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Herein, we report on selectivity control in C—H activations with
alkylidenecyclopropanes (ACPs) for the chemo-selective assembly
of cyclopropanes or dienes. Thus, unprecedented rhodaelectro-
catalyzed C—H activations were realized with diversely decorated
ACPs with a wide substrate scope and electricity as the sole oxidant.

Throughout the last decade, C-H activation has emerged as an
increasingly powerful tool in molecular syntheses." In sharp
contrast, strategies for transition metal-catalyzed C-C activa-
tion remain comparably underdeveloped.> In recent years,
major advances, in particular in ring-strain release-promoted
C-C cleavages, have been achieved by Dong,> Bower,' and
Marek,” among others.® Alkylidenecyclopropanes’ (ACPs) have
previously been recognized as a versatile platform for C-H/C-C
functionalizations. However, their application within a bifur-
cated mechanistic manifold for the selective introduction of
cyclopropane® or 1,3-dienes® motifs has thus far proven elusive,
although they represent crucial structural scaffolds in a variety
of pharmaceuticals, biologically active molecules and natural
products. While a single example of rhodium-catalyzed dienyla-
tion was realized with chemical oxidants,'® cyclopropylations
are as of yet not available.

The use of electricity to drive chemical reactions has recently
witnessed a remarkable renaissance."* Significant momentum was
particularly gained by the merger of metallaelectrocatalysis and
QJ;C-H activation to avoid often toxic and expensive oxidants.'?!2
With our continued interest in rhodaelectro-catalyzed C-H
activation,”® we have now developed a bifurcated C-H activation
with alkylidenecyclopropanes that can be conducted under
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sustainable and operationally-simple electrochemical conditions.
Salient features of our strategy include (a) full control of selectivity
within a bifurcated manifold for C-H cyclopropylations versus
dienylations via B-H over B-C elimination, (b) detailed mechanistic
insights by means of experiment and computation, (c) absence of
external chemical oxidants, (d) water as the reaction medium, and
(e) a user-friendly undivided cell setup without additional electrolyte
(Fig. 1).

We initiated our studies with indole 1a and ACP 2a to
evaluate C-H dienylations and cyclopropylations in a user-
friendly undivided cell setup with a graphite felt (GF) anode
and a platinum cathode (Table 1). The dienylated product 3aa
was obtained in 72% yield in the presence of 2.5 mol%
[Cp*RhCl,],, using 1,4-dioxane/H,O (1:1) as the solvent. After
examination of different bases, NaO,CAd led to the best result,
delivering diene 3aa in 85% yield with an Z/E ratio of 4.5/1
(entries 1-5). The indispensable roles of electricity and the
rhodium catalyst were further confirmed by control experi-
ments (entries 6 and 7). A variation of the current did not
result in an improved performance (entries 8 and 9). We also
tested different acids and found that cyclopentanecarboxylic
acid proved beneficial (entries 10 and 11). With an increased
amount of NaO,CAd, the product was obtained in a higher Z/E
ratio, albeit with a small decrease in efficiency (entry 12).
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Fig. 1 Cyclopropylation and dienylation enabled by rhodaelectro-catalysis.
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Table 1 Electrochemical C—H dienylation of indole?

Ph

e~ S p)

. I
= Al O

W |
[Cp*RNCla]; (2.5 mol %) i
base (20 mal %) 23::"‘
acid (10 mal %)

1.4-dioxane™H,0 (1:1)

Zpym o 85°C,CCE@30mA. 40h @_k
1a Sy undivided cell
4a ¥ =
2 pyrn Ph
5aa
Entry Base Acid Yield (%) ZIE
1 NaOAc CypCO,H 72 3.9/1
2 NaOPiv CypCO,H 78 3.511
3 NaO,CMes CypCO,H 60 4.0/1
4 NaO,CPh CypCO,H 82 3.6/1
5 NaO,CAd CypCO,H 85 4.511
6” NaO,CAd CypCO,H 24 2.4/1
7¢ NaO,CAd CypCO,H — —
84 NaO,CAd CypCO,H 87 3.81
9¢ NaO,CAd CypCO,H 72 3.2/1
10 NaO,CAd MesCO,H 78 3.8/1
11 NaO,CAd PivOH 82 3.311
12/ NaO,CAd CypCO,H 82 6.0/1
137 NaO,CAd CypCO,H 87 6.5/1
145" NaO,CAd CypCO,H 89 7.0/1
15' NaO,CAd CypCO,H 95 (5aa) <1/20

% Undivided cell, graphite felt anode (GF), platinum plate cathode (Pt),
1a (0.1 mmol) 2a (0.16 mmol), [Cp*RhCl,], (2.5 mol%), base (20 mol%),
acid (10 mol%) 1,4-dioxane/H,O (1:1, 4.0 mL), 85 °C, CCE @ 3.0 mA,
under air, 4.0 h, yield of isolated product Z|E ratio determlned by
'H NMR spectroscopy, CypCO,H = cyclopentanecarboxyhc acid. ? with-
out electricity, 12 h. ¢ Without [Cp*RhCl,],.  CCE @ 2.0 mA, 6.0 h.
°®CCE @ 4.0 mA, 3.0 h./NaO,CAd (40 mol%). € 0.2 mmol scale
1,4-dioxane/H,O (1 1, 8.0 mL), CCE @ 5.0 mA, 3.0 h." 95 °C. " 4a
instead of 2a under the conditions of entry 14.

A higher reaction temperature improved the efficacy. Impor-
tantly, the novel cyclopropylated product 5aa was obtained in
high yield when using benzyl ACP 4a."*

With the optimized reaction conditions for the electro-
chemical C-H dienylation in hand, its versatility was explored
with substituted indoles 1 (Scheme 1). 3-, 5- or 7-Methyl indoles
1 delivered the desired products 3ba, 3ea and 3o0a, while the
3-methyl indole 1b gave an improved selectivity. Fluorine- and
methoxy-substituted indoles 1 were efficiently transformed, but
6-substituted indoles 1k and 1m displayed a slightly lower
efficiency. Various functional groups were tolerated by the
rhodium electrocatalyst, such as chloro, bromo and cyano
substituents. Interestingly, indole 1n with an ester functionality
at the 6-position delivered diene 3na in high yield. The dienyla-
tion protocol was also amenable to pyrrole 3pa.'

Next, the robustness of the rhodaelectro-catalyzed C-H dienyla-
tion was evaluated with a variety of functionalized cyclopropanes
(Scheme 2). Substrates containing bromide groups delivered
chemo-selectively the products 3ae and 3am. In contrast to previous
studies, electron-deficient heteroarenes showed an inherent high
reactivity."> However, electron-rich substrates also performed well
in the electrocatalysis. The connectivity of diene 3ap was unam-
biguously confirmed by single-crystal X-ray analysis.+

Thereafter, we turned our attention to the versatility of the
unprecedented electrochemical C-H cyclopropylation of indoles 1

This journal is © The Royal Society of Chemistry 2021
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Scheme 1 Electrocatalytic C—H dienylation of indoles 1.
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Scheme 2 Electrochemical C-H dienylation with ACPs 2.

(Scheme 3). We found that an otherwise reactive hydroxyl was
fully tolerated, despite being in close proximity (5ca). Halogen-
containing indoles, even the reactive iodo-substituent, were like-
wise viable substrates. Indoles containing electron-withdrawing or
electron-donating groups selectively underwent this transforma-
tion. For 7-methyl indole, the cyclopropylation showed a higher
efficiency as compared to the dienylation (50a versus 3oa). The
rhodaelectrocatalysis proved also applicable to pyrroles, while the
structure of the cyclopropylated product 5pa was confirmed by
single-crystal X-ray analysis.i It is noteworthy that, 2-phenyl
pyridine could also be employed for the electrocatalysis to deliver
arene 5qa. The tryptamine-derived substrate 1r delivered the
challenging ring-opening product 5ra’.

Next, we explored the C-H cyclopropylation with differently
substituted ACPs 4 (Scheme 4). Substrate 4c¢ bearing an iodo-
substituent gave the desired product 5ac with a small amount
of the deiodinated product (5aa:5ac 1/3). The aqueous condi-
tions were compatible with linear or branched alkyl-derived
cyclopropanes (5ad-5af). The challenging cyclopropane 4g
bearing a terminal alkene was also found to be a viable

Chem. Commun., 2021, 57, 3668-3671 | 3669
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Scheme 4 Rhodaelectro-catalyzed C—H cyclopropylation with ACPs 4.

substrate, affording product 5ag in 79% yield. The transforma-
tion was also tolerant to changes in the backbone of the cyclic
alkanes and generated the desired products 5ah and 5ai.
Indeed, the structurally more complex, natural product
citronellol-derived starting material 4j was chemo-selectively
converted to the desired product 5aj.

To gain insights into the reaction mechanism, control
experiments were performed. The independently prepared
cyclometalated complex 9'® was found to serve as a catalytically
competent species (Scheme 5a). Under the standard conditions
but without electricity, H/D exchange of indole 1a with D,0 was

3670 | Chem. Commun., 2021, 57, 3668-3671
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observed with significant deuterium incorporation at the posi-
tion C2 (Scheme S2 in the ESIf). However, a significant
deuterium-incorporation into product 3aa was not observed,
when 1a was reacted with 2a under the electrochemical condi-
tions using D,O as the cosolvent (Scheme S3 in the ESIf). A
kinetic isotope effect (KIE) study was next conducted. Parallel
independent reactions resulted in a value of ky/kp ~ 1.4
(Scheme 5b), indicating that the C-H cleavage step is likely
not involved in the rate-determining step.'

In order to further understand the catalyst’s mode of action,
we became interested in studying the rhodaelectro-catalyzed
C-H cyclopropylation of indole 1a with ACP 4a by density
functional theory (DFT). Geometry optimizations and frequency
calculations were performed at the TPSS-D3(BJ)/def2-SVP level
of theory, while single point energies were calculated at the
PW6B95-D3(B])/def2-TZVP+SMD(1,4-dioxane) and PBE0-D3(BJ)/
def2-TZVP+SMD(1,4-dioxane) level of theory.'* All energies
reported here were calculated at the PW6B95-D3(BJ)/
def2-TZVP+SMD(1,4-dioxane)//TPSS-D3(B])/def2-SVP level of
theory."* Our calculations indicated that after the migratory
insertion of ACP 4a, B-H elimination occurs from the inter-
mediate D via TS(D-E) (Fig. S1, ESI}) with a barrier of
1.1 keal mol ™. Moreover, B-H elimination from the intermedi-
ate D results in the regioselective formation of the E-isomer as
the major product, while the generation of Z-isomer is energe-
tically not favourable.'*

Based on our studies, we propose a plausible catalytic cycle
for the unprecedented rhodaelectro-C-H-cyclopropylation,
which is initiated by the formation of a catalytically competent
mononuclear cationic Cp*Rh(m) species. As shown in Fig. 2,
coordination of indole 1a to Cp*Rh(ur) and facile subsequent
cyclorhodation at the 2-position affords rhodacycle A. Then, the
insertion of alkene 4a occurs to furnish intermediate D, which
undergoes B-H elimination to generate the cyclopropylated
product 5aa along with a rhodium(i) intermediate. Finally, the
Cp*Rh(m) species is regenerated by rate-limiting reoxidation of
rhodium(i) at the anode, while generating molecular hydrogen
as the byproduct at the cathode and completing the catalytic
cycle. In terms of the dienylation, intermediate D undergoes
B-C elimination to form intermediate G (Fig. S10 in the ESIY).
Final B-H elimination then delivers the dienylated indole 3aa.

In conclusion, we have reported on a versatile rhodaelectro-
catalyzed C-H activation with alkylidenecyclopropanes under

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Proposed mechanism for electro-C—H cyclopropylation with ACPs 4.

aqueous conditions, devoid of stoichiometric amounts of
chemical oxidants. Our unique strategy allowed for the control
of selectivity within a bifurcated mechanistic pathway by the
judicious choice of B-H over B-C elimination. Detailed studies
by experiment and calculation provided key insights into the
catalyst’s mode of action, revealing B-H elimination as the key
selectivity-determining process for an unprecedented C-H
cyclopropylation. The reactive catalyst can be regenerated in a
sustainable manner by anodic oxidation, yielding hydrogen as
the sole stoichiometric byproduct. Thereby, a wealth of hetero-
arenes was functionalized with excellent chemo-, position- and
diastereoselectivity.
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