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Abstract

Topological quantum error correcting codes have emerged as leading candidates towards the goal
of achieving large-scale fault-tolerant quantum computers. However, quantifying entanglement in
these systems of large size in the presence of noise is a challenging task. In this paper, we provide
two different prescriptions to characterize noisy stabilizer states, including the surface and the
color codes, in terms of localizable entanglement over a subset of qubits. In one approach, we
exploit appropriately constructed entanglement witness operators to estimate a witness-based
lower bound of localizable entanglement, which is directly accessible in experiments. In the other
recipe, we use graph states that are local unitary equivalent to the stabilizer state to determine a
computable measurement-based lower bound of localizable entanglement. If used experimentally,
this translates to a lower bound of localizable entanglement obtained from single-qubit
measurements in specific bases to be performed on the qubits outside the subsystem of interest.
Towards computing these lower bounds, we discuss in detail the methodology of obtaining a local
unitary equivalent graph state from a stabilizer state, which includes a new and scalable geometric
recipe as well as an algebraic method that applies to general stabilizer states of arbitrary size.
Moreover, as a crucial step of the latter recipe, we develop a scalable graph-transformation
algorithm that creates a link between two specific nodes in a graph using a sequence of local
complementation operations. We develop open-source Python packages for these transformations,
and illustrate the methodology by applying it to a noisy topological color code, and study how the
witness and measurement-based lower bounds of localizable entanglement varies with the distance
between the chosen qubits.

1. Introduction

The advancements in the science of quantum information and computation [1] has put entanglement [2] in

a position of extreme importance for a number of quantum protocols including quantum teleportation

[2–4], quantum dense coding [5–7], quantum cryptography [8, 9], and measurement-based quantum

computation [10–12]. Besides, entanglement has also been identified as the key ingredient in several other

seemingly unrelated problems, such as the study of topological [13–15] and non-topological [16–19]

quantum phases and corresponding quantum phase transitions in many-body systems, understanding

transport properties in biological systems such as light-harvesting complexes [20–23], investigating the role

of radical-pair mechanism in the navigability of animals in weak magnetic fields [24], and aspects of

AdS/CFT correspondence in models of quantum gravity [25–28]. Tremendous technological development
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Figure 1. Topological color code. A hexagonal lattice hosting a topological color code in which the X- and Z-type plaquette

operators are associated to plaquettes formed of turquoise and yellow qubits respectively. The vertical (red) logical operator L
(q)
x

and the horizontal (green) logical operator L
(q)
z are shown by the red and green lines respectively, intersecting each other at a

single qubit. See appendix A for a description of the salient features of a topological color code.

has made the laboratory realization of entangled states, in both biparty and multiparty scenario, possible by

using trapped ions [29–31], photonic systems [32–34], nuclear magnetic resonance (NMR) molecules [35],

superconducting qubits [36, 37], cold atoms [38–41], solid-state systems [42], and set-ups involving

hybrids of these systems [43, 44]. This highlights the potential of realizing different quantum protocols that

uses entanglement as resource in these systems. The theoretical aspect of this line of study involves quantum

information processing using many-body systems realizable in the above substrates, which has particularly

brought the importance of the study of quantum many-body systems in a language consistent with

quantum information theory in focus. Being a key resource in quantum protocols, entanglement has been

the natural choice as the characterising feature of quantum many-body systems for this purpose.

In the last decade, the extraordinary potential of quantum computation [45, 46] in addressing otherwise

intractable problems, such as simulating large quantum systems or decrypting codes efficiently, has led to

major efforts towards fabricating scalable systems, with a long-term goal of fault-tolerance, using the

available many-body substrates such as trapped ions [47] and superconducting qubits [48, 49]. There

already exist noisy intermediate-scale quantum (NISQ) devices [50–52] made of 50–100 qubits, which are

being viewed and investigated as platforms to potentially achieve ‘quantum supremacy’ [53], and as possible

candidate systems to host logical qubits as building blocks of envisioned large-scale quantum computers

[54]. To date, the figures of merit for the usefulness of a quantum state, prepared in these systems, in a given

quantum protocol are the different quantum correlations, such as entanglement, that serves as resource in

that protocol. However, characterizing such systems using entanglement proves to be difficult mainly due to

exceeding resource requirements in traditional techniques such as complete quantum state or process

tomography, even for moderately sized systems of a few qubits [55, 56]. Another obstacle, from the

computational point of view, is the presence of noise, which requires entanglement to be computed for a

mixed state of a large system—a long-standing problem of quantum information theory [2, 57].

In the vision of building large-scale fault-tolerant quantum computers, topological quantum error

correcting codes [58–60], such as, eg., the surface codes [61, 62] and the color codes [63, 64] (see figure 1

and appendix A for a description), are being considered as leading candidate systems. These systems are

realized by arranging qubits on lattices of specific geometry, and are robust against external perturbation

[65–68], qubit loss [69–71], as well as computational errors [72]. Attempts have recently been made to

implement such systems in the laboratory with, for example, trapped ions [73–75], and superconducting

qubits [76, 77]. In order to host a single logical qubit with low or moderate code distance, and to perform

error correction protocols taking into account errors on multiple physical qubits, one needs to deal with

systems with a large number of physical qubits in the presence of noise. This makes the characterization of

these systems using entanglement measures difficult. Therefore, quantifying bipartite as well as multipartite

entanglement in subsystems of a large-scale quantum many-body system like the topological quantum

codes in the presence of noise has been an active field of research in recent times

[78–80].

There exists a plethora of avenues towards quantifying entanglement in subsystems of a quantum

many-body system, which mainly follow two approaches—(1) the partial trace-based [2], and (2) the local

measurement-based [81–84] approach. In the former, an entanglement measure is computed either
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between two subsystems denoted by Ω and Ω of the full quantum many-body system, or over a subsystem

Ω of a quantum many-body system by using the reduced state ρΩ = Tr
Ω

(ρ) of Ω. The reduced state is

obtained by performing a partial trace operation on the rest of the system Ω, where Ω ∪ Ω represents the

entire system, and Ω ∩ Ω = ∅. This protocol is particularly useful in scenarios where the state of the entire

system is pure, leading to concepts like topological entanglement entropy [85–88] between the subsystems

Ω and Ω. This is also effective in situations where the partial trace operation results in a reduced density

matrix ρΩ that faithfully provides a non-zero value of a chosen bipartite or multipartite entanglement

measure thereby quantifying entanglement over Ω, when the subsystems constituting the region Ω are

entangled accordingly. Apart from leading to the study of topological entanglement entropy as a function of

the system parameters in topological quantum codes [89, 90], the partial trace-based prescription has also

resulted in, for example, investigations of the behaviour of entanglement over a collection of subsystems.

These include pair of nearest-neighbor spins, in a large set of quantum many-body Hamiltonians, such as

the transverse field Ising and the XY models, and the XXZ model in the presence of a magnetic field

[16–19].

However, topological entanglement entropy fails to provide a faithful characterization of bipartite

entanglement in a topological code when the state of the system is mixed—for example, when there is noise

in the system [2, 78, 79]. Also, there exist logical states in topological error correcting codes for which the

reduced state ρΩ is classical [73], thereby providing zero entanglement as quantified by a chosen

entanglement measure despite the existence of entanglement over Ω. In these situations, the appropriate

protocol is the local measurement-based approach [82–84], which relies on performing local projection

measurements on the subsystems constituting Ω in specific measurement bases in order to create entangled

post-measurement states over the region Ω. This leads to non-zero average entanglement in the region Ω

after the measurement, thereby appropriately quantifying the entanglement present in the subsystem Ω. The

maximum average post-measurement entanglement, maximized over all possible local projection

measurements on the subsystems in Ω, is referred to as the localizable entanglement [82–84], which is

defined for both pure as well as mixed states. Apart from being a good quantifier of local entanglement in

stabilizer states [54, 91–93], including topological quantum codes, with or without noise, localizable

entanglement is crucial also in other scenarios. For example, it has been used in conceptualizing the

correlation length in certain quantum many-body systems [82, 83, 94, 95], for characterizing local

entanglement in cluster-Ising [96, 97] and cluster-XY models [98], and in protocols including

measurement-based quantum computation [54, 91, 92] and entanglement percolation in quantum

network [99].

Although the definition of localizable entanglement [82–84] is straightforward to understand, the

maximization involved in the definition often makes the computation of the quantity difficult if the size of

the quantum many-body system is too large. Also, in the case of mixed states, which may originate in

situations where there is noise in the system—a practical scenario being topological quantum error

correcting codes, the computation of the value of localizable entanglement requires calculation of a chosen

entanglement measure for the states in the post-measurement ensemble over the region Ω, which may turn

out to be a challenging task. These obstacles highlight the need of a recipe to determine the localizable

entanglement over a region of a large-scale topological quantum error correcting code in the presence of

noise, which is the aim of this paper.

In this paper, we calculate, if not the actual value, an effective lower bound of localizable entanglement

in an efficient and experiment-friendly way via the use of entanglement witness operators. We illustrate our

prescriptions for a region of two qubits in a color code under local uncorrelated Pauli noise. However, the

recipe is fully applicable to the more general case of arbitrary stabilizer states, and it has the potential to be

generalized to the case of arbitrary regions in arbitrary topological quantum error correcting stabilizer

codes. The major new results reported in this paper are as follows (see also figure 2).

(a) We propose two prescriptions for computing non-trivial lower bounds of localizable entanglement over

a group of qubits in noisy topological quantum codes, and establish a connection between the two

seemingly different prescriptions. The complete prescriptions are given in section 2.

1. One of the prescriptions is a method based on entanglement witness operators [100–107], which

exploits appropriate construction of a local witness operator [105, 107] from the topological code via

a projection operator-based approach and the fact that a witness-based lower bound of localizable

entanglement is computable from local witness operators [93]. We propose a specific construction of

the local witness operator in the case of topological color codes, and explain the method in detail in

section 2.1.

2. The second approach is graph-based. It exploits graph states [91, 92] obtained via local unitary

transformation from the stabilizer states representing topological codes, and subsequently

3
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Figure 2. Schematic representation of the objectives of this paper. This paper focuses on computing the localizable
entanglement over a specific subsystem Ω of a noisy topological quantum error correcting code, via single-qubit projection
measurements on the qubits in the rest of the system, designated by Ω. Two prescriptions (section 2), one witness-based
(section 2.1) and the other graph-based (section 2.2), are proposed. The latter approach requires a transformation of the
stabilizer state to a graph state, where a geometric recipe for building the graph from the stabilizer structure is discussed in
section 3, and an algebraic method to compute the adjacency matrices of the graphs is given in appendix E. The graph-based
method further requires a fail-safe recipe to create a link between any two qubits if they do not already share a link. A
graph-transformation algorithm is developed and is discussed in appendix G for this purpose. The corresponding methodologies
are applied to a topological color code on a square-hexagonal lattice (section 4), and the dependence of the bound on the
distance between two chosen qubits is investigated.

transforming the graphs such that the chosen region Ω becomes connected in the transformed

graph. The salient features of this method are given in section 2.2.

(b) The graph-based method requires obtaining the possible graph states from an aritrary stabilizer state in

a topological quantum error correcting code. A geometric prescription for the transformation of the

surface code to the local unitary equivalent graph state has been proposed in reference [108]. In this

paper, we discuss the geometric recipe for transforming a general stabilizer state of a topological color

code to a graph state (section 3). We also present, in connection to the geometric recipe, an algebraic

methodology that transforms an arbitrary stabilizer state to a graph state, which is convenient for

obtaining the adjacency matrix of the graph from the structures of the stabilizer operators. This part is

fairly technical, and to make the main text of the paper comprehensive and appropriate for a broad

readership, we discuss the technicalities of this conversion in appendix E. The method has also been

given the form of an open source Python package.

(c) Moreover, for the graph-based approach, we develop a fail-safe adaptive algorithm for connecting a

region of two qubits in arbitrary connected graphs by local complementation operations, and

implement the algorithm in the form of an open-source Python package. This involves technical details

on graphs and their transformations under specific operations. Similar to the case of the algebraic

approach for obtaining the adjacency matrices of graphs, the technical details of the methodology are

discussed in appendix G.

The detailed calculations of the decomposition of local entanglement witnesses, and a few examples and

the necessary information on the topological color codes, graph states, and noise models have been

included in the appendices A–L. To demonstrate how the newly developed methodology can be used for

topological quantum codes, we apply them to the specific example of the two-dimensional color code on

the square hexagonal lattice, and discuss the results regarding the noise as well as distance dependence of

localizable entanglement between a pair of qubits. The results are discussed in detail in section 4. Section 5

contains the concluding remarks.

2. Bounds of localizable entanglement

Localizable entanglement (LE) [82–84, 93] over a region Ω composed of the N − m qubits in an N-qubit

state ρ is the maximum average entanglement that can be localized over Ω, by performing local projection

measurements on the m qubits in Ω—the region outside the chosen subsystem Ω. Without any loss in

4
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generality, we assign the first m qubits in the set of N qubits labelled as 1, 2, . . . , m, m + 1, . . . , N to the

region Ω and the rest in Ω, with Ω ∪ Ω representing the complete N-partite system and Ω ∩ Ω = ∅,

(1 � m � N − 2). Considering only rank-1 projection measurements on the qubits in Ω, LE over the region

Ω is given by

EΩ(ρ) = sup
M

2m−1
∑

k=0

pkE(ρk
Ω), (1)

where ρk
Ω
= Tr

Ω

[

p−1
k MkρMk

]

is the normalized post-measurement state over the region Ω,

pk = Tr[MkρMk] is the probability of obtaining the measurement outcome k with
∑2m−1

k=0 pk = 1, and

Mk = [⊗i∈Ω |ki〉 〈ki|] ⊗ IΩ forms the complete set M of rank-1 projection measurements over Ω. Here

|ki〉 ∈ {|0〉i, |1〉i} are two arbitrary and mutually orthogonal single-qubit states in the Bloch sphere, with

|0〉i = cos(θi/2) |0〉+ eiφi sin(θi/2) |1〉, |1〉i = sin(θi/2) |0〉 − eiφi cos(θi/2) |1〉, {|0〉 , |1〉} being the

computational basis, and {θi,φi} are the real azimuthal and polar angles of the Bloch sphere (0 � θi � π,

0 � φi < 2π). The index k here can be identified as the multi-index k ≡ k1k2 . . . km, with ki = 0, 1. The

optimization in equation (1), therefore, reduces to an optimization over 2m real parameters, and is difficult

to perform when m is a large number. However, even in cases where m is small, analytical determination of

LE is possible only in the cases of a very limited number of multiqubit quantum states with special

properties.

In order to extract useful information about the properties of LE in situations where computing the

exact value of LE proves difficult, a possible approach is to determine computable lower bounds of LE,

which can provide insight of the behaviour of the actual quantity. In this spirit, one can perform the

optimization over a restricted subset of the complete set of local projection measurements, for example, by

allowing only local Pauli measurements over the qubits, thereby computing the restricted LE (RLE), ER
Ω(ρ),

of ρ [93]. However, computation of RLE is also non-trivial in the case of large N, where one has to consider

a total of 3m measurement settings, corresponding to three possible local Pauli measurements on each qubit,

which is a large number when m is large. A further lower bound can be found by considering a specific

Pauli measurement setting where each qubit i in Ω is measured in the basis of a specific Pauli operator σi,

where σi = X, Y, Z. The average entanglement in the region Ω, corresponding to the chosen measurement

setting P , is given by

EP
Ω(ρ) =

2m−1
∑

k=0

pkE(ρk
Ω), (2)

where the superscript P represents an appropriately chosen specific Pauli measurement setting, and

EΩ(ρ) � ER
Ω(ρ) � EP

Ω(ρ) by the definition of LE.

The challenge now is to choose an appropriate Pauli measurement setting P , which would provide a

non-trivial lower bound of LE. In [93], two avenues for constructing such lower bounds of the LE have been

discussed—(1) an experimentally accessible entanglement witness-based lower bound (WLB) by using

entanglement witness operators appropriate for the post-measurement states on the region Ω, and (2) a

graph-based approach to determine an appropriate Pauli measurement set-up P , which provides a

non-trivial value of EP
Ω(ρ), denoted by the measurement-based lower bound (MLB). We consider the state ρ

to be a mixed one in general, originated from, for example, a stabilizer state ρ0 due to application of noise

ρ0 → ρ = Λ(ρ0), Λ(.) representing the noise model. In the following subsections, we present the underlying

intricacies of computing the WLB and the MLB for LE in the case of arbitrary stabilizer states under

noise. We use topological color codes [63, 64] (see also appendix A for definitions) for

demonstration.

2.1. Witness-based lower bound

We begin our discussion with the WLB of LE, which employs an entanglement witness operator [100–107],

W , that indicates non-zero entanglement content in a quantum state ρ via a negative expectation value, i.e.,

Tr(Wρ) < 0. A lower bound of the entanglement content in a quantum state ρ can be determined using the

set of expectation values of appropriately chosen entanglement witness operators as the solution of the

optimization problem [93, 109–113]

Emin(ω) = inf E(ρ), (3)

subject to Tr (ρW) = ω, ρ � 0, and Tr (ρ) = 1, where E is the chosen entanglement measure. This can be

used in equation (2) to write

5
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Figure 3. Construction of the local witness operator. The local witness operator according to equation (5) for a two-qubit
region Ω ≡ ab where the physical distance between the two qubits is (a) d = 4, and (b) d = 5. The stabilizers Sz and Sx are
obtained by multiplying respectively the z- and x-type stabilizers corresponding to the plaquettes on two adjacent paths of
plaquettes, connecting the two qubits a and b. In the present example, the two stabilizers Sj=1 and Sj=2 for constructing the local
witness operator WΩ are constituted of the x- and z-type plaquette stabilizers as (a) (d = 4) Sz = ⊗3

p=1Sz
p, Sx = ⊗2

p=1Sx
p, and (b)

(d = 5) Sz = ⊗3
p=1Sz

p, Sx = ⊗3
p=1Sx

p, p being the plaquette index. The distance between a and b is the length of the path
constituted of the lattice links common to the two adjacent paths (shown by double continuous lines).

EP
Ω(ρ) �

2m−1
∑

k=0

pkEmin(ωk) = EW
Ω (ρ), (4)

where ωk is the expectation value of an appropriately chosen witness operator Wk
Ω

for the

post-measurement state ρk
Ω over the region Ω such that Emin(ωk) � E(ρk

Ω), and EW
Ω (ρ) is the WLB.

Note that to obtain ωk, one has to (1) perform local Pauli measurements on the qubits in the region Ω,

(2) choose appropriate witness operators Wk
Ω

for the post-measurement states ρk
Ω

subject to the specific

measurement outcome k for the chosen Pauli measurement setting, and then (3) measure the expectation

values ωk = Tr
[

Wk
Ω
ρk
Ω

]

in the post-measurements states. However, this protocol can prove difficult to carry

out in experiments when N and m are large numbers. An alternative approach would be to look for a

witness operator WΩ, called the local witness operator, such that the expectation value of WΩ, when

determined with respect to the state ρ, detects entanglement in the region Ω [105, 107], and a functional

relation between Tr(WΩρ) and EW
Ω (ρ) exists. The challenge, however, in this approach is choosing an

appropriate form of WΩ which can be connected to the specific measurement outcomes of the chosen Pauli

measurement setting P , such that the witnesses Wk
Ω

corresponding to different values of k can be

constructed out of WΩ.

For this purpose, we construct a local witness operator in terms of stabilizers describing the stabilizer

state. A local witness operator WΩ that can detect genuine multiparty entanglement in the region Ω in an

arbitrary stabilizer state |ψS〉, or a state ρS close to it can be chosen to be of the form [107]

WΩ =
1

2
I −

∏

Sj∈S

I + Sj

2
, (5)

where S = {Sj} is a subset of the complete set of stabilizers defining the state |〈ψS〉, given by Sj = ⊗iτui,j
,

ui,j = 0, 1, 2, 3, i is the qubit-index, j indicates which stabilizer the qubit belongs to, and τui,j
= I, X, Y, and

Z, for ui,j = 0, 1, 2, and 3 respectively (this is the same definitions of stabilizers as given in appendix A, with

a new variable ui,j introduced in order to conveniently represent the Pauli matrices, which will be clear in

subsequent discussions). One can write the stabilizers Sj constructing WΩ by distinguishing the supporting

qubits according to whether they belong to the region Ω or Ω, as

Sj = ⊗
i∈Ω

τΩui,j
⊗

l∈Ω
τΩul,j

=

[

⊗
i∈Ω

τΩui,j

]

⊗ SΩj , (6)

where SΩj = ⊗l∈ΩτΩul,j
is the part of the stabilizer Sj with support on Ω. For WΩ to detect entanglement in

the region Ω, the stabilizers Sj in equation (5) have to be such that [107]

(a)
[

τΩui,j
, τΩui′ ,j′

]

= 0 ∀ qubits i, i′, and ∀ stabilizer pairs j, j′, i.e., the supports of the stabilizers involved in

constructing WΩ must commute outside the region Ω, and

(b) the set {SΩj } obtained from the subset S of stabilizers Sj of |〈ψS〉 is a complete set of stabilizer

generators of a genuinely multipartite entangled state |ψ〉
Ω

over Ω.

See figures 3(a) and (b) for demonstrations.

6
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The constructed local witness operator can be decomposed as a sum of the products of Pauli projection

operators on Ω and the witness operators Wk
Ω

, as (see appendix B for the derivation)

WΩ =

2m−1
∑

k=0

PΩ
(k,v) ⊗ Wk

Ω, (7)

with Wk
Ω
= 1

2
IΩ − ∏

Sj∈S

IΩ+ηjS
Ω
j

2
, where m is the number of qubits in Ω, PΩ

(k,v) = 2−m⊗i∈Ω
[

Ii + (−1)kiτvi

]

,

k ≡ k1k2 . . . km and v ≡ v1v2 . . . vm are multi-indices with vi = 1, 2, 3, such that k represents the outcome

of the projection operation, τ 1 = X, τ 2 = Y, τ 3 = Z, IΩ is the identity operator in the Hilbert space of the

qubits in Ω, and ηj = ±1. For a specific set of Pauli operators chosen for the qubits in Ω (i.e., for a specific

value of v), the expectation value of WΩ with respect to the state ρS is

ω = Tr(WΩρS) =

2m−1
∑

k=0

pk Tr(Wk
Ωρ

k
Ω) =

∑

k

pkωk, (8)

where pk = Tr
[(

PΩ
(k,v) ⊗ IΩ

)

ρS

]

is the probability of obtaining the measurement outcome k if the

projection operator PΩ
(k,v) is applied on the qubits in Ω, and to obtain this, we have used

Tr
[

PΩ
(k,v) ⊗ Wk

ΩρS

]

= TrΩ

[

Wk
ΩTr

Ω

(

PΩ
(k,v)ρS

)]

, (9)

with ρk
Ω
= Tr

Ω

(

PΩ
(k,v)ρS

)

. Note that we have now been able to write the expectation value of the witness

operator as the sum of the product of a number of expectation values of witness operators confined to the

region Ω and the corresponding probabilities of obtaining those witness operators in Ω via a projection

operation on qubits in Ω (equation (8)). This has direct resemblance with the definition of localizable

entanglement, and therefore opens up a pathway to define a lower bound of LE according to equation (4).

However, choice of an appropriate entanglement measure E for the state ρk
Ω

still remains a challenge. The

required characteristics of the chosen entanglement measure would be as follows.

(a) In order to exploit equation (8), the functional relation Emin(ω) should be such that

Emin (ω) =

2m−1
∑

k=0

pkEmin(ωk). (10)

(b) The forms of the witness operator Wk
Ω

suggest that the chosen measure E should capture the genuine

multiparty entanglement in ρk
Ω

.

The first requirement indicates Emin(ω) to be a linear function of ω, while the second requirement

demands a computable genuine multiparty entanglement measure for mixed multiparty states. From here

onward, we focus on regions Ω ≡ ab of size 2 (as in the example in figure 3), constituted of qubits, say, a

and b, and choose negativity as the entanglement measure (see appendix C for definition) for mixed states.

It has been shown in [93] that for a two-qubit state ρab and the corresponding expectation value ω of

witness operator W having the form given in equation (5), the lower bound of entanglement, Emin, as

measured by negativity [116, 117] and as a function of ω, can be obtained as E min(ω) = −2ω, which is

linear in ω. Also, negativity captures the genuine multiparty entanglement over the two-qubit region ab.

Therefore, from equations (4) and (8),

EW
ab(ρS) = −2ω, (11)

which can be computed from the original state by measuring only the expectation value of the constructed

local witness operator WΩ.

2.2. Measurement-based lower bound: graph-based method

Here we present a complete description of the methodology for determining the MLB of LE between any

two qubits a and b in a large stabilizer state under noise. More specifically, we prescribe a logical choice for

the specific Pauli measurements over the qubits in Ω which guarantees a non-trivial MLB, by exploiting our

previously reported results [93] on graph states (a primer on the graph states and the graph

transformations required for our purpose is provided in appendix D). In order to make the paper

comprehensive for a general audience, we postpone discussions on the technical details of the different steps

involved for the appendices.

7



New J. Phys. 22 (2020) 053038 D Amaro et al

2.2.1. Graph-based method: underlying mechanism

Let us denote the stabilizer state of N physical qubits, |ψS〉, under noise represented by the map Λ(.):

|ψS〉 → ρS = Λ(|ψS〉 〈ψS|). (12)

Any stabilizer state can be transformed to a graph state |ψG〉 [91] corresponding to a connected bicolorable

graph G by local unitary transformations, such that

|ψG〉 = US→G |ψS〉 , (13)

where US→G = ⊗iUi, Ui being either a single-qubit Clifford unitary operation, or the identity operator in

the qubit Hilbert space (a detailed discussion on a geometric approach towards this transformation is given

in section 3, and the algebraic details related to this methodology can be available at appendix E). The graph

is bicolorable since the qubits situated on the nodes can be divided into two disjoint sets—a set of control

qubits and a set of target qubits, where inter-set links are present in the graph, but intra-set links are not

allowed. In the case of a graph state, we have provided a prescription for determining a non-trivial MLB of

LE over a region Ω in [93] as long as Ω is connected, which, for a two-qubit region, implies the existence of

a link between the two qubits constituting the region. However, in the present case, the underlying

connected graph G may or may not contain the link (a, b) corresponding to the two-qubit region Ω ≡ ab.

In such scenario, a set of local complementation (LC) operations on a number of strategically chosen qubits

situated on a selected simple path Lab connecting the nodes a and b may result in a graph transformation

G → G′, where the link (a, b) exists in G′ [93]. A sequence of LC operations on a graph G is equivalent to a

local unitary operation UG→G′ = ⊗iU
′
i such that

|ψG′〉 = UG→G′ |ψG〉 , (14)

and U′
i is either a single-qubit Clifford unitary operation or the identity operator corresponding to the

qubit i situated on the chosen simple path Lab. Therefore, the complete transition of the stabilizer state to

the graph state |ψG′〉 can be described by a unitary operation (see appendix F for a demonstration with a

7-qubit color code)

US→G′ = UG→G′US→G. (15)

Let us proceed with the assumption that the graph state |ψG′〉 corresponding to the graph G′ containing

the link (a, b) has been created from |ψS〉 via local unitary transformation US→G′ = UG→G′US→G. In presence

of the noise represented by the map Λ(.),

ρS = Λ(|ψS〉 〈ψS|) = U−1
S→G′Λ

′(|ψG′〉 〈ψG′ |)US→G′ = U−1
S→G′ρ

′US→G′ , (16)

where ρ′ = Λ
′(|ψG′〉 〈ψG′ |), and Λ(.) → Λ′(.) is the transformation of the noise due to the local unitary

operation. Note that the LE and the RLE for ρS are the same as respectively the LE and the RLE of ρ′ due to

the local Clifford unitary connection between ρS and ρ′. But computation of the LE and the RLE over the

region ab in ρ′ still remains difficult in the case of large N which results in large m = N − 2, and one has to

look for an appropriate Pauli measurement set-up in Ω which can provide a computable non-trivial MLB

for ρ′. The local unitary connection between ρS and ρ′ can then be exploited to connect the value of the

MLB with a specific measurement setup in the case of ρS. We have shown in [93] that in situations where

noise in the system is low, and the link between qubits a and b exists in the graph-state representation, an

appropriate choice of measurement basis for a non-trivial MLB EP
ab(ρ′) of Eab(ρ′) is local Z measurements

on all the qubits except qubits a and b, which is an optimal basis for the LE over ab in |ψG′〉. The value of

EP
ab(ρ′)

(

= EP ′
ab (ρS)

)

represents the value of the MLB corresponding to a specific Pauli measurement setup

P ′ for the original state ρS, where P ′ can be obtained by transforming the Z measurements on the qubits in

Ω ≡ ab according to the over-all local unitary operation US→G′ .

The graph-based algorithm is summarized in figure 4 (a pseudo-code for the algorithm can be found in

appendix H). Evidently, the graph-based algorithm has two parts—transforming the stabilizer state to the

graph states, for which the graph adjacency matrix is to be determined, and transforming the graph via

local complementation operations to another graph in which a link exists between the chosen qubits. The

first part and its different aspects have been discussed in section 3 and appendix E, and the algorithm has

been transformed into a Python open-source package, namely, StabGraph [114], which generates the

adjacency matrix of a graph corresponding to a graph state which is connected to a given stabilizer state via

local unitary operators. For the second part of the graph-based method, the key challenge is to ensure the

8
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Figure 4. Graph-based method. A schematic representation of the graph-based method to obtain non-zero measurement-based
lower bounds of localizable entanglement, as presented in section 2.2. The input state is the stabilizer state of the topological
quantum error correcting code under specific noise, and a pair of chosen qubits on which entanglement is to be localized. The
next step is to determine the set of bicolorable graphs from the stabilizer structure by using Stabgraph (see section 3 and
appendix E for the details on the procedure, and reference [114] for the package). For each graph in the set, if the chosen qubits
are connected, the methodology developed in reference [93] is to be used to compute the lower bound of localizable
entanglement. On the other hand, if the qubits are not connected, the adaptive local complementation algorithm is to be used in
the form of the ALCPack on the graph so that a link between the two qubits is generated via a graph transformation (see
appendix G for details on the algorithm, and reference [115] for the package). Once the link is created, the methodology
developed in reference [93] can be used to compute the lower bound of localizable entanglement. The maximum of all of these
values of lower bounds is to be chosen to obtain the best measurement-based lower bound of localizable entanglement on the
two chosen qubits.

certainty of creating a link between two chosen qubits by an optimal sequence of LC operations on a set of

qubits in the graph. Towards this goal, we have developed an adaptive LC (ALC) algorithm, which, along

with the corresponding graph transformations, is discussed in detail in appendix G. The crux of the

algorithm depends on adapting itself according to the change in the graph after each local complementation

operation on individual qubits, and subsequently choosing the qubit for the next local complementation

operation according to the updated information. This algorithm has been made available as a package

named ALCPack [115], which creates a link between any two given nodes in a simple, connected, and

undirected graph via the adaptive local complementation method.

2.2.2. Numerical aspects of the graph-based approach

Note here that there exists a set of bicolorable graphs {G} that can be obtained from a specific stabilizer

state |ψS〉 by appropriately varying the local unitary operation US→G. Moreover, for each such bicolorable

graph G where a and b are not connected, one can choose a set of simple paths so that LC operations on

each of these paths would provide a graph G′ with the link (a, b). Let us denote the complete set of all

possible bicolorable graphs G obtained from |ψS〉 by SG, having cardinality NG. In situations where the link

(a, b) /∈ G, let us denote the set of all possible simple paths Lab connecting the qubits a and b be SLab
,

having cardinality NLab
. In the case of an arbitrary stabilizer state with large N, NG is usually a large

number6. Also, for a given graph and a given pair of nodes {a, b}, determination of all possible paths

6 For a color code with Np plaquettes, there can be Np control qubits among N qubits, and the number NG varies as

(

N

Np

)

.
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between a and b can be difficult when N as well as the number of links in the graph is large. Therefore, for a

large system S described by a stabilizer state |ψS〉, it is difficult to obtain the optimal value of EP
ab(ρ′).

However, since each graph G′ results in a non-zero value of MLB, one can choose only a subset S ′
G of SG

with cardinality nG � NG, and a subset S ′
Lab

of SLab
with cardinality nLab

� NLab
for each G′ ∈ SG. This

leads to a set of nGnLab
graphs G′, for each of which a value of EP

ab(ρ′) can be obtained. The bound

max EP
ab(ρ′) can be tightened by increasing the value of nGnLab

according to the available numerical

resources. Note that the analytical computation of EP
ab(ρ′) depends also on the noise model Λ. As shown in

[93], in the case of local uncorrelated Pauli noise, EP
ab(ρ′) is analytically computable for arbitrary system size

as long as the neighborhood of the region Ω ≡ ab in G′ and the noise present in this region is fully

known.

A word on the dependence of the run-time of the graph-based method, in particular, the adaptive

local-complementation algorithm and the algorithm used to get the graph from the stabilizer structure, on

the system size N is in order here. Since the ALC algorithm takes into account the transformed graphs at

each of its steps, it is difficult to determine an exact dependence of the run-time of the algorithm on system

size. However, one can determine a bound on how the run-time scales with N, by determining the

maximum number of link operations during the ALC algorithm, which is � N3 (see appendix G for an

explicit derivation). On the other hand, the Stabgraph algorithm uses Gauss elimination technique, and

scales as ∼ N3. These indicate an overall polynomial scaling of the graph-based method with system size.

We point out here that one can also control the transformation S → G in such a way that the bicolorable

graph G directly contains the link (a, b) (see section 3 for a discussion on how to ensure the creation of the

link in G). Note that in the modified algorithm, which we refer to as the modified graph-based method, the

optimization of EP
ab(ρ′) is performed over a set of bicolorable graphs the corresponding states of which are

connected to each other via local unitary operations. On the other hand, the former algorithm additionally

uses graph states outside the set of bicolorable graphs. Therefore, the maximum value of EP
ab(ρ′) obtained

from the former algorithm is higher than the same obtained from the latter. See appendix H for a pseudo

code of the modified graph-based method.

3. Graphs from topological codes: geometric approach

An arbitrary stabilizer state |ψS〉 describing a system S can be shown to be connected to a graph state |ψG〉
defined on a bicolorable graph G via a local unitary transformation [91]. While this transformation has an

established algebraic formulation, it has also been shown [108] in the case of Kitaev’s toric code that the

graph G can also be constructed from the structure of the stabilizers via a geometric recipe. In this section,

we introduce the geometric recipe for the topological color codes (see appendix A for the details on the

topological color codes) and explain the underlying idea which emerges from the preparation protocols of

the logical states of the code.

To discuss how a graph state can be obtained from a logical state of a topological color code via a

geometric construction, we point out that the procedure for the creation of the logical states of a code on a

lattice involves (1) initializing the qubits to either |0〉 or |+〉 so that they collectively form a product state,

and then (2) creating plaquette-wise GHZ state-type [118] entanglement [73] via controlled entangling

gates, which naturally labels one of the qubits as control (c), and the rest of the qubits as target (t) (see

figure 5 and appendix I for an example with four qubits). The state on each of the plaquettes, however, can

be further transformed to a graph state corresponding to a simple, connected, and undirected star-shapped

graph with the control qubit c as the central qubit, and the target qubits t as the peripheral qubits, by

applying local unitary transformations in the form of Hadamard operations on the target qubits. In terms

of the stabilizer operators, the plaquette stabilizers corresponding to the plaquette are transformed to the

graph-state generators via application of Hadamard operations on the target qubits. As an example,

following this prescription, the |0〉L state of the 7-qubit color code can be created by (1) choosing the qubits

1, 5, and 7, located at the corners of the triangular code, as control qubits controlling the rest of the qubits

in their respective plaquettes, (2) initializing the seven qubits to the state |+1020304+5 06+7〉, and (3)

applying controlled phase gate to the (c, ti) pairs. Subsequently, the local unitary connected graph state,

which is obtained by applying Hadamard operations on all the target qubits in the 7-qubit lattice,

corresponds to a graph that is obtained by creating the three star graphs with central qubits c = 1, 5, 7, and

their respective target qubits (see figure 6(a)).

Note that in the case of topological color codes, the term plaquette does not always represent the original

plaquettes of the color code lattice. It can be used in a broader sense, since a topological code can also be

defined in terms of the products of its original plaquette stabilizers, defining the resultant plaquettes

corresponding to the stabilizer operators obtained by multiplying two or more than two of the original
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Figure 5. Quantum circuit creating GHZ-type entanglement. The quantum circuit that takes the state |+000〉 to the four-qubit
GHZ state |ψP〉 = 1√

2
(|0000〉+ |1111〉) (denoted by operation O1), and then further takes it to the four-qubit graph state

∣

∣ψGP

〉

= 1√
2

(|0 +++〉+ |1 −−−〉) (denoted by operation O2). The implication of applying this circuit to four qubits arranged

as a plaquette of a topological color code has also been shown at the top, where the graph GP corresponding to the state
∣

∣ψGP

〉

is
created on the four qubits, starting from four qubits in the product state |+000〉 and via the single-plaquette GHZ state |ψP〉. See
appendix I for a detailed description.

Figure 6. Graph states from the 7-qubit color code. (a) Application of O1 (figure 5) on groups of four qubits, given by
{1, 2, 3, 4}, {5, 2, 3, 6}, and {7, 3, 4, 6}, on 7 qubits labelled as {1, 2, . . . , 7} and initialized at |+1020304+506+7〉, leads to the |0〉L

state of the 7-qubit color code, where qubits 1, 5, and 7 are chosen as control for the four groups of qubits respectively.
Application of O2 on the same groups of qubits, i.e., application of Hadamard operation on the target qubits 2, 3, 4, 6 in the next
step leads to a graph state corresponding to a graph obtained by creating three star graphs on the three groups of qubits,
{1, 2, 3, 4}, {5, 2, 3, 6}, and {7, 3, 4, 6}, where the control qubits 1, 5, and 7 are used as central qubits respectively. (c) If one
assumes the qubits 3, 5, and 7 to be the control qubits, controlling the target quits in the plaquettes P1, P1P2, and P1P3

respectively, then the resulting graph is obtained by combining the start graphs on the groups of qubits {1, 2, 3, 4}, {1, 4, 5, 6},
and {1, 2, 6, 7}, using respectively qubits 3, 5, and 7 as central qubits.

plaquette stabilizer operators of the original lattice. Therefore, applying the above prescription for creating

GHZ state-type entanglement needs to be suitably generalized for larger codes. Nevertheless, the above

recipe can be applied to all plaquettes in a topological code in its logical state, where the challenge is

identifying the appropriate set of control qubits at correct positions of the code, and determining the

correct sets of target qubits that are controlled by each of these control qubits. The graph corresponding to

a graph state that is local unitary equivalent to the logical state of the topological code can then simply be

obtained by creating all the star-shaped graphs that involve a control qubit and all its target qubits, with the

control qubit as the central qubit. For example, the seven-qubit color code shown in figure 6(a) can also be

expressed in terms of the plaquette stabilizer operators corresponding to the re-combined plaquettes P1,

P1P2, and P1P3. This can be understood from the example shown in figure 6(b), where the qubit 3 controls

the plaquette P1, while the qubit 5 controls the plaquette P1P2 constituted of qubits 1, 2, 5, 6, 3, 4. Although

there are two control qubits, qubits 5 and 3, among these, the target qubits {1, 6, 4} in plaquette P1P2 are

controlled by only the control qubit 5, while the target qubit 2 is controlled by none of the control qubits

from the plaquette P1P2. The plaquette P1P3, on the other hand, is controlled by the qubit 7. Note that the

x-type stabilizers associated to the plaquettes {P1, P1P2, P3} are an equivalent subset of the x-type generators
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Figure 7. Modified graph-based method: Creation of a link without local complementation (a) in order to create a link
between two given qubits a and b, a path of adjacent plaquettes, constituted of plaquettes 1, 2, and 3 is chosen, so that the given
qubits are contained by the composite larger plaquette constituted of the plaquettes from the path. (b) The next step of
constructing the graph corresponding to the local unitary connected graph state would require creating a the star graph with the
qubits on the larger plaquette, using qubit a (yellow circle) as control, and qubit b as one of the targets (turquoise circles).

associated to the plaquettes {P1, P2, P3}, which ensures the validity of the geometric recipe. It is also clear

from the above discussion that the number of chosen control qubits has to be equal to the number of

plaquettes in the topological color code.

In view of all these aspects, for an arbitrary topological color code with an appropriate choice of the set

of control qubits and the set of target qubits that are controlled by them, one has to ensure the following

conditions:

(a) a qubit, once chosen as a target (control) qubit, can not be chosen as a control (control or target) qubit

any more, and

(b) the support of all the plaquettes and the logical operators, as well as the products of them, must contain

at least one control and one target qubits .

Note here that the condition 1 ensures that the transformation from the logical state of a TCC to graph

state ensures only (c, ti)-type links, thereby dividing the qubits into two mutually disjoint sets of control and

target qubits, and ensuring that the resulting graph is bicolorable, i.e., (c, c) and (ti, tj) links are not present.

Note also that in the modified graph-based method discussed in section 2.2 one needs to ensure creation of

a link between two given qubits. This can be done by choosing a path of adjacent plaquettes so that the

given qubit-pair is contained by the large plaquette constituted by the plaquettes on the path, and then

using one of the given qubit-pair as control qubit to create the graph by creating the (c, ti)-type links (see

figure 7 for a demonstration).

The success of the geometric method depends explicitly on the correct choice of a set of control qubits,

and the determination of the sets of target qubits that are controlled by the control qubits, ensuring the

conditions (i) and (ii). While this is possible irrespective of the size of the code, the choice of a correct set of

control qubits may prove difficult in the case of larger codes. This leads us to an algebraic approach for

creating the graph, exploiting the binary picture of the code. Note that an algebraic treatment of the same

problem was considered in [91], although the connection between the geometric recipe and the algebraic

method was absent. We revisit the treatment, and provide a slightly modified version of the algebraic

calculation in appendix E for a general stabilizer state. The geometric recipe for the color code presented

above is inherent in the algebraic approach for determining the adjacency matrix of the graph from the

stabilizer structure of the color code.

4. Application: color code on a square hexagonal lattice

In this section, we apply the methodology developed through sections 2 and 3 to the case of a color code

hosted in a square hexagonanl lattice with open boundary condition on a plane, where the ‘square’ indicates

the shape of the lattice (our methodology works irrespective of whether the lattice is square or triangular;

for an example of the ‘triangular’ lattice, see the 7-qubit code shown in figure 4(b)). The number of qubits,

N, in the code is represented by the distance, D, of the code, where, for the square hexagonal lattice, N

increases quadratically with increasing D (see appendix A). An example of the square hexagonal lattice

hosting a color code with D = 4 and containing two logical qubits is given in figure 8(a), where N = 18. We

will be computing the lower bound of LE over a qubit pair {a, b} in the bulk, which is constructed from the

lattice by removing D/4 qubits in the direction towards the center from each boundary (see figure 8(b)).

Note that the choice of the control and the target qubits depends explicitly on the choice of the stabilizer
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Figure 8. Local and non-local graphs. (a) A color code of distance D = 4 hosted in a square hexagonal lattice with N = 18
qubits, and Np = 8 plaquettes, containing k = N − 2Np = 2 logical qubits. (b) The bulk qubits (yellow circles) are obtained by
removing D/4 qubits in the direction from the boundary to the center on all sides of the square hexagonal lattice. (c) A local
graph equivalent to the square hexagonal color code of distance D = 4, where all the links are local links. (d) A non-local graph
obtained by the geometric approach presented in section 3, which can also be found using the algebraic method in appendix E.
Here, the local (non-local) links refer to the links connecting qubits belonging to the same (different) plaquettes, and are marked
by red (black) continuous lines. The chosen control qubits are represented by the white circles, while the target qubits are marked
by black circles.

state. In the present case, we consider the color code to be in |+〉L for all our discussions, and the local

unitary connected graph state is obtained by applying Hadamard operations over the control qubits. This

choice is justified as the logical Pauli-eigenstates in 2D color codes are connected by local unitary operators

due to the transversality of logical Clifford gate operations [63, 64].

4.1. Computation of witness-based lower bound

Here, we explicitly compute the expectation value ω of the local witness operator Wab of the form given in

equation (5), constructed for a pair {a, b} of qubits in the bulk. As discussed in section 2.1 and

demonstrated in figure 3, we build these witnesses from two stabilizers denoted by Sx and Sz, one being

x-type and the other z-type, obtained by multiplying respectively the x- and z-type stabilizers corresponding

to the plaquettes on two adjacent paths of plaquettes connecting the qubits a and b, so that the necessary

conditions for the construction of Wab (see section 2.1) are satisfied. The path constituted of the common

lattice-links between the adjacent paths of plaquettes provide the path connecting the two chosen qubits,

and the length of this path is the distance d between the chosen qubits. In all our discussions, we compute

the distance between the chosen qubits with respect to the square hexagonal color code lattice.

Expanding the form of Wab from equation (5) using Sx and Sz, the WLB −2ω is calculated as

EW
ab(ρS) = −2ω =

1

2
[ωx + ωz + ωxz − 1] , (17)

where ωx(z) = Tr
[

ρSSx(z)
]

, and ωxz = Tr [ρSSxSz]. For demonstration, we consider the state ρS originating

from the application of single-qubit uncorrelated Pauli noise channels [119, 120] to the stabilizer state |ψS〉
(see appendix K for a brief description), including the bit-flip (BF), phase-flip (PF), bit-phase-flip (BPF),

and depolarizing (DP) noise. For the BF (PF) noise, one can show that ωx = 1(ωz = 1) and

ωz = ωxz = (1 − q)nz (ωx = ωxz = (1 − q)nx ), where q is the strength of the noise (0 � q � 1) which we

asssume to be the same for all qubits, and nx (nz) is the number of qubits in the support Rx (Rz) of the

stabilizer Sx (Sz). See appendix L for the calculation in the case of PF noise. The calculation in the case of

the DP channel is similar to the same in the case of the PF channel, where the expectation values are

ωx = (1 − q)nx , ωz = (1 − q)nz , and ωxz = (1 − q)nx+nz−2, where nx + nz − 2 is the number of qubits in the

support of SxSz. Using these, equation (17) becomes
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EW
ab(ρS) = (1 − q)nx for PF noise,

EW
ab(ρS) = (1 − q)nz for BF noise, and

EW
ab(ρS) =

1

2

[

(1 − q)nx + (1 − q)nz + (1 − q)nx+nz−2 − 1
]

, for DP noise.

(18)

Note from the design of the local witness operator (see figure 3) that the types of the plaquette stabilizer

operators corresponding to each of the two adjacent paths of plaquettes—one above and the other below

the path made of lattice-links connecting qubits a and b—are different from each other, one being z-type

while the other x-type. One obtains a valid local witness operator even when x- and z-types of the stabilizers

above and below the path connecting qubits a and b, and contributing to Wab, are interchanged. Note also

that the values of nx and nz depends on the distance between the chosen qubits, implying that the

dependence of WLB on d is decided by how nx and nz grow with increasing d. The exact dependence of nx

and nz on d depends explicitly on the construction of Wab, and the layout of the path made of lattice-links

connecting the qubits a and b on the lattice. In general, the number of plaquettes involved in the local

witness operators constructed in this way, and therefore the support of the stabilizers grows as ∼ a + bd,

with some constants a and b, implying an exponential dependence of ω on d. As an example, let us consider

the layout of the path of lattice-links connecting the qubits a and b in the bulk as shown in figure 3(b), for

which

nx = 6 + 2

⌊

d − 1

2

⌋

,

nz = 6 + 2

⌈

d − 1

2

⌉

.

(19)

4.2. Computation of measurement-based lower bound

We now investigate the variation of MLB with the distance between the chosen qubits in the bulk of the

square hexagonal lattice of code-distance D. Before moving on to the analysis of the numerical results, a

word on the notion of the existence of local and non-local links in the graph, and its relation with the

topological properties of the system is in order here. In the color code lattice, the links are all local links

since they connect qubits belonging to a specific plaquette. This notion of locality comes from the fact that

the plaquette stabilizer operators are intrinsically local in the sense that they operate on the qubits belonging

to the same plaquette. Therefore, a graph constructed following the lattice of the color code (where one

considers lattice sites as nodes in the graph where the qubits are situated, and introduces links in the graph

according to the links in the color-code lattice—see figure 8(c) for an example) contains only local links.

However, the graph obtained from the code using the methodology presented in section 3 may contain a

number of non-local links connecting a control and a target qubit belonging to two different and distant

plaquettes (see figure 8(d)), which is in contrast with the characteristics of a local graph. It has been shown

that small and simple setups diminishes the effect of these non-local links, and a critical size is to be

achieved in order to observe the effect of the topological properties in terms of the existence of the

non-local links in the graph [108]. However, one can also take a different perspective, and ask whether a

differentiation can be made in terms of entanglement. Our graph-based algorithms are appropriate for such

investigations.

We use the developed packages StabGraph and ALCPack to apply the graph-based algorithms H1 and

H2 to determine the MLB for LE over qubit-pairs situated in the bulk of the lattice of the square hexagonal

code. In the case of the graph-based algorithm H1, for a pair of chosen qubits separated from each other by

distance d, we set nG = 1, and optimize the MLB of LE over a set of graphs G′ generated via LC operations

on the qubits situated on randomly chosen paths Lab connecting the qubits a and b, where the size of the set

of graphs G′ equals to the number of random paths nLab
. We first test how the ALC algorithm scales with

the system size by looking at the average time 〈t〉 taken by the ALC algorithm to create a link between the

chosen qubits a and b. We vary the code-distance D of a square hexagonal code as D = 12, 16, 20, 24, such

that the number of qubits in the system are N = 194, 354, 562, 818 respectively. In figure 9, we present the

variation of 〈t〉 as a function of N for qubit pairs with different distances d = 2, 4, 6, 8, 10, where the average

value 〈t〉 is determined over a sample of size nLab
= 104 for each value of d. We separately consider a local

graph that follows the structure of the square hexagonal lattice, and a non-local graph obtained from the

TCC defined on the square hexagonal lattice by using the methodology described in section 3. From

figure 9, it is evident that 〈t〉 increases with N for a fixed d, and increases with d for a fixed N when the

graph is local, which is in contrast with the variation of 〈t〉 with N in the case of a non-local graph obtained

from the square hexagonal code. In the latter case, 〈t〉 increases only negligibly with d for a fixed value of N.

This can be understood from the fact that there exists considerable number of non-local links in the case of
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Figure 9. Variation of 〈t〉 with N . The average time taken by the adaptive local complementation algorithm to create a link
between two chosen qubits with a specific distance d from each other in the bulk of (a) a local graph mimicking the square
hexagonal lattice hosting a color code of code-distance D, and (b) a non-local graph obtained by the method discussed in
section 3, as a function of the system size N. The value of 〈t〉 increases with increasing d for a fixed system size. The unit of the 〈t〉
axis is in seconds, and the N axis is dimensionless. The codes are run in a standard desktop computer.

Figure 10. Variation of 〈nLC〉 with d. Average number of local complementation operations required to create a link between
two given qubits a and b in the bulk, as a function of the distance between the two qubits in the case of a local and a non-local
graph corresponding to the square hexagonal code with D = 20. The average value of nLC is calculated over a sample of
nLab

= 104 graphs. The range 0 � 〈nLC〉 � 5 is enlarged.

the local unitary equivalent graph obtained from the TCC, which results in comparable lengths of the paths

connecting the chosen qubits in the graph irrespective of the actual distance d between the qubits. This

leads to a similar number of required LC operations, which results in slowly increasing values of 〈t〉 with d

for a fixed N. On the other hand, in the local graph, the typical length of a path Lab connecting a and b

increases with increasing distance d between qubits a and b in the TCC lattice, subsequently increasing the

required number of LC operations, and therefore the average value of 〈t〉. Also, the variation of 〈t〉 with

increasing N for a fixed d clearly validates the polynomial scaling of the ALC algorithm as discussed in

section 2.2.

Given the above discussion, it is interesting to investigate whether the average number of LC operation,

〈nLC〉, required to create a link between two chosen qubits in the bulk varies with the distance between the

qubits, when the system-size is fixed. Figure 10 depicts the variation of 〈nLC〉 with d in the case of the local

and non-local graphs corresponding to the square hexagonal color code lattice of D = 20, where the

averaging has been done over a sample size of nLab
= 104 for each value of d. In the case of the local graph,

〈nLC〉 rapidly increases with increasing d, while for the non-local graph, the increasing trend of 〈nLC〉 slows

down considerably when d increases. These results are in agreement with the variations of 〈t〉 against d for a

fixed value of N.

Since both US→G and UG→G′ are constituted of local Clifford unitary operators (see section 2.2), the

transformed noise Λ′ is also local uncorrelated Pauli noise similar to Λ, although the individual bases in

which the noise processes take place corresponding to Λ′ on each qubit may differ from that in Λ. As shown

in [93], for uncorrelated single-qubit Pauli noise applied to a graph G′ in which a link between the two

chosen qubits is present, a high value of MLB is favourable when the size ‘n’ of the neighborhood of the

qubit-pair {a, b}, for which the noise does not commute with the Z-measurement, is low. In figures 11(a)
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Figure 11. Variation of nmin with d. Minimum size of the neighborhood against d, of the qubit-pair {a, b} in the bulk of the
local and the non-local graphs corresponding to the square hexagonal color code of code distance 20 where all the qubits are
exposed to (a) depolarizing or (b) phase-flip noise. Variation of max EP

ab(ρ′) with d. Maximum value of MLB against d, over the
qubit-pair {a, b} in the bulk of the local and the non-local graphs corresponding to the square hexagonal color code of code
distance 20 where all the qubits are under (a) depolarizing and (b) phase-flip noise. The fitted curves are represented by the
continuous lines, where the values of the fitting parameters are obtained as (a) non-local graph: a′ = −0.064(3), b = −0.44(4),
Local graph: a′ = −0.0207(4), b = −0.053(3), (b) non-local graph: a′ = −0.015(1), b = −0.06(1), local: a′ = −0.0104(2),
b = −0.0089(2).

and (b), we plot the variation of the minimum value of n, represented by nmin, as a function of d for the

local as well as non-local graphs corresponding to the square hexagonal code with D = 20, where the

minimization of n is achieved over a sample size of nLab
= 104 for all values of d, in the case of (a) the DP

and (b) the PF noise. Note that in the former case, the value of n equals the number of qubits in the full

neighborhood, while in the latter, n is the number of qubits in the neighborhood with BF or BPF noise.

This implies a higher value of n in the former case than the latter, which is clearly demonstrated also in the

values of nmin in the figure 11. In both cases of the local and the non-local graphs corresponding to the

TCC, and for both types of noise, the value of nmin increases monotonically with d.

Next, we plot the natural logarithm of the maximum value of MLB, denoted by

max EP
ab(ρ′)

(

= max EP ′
ab (ρS)

)

and computed following the methodology developed in [93] as a function

of d. The plots are shown in figure 11(c) (for the DP noise) and figure 11(d) (for the PF noise), where we

choose the noise strength q = 10−2, and the maximization is achieved over the same set of nLab
graphs as in

the cases of 〈nLC〉 and nmin. We fit the variation of the value of the natural logarithm of max EP
ab(ρ′) with d

using the equation ln
[

max EP
ab(ρ′)

]

= a′ + bd, such that the MLB decays exponentially with d according to

the equation max EP
ab(ρ′) = aebd with a′ = lna. Here, a′ and b are fitting parameter, which are expected to

be functions of the noise strength q. See figure 11 for the values of the fitting parameters a′ and b, obtained

in the example.

So far, we have considered a variant of the graph-based algorithm by setting nG = 1, nLab
= 104. We

now apply the modified graph-based algorithm in order to investigate the features of MLB where a link

between a and b is created every time that one transforms the stabilizer state into a graph state. Therefore,

the optimization this time is over a large number nG of bicolorable graphs G, obtained directly from S (see

section 2.2). The data obtained for nmin and ln
[

max EP
ab(ρ′)

]

as functions of d by using graph-based

algorithm H2 are presented in figure 12.
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Figure 12. Variation of nmin and max EP
ab(ρ′) with d. The minimum size of the neighborhood of the qubit-pair {a, b} under

local uncorrelated Pauli noise that do not commute with Z-measurement, and the natural logarithms of the maximum value of
MLB as functions of d, over the qubit-pair {a, b} in the bulk of the non-local graphs corresponding to the square hexagonal color
code of code distance 20, where all the qubits are under (a) depolarizing and (b) phase-flip noise. The fitted curves in the case of
MLB are represented by the continuous lines, where the values of the fitting parameters are obtained as (a) a′ = −0.0215(3),
b′ = −0.089(4), (b) a′ = −0.0108(4), b′ = −0.05(1).

The numerical results presented in this section are illustrations of the applicability of the witness- and

graph-based methodologies developed and discussed in section 2 for determining non-trivial lower bounds

of the localizable entanglement over bulk qubit-pairs in the case of arbitrary TCC lattices, such as the square

hexagonal lattice with open boundary condition. The lower bounds decrease with increasing d, and the

trend agrees with our understanding of the growth of the size of the neighborhood with noise having bases

that do not commute with Z-measurements around the link connecting the qubits in the chosen pair, with

the increasing distance between them. However, in order to infer the exact dependence of the MLB on d,

one could consider the optimality of the algorithms for obtaining the maximum value of the MLB. This

issue could be thoroughly investigated, which is beyond the scope of the present work.

5. Conclusions and outlook

In this paper, we provide two specific pathways to estimate the lower bound of localizable entanglement

over a subset of qubits in a large system of noisy topological codes, including the surface and the color

codes. In one approach, we use an appropriately constructed local entanglement witness operator

constituted of the stabilizer generators of the code, and estimate a lower bound of localizable entanglement

over the chosen region of qubits via the expectation value of the witness operator. We also propose a specific

construction of the the local witness operator for this purpose. On the other hand, we also propose a

methodology for estimating a lower bound of localizable entanglement corresponding to a specific

projection measurement setup on the qubits outside the specified subset of qubits in a noisy stabilizer state.

This uses the fact that an arbitrary stabilizer state can be connected to a graph state via local unitary

transformations. We discuss in detail a scalable geometric recipe for determining the graph underlying the

local unitary connected graph state from the stabilizer state describing a color code. We also present an

algebraic methodology to determine the adjacency matrix of the graph corresponding to a graph state

obtained via local unitary transformation from a stabilizer state of arbitrary size. Moreover, we develop an

algorithm which creates a link between any two chosen nodes in a simple, connected, and undirected graph
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by using a sequence of local complementation. We also develop appropriate numerical packages [114, 115]

for these purposes. We predict that the runtime of the graph-based algorithm scales polynomially with the

system size, which is supported by our numerical findings corresponding to a topological color code on a

square hexagonal lattice.

We also determine the witness- and measurement-based lower bounds of localizable entanglement in

the case of qubit pairs situated in the bulk of a topological color code described on a square hexagonal

lattice. We explicitly compute the expectation value of the local entanglement witness operator constructed

according to our prescription in the case of a stabilizer state of the system under local uncorrelated Pauli

noise. Our calculations show that the bound obtained from the proposed construction of the local witness

operator exponentially decreases with increasing support of the witness operator, and therefore with

increasing distance between the chosen qubits. In the case of the measurement-based method, along with

computing the bounds of localizable entanglement over a qubit-pair in the bulk of a topological color code

via the graph-based methods I and II, we also determine the bounds of localizable entanglement

corresponding to a qubit pair in the case of a local graph that follows the square hexagonal

lattice.

Note that the numerical data presented in this paper corresponding to the measurement-based lower

bound is obtained as a proof of the functionality of the graph-based method and the modified graph-based

method developed in this paper. It could be interesting to study the optimality of the algorithm in order to

optimize the bound. The algorithms proposed in this paper could also be generalized for regions beyond

two qubits leading to the notion of multiparty localized entanglement [84] in topological quantum codes,

which could allow to reveal long-range multiparty quantum correlations.
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Appendix A. Topological color codes

We use topological color codes (TCC) [63, 64] as the testing ground for our results, and the defining

features of a TCC are briefly discussed in this appendix. A TCC model is constructed on a two-dimensional

(2D), three-colorable, and trivalent lattice, where each vertex of the lattice contains a physical qubit, and the

lattice can be embedded on a compact surface having arbitrary topology of genus g (for example, a torus

with g = 1). The three-colorability of the lattice implies that the faces of the lattice, also known as the

plaquettes, can be painted with three different colors, where neighboring plaquettes always have different

colors. The trivalency of the lattice implies that each vertex is connected to three links. The lattice can also

be characterized by coloring the three links connected to each vertex with the same set of colors as the

colors of the plaquettes, such that each link has a color different than both colors of the plaquettes sharing

the link. There is a number of such regular lattices available, such as the hexagonal (honeycomb) lattice, the

square-octagonal lattice, and the square-hexagon-dodecahedron lattice. The number of logical qubits in a

TCC is given by k = 4 − 2χ, where χ is the Euler characteristic of the surface, thereby ensuring that k

depends on the topology of the surface. The methodology developed in this paper are aimed for arbitrary

stabilizer states, and therefore applies to arbitrary TCC. For the purpose of testing our prescriptions, in this
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paper, we shall focus on the 2D honeycomb lattice with open boundary conditions. To keep the figures

uncluttered, we shall use the three-colorability of only the plaquettes for demonstration [see figure 1 for a

schematic of a honeycomb lattice, where the three colors corresponding to the TCC are red (R), green (G),

and blue (B)].

We now set up the terminology for the stabilizer description of a TCC, which requires the definition of

two key concepts, (1) the stabilizer subspace, and (2) the logical operators. The stabilizer subspace of the TCC

is determined by the stabilizer group of operators, which is generated by a set of plaquette operators denoted

by Sαp . There are two types of plaquette operators, corresponding to α = x and α = z for each plaquette Pp,

called the x-type and the z-type operators, given by

Sx
p = ⊗

i∈Pp

Xi, Sz
p = ⊗

i∈Pp

Zi, (A1)

where X and Z are respectively the x and z components of Pauli matrices. Each of the plaquette operators

squares to the identity, i.e.,
(

Sαp
)2

= I ∀ p, α = x, z, and they mutually commute, [Sαp , Sα
′

p′ ] = 0, since all

plaquettes have an even number of vertices in a trivalent three-colorable lattice, and since adjacent

plaquettes share even number of vertices. The stabilizer subspace HS in the full Hilbert space H of the TCC

is given by

HS = {|ψ〉 : Sαp |ψ〉 = |ψ〉 ∀p,α = x, z}. (A2)

Note that the plaquette stabilizer operators are intrinsically local in the sense that they operate on the qubits

belonging to the same plaquette. This notion of locality is crucial for the discussions presented in this paper.

In all our considerations, we define the physical distance between any two lattice points by the length of the

shortest path constituted of the lattice links and connecting the two lattice points.

A TCC hosts a total of 2k independent logical generators L
(q)
α , where q = 1, 2, . . . , k is the number of

logical qubit, and α = x, z indicates the local Pauli matrices corresponding to the lattice sites that constitute

the logical operators. They are defined on homologically non-trivial (i.e., non-contractible) strings across

the lattice, and they commute with all stabilizers:

[L(q)
α , Sα

′
p ] = 0. (A3)

The x- and z-type logical operators define the computational basis {|0〉L, |1〉L} for the logical qubits, such

that

L(q)
z |0〉L = |0〉L, L(q)

z |1〉L = −|1〉L, (A4)

where the subscript ‘L’ denotes the logical states. The eigenbasis of L
(q)
x and L

(q)
y in terms of {|0〉L, |1〉L} are

|±〉L = (|0〉L ± |1〉L)/
√

2 and |±i〉L = (|0〉L ± i|1〉L)/
√

2 respectively.

In this paper, we focus on a 2D color code defined on a square-hexagonal lattice, as described in

section 4. The number of physical qubits, N, in a 2D topological color code depends on the code distance D.

In the case of the topological color code defined on the square-hexagonal lattice with code distance D, N

varies with D as

N =
3D2

2
− 2(D − 1), (A5)

where D = 4l(l = 1, 2, 3, 4, . . .).

Appendix B. Decomposition of local witness operators

In this appendix, we present the detailed calculation for decomposing a local entanglement witness operator

of the form in equation (5) into the form given in equation (7). In order to decompose WΩ in terms of

local projection operators on Ω and witness operators Wk
Ω

on Ω, notice that the commutation property in

(i) splits Ω into two regions, (1) Ω1 constituted of qubits for which ui,j = 0 ∀j, and (2) Ω2 consisting of

qubits such that there exists at least one stabilizer Sj ∈ S in which ui,j �= 0. Therefore, for qubits i ∈ Ω1,

⊗i∈Ω1
τΩ1

ui,j
= I

Ω1
, I

Ω1
being the identity operator in the Hilbert space of the qubits in Ω1. On the other hand,

in the case of a qubit i in Ω2, if ui,j �= 0 for more than one stabilizers Sj ∈ S, then the values of ui,j are

identical for all j for which ui,j �= 0. This assigns a specific Pauli operator τΩ2
vi

(vi = 1, 2, or 3) for the qubits

i ∈ Ω2. The corresponding projection operators can be written as P
Ω2
(ki,vi)

=

[

Ii + (−1)kiτΩ2
vi

]

/2, Ii being the

identity operator in the Hilbert space of the qubit i ∈ Ω2 in stabilizer Sj, and ki(= 0, 1) can be interpreted as

the outcome of the projection measurement via P
Ω2
(ki,vi)

. The constructions of the local witness operator has
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Figure B1. The supports of the witness operator in figure 3(b). The two-qubit region is marked by the white nodes, while the
black, turquoise, and yellow nodes mark the region Ω. The black nodes represent the sub-region Ω1, while the turquoise and

yellow nodes stand for the sub-region Ω2. The two different colors, turquoise and yellow on a qubit i ∈ Ω2 represent τ
Ω2
vi

= X

and τ
Ω2
vi

= Z respectively.

been demonstrated in figures 3(a) and (b). The supports of the stabilizers Sz and Sx, denoted by Rz and Rx

respectively, are the sets of nodes corresponding to which the Pauli operator contributing to the stabilizer is

not an identity. For example, the sizes of Rz and Rx, denoted respectively by nz and nx, are nz = 8, nx = 6,

for the figure (a), while for (b), nx = nz = 8. See figure B1 for an illustration of the supports is the case

depicted in figure 3(b).

Before breaking the mathematics any further, let us consider the effect of the application of a projection

operator P
Ω2
(ki,vi)

on each of the qubits in Ω2, which results in

P
Ω2
(ki,vi)

Sj = ηi,jP
Ω2
(ki,vi)

⊗
[

⊗l∈Ω2
l �=i

τΩ2
ul,j

]

⊗ I
Ω1

⊗ SΩj , (B1)

where

ηi,j =

{

(−1)ki , for ui,j �= 0,

1, for ui,j = 0.
(B2)

Therefore, application of a projection operator of the form P
Ω2
(ki,vi)

on each qubit i ∈ Ω2 yields

P
Ω2
(k,v)Sj = ηjP

Ω2
(k,v) ⊗ I

Ω1
⊗ SΩj , (B3)

with ηj =
∏

i∈Ω2
ηi,j, and

PΩ2
(k,v) = ⊗

i∈Ω2

PΩ2
(ki,vi)

, (B4)

where k ≡ k1k2 . . . km′ and v ≡ v1v2 . . . vm′ are multi-indices7, and we denote the size of Ω2 by m′ (� m).

From equation (B3), it is clear that the application of local projection operations in the basis of Pauli

operators fixed by the witness WΩ outside the region Ω results in local stabilizers SΩj . These stabilizers

correspond to the genuine multiparty entangled state |ψ〉
Ω

—the same state that is obtained over the region

Ω by performing projection operation PΩ2
(k,v) on the stabilizer state |ψ〉 [see condition (ii)].

We now point out that the completeness of the basis formed by the eigenstates of the Pauli matrices in

the Hilbert space Hi of a qubit allows one to write Ii as

Ii =

1
∑

ki=0

PΩ2
(ki,vi)

. (B5)

This can be extended to the identity operator in the Hilbert space H = ⊗n
i=1Hi of the full system, which,

when multiplied with WΩ from the left and expanded in terms of the projectors PΩ2
(k,v) yields

WΩ =

⎡

⎣

2m′−1
∑

k=0

PΩ2
(k,v) ⊗ Wk

Ω

⎤

⎦⊗ I
Ω1

, (B6)

7 Note here that the allowed values of vi are 1, 2, and 3 instead of {0, 1, 2, 3} which forms a complete base 4 of decimal numbers.

Therefore, the allowed values of ui,j form only a subset of 0, 1, . . . , 4m′ −1
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with

Wk
Ω =

1

2
IΩ −

∏

Sj∈S

IΩ + ηjS
Ω
j

2
, (B7)

where IΩ is the identity operator in the Hilbert space of the qubits in Ω. Note here that given the condition

(ii) for the construction of witness operators, Wk
Ω

detects genuine multiparty entanglement in the region Ω.

Note also that one can use equation (B5) for the identity operators in the Hilbert space of the qubits in Ω1

as well, by choosing any one of the three Pauli operators, X, Y, or Z to define the projectors, since the form

of Wk
Ω remains independent of this choice. Each set of Pauli operators defining the projectors over the

region Ω1 leads to a specific Pauli measurement setup over the qubits in Ω. For each of these setups,

equation (B6) takes the form

WΩ =

2m−1
∑

k=0

PΩ
(k,v) ⊗ Wk

Ω. (B8)

Appendix C. Negativity of a two-qubit state

We formally define negativity [116, 117] as a bipartite entanglement measure. Negativity of an arbitrary

bipartite (e.g. two-qubit) state ̺ab is defined as

Ng (̺ab) = ‖̺Ta
ab‖1 − 1. (C1)

Here, ̺Ta
ab is the partial transposition of ̺ab w.r.t. qubit a, and ‖x‖1 = Tr

[√
x†x
]

denotes the trace norm. In

terms of the eigenvalues {λi} of ̺Ta
ab , Ng is given by

Ng (̺ab) = 2
∑

λi<0

|λi|. (C2)

Appendix D. Graphs and graph states

Here we discuss some basic concepts regarding graphs and graph states [92].

Graph. A graph G is a collection of nodes connected to each other by links. We denote the number of nodes

by N, and label them as 1, 2, . . . , N − 1, N, while a link connecting the nodes i and j is designated as (i, j)

(i �= j, i, j ∈ G). A graph is represented by an N × N binary matrix Γ, called the adjacency matrix, given by

Γij =

⎧

⎨

⎩

1, for (i, j) ∈ G,

0, for (i, j) /∈ G.
(D1)

We shall focus on simple, undirected, and connected graphs only. A simple graph is one without any loop (a

node connected to itself) or multiple links connecting a pair of nodes. Such a graph is connected iff for each

pair of sites {i, j} ∈ V, there exists at least one path Lij between i and j, constituted of a set of links

{(k, l)} ∈ G with k, l ∈ V. In an undirected graph, the links (i, j) and (j, i) are equivalent. The neighborhood

of a node i in G is denoted by by Ni ⊂ V, which is the set of nodes {j} that are directly connected to i by

links, i.e., (i, j) ∈ G ∀j ∈ Ni.

Graph state. A graph state |ψG〉 corresponding to an underlying graph G can be created by (i) considering a

qubit located at every node, initialized in the state |+〉 such that the state of the N-qubit system is |+〉⊗N
,

and then (ii) applying a controlled phase gate, Uz
(i,j) (see equation (I3)), on each pair of qubits {i, j} if

(i, j) ∈ G. The resulting graph state is

|ψG〉 =

⎡

⎣

∏

(i,j)∈G

Uz
(i,j)

⎤

⎦ |+〉⊗N . (D2)

Note that further application of the same controlled phase unitaries on the qubits in the graph state

completely disentangles the graph state to |+〉⊗N
, since

[

Uz
(i,j)

]2

= I.

Simple paths. A simple path Lab connecting the two nodes {a, b} by a sequence of nodes is given by

Lab = [a ≡ m1, m2, . . . , mn ≡ b], (D3)

21



New J. Phys. 22 (2020) 053038 D Amaro et al

with {m2, m3, . . . , mn−1} being the nodes that are visited while traveling from the source a to the target b

along Lab, where none of the nodes is repeated in the sequence, and the link (mi, mi+1) ∈ G,

i = 1, . . . , n − 1. The number of links traversed while going from a to b is the length l = n − 1 of the path.

We denote a simple path between a and b having length l as L(l). To keep our notations uncluttered, we

discard the subscript ‘ab’ and the superscript ‘(l)’, and denote a simple path of the form given in

equation (D3) by L, unless we need to distinguish between two paths of different source and/or target

nodes, or of different length.

Shortest paths. There can be more than one simple paths of different or same lengths between two nodes a

and b in a graph. The shortest path is the simple path between a and b having the minimal length l = lmin,

where the minimization is taken over all possible simple paths between a and b. There can be more than

one shortest paths between a specific pair of nodes.

Local complementation. The local complementation (LC) operation with respect to a node i, denoted by

τ i(.), on a graph G deletes all the links {(j, k)} if j, k ∈ Ni, and (j, k) ∈ G, and creates all the links {(j, k)} if

j, k ∈ Ni, and (j, k) /∈ G. A sequence of LC operations on n nodes denoted by m ≡ {m1, m2, . . . , mn} of a

graph results in a graph transformation

τm = τmn/mn−1/···/m1
(.) = τmn ◦ τmn−1

◦ · · · ◦ τm1
(.), (D4)

where the LC operation is performed on the node m1 first, and then according to the sequence

{m1, m2, . . . , mn}. Note that this specific sequence is important, as LC operations, in general, do not

commute.

Stabilizer formalism. The stabilizer description of a graph state |ψG〉 corresponding to a graph G uses N

generators gi of the form

gi = Xi⊗
Ni

Zj, (D5)

such that gi |ψG〉 = |ψG〉 ∀ i ∈ V , which forms a subset of the Pauli group. The generators {gi} mutually

commute, thereby sharing a common eigenbasis, and the graph state |ψG〉 represents the common

eigenstate with eigenvalue +1. The rest of the eigenstates of the generators can be represented as

{|ψG〉ν = Zν |ψG〉}, where ν is a multi-index representing the sequence ν1ν2 . . . νN of indices {νi}
corresponding to the qubit i ∈ G, where ν i = 0, 1, and Zν = ⊗i∈V Z

νi
i .

Local complementation as local unitary operation. An LC operation on a graph G with respect to the node

i is equivalent to a local unitary transformation of the corresponding graph state |ψG〉, where the unitary

operator is given by

Ui = exp
(

−i
π

4
Xi

)

⊗
Ni

exp
(

i
π

4
Zj

)

. (D6)

A sequence of LC operations on a number of chosen nodes in a graph G, denoted by equation (D4), is given

by

U = ⊗
i∈m

Ui, (D7)

where Ui is as in equation (D6).

Appendix E. Algebraic approach

In this appendix, we put the graphical recipe discussed in section 3 in a mathematical footing, and show

how the adjacency matrix of the graph can be obtained from the structure of the stabilizers, revisiting the

results obtained in [91]. We use the binary picture [91, 92] for the description of the stabilizer state of the

N-qubit system, which is a 2N × N binary matrix composed of two N × N blocks corresponding to the Z-

and X-type stabilizers, given by

A =

(Z
X

)

. (E1)

Here each column of A, marked by the index j, represents one stabilizer Sj, in which the Pauli matrix

corresponding to the qubit i is represented by
(Zi,j

Xi,j

)

, where Zi,j, Xi,j = 0, 1 (see appendix J for details).

Since the stabilizers, or more precisely, the generators are independent, the matrix A is of rank(A) = N.

Assuming that the rank of X is n, the stabilizer state can be represented by a new set of stabilizers obtained

by re-combining the original stabilizers through Gaussian elimination among the columns in such a way

that Xij = 0 for j = n + 1 . . . , N, where we arrange the columns as j = 1, 2, 3, . . . , n, n + 1, . . . , N without

any loss in generality. We point out here that all the operations in the binary picture are performed modulo

2. Denoting ‘left’ by l and ‘right’ by r, the stabilizer state now becomes
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A′
=

(

Zl Zr

Xl 0

)

, (E2)

where Xl is an N × n matrix of full rank. Note here that in the case of a CSS code [119], Zl can be

considered to be 0, ensuring that the left block of columns in A′ corresponds to only x-type stabilizers, while

the stabilizers represented by the right block of columns are only z-type.

Since the matrix Xl has rank n, the same number of linearly independent rows can be chosen from it,

which will then form n × n invertible matrix Xl,c corresponding to the n control qubits, the subscript c

denoting control. As a consequence, Xl,c is an invertible matrix. The rest of the rows in Xl stand for the

target qubits, denoted by the subscript t. We always label the rows as i = 1, 2, . . . , n, n + 1, . . . , N from the

top, and consider the first n rows to be corresponding to the control qubits, while the rest N − n rows are

for target qubits. Therefore the matrix A′ takes the form

A′
=

⎛

⎜

⎜

⎝

Zl,c Zr,c

Zl,t Zr,t

Xl,c 0

Xl,t 0

⎞

⎟

⎟

⎠

. (E3)

Our approach towards extracting the adjacency matrix Γ underlying a local unitary connected graph state

from a stabilizer state represented by A′ can be summarized via the following equation:

QA′R =

(

Γ

I

)

, (E4)

where R is an invertible binary matrix, and Q is constituted of local Clifford unitary operations, having the

form Q = UZHtarget. Here, UZ is a local π
2

rotation w.r.t. the z-axis on a subset of the control qubits that we

are going to specify later, and Htarget represents Hadamard operations on all the target qubits. In the

subsequent discussion, we explicitly calculate the L.H.S of equation (E4), and demonstrate the extraction

of Γ.

The first step is to apply Hadamard operations on all the target qubits, which, in the binary picture,

implies the interchange of the elements above and below the horizontal line in equation (E2), i.e.,

HtargetA
′
=

⎛

⎜

⎜

⎝

Zl,c Zr,c

Xl,t 0

Xl,c 0

Zl,t Zr,t

⎞

⎟

⎟

⎠

. (E5)

It can be proved that the lower block of HtargetA
′ is invertible, and its inverse, R, can be determined. To do

this, we take a different approach that the one used in [91]. We apply to HtargetA
′ a Clifford operation

represented by U that makes the upper block vanish and leaves the lower block unchanged. The unitary that

we construct for the purpose of the proof is represented by

(E6)

where explicit forms of B, C will be given in equations (E15) and (E16) respectively. The matrix UHtargetA
′ is

given by
⎛

⎜

⎜

⎝

Zl,c + CXl,c + BTZl,t Zr,c + BTZr,t

Xl,t + BXl,c 0

Xl,c 0

Zl,t Zr,t

⎞

⎟

⎟

⎠

. (E7)

From the form of the matrix C in equation (E15), the non-zero diagonal terms of the upper block vanish,

while the off-diagonal terms vanish due to equation (E11). Hence the proof of the invertibility of the lower

block of HtargetA
′. Note that Clifford operations are represented by full-rank matrices, and therefore U has

preserved the rank N of HtargetA
′. Consequently, the matrix UHtargetA

′, which contains only the lower block,

is of full rank, and therefore, the lower block is invertible.
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In order to determine R, we note that the lower block of HtargetA
′ has the form of a lower triangular

matrix, and the diagonal terms Xl,c and Zr,t of the lower block of HtargetA
′ are also invertible due to the

invertibility of the lower block of HtargetA
′. Therefore, R is another lower triangular matrix by blocks having

the form

R =

(

X−1
l,c 0

V Z−1
r,t

)

(E8)

where V must satisfy that Zl,tX−1
l,c + Zr,tV = 0, leading to V = Z−1

r,t Zl,tX−1
l,c .

The lower block of HtargetA
′, when multiplied by R from the right, becomes the identity, while the upper

block becomes
(

Zl,cX−1
l,c + Zr,cZ−1

r,t Zl,tX−1
l,c Zr,cZ−1

r,t

Xl,tX−1
l,c 0

)

. (E9)

We now show that the upper block of HtargetA
′R is symmetric, for which we exploit the fact that every

stabilizer state, say, A′, due to the communitativity between all pairs of stabilizers, has to satisfy
(

A′)T
DA′ = 0, where D is a 2N × 2N binary matrix with zeros in the two N × N diagonal blocks, and

N × N identity matrices in the off-diagonal blocks [92] (also see appendix J). This leads to

X T
l,cZl,c + X T

l,tZl,t = ZT
l,cXl,c + ZT

l,tXl,t , (E10)

X T
l,cZr,c = X T

l,tZr,t . (E11)

Multiplying equation (E11) from the left hand side by
(

X T
l,c

)−1
, and from the right hand side by Z−1

r,t , we

obtain

Zr,cZ−1
r,t =

[

Xl,tX−1
l,c

]T
. (E12)

Next, we multiply equation (E10) from the left by
(

X T
l,c

)−1
and from the right by X−1

l,c to obtain

[

Zl,c +
(

X T
l,c

)−1X T
l,tZl,t

]

X−1
l,c =

(

X T
l,c

)−1 [ZT
l,c + ZT

l,tXl,tX−1
l,c

]

. (E13)

Use of equation (E12) leads to the modified form of the upper block of HtargetA
′R as

Γ
′
=

(

C BT

B 0

)

, (E14)

where

B = Xl,tX−1
l,c , (E15)

C =

[

Zl,c +
(

X T
l,c

)−1X T
l,tZl,t

]

X−1
l,c , (E16)

with C being symmetric, given equation (E13). Therefore, in view of our goal to explicitly calculate Γ from

equation (E4), we have now obtained

HtargetA
′R =

(

Γ
′

I

)

. (E17)

For the above matrix Γ′ to be the adjacency matrix Γ of a graph, the diagonal elements of C must

vanish, which is achieved by multiplying HtargetA
′R by UZ from the left, given by (see appendix J)

(E18)

where UZ represents the single-qubit π
2

rotations with respect to the z axis on the control qubits for which

Cii = 1. This leads to the adjacency matrix Γ of the form
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(E19)

Based on the above discussion, one can develop an algorithm for obtaining the adjacency matrix Γ

corresponding to the graph G representing the graph state that is local unitary equivalent to the stabilizer

state, by utilizing the stabilizer structure of the state only. This algorithm has been realized in the form of a

Python open-source package called StabGraph [114], which generates the adjacency matrix corresponding

to the graph underlying the graph state which is connected via local unitary operations with the stabilizer

state (see appendix H for a pseudo code of the algorithm). Our recipe using the Gaussian elimination

technique scales as ∼ N3 with the system size, N. Note here that in the case of CSS codes [119], Zl,c and Zl,t

in A′ can be set to zero by stabilizer recombination, implying C = 0, thereby ensuring that the adjacency

matrix

(E20)

has vanishing diagonal blocks. This also implies that links between a pair of control qubits and a pair of

target qubits are prohibited, thereby ensuring that the resulting graph is bicolorable, although in the general

stabilizer state, the existence of (c, c)-type links is allowed. Moreover, transformation of the stabilizer state to

the graph state does not require the application of the local unitary operation UZ, if C = 0.

Appendix F. Graph-based algorithm on a 7-qubit color code

The graph-based method for computing the measurement-based lower bound of LE has been discussed in

section 2.2. In this appendix, for illustration, we apply the graph-based method described in section 2.2 on

the smallest 2D color code, constructed over a triangular lattice of seven qubits arranged in three adjoined

plaquettes, where one physical qubit is placed at each vertex. The stabilizer operators corresponding to the

7-qubit color code are constituted of 4-qubit X- and Z-type operators for each plaquette, given by

Sx
1 = X1X2X3X4, Sz

1 = Z1Z2Z3Z4,

Sx
2 = X2X3X5X6, Sz

2 = Z2Z3Z5Z6,

Sx
3 = X3X4X6X7, Sz

3 = Z3Z4Z6Z7.

(F1)

Let us assume that the two-qubit region is given by the qubits a ≡ 1 and b ≡ 5 (see figure G1), where

Ω = {2, 3, 4, 6, 7}. The logical state |+〉L of this TCC can be transformed into a graph state |ψG〉 via the

unitary transformation US→G = H1 ⊗ H5 ⊗ H7, where the set of control qubits here is composed of the

qubits {1, 5, 7}, and the set of targets holds the qubits {2, 3, 4, 6}. The link (a, b) is absent in the graph G.

Therefore, a subsequent LC operation on the qubit 2 is performed to create the graph G′, where the link

(a, b) exists. This LC transformation is equivalent to UG→G′ = exp(iπZ1/4) ⊗ exp(−iπX2/4) ⊗ exp(iπZ5/4)

(see appenndix D). Therefore, the unitary operator US→G′ consists of the local unitary operators

U2 = exp(−iπX2/4), U3 = U4 = U6 = I, and U7 = H7 in the region Ω ≡ ab. Consequently, EP
ab(ρ′) as an

MLB with P ≡ Z measurement on all qubits ∈ ab in ρ′ is equivalent to Y measurement on qubit 2, X

measurement on qubit 7, and Z measurements on qubits 3, 4, and 6, denoted altogether by P ′ in ρS, so that

EP
ab(ρ′) = EP ′

ab (ρS).

Appendix G. Graph transformations via adaptive local complementation

As mentioned in section 2.2, for the successful implementation of the graph-based protocol, one needs to

develop a graph trannsformation algorithm that creates a link between any two chosen nodes in a simple,

connected, undirected graph via a sequence of local complementation operations over a set of nodes in the

graph. We have developed an adaptive local complementation technique that updates itself at every step of

the graph transformation via local complementation over one qubit, and chooses the next node for local

complementation using the updated information. Here, we discuss the technical details of the adaptive LC

technique developed for the graph transformation G → G′ used in section 2.2. The prescription works for a

generic simple, connected, and undirected graph G, irrespective of whether it is bicolorable or not.

We shall denote a link connecting two nodes i and j by (i, j). We shall also represent a simple path in the

graph, connecting the two nodes a and b and having length l, by L(l)
ab , which, without any loss in generality,

is given by (see appendix D)

Lab = [a ≡ 1, 2, . . . , n ≡ b]. (G1)
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Figure G1. Transformation of a 7-qubit topological color code to a graph G′ by using the graph-based algorithm described in
section 2.2, where the nodes 1 and 5 are connected by a link in G′ . A non-zero value of EP

15(ρ′) in G′ requires local projection
measurement in the Z-basis at all other qubits. This corresponds to X- and Y measurement on qubits 7 and 2, respectively, and
Z-measurement everywhere else. See appendix F for details.

Here, {2, 3, . . . , n − 1} are the nodes that are visited while traveling from a to b along L(l)
ab , such that

(i, i + 1) ∈ G, i = 1, . . . , n − 1, and none of the nodes is repeated in the sequence. The number of links

traversed while going from a to b is the length l = n − 1 of the path. To keep the notation uncluttered, we

will drop the subscript ab and the superscript (l) from the notation of the simple path unless it is explicitly

required for comparison. For the purpose of this discussion, one needs a specific classification of the simple

paths connecting two nodes, and a definition of the distance between them, as follows.

Category of simple paths. We first divide the set of all possible simple paths between two given nodes a and

b into two categories, C1 and C2. A simple path L of the form given in equation (G1) belongs to the category

C1 if a qubit on L is not connected to another qubit on L via a direct link, unless the second qubit is right

before or after the first qubit in the sequence L. Formally put, for two qubits i and j on L, iff

(i, j) /∈ G ∀ i, j ∈ L, i < j � n, j �= i + 1, then L ∈ C1. Otherwise, L ∈ C2 (see figure G2 for an example).

Note that C1 ∩ C2 = ∅, while C1 ∪ C2 constitutes the set of all possible simple paths between a and b.

Distance between two nodes. There can be a number of ways in which the distance between a pair of nodes

in a graph can be quantified. However, the distance between two nodes i and j that is specific to a given path

L of the form in equation (G1) is unique. It is measured by the number of links that one has to traverse

while going from i to j along L, and can be represented by dL
(i,j) = j − i, where we have assumed j > i

without any loss of generality. Note that for a path L, dL
(1,n) = l = n − 1.

All shortest paths between two given nodes a and b in a simple, connected, and undirected graph belong

to C1. This can be proved by assuming that there exists a shortest path (see appendix D for a definition) L
between two nodes a ≡ 1 and b ≡ n that belongs to C2. However, by definition of C2, there exists at least

one link (i, j) such that i, j ∈ L, i < j � n, and j �= i + 1. This implies that there exists a simple path

between a ≡ 1 and b ≡ n, given by

L(l′)
= [1, 2, . . . , i − 1, i, j, j + 1, . . . , n] (G2)

of length l′ = l − (j − i) + 1, which is < l since j > i + 1 by the definition of C2. Therefore, L is not a

shortest path. However, note that not all paths in C1 are shortest paths (see figure G2 for examples).

We are now in a position to prove the following theorem, which will be crucial for our purpose.

Theorem 1. For a simple path L ∈ C1 of the form given in equation (G1) between a pair of nodes a ≡ 1 and

b ≡ n in a graph G, a sequence of LC operations on the nodes {2, . . . , n − 1} always creates a link between the

nodes a and b, when the LC operations are performed on the nodes in the same order as they are in the sequence

L.

Proof. Let us consider the path L ∈ C1, as given in equation (G1), between the nodes a and b in a simple,

connected, and undirected graph G. Let us denote the neighborhood of the node 2 as N2. The definition of

C1 implies that only 1, 3 ∈ L belongs to N2, while {4, . . . , n} /∈ N2. Let us assume that the LC operation (see

appendix D) on node 2 transforms the graph as G → G2 = τ 2(G). The definition of LC operation implies

creation of the link (1, 3) thereby introducing 1 in the neighborhood N3 of 3, while keeping the

neighborhoods of the rest of the nodes {4, 5, . . . , n} unchanged. Also, the LC operation τ 2 does not affect

the links {(i, i + 1), i = 3, 4, . . . , n − 1}. Therefore, in G2, there exists a simple path of length l′ = l − 1,

given by [a ≡ 1, 3, 4, . . . , n ≡ b] ∈ C1, between the pair of nodes a and b. One can continue performing a

total of n − 2 LC operations successively on the nodes 2, 3, . . . , n − 1 in the same order as they are in the

sequence L, where during each individual LC operations on the node i, i = 2, 3, . . . , n − 1, the above

arguments apply, and a link is created between the node 1 and the node i + 1. The last LC operation on the

node n − 1 creates a link between the nodes 1 and n. Hence the proof. �
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Figure G2. Examples of C1 and C2 paths. A simple, connected, and undirected graph of 8 nodes. For demonstration, we
consider the path L = [a ≡ 1, 2, 3, 4, 5, 6, 7 ≡ b], which is a C2 path due to the existence of the links (1, 3), (1, 5), (2, 4), (3, 7),
and (4, 6). From these links and the links constructing the path L, three C1 paths of different lengths l = 2, 3, 4 can be distilled,
given by L(4)

1 = [1, 2, 4, 6, 7], L(3)
1 = [1, 5, 6, 7], and L(2)

3 = [1, 3, 7]. The path L(3)
2 can be determined via the C2 →C1 algorithm.

Corollary 1.1. For a shortest path L of the form given in equation (G1) between a pair of nodes a ≡ 1 and

b ≡ 2 in a graph G, a sequence of LC operations on the nodes {2, . . . , n − 1} always creates a link between the

nodes a and b, when the LC operations are performed on the nodes in the same order as they are in the sequence

L.

Corollary 1.2. For a C1 path of length l = n − 1, the number of LC operations required to create the link (a, b)

is nLC = n − 2.

Theorem 1 suggests that the creation of a link between a and b in a connected graph is ensured if one

chooses only C1 paths between a and b and performs LC operations on the qubits in those paths. However,

there usually exists a large number of C2 paths in a connected graph, and there is no intuition whatsoever

for choosing a C1 path in order to obtain a tight MLB of LE. The challenge therefore is to develop an

effective algorithm that can guarantee the creation of the link (a, b) irrespective of whether the chosen path

belongs to C1 or C2, when LC operations only on the nodes belonging to the chosen path are performed.

Towards this goal, note that by virtue of the definition of C2, for a path L ∈ C2, one can distil a number of

C1 paths of different lengths from the links constructing L and the links connecting the nodes in the L, but

not contributing to L (see figure G2 for examples). These C1 paths have support on the nodes ∈ L only, and

therefore the condition of performing LC operations only on the nodes belonging to L is satisfied. Theorem

1 ensures that each of these C1 paths can be chosen to create (a, b) with certainty. Therefore, the challenge is

to find a C1 path from the C2 path, which, in turn, leads to the creation of the link (a, b) according to

Theorem 1. It is easily understood how this is achieved via the C2 →C1 algorithm represented by the

pseudocode in appendix H.4.

Note here that to minimize effort, one has to use the distilled C1 path having the shortest length, which

may or may not be the shortest path between a and b. However, there is no intuitive reason behind using

the shortest path, or the shortest distilled path to create the link, since the value of the MLB computed via

the graph-based method in section 2.2 depends explicitly on the structure of the graph, and how the size of

the neighborhood of the qubit-pair {a, b} in the transformed graph depends on the length of the chosen

path between a and b in the original graph. In a graph with high connectivity, there may exist other paths

having length close to the shortest length which may provide a tighter value of the MLB compared to the

same obtained from the shortest path (we elaborate more on this in section 4). The C2 →C1 algorithm

focuses on finding any one of the distilled C1 paths that creates the link (a, b). For example, in figure G2, the

C2 →C1 algorithm distils the C1 path L(3)
2 of length 3, while the shortest distilled C1 path is L(2)

2 of length 2,

which is also one of the shortest paths between the qubits 1 and 7.

We now combine all these insights, and develop an LC-based graph-transformation algorithm that

creates a link (a, b) by performing LC operations on a subset of the set of nodes situated on a chosen path,

where the subset of nodes is chosen by adapting the chosen path according to its category. We call this

algorithm the adaptive LC (ALC) algorithm, which has been represented by the pseudocode in appendix

H.5. The LC operation on a simple, connected, and undirected graph w.r.t. a chosen node, the distillation of

a C1 path from a C2 path via the C2 →C1 algorithm, and the creation of a link between any two given nodes
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in a graph by using ALC algorithm have been realized in the form of the Python open-source package

ALCPack [115].

A word on the dependence of the run-time of the adaptive LC algorithm on the system size N is in order

here. Since the algorithm takes into account the transformed graphs at each of its steps, it is difficult to

determine an exact dependence of the run-time of the algorithm on system size. However, one can

determine a bound on how the run-time scales with N. It is easy to see that the maximum size of the

neighborhood Ni of a node i can be � N − 1, and it can host at most
(

N−1
2

)

links if G is connected and

undirected. Therefore, the maximum number of links that can be created or deleted during an LC operation

on a single node is
(

N−1
2

)

. Since there can be at most N − 2 nodes on a path L between a and b, the total

number of link operations during the ALC algorithm is � (N − 2)
(

N−1
2

)

� N3, which indicates a

polynomial scaling with system size.

Appendix H. Pseudo codes for different algorithms

In this appendix, we present pseudo-codes for the different algorithms introduced in this paper.

H.1. Graph-based method

We now present the pseudo code representing the graph-based method to calculate the measurement-based

lower bound for localizable entanglement.

Algorithm H1. Graph-based method to calculate the measurement-based lower bound of localizable entanglement.

input (1) |ψS〉 on system S of size N, (2) qubit-pair {a, b}, and (3) noise map Λ(.)
1. obtain SG and US→G corresponding to all G ∈ SG

2. for all G ∈ SG, do

(a) if link (a, b) /∈ G then

i. for all Lab ∈ SLab
, do

A. perform the transformation G → G′ via adaptive local complementations on Lab

B. determine UG→G′

C. determine noise transformation Λ→Λ′ due to US→G′ = UG→G′US→G

D. compute EP
ab(ρ′) following [93]

E. determine P ′ = U−1
S→G′PUS→G′

(b) else

i. determine Λ→Λ′ due to US→G′ = US→G

ii. compute EP
ab(ρ′) following [93]

iii. determine P ′ = U−1
S→GPUS→G

output (1) max EP
ab(ρ′), and (2) measurement setup P ′

H.2. Modified graph-based method

The graph-based method will be modified if the graph obtained from the stabilizer state already has a link

between the chosen qubits. The modified algorithm is as follows.

Algorithm H2. Modified graph-based method to calculate the

measurement-based lower bound for localizable entanglement, which uses for

direct creation of a link between two chosen qubits without using the local

complementation operations.

input (1) |ψS〉 on system S of size N, (2) qubit-pair {a, b}, and (3) noise map Λ(.)
1. obtain SG and US→G corresponding to all G ∈ SG such that (a, b) ∈ G

2. for all G ∈ SG, do

(a) determine Λ→Λ′ due to US→G

(b) compute EP
ab(ρ′) following [93]

(c) determine P ′ = U−1
S→GPUS→G

output (1) max EP
ab(ρ′), (2) measurement setup P ′

H.3. Determination of the adjacency matrix

The following pseudo code is for obtaining the adjacency matrix of bicolorable graphs from the stabilizer

states as per the algebraic approach discussed in appendix E. Note that similar code has been used to

develop the Stabgraph package (algorithm H3).
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Algorithm H3. Algorithm for determining the adjacency matrix of a graph from the stabilizer state using the

algebraic approach.

input Stabilizer state in the binary representation as given in equation (E1)

1. obtain A′ via Gauss elimination on A

2. determine Xl,c in bottom block via reordering rows

3. apply same reordering in top block to get A′ in equation (E3)

4. identify Xl,c ,Xl,t ,Zl,c ,Zl,t from A′

5. determine B and C (equations (E15) and (E16))

6. construct Γ (equation (E19))

output adjacency matrix Γ describing a graph state which is local unitary equivalent to the input stabilizer state.

H.4. Obtaining a C1 path from a C2 path

We now present the algorithm developed in appendix G to convert a category C2 path to a category C1 path

(algorithm H4).

Algorithm H4. Algorithm for extracting a category 1 path from a category 2 path in a simple,

connected, undirected graph.

input (1) graph G, (2) qubit-pair {a, b} such that (a, b) /∈ G, and (3) a path L ∈ C2 between {a, b}
initiate list of nodes L′ = [a]

1. determine Na: neighborhood of a ≡ 1

2. determine Na ∩ L
3. determine node i ∈ Na ∩ L with maximum dL

(a,i)

4. append i to L′

5. if i �= b then

(a) a = i

(b) repeat 1–5

6. else

Stop

output L′ ∈ C1 connecting a, b

H.5. Adaptive local complementation

We can now adapt the pseudo codes discussed in appendix H.4 and obtain an adaptive local

complementation algorithm, as follows. This also is the underlying algorithm for the ALCPack

(algorithm H5).

Algorithm H5. Adaptive local complementation algorithm to create a link between any two chosen nodes in a

simple, connected, and undirected graph.

input (1) graph G, and (2) qubit-pair {a, b} such that (a, b) /∈ G and there exists a simple path L connecting a and b

1. determine category of L
2. if L ∈ C2 then

(a) apply C2 →C1 algorithm and determine the shortest path L′ ∈ C∞
(b) L = L′

3. perform local complementation operations on nodes belonging to L in same sequence as L
output transformed graph G′, {a, b}|(a, b) ∈ G′

Appendix I. Graphs from color codes: illustration

In this appendix, we demonstrate the procedure for obtaining a graph state from a topological color code

with an example. In the case of a four-qubit plaquette P in a topological color code, constituted of four

qubits c, t1, t2, and t3, the first step is to initialize the four qubits in the product state |+c0t1 0t2 0t3〉, and then

to apply CNOT gates Ux
(c,ti)

successively over the qubit-pairs {c, t1}, {c, t2}, and {c, t3}, always using qubit c

as the control qubit. This leads to the four-qubit GHZ state

|ψP〉 = Cx
(c,t1)C

x
(c,t2)C

x
(c,t3) |+c0t1 0t2 0t3〉 ,=

1√
2

(|0000〉+ |1111〉), (I1)

over the plaquette P. Here, the CNOT operator Ux
(c,ti)

is given by

Ux
(c,ti)

=
1

2

[

(Ic + Zc)Iti + (Ic − Zc)Xti

]

, (I2)

for a qubit-pair {c, ti}, where c denotes the control and ti denotes a target qubit. The state |ψP〉 can be

further transformed to a graph state |ψGP
〉 = 1√

2
(|0 +++〉+ |1 −−−〉) corresponding to a simple,
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connected, and undirected star-shaped graph GP with the control qubit c as the central qubit via local

unitary transformations Ht1 Ht2 Ht3 on the target qubits [92], where H represents a Hadamard operator (see

figure 5). Note here that the convention of creating the graph state |ψGP
〉 involves initializing all the qubits

in |+〉, and subsequently applying a controlled phase gate Uz
(c,ti)

on all (c, ti) pairs of nodes [92], where the

controlled phase gate,

Uz
(c,ti)

=
1

2

[

(Ic + Zc)Iti + (Ic − Zc)Zti

]

, (I3)

is connected to Ux
(c,ti)

via a Hadamard operation on the target qubit: Uz
(c,ti)

= Hti U
x
(c,ti)

Hti . In terms of the

stabilizer operators, the plaquette stabilizer Sx
P = XcXt1 Xt2 Xt3 is transformed to the graph-state generator

XcZt1 Zt2 Zt3 via application of Hadamard operations on the target qubits.

Appendix J. Binary picture

Here we provide a few essential details on the binary picture of the stabilizer formalism [92].

Pauli operators. In the binary picture, the single-qubit identity and Pauli operators are represented by the

column vectors

I =

(

0

0

)

, X =

(

0

1

)

, Y =

(

1

1

)

, Z =

(

1

0

)

, (J1)

and the products of these operators are mapped to the sum of the columns modulo 2. Note that in the

binary picture, the global phases are disregarded.

Clifford operations. Single-qubit Clifford operators are 2 × 2 binary matrices that multiply from the left to

the Pauli operators given in equation (J1). Given that these operators do not transform Pauli matrices into

the identity, their representative binary matrix is full-rank. As an examples, the Hadamard gate H and a

π/2z-rotation UZ are represented by

(J2)

One can check that H interchanges X and Z, while UZ changes X to Y.

Stabilizer state. A stabilizer state of N qubits is represented by a 2N × N binary matrix A formed by two

N × N blocks,

A =

(Z
X

)

, (J3)

where the jth stabilizer is represented by the jth column, and the qubit i is represented by the rows Zi and

Xi in such a way that the column of two elements, written as

(Zij

Xij

)

, (J4)

represents the operator from the set {I, X, Y, Z} that is applied to the qubit i due to stabilizer j. For example,

the two-qubit maximally entangled state defined by the stabilizers S1 = X1X2 and S2 = Z1Z2 is represented

by

A =

⎛

⎜

⎜

⎝

0 1

0 1

1 0

1 0

⎞

⎟

⎟

⎠

. (J5)

Another important example is a graph state defined on an underlying graph represented by the N × N

adjacency matrix Γ. The stabilizer description of the graph state is given in appendix D. Given that the

neighborhood Nj of qubit j includes the nodes corresponding to the non-vanishing elements of the jth

column of Γ, the representation of a graph state is completely defined by the adjacency matrix Γ as

A =

(

Γ

I

)

, (J6)

where I is the N × N identity matrix. In a stabilizer state, all stabilizers are independent, implying that no

product of them exists which equals to the identity operator. Since in the binary picture the product of Pauli

operators is mapped to a sum of columns, all the columns of A must be linearly independent,

30



New J. Phys. 22 (2020) 053038 D Amaro et al

or equivalently, rank(A) = N. Moreover, an invertible recombination of the stabilizers operators leads to the

same stabilizer operator. In the binary picture this recombination is represented by an invertible N × N

binary matrix R that multiplies A from the right. Finally, the commutation of the stabilizer operators

defining a stabilizer state is guaranteed by the relation ATDA = 0, where D is the 2N × 2N matrix:

(J7)

Clifford operation on stabilizer state. Clifford operations performed on multiple qubits of the stabilizer

state are represented by 2N × 2N binary matrices Q that multiply A from the left. Clifford operations can

not map a stabilizer operator or a recombination of them into the identity operator, implying that

multiplication of Q to AR for all R can not result in vanishing a column. Consequently, Q is a full-rank

matrix. For local operations like H or UZ in equation (J2), Q is the tensor product of the single-qubit

matrices. For example,

(J8)

represents a π/2z-rotation applied on every qubit i for which Λii = 1, Λ being an N × N diagonal matrix.

Appendix K. Uncorrelated single-qubit Pauli noise

We consider an operator-sum representation [119, 120] of the uncorrelated single-qubit Pauli noise applied

to the stabilizer state |ψS〉, given by |ψS〉 → ρS = Λ(|ψS〉 〈ψS|), where

ρS =

4N−1
∑

α=0

qαJα |ψS〉 〈ψS| Jα. (K1)

Here, {√qαJα} are the Kraus operators satisfying the completeness condition
∑

αJ†αJα = I, and {qα} is a

probability distribution, representing the strength of the noise. The individual operators, Jα can be written

as

Jα =

N
⊗

i=1

σαi
, (K2)

whereas

qα =

N
∏

i=1

qαi
, (K3)

with αi ∈ {0, 1, 2, 3},
∑3

αi=0 qαi
= 1, and σ0 = Ii, σ1 = Xi, σ2 = Yi, and σ3 = Zi. Here we interpret the

index α as the multi-index α ≡ α1α2 . . . αN, where the value of α is the decimal representation of the base

4 string α1α2 . . . αN. Examples of uncorrelated Pauli noise include phase-flip (q0 = 1 − q
2
, q3 =

q
2
,

q1 = q2 = 0), bit-flip (q0 = 1 − q
2
, q1 =

q
2
, q2 = q3 = 0), bit-phase-flip (q0 = 1 − q

2
, q2 =

q
2
, q1 = q3 = 0),

and depolarizing (q0 = 1 − 3q
4

, q1 = q2 = q3 =
q
4
) noises.

Appendix L. Stabilizer expectation values under noise

For the purpose of demonstration, we choose the phase-flip noise, where due to the specific values of the

probabilities {qαi
}, only 2N terms in the sum in equation (K1) survive. We rewrite equation (K1) for the PF

noise as

ρS =

2N−1
∑

α=0

qαJαρLJα, (L1)

where the index α has similar definition as before, only with αi ∈ {0, 1},
∑1

αi=0 qαi
= 1, and σ0 = Ii,

σ1 = Zi. From the form of the Kraus operators and the fact that Sz |ψS〉 = |ψS〉, it is easy to see that ωz = 1.

However, in the case of Sx,

ωx =

2N−1
∑

α=0

qα Tr
[

SxJα |ψS〉 〈ψS| Jα
]

. (L2)

Writing Jα = JαRx
⊗ JαRx

and qα = qαRx
qαRx

, where Rx is the set of nx qubits constructing the support of Sx

such that Rx ∪ Rx constructs the entire system, and Rx ∩ Rx = ∅, with αRx (αRx
) defined similarly as α for
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qubits in Rx (Rx), equation (L2) becomes

ωx =

2nx−1
∑

α=0

qαRx
Tr
[

SxJαRx
|ψS〉 〈ψS| JαRx

]

, (L3)

since the probabilities qα
Rx

sum up to 1. The form of Sx suggests that the value of the trace in the

parenthesis in equation (L3) is +1(−1) if the number of qubits in Rx for which αi = 1 is even (odd). Using

the explicit forms of qαi
in terms of q for the PF noise (see appendix K), equation (L3) yields

ωx =

n
∑

m=0

(−1)m
( n

m

)(q

2

)m(

1 − q

2

)n−m

, (L4)

which, upon using the identities

∑

m even

( n

m

)(q

2

)m(

1 − q

2

)n−m

=
1

2

[

1 + (1 − q)nx
]

,

∑

m odd

( n

m

)(q

2

)m(

1 − q

2

)n−m

=
1

2

[

1 − (1 − q)nx
]

,

(L5)

leads to

ωx = (1 − q)nx . (L6)

Lastly, using the commutation of Sx and Sz, it is easy to show that ωxz = ωx.

We point out here that the calculation for the bit-flip and the depolarizing channels would be exactly

similar to the same for the phase-flip channel. However, in the case of the depolarizing channel, all 4N terms

in the operator-sum representation have to be considered.
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