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Abstract

The rainbow connection number, rc(G), of a connected graph G is the minimum
number of colors needed to color its edges, so that every pair of vertices is connected
by at least one path in which no two edges are colored the same. Our main result
is that rc(G) ≤ ⌈n2 ⌉ for any 2-connected graph with at least three vertices. We
conjecture that rc(G) ≤ n/κ + C for a κ-connected graph G of order n, where C
is a constant, and prove the conjecture for certain classes of graphs. We also prove
that rc(G) ≤ (2 + ε)n/κ+ 23/ε2 for any ε > 0.

Keywords: rainbow coloring, rainbow connection number, connectivity, 2-connected
graph, ear decomposition, chordal graph, girth

1 Introduction

An edge coloring of a graph is a function from its edge set to the set of natural
numbers. A path in an edge colored graph with no two edges sharing the same color is
called a rainbow path. An edge colored graph is said to be rainbow connected if every pair
of vertices is connected by at least one rainbow path. Such a coloring is called a rainbow
coloring of the graph. If a rainbow coloring uses k colors, we call it a k-rainbow coloring.
The minimum number of colors required to rainbow color a connected graph is called
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its rainbow connection number, denoted by rc(G). For example, the rainbow connection
number of a complete graph is 1, that of a path is its length, and that of a star is its
number of leaves. For a basic introduction to the topic, see Chapter 11 in [7].

The concept of rainbow coloring was introduced by Chartrand, Johns, McKeon and
Zhang [6] in 2008. Chakraborty et al. [4] showed that computing the rainbow connection
number of a graph is NP-Hard. To rainbow color a graph, it is enough to ensure that
every edge of some spanning tree in the graph gets a distinct color. Hence, the order of the
graph minus one is an upper bound for the rainbow connection number. Many authors
[3, 4, 10] view rainbow connection number as a “quantifiable” way of strengthening the
connectivity property of a graph. Hence, tighter upper bounds on the rainbow connection
number for a graph with higher connectivity have been a subject of investigation.

The following are the results in this direction reported in literature: Let G be a
graph of order n. Caro et al. [3] showed that if G is 2-edge-connected (bridgeless), then
rc(G) ≤ 4n/5−1 and if G is 2-connected, then rc(G) ≤ min{2n/3, n/2+O(

√
n)}. Li and

Shi [11] showed that if G is 3-connected, then rc(G) ≤ 3(n+1)/5. Krivelevich and Yuster
[10] showed that rc(G) ≤ 20n/δ, where δ is the minimum degree of G. The result was
improved by Chandran et al. [5] where it was shown that rc(G) ≤ 3n/(δ + 1) + 3. Hence
it follows that rc(G) ≤ 3n/(λ+1)+3 if G is λ-edge-connected and rc(G) ≤ 3n/(κ+1)+3
if G is κ-connected. This is because κ ≤ λ ≤ δ.

The main result of our paper is that for any 2-connected graph of order n, rc(G) ≤
⌈n/2⌉, and the bound is trivially attained by cycles of order at least 4 (Theorem 2.4).
This improves the previous best known upper bounds for 2-connected and 3-connected
graphs [3, 11] mentioned in last paragraph. We show that the bound of 3n/(λ + 1) + 3
in terms of the edge-connectivity is tight up to additive constants for infinitely many
values of λ and n (Example 3.1). We improve the bound for κ-connected graphs to
rc(G) ≤ (2 + ǫ)n/κ+ 23/ǫ2 for any ǫ > 0 (Theorem 3.6). We conjecture (Conjecture 3.7)
that for a κ-connected graph G, rc(G) ≤ n/κ + C where C is a constant. For κ ≥ 3, we
show that the conjecture is true for chordal graphs (Theorem 3.11) and graphs of girth at
least 7 (Theorem 3.10). It can be easily shown from existing literature that the conjecture
is true for all κ for some other graph classes like AT-free graphs and circular arc graphs
too [5]. We remark that an upper bound of n/κ+ C will be tight up to additive factors.

All graphs considered in this article are finite, simple and undirected. The length of
a path is its number of edges. If S is a subset of vertices of a graph G, the subgraph of
G induced by the vertices in S is denoted by G[S]. The vertex set and edge set of G are
denoted by V (G) and E(G), respectively. The order of G (number of vertices) may be
denoted by |G|.

2 Result for 2-connected graphs

At first we study the rainbow connection number of 2-connected graphs. As usual, the
term κ-vertex-connected will be simply addressed as κ-connected. The following notation
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and terminology are needed in the sequel.

Definition 2.1. Let F be a subgraph of a graph G. An ear of F in G is a nontrivial path
in G whose endpoints are in F but whose internal vertices are not. A nested sequence
of graphs is a sequence (G0, G1, · · · , Gk) of graphs such that Gi ⊂ Gi+1, 0 ≤ i < k. An
ear decomposition of a 2-connected graph G is a nested sequence (G0, G1, · · · , Gk) of
2-connected subgraphs of G such that: (1) G0 is a cycle; (2) Gi = Gi−1

⋃

Pi, where Pi is
an ear of Gi−1 in G, 1 ≤ i ≤ k; (3) Gk = G.

The next notions are new ones which will play key roles in our proofs.

Definition 2.2. Let c be a k-rainbow coloring of a connected graph G. If a rainbow path
P in G has length k, we call P a complete rainbow path; otherwise, it is an incomplete
rainbow path. A rainbow coloring c of G is incomplete if for any vertex u ∈ V (G), G
has at most one vertex v such that all the rainbow paths between u and v are complete;
otherwise, it is complete.

A complete rainbow path uses all colors of the coloring, while an incomplete rainbow
path misses at least one color of the coloring.

For a connected graph G, if a spanning subgraph has an (incomplete) k-rainbow
coloring, then G has an (incomplete) k-rainbow coloring. This simple fact will be used in
the following proofs.

Lemma 2.1. Let G be a Hamiltonian graph of order n (n ≥ 3). Then G has an incomplete
⌈n
2
⌉-rainbow coloring, i.e., rc(G) ≤ ⌈n

2
⌉.

Proof. Since G is a Hamiltonian graph, there is a Hamiltonian cycle Cn = v1, v2, · · · ,
vn, vn+1 (= v1) in G. Define an edge-coloring c of Cn by c(vivi+1) = i for 1 ≤ i ≤ ⌈n

2
⌉ and

c(vivi+1) = i− ⌈n
2
⌉ if ⌈n

2
⌉ + 1 ≤ i ≤ n. It is clear that c is a ⌈n

2
⌉-rainbow coloring of Cn,

and the shortest path connecting any two vertices in V (G) on Cn is a rainbow path. For
any vertex vi (1 ≤ i ≤ n), only the antipodal vertex of vi has no incomplete rainbow path
to vi if n is even. Every pair of vertices in G has an incomplete rainbow path if n is odd.
Hence the rainbow coloring c of Cn is incomplete. Since Cn is a spanning subgraph of G,
G has an incomplete ⌈n

2
⌉-rainbow coloring.

Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). Then G must
have an even cycle. In fact, since G is 2-connected, G must have a cycle C. If C is an
even cycle, we are done. Otherwise, C is a odd cycle, we then choose an ear P of C such
that V (C)

⋂

V (P ) = {a, b}. Since the lengths of the two segments between a, b on C
have different parities, P joining with one of the two segments forms an even cycle. Then,
starting from an even cycle G0, there exists a nonincreasing ear decomposition (G0, G1,
· · · , Gt, Gt+1, · · · , Gk) of G, such that Gi = Gi−1

⋃

Pi (1 ≤ i ≤ k) and Pi is a longest ear
of Gi−1, i.e., ℓ(P1) ≥ ℓ(P2) ≥ · · · ≥ ℓ(Pk). Suppose that V (Pi)

⋂

V (Gi−1) = {ai, bi} (1 ≤
i ≤ k). We call the distinct vertices ai, bi (1 ≤ i ≤ k) the endpoints of the ear Pi. Without
loss of generality, suppose that ℓ(Pt) ≥ 2 and ℓ(Pt+1) = · · · = ℓ(Pk) = 1. So Gt is a
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2-connected spanning subgraph of G. Since G is a non-Hamiltonian graph, we have t ≥ 1.
Denote the order of Gi (0 ≤ i ≤ k) by ni. All these notations will be used in the sequel.

Lemma 2.2. Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). If G
has at most one ear with length 2 in the nonincreasing ear decomposition, then G has a
incomplete ⌈n

2
⌉-rainbow coloring, i.e., rc(G) ≤ ⌈n

2
⌉.

Proof. Since Gt (t ≥ 1) in the nonincreasing ear decomposition is a 2-connected spanning
subgraph of G, it only needs to show that Gt has an incomplete ⌈n

2
⌉-rainbow coloring.

We will apply induction on t.

First, consider the case that t = 1. Let G be a 2-connected non-Hamiltonian graph
with t = 1 in the nonincreasing ear decomposition. The spanning subgraph G1 = G0

⋃

P1

of G consists of an even cycle G0 and an ear P1 of G0. Without loss of generality, suppose
that G0 = v1, v2, · · · , v2k, v2k+1 (= v1) where k ≥ 2. We color the edges of G0 with k colors.
Define the edge-coloring c0 of G0 by c0(vivi+1) = i for 1 ≤ i ≤ k and c0(vivi+1) = i− k if
k+1 ≤ i ≤ 2k. From the proof of Lemma 2.1, the coloring c0 is an incomplete k-rainbow
coloring of G0. Now consider G1 according to the parity of ℓ(P1). If ℓ(P1) is even, then

n1 is odd and color the edges of P1 with
ℓ(P1)
2

new colors. In the first ℓ(P1)
2

edges of P1 the

colors are all distinct, and the same ordering of colors is repeated in the last ℓ(P1)
2

edges of
P1. It is easy to verify that the obtained coloring c1 of G1 is an incomplete ⌈n1

2
⌉-rainbow

coloring such that for any pair of vertices in G, there exists an incomplete rainbow path
connecting them. If ℓ(P1) is odd, then n1 is even and color the edges of P1 with ℓ(P1)−1

2

new colors. The middle edge of P1 receives any color that already appeared in G0. The
first ℓ(P1)−1

2
edges of P1 all receive distinct new colors and in the last ℓ(P1)−1

2
edges of P1

this coloring is repeated in the same order. It is easy to verify that the obtained coloring
c1 of G1 is an incomplete ⌈n

2
⌉-rainbow coloring.

Let G be a 2-connected non-Hamiltonian graph with t ≥ 2 in the nonincreasing ear
decomposition. Assume that the subgraph Gi (1 ≤ i ≤ t − 1) has an incomplete ⌈ni

2
⌉-

rainbow coloring ci such that when ni is odd, any pair of vertices have an incomplete
rainbow path. We distinguish the following three cases.

Case 1. ℓ(Pt) (≥ 3) is odd.

Suppose that Pt = v0(= at), v1, · · · , vr, vr+1, · · · , v2r, v2r+1(= bt), where r ≥ 1. We
color the edges of Pt with r new colors to obtain an incomplete coloring ct of Gt. Define
an edge-coloring of Pt by c(vi−1vi) = xi (1 ≤ i ≤ r), c(vrvr+1) = x and c(vi−1vi) =
xi−r−1 (r+2 ≤ i ≤ 2r+1), where x1, x2, · · · , xr are new colors and x is a color appearing
in Gt−1. It is easy to check that the obtained coloring ct of Gt is a ⌈n

2
⌉-rainbow coloring.

Now we show that ct is incomplete such that when nt is odd, any pair of vertices
have an incomplete rainbow path. For any pair of vertices u, v ∈ V (Gt−1) × V (Gt−1),
the rainbow path P from u to v in Gt−1 is incomplete in Gt, because the new colors
x1, x2, · · · , xr (r ≥ 1) do not appear in P . For any pair of vertices u, v ∈ V (Pt)× V (Pt),
if there exists a rainbow path P from u to v on Pt, then P is incomplete in Gt, since
some color in Gt−1 does not appear in P ; if not, there exists an incomplete rainbow path
P from u to v through some vertices of Gt−1 such that at least one new color does not
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appear in P . For any pair of vertices u, v ∈ V (Gt−1)× (V (Pt)\{vr, vr+1}), there exists an
incomplete rainbow path from u to v in which at least one new color does not appear. If
there exists a vertex all of whose rainbow paths to at (resp. bt) in Gt−1 are complete, we
denote the vertex by a′t (resp. b′t). For vertex vr (resp. vr+1), only the vertex a′t (resp.
b′t) possibly has no incomplete rainbow path to vr (resp. vr+1) in Gt. So there possibly
exist two pairs of vertices a′t, vr and b′t, vr+1 which have no incomplete rainbow path. Since
a′t, b′t are distinct in Gt−1, the rainbow coloring ct is incomplete. If n is odd, then nt−1

is odd. By induction, a′t, b′t do not exist when nt−1 is odd. Hence every pair of vertices
have a incomplete rainbow path.

Case 2. ℓ(Pt) (≥ 2) is even and nt−1 is even.

In this case, n is odd. Suppose that Pt = v0(= at), v1, · · · , vr, vr+1, · · · , v2r−1, v2r(=
bt), where r ≥ 1. Define an edge-coloring of Pt by c(vi−1vi) = xi for 1 ≤ i ≤ r and
c(vi−1vi) = xi−r for r + 1 ≤ i ≤ 2r. It is clear that the obtained coloring ct of Gt is a
⌈n
2
⌉-rainbow coloring.

Now we prove that ct is incomplete such that when nt is odd, any pair of vertices
have an incomplete rainbow path. For any pair of vertices in V (Gt−1) × V (Gt−1) or
V (Pt)×V (Pt), there is an incomplete rainbow path connecting them in Gt, similar to the
Case 1. For any pair of vertices u ∈ V (Gt−1), v ∈ V (Pt) (v 6= vr), there is an incomplete
rainbow path P from u to v such that at least one new color does not appear in P . For any
vertex u ∈ V (Gt−1), since the coloring ct−1 is incomplete, u has an incomplete rainbow
path P ′ in Gt−1 to one of at, bt (say at). Then P ′ joining with atPtvr is an incomplete
rainbow path from u to vr in Gt. Therefore, the rainbow coloring ct of Gt is incomplete
such that any pair of vertices has an incomplete rainbow path.

Case 3. ℓ(Pt) (≥ 2) is even and nt−1 is odd.

In this case, n is even. We consider the following three subcases.

Subcase 3.1. [V (Pt)
⋂

V (Pt−1)]\V (Gt−2) = ∅.
If ℓ(Pt−1) is odd, let G

′
t−1 = Gt−2

⋃

Pt and Gt = G′
t−1

⋃

Pt−1. By induction, G′
t−1 has

an incomplete ⌈n′

t−1

2
⌉-rainbow coloring (n′

t−1 is the order of G′
t−1). Similar to Case 1, we

can obtain an incomplete ⌈n
2
⌉-rainbow coloring of Gt from G′

t−1 .

Suppose that ℓ(Pt−1) is even. By induction, Gt−2 has an incomplete ⌈nt−2

2
⌉-rainbow

coloring ct−2. Suppose that Pt−1 = v0(= at−1), v1, · · · , vr, vr+1, · · · , v2r−1, v2r(= bt−1) and
Pt = v′0(= at), v

′
1, · · · , v′s, v′s+1, · · · , v′2s−1, v

′
2s(= bt), where r ≥ 2, s ≥ 1. Since ct−2 is

incomplete and ai, bi (1 ≤ i ≤ k) are two distinct vertices, then at−1 has an incomplete
rainbow path P ′ to one of at, bt (say at) and bt−1 has an incomplete rainbow path P ′′

to the other vertex. Suppose that x is the color in Gt−2 that does not appear in P ′.
Now color the edges of Pt−1, Pt with r + s − 1 new colors and the color x. Define an
edge-coloring of Pt−1 by c(vi−1vi) = xi (1 ≤ i ≤ r) and c(vi−1vi) = xi−r (r + 1 ≤ i ≤ 2r),
where x1, x2, · · · , xr are new colors. Define an edge-coloring of Pt by c(v′i−1v

′
i) = yi (1 ≤

i ≤ s − 1), c(v′s−1v
′
s) = x, c(v′sv

′
s+1) = x1 and c(v′i−1v

′
i) = yi−s−1 (s + 2 ≤ i ≤ 2s), where

y1, y2, · · · , ys−1 are new colors.

Similar to Case 2, the obtained coloring ct−1 of Gt−1 is an incomplete ⌈nt−1

2
⌉-rainbow
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coloring such that every pair of vertices have an incomplete rainbow path. It is obvious
that Gt is rainbow connected. The path (v′sPtat)P

′(at−1Pt−1vr) is a rainbow path from v′s
to vr which is possibly complete. For any other pair of vertices inGt, there is an incomplete
rainbow path connecting them. Hence the rainbow coloring ct of Gt is incomplete.

Subcase 3.2. [V (Pt)
⋂

V (Pt−1)]\V (Gt−2) = {bt}.
If ℓ(Pt−1) is odd, suppose that Pt−1 = v0(= at−1), v1, · · · , vr, vr+1, · · · , v2r, v2r+1(=

bt−1). Since Pt−1 is a longest ear of Gt−2 and bt ∈ V (Pt−1) \ V (Gt−2), we have r ≥
2. Define an edge-coloring of Pt−1 by c(vi−1vi) = xi (1 ≤ i ≤ r), c(vrvr+1) = x and
c(vi−1vi) = xi−r−1 (r+2 ≤ i ≤ 2r+1), where x1, x2, · · · , xr are new colors and x is a color
appearing in Gt−2. Similar to Case 1, the obtained coloring ct−1 of Gt−1 is an incomplete
⌈nt−1

2
⌉-rainbow coloring such that every pair of vertices have an incomplete rainbow path.

If ℓ(Pt−1) is even, suppose that Pt−1 = v0(= at−1), v1, · · · , vr, vr+1, · · · , v2r−1, v2r(= bt−1),
where r ≥ 2. Define an edge-coloring of Pt−1 by c(vi−1vi) = xi (1 ≤ i ≤ r), and
c(vi−1vi) = xi−r (r + 1 ≤ i ≤ 2r), where x1, x2, · · · , xr are new colors. Similar to Case
2, the obtained coloring ct−1 of Gt−1 is an incomplete ⌈nt−1

2
⌉-rainbow coloring such that

every pair of vertices have an incomplete rainbow path.

Without loss of generality, assume that bt belongs to the first half of Pt−1 and that
Pt = v′0(= at), v

′
1, · · · , v′s, v′s+1, · · · , v′2s−1, v

′
2s(= bt), where s ≥ 1. We color the edges of Pt

with s − 1 new colors. Define an edge-coloring of Pt by c(v′i−1v
′
i) = yi (1 ≤ i ≤ s − 1),

c(v′s−1v
′
s) = x1, c(v

′
sv

′
s+1) = y and c(v′i−1v

′
i) = yi−s−1 (s+2 ≤ i ≤ 2s), where y1, y2, · · · , ys−1

are new colors, y is a color in Gt−2 and x 6= y. It is easy to verify that the obtained coloring
ct of Gt is a ⌈n

2
⌉-rainbow coloring.

For any pair of vertices v′ ∈ V (Pt)(v
′ 6= v′s) and v ∈ V (Gt−1), there exists an incom-

plete rainbow path P connecting them, since the path from v′ to the nearest endpoint
of Pt joining with the incomplete rainbow path from the endpoint to v in V (Gt−1) is an
incomplete rainbow path from v′ to v in Gt. For v

′
s, there is an incomplete rainbow path

from v′s to any vertex in V (Gt−2)
⋃

V (bt−1Pt−1vr+2) through edge e = v′s−1v
′
s, and an in-

complete rainbow path from v′s to any vertex in V (at−1Pt−1vr+1) through edge e = v′sv
′
s+1.

For any pair of vertices in V (Pt)×V (Pt), there is an incomplete rainbow path connecting
them. Hence the rainbow coloring ct is incomplete.

Subcase 3.3. [V (Pt)
⋂

V (Pt−1)]\V (Gt−2) = {at, bt}.
We can prove this subcase in a way similar to Subcase 3.2. Without loss of generality,

we can assume that at = vp(1 ≤ p ≤ r − 1) and bt = vq(q ≥ p + 2). Color all the edges
of Pt−1 and Pt as in Subcase 3.2 but only the edge e = v′s−1v

′
s which is colored by xp+1 in

Pt−1 instead. The obtained coloring ct of Gt is an incomplete ⌈n
2
⌉-rainbow coloring.

Lemma 2.3. Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). If G
has at least 2 ears of length 2 in the nonincreaing ear decomposition, then rc(G) ≤ ⌈n

2
⌉.

Proof. We only need to prove that there exists a rainbow coloring ct of the spanning
subgraph Gt in the nonincreasing ear decomposition that uses at most ⌈n

2
⌉ colors. If

G has 2 or 3 ears of length 2 in the nonincreaing ear decomposition, then Gt−2 has at
most one ear of length 2 and ℓ(Pt−1) = ℓ(Pt) = 2. From Lemmas 2.1 and 2.2, Gt−2
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has an incomplete ⌈nt−2

2
⌉-rainbow coloring ct−2. Assume that Pt−1 = at−1, v, bt−1 and

Pt = at, v
′, bt. Since Pt−1 is a longest ear of Gt−2, we have at, bt ∈ V (Gt−2). Since the

coloring ct−2 is incomplete, at−1 has an incomplete rainbow path P to one of at, bt (say
at) such that the color x in Gt−2 does not appear in P . Define an edge-coloring of Pt−1

and Pt by c(at−1v) = c(bt−1v) = c(btv
′) = x1 and c(atv

′) = x, where x1 is a new color. It
is clear that vat−1Patv

′ is a rainbow path from v to v′, and the obtained coloring of Gt is
a ⌈n

2
⌉-rainbow coloring.

Now consider the case that G has at least 4 ears of length 2 in the nonincreaing ear
decomposition. Suppose that ℓ(Pt′−1) ≥ 3 and ℓ(Pt′) = ℓ(Pt′+1) = · · · = ℓ(Pt) = 2. Since
Pi(1 ≤ i ≤ k) is a longest ear of Gi−1, we have that at′ , bt′ , · · · , at, bt ∈ V (Gt′−1), i.e.,
V (Gt′−1) is a connected 1-step dominating set. From Lemmas 2.1 and 2.2, there exists a
⌈nt′−1

2
⌉-rainbow coloring ct′−1 of Gt′−1. Color one edge of Pi(t

′ ≤ i ≤ t) with x1 and the
other with x2, where x1, x2 are two new colors. It is obvious that Gt is rainbow connected.
Since G has at least 4 ears of length 2, the obtained rainbow coloring of Gt uses at most
⌈n
2
⌉ colors.

From the above three lemmas and the fact that rc(Cn) = ⌈n
2
⌉ (n ≥ 4), we can derive

our following main result.

Theorem 2.4. Let G be a 2-connected graph of order n (n ≥ 3). Then rc(G) ≤ ⌈n
2
⌉, and

the upper bound is tight for n ≥ 4.

Since for any two distinct vertices in a κ-connected graph G of order n, there exist at
least κ internal disjoint paths connecting them, the diameter of G is no more than ⌊n

κ
⌋.

One could think of generalizing Theorem 2.4 to the case of higher connectivity. Therefore
we conjecture that for any κ-connected graph G, rc(G) ≤ ⌈n

κ
⌉.

3 Results for graphs with higher connectivity

Now we will deal with graphs with higher (edge-) connectivity. At first, we settle
the question of a tight upper bound for rainbow connection number in terms of edge-
connectivity by showing that the bound of 3n/(λ+1)+3, which directly follows from the
minimum degree bound of 3n/(δ+1)+ 3 [5], is tight up to additive factors. We show the
tightness by constructing a family of λ-edge-connected graphs for infinitely many values
of λ and order n with diameter d = 3n

λ+1
− 3. Since diameter is a lower bound on the

rainbow connection number, the construction suffices for our purpose.

Example 3.1 (Construction of a λ-edge-connected graph G on n vertices with diameter
d = 3n

λ+1
− 3). Let d ≥ 1 be a natural number, and λ a natural number such that λ+ 1 is

a multiple of 3 and λ ≥ 8. Set k := λ+1
3
, and set V (G) = V0 ⊎ V1 ⊎ · · · ⊎ Vd, where |Vi|

is 2k for i = 0 and i = d, and k for 1 ≤ i < d. Two distinct vertices u ∈ Vi and v ∈ Vj

are adjacent in G if and only if |i − j| ≤ 1. It is easy to see that the diameter of G is
d, n = |V (G)| = k(d + 3) and hence d = n

k
− 3 = 3n

λ+1
− 3. By considering all pairs of

vertices, it can be seen that G is λ-edge-connected.
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Next, we try to obtain an upper bound on the rainbow connection number for κ-
connected graphs that is tighter than the 3n/(κ+ 1) bound implied by the degree bound
in [5]. We will show that for any κ-connected graph G, rc(G) ≤ (2 + ǫ)n/κ + 23/ǫ2 for
any ǫ > 0. The following notation and terminology are needed.

Definition 3.1. Given a graph G, a set D ⊆ V (G) is called an ℓ-step dominating set
of G, if every vertex in G is at a distance at most ℓ from D. Furthermore, if G[D] is
connected, then D is called a connected ℓ-step dominating set of G.

From [1] we have the following lemma.

Lemma 3.2 ([1]). If G is a bridgeless graph, then for every connected ℓ-step dominating
set Dℓ of G, ℓ ≥ 1, there exists a connected (ℓ − 1)-step dominating set Dℓ−1 ⊃ Dℓ such
that

rc(G[Dℓ−1]) ≤ rc(G[Dℓ]) + 2ℓ+ 1.

The following three lemmas are used to prove our theorem.

Lemma 3.3. If G is a bridgeless graph, and Dℓ is a connected ℓ-step dominating set of
G, then

rc(G) ≤ rc(G[Dℓ]) + ℓ(ℓ+ 2) ≤ |Dℓ| − 1 + ℓ(ℓ+ 2).

Proof. Note that the only 0-step dominating set in G is V (G). Hence the first inequality
follows from repeated application of Lemma 3.2. The second inequality follows since
rc(G[Dℓ]) ≤ |Dℓ| − 1.

Lemma 3.4. Every κ-connected (κ ≥ 1) graph G of order n has a connected 2ℓ-step
dominating set of size at most

(

2ℓ+1
κℓ+1

)

n for every natural number ℓ ≥ 0.

Proof. If k ≤ 2, the bound is trivial for any ℓ ≥ 0 since we can take V (G) as the
dominating set. Similarly, if r is the radius of G, for ℓ ≥ r/2 we can take any central
vertex of G as the 2ℓ-step dominating set. Hence we assume κ > 2 and ℓ < r/2.

The following procedure is used to construct a 2ℓ-step dominating set D. Let N i(S) :=
{x : dG(x, S) = i} and N i(S) := {x : dG(x, S) ≤ i} for any S ⊂ V (G). N i(s) = N i({s})
and N i(s) = N i({s}) for any s ∈ V (G).

D = {u}, for some u ∈ V (G).
While N2ℓ+1(D) 6= ∅,
{

Pick any v ∈ N2ℓ+1(D). Let (v, x2ℓ, x2ℓ−1, . . . , x0), x0 ∈ D be a shortest
v–D path.

D isD ∪ {x1, x2, . . . , x2ℓ, v}.
}
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Clearly, D remains connected after every iteration of the procedure. Since the proce-
dure ends only when N2ℓ+1(D) = ∅, the final D is a 2ℓ-step dominating set. Let t be the
number of iterations executed by the procedure. From Menger Theorem (see [2] for exam-
ple) we know that when the procedure starts |N ℓ(D)| = |N ℓ(u)| ≥ κℓ+1. This is because
ℓ < r and |N i(u)| ≥ κ for 1 ≤ i < r since G is κ-connected. Note that v ∈ N2ℓ+1(D) en-
sures that N ℓ(v)∩N ℓ(D) = ∅, and |N ℓ(v)| ≥ κℓ+1 due to κ-connectivity of G. Hence the
addition of v to D increases |N ℓ(D)| by at least κℓ+1 in every iteration. Therefore, when
the procedure ends, (κℓ+ 1)(t+ 1) ≤ |N ℓ(D)| ≤ n. Since D starts as a singleton set and

each iteration adds 2ℓ+1 more vertices, |D| = (2ℓ+1)t+1 ≤ (2ℓ+1)n
κℓ+1

− 2ℓ ≤
(

2ℓ+1
κℓ+1

)

n.

Lemma 3.5. If G is a κ-connected (κ ≥ 1) graph of order n, then for every natural
number ℓ ≥ 0,

rc(G) ≤
(

2ℓ+ 1

κℓ+ 1

)

n+ 2ℓ(2ℓ+ 2)− 1.

Proof. The case κ = 1 is trivial. Hence we assume κ ≥ 2 and therefore G is bridgeless.
Since G is κ-connected, by Lemma 3.4, for every ℓ ≥ 0 we have a 2ℓ-step dominating set
D of size at most

(

2ℓ+1
κℓ+1

)

n. Now an application of Lemma 3.3 gives the result.

Theorem 3.6. For every κ ≥ 1, if G is a κ-connected graph of order n, then for every
ǫ ∈ (0, 1),

rc(G) ≤
(

2 + ǫ

κ

)

n+
23

ǫ2
.

Proof. Given an ǫ ∈ (0, 1), choose ℓ = ⌈1
ǫ
⌉. Then the result follows from Lemma 3.5.

Note that 2ℓ(2ℓ+ 2)− 1 ≤ 23/ǫ2.

The above bound may not be tight, and we are tempted to believe that the following
conjecture might be true.

Conjecture 3.7. For every κ ≥ 1, if G is a κ-connected graph of order n, then rc(G) ≤
n/κ+ C, where C is a constant.

Now we show some cases in which Conjecture 3.7 is true, namely high girth graphs
(where the girth of a graph is the size of a shortest cycle in the graph, denoted by girth(G)),
chordal graphs (where a graph is called chordal if it contains no induced cycles of length
greater than 3). We mainly consider κ-connected graphs with κ ≥ 3, since for 2-connected
graphs we have shown in above section that the conjecture is true, and the upper bound
is tight.

Lemma 3.8. Every connected graph G of order n, minimum degree δ ≥ 3 and girth at
least 2g + 1 has a connected 2g-step dominating set of size at most

(

2g+1
Cδ,g

)

n − 2g, where

Cδ,g =
δ(δ−1)g−2

δ−2
.
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Proof. Note that δ ≥ 3 ensures that G is not a tree and hence the girth is finite, that is,
1 ≤ g < ∞. Now observe that for any vertex v ∈ V (G), |N g({v})| ≥ 1 + δ + δ(δ − 1) +
. . .+ δ(δ − 1)g−1. The summation on the right hand side is equal to Cδ,g, for δ ≥ 3. Now
the proof follows the same steps as in that of Lemma 3.4 after setting ℓ = g. Hence we
omit the details.

Lemma 3.9. Let G be a connected graph of minimum degree δ. Then,

1. if δ ≥ 3 and girth(G) ≥ 7, then rc(G) < n/δ + 41 and

2. if δ ≥ 5 and girth(G) ≥ 5, then rc(G) < n/δ + 19.

Proof. For the first result, from substituting the mentioned values of minimum degree
and girth in Lemma 3.8 and then by applying Lemma 3.3 we get that rc(G) ≤ 7

Cδ,3
n −

6− 1+6× 8 = 7
Cδ,3

n+41 = n
δ
· 7δ(δ−2)
δ(δ−1)3−2

+41 ≤ n
δ
· 21
22
+41 < n

δ
+41, in which we used the

monotonicity of the function f(δ) = 7δ(δ−2)
δ(δ−1)3−2

for the second inequality “≤”. The proof
for the second result is similar.

Since vertex connectivity of a graph is a lower bound for minimum degree, the following
results is immediate.

Theorem 3.10. Let G be a κ-connected graph. Then,

1. if κ ≥ 3 and girth(G) ≥ 7, then rc(G) < n/κ+ 41 and

2. if κ ≥ 5 and girth(G) ≥ 5, then rc(G) < n/κ+ 19.

Theorem 3.11. For every κ-connected chordal graph G of order n,

rc(G) ≤ n

κ
+ 3.

Proof. The case of κ = 1 is trivial since rainbow coloring a spanning tree of G suffices.
Hence let us assume κ ≥ 2 and hence G is bridgeless. We claim that G has a 1-step
connected dominating set D which can be rainbow colored using |D|

κ
colors. Then by

Lemma 3.3, rc(G) − 3 ≤ rc(D) ≤ |D|
κ

≤ n
κ
. Hence it remains to prove the above claim.

Consider a maximal connected set D ⊂ V (G) that can be rainbow colored using |D|
κ

colors.
Such a set exists since any singleton set of vertices can be rainbow colored using 0 < 1

κ

colors. Suppose for contradiction that D is not a 1-step dominating set. Then NG(D) is
a vertex separator and hence contains a minimal separator S ⊂ NG(D). Since G is κ-
connected, |S| ≥ κ, and since G is chordal, S induces a clique [8]. Giving a single new color
to every D–S and S–S edge extends the rainbow coloring of G[D] to G[D∪S]. Thus D∪S
is a connected set containing D which can be colored using rc(G[D])+1 ≤ |D|

κ
+1 ≤ |D∪S|

κ

colors, contradicting the maximality of D. So D is a 1-step connected dominating set and
thus the result follows.
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