presence of parametric uncertainties
and external disturbances in near future.
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