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We examine, in a quantummechanical setting, the Hilbert space representation of the Becchi, Rouet, Stora,

and Tyutin (BRST) symmetry associated with Schwinger-Keldysh path integrals. This structure had been

postulated to encode important constraints on influence functionals in coarse-grained systemswith dissipation,

or in open quantum systems. Operationally, this entails uplifting the standard Schwinger-Keldysh two-copy

formalism into superspace by appending BRST ghost degrees of freedom. These statements were previously

argued at the level of the correlation functions.Weprovide herein a complementary perspective byworking out

the Hilbert space structure explicitly. Our analysis clarifies two crucial issues not evident in earlier works: first,

certain background ghost insertions necessary to reproduce the correct Schwinger-Keldysh correlators arise

naturally, and, second, the Schwinger-Keldysh difference operators are systematically dressed by the ghost

bilinears, which turn out to be necessary to give rise to a consistent operator algebra. We also elaborate on the

structure of the final state (which is BRST closed) and the future boundary condition of the ghost fields.
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I. INTRODUCTION

The Schwinger-Keldysh formalism [1–3] allows one to

compute real-time observables in either closed or open

quantum systems prepared initially in a (without loss of

generality) mixed state. The basic idea behind the con-

struction involves working with either a complex time

contour that doubles back onto the starting configuration or

equivalently working with a double copy of the original

system. The rationale for the doubling can be ascribed to

the entanglement inherent in the initial state as is clear from

the explicit path integral arguments of Ref. [3]. The

formalism is well developed and has been applied to many

interesting physical systems over the years; see, e.g.,

Ref. [4] for a comprehensive review.

One central question that has remained unclear in the

formalism is the nature of interactions between the two

copies of the doubled system. These contributions, which are

called influence functionals in Ref. [3], should obey some

constraints reflecting the underlying quantum evolution. For

closed quantum systems, the constraints would encode

microscopic unitarity, while for open quantum systems,

these would arise from evolution engendered by completely

positive trace-preserving quantum operations. In particular,

such constraints on influence functionals are imperative ifwe

are interested in integrating out a subset of degrees of

freedom in the Schwinger-Keldysh functional integral, as

we would, for instance, in the context of the renormalization

group to extract the low-energy effective dynamics.
Inspired by the structure of certain Ward identities that

pertain for Schwinger-Keldysh observables [4,5], some of us

argued in Ref. [6] that the Schwinger-Keldysh construction

should be interpreted not in terms of a two-copy system but

rather as a quadrupled system with a pair of topological

BRST/anti-BRST symmetries fQSK; Q̄SKg acting naturally.
The basic idea was to append, to the doubled system,

opposite Grassmann parity ghost systems. Should the origi-

nal quantum system consist of only bosonic degrees of

freedom, one would add a pair of Grassmann-odd ghosts.

Concurrently, Ref. [7] also argued for a Becchi, Rouet, Stora,

and Tyutin (BRST) symmetry in the Schwinger-Keldysh

construction. In both cases, the idea of introducing theBRST
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symmetries was to constrain the low-energy dynamics and
obtain an effective action for nonlinear dissipative systems,
specifically actions for relativistic hydrodynamics. Such

actions were constructed independently in Refs. [7,8], which
explicitly exploit this Schwinger-KeldyshBRST (henceforth
SK-BRST) symmetry (along with some additional structure

arising from thermal density matrices and the Kubo, Martin,
and Schwinger (KMS) condition).

The construction of Ref. [6] has been further elaborated

upon in Ref. [9], in which formal arguments were given

regarding the nature of the BRST symmetry and its action on

the operator algebra of the quantum system. It was argued

there that the natural way to view the Schwinger-Keldysh

construction is in terms of a superspacewith twoGrassmann-

odd directions (parametrized by say θ and θ̄). The BRST

symmetries act as superderivations on the extended operator

superalgebra, and it was also shown how to recover theWard

identities and fix the correlators of ghost partners.

Likewise, Ref. [10] provides some additional discussion

on the construction of Ref. [7] (the authors also employ a

superspace description similar to Ref. [9]). It is worth noting

that, while Refs. [6,9] demand a pair of BRST symmetries,

the works of Refs. [7,10] argue for a single BRST super-

charge (at least before introducing further constraints from

thermality).Wewill hereworkwith two supercharges that are

naturallyCPT conjugates of each other and refer the reader to

Ref. [11] for comments on the relative similarities/differences

of the two approaches.
1
We also note that the constraints on

influence functionals obtained by explicit renormalization of

an open ϕ4 theory [13] are consistent with the Schwinger-

Keldysh BRST charges posited in Refs. [6,9].
2

The formal discussions of these earlierworks leave several

questions unanswered. We enumerate a few salient ones:

(i) The SK-BRST symmetries fQSK; Q̄SKgwere posited
to act canonically on the extended operator super-

algebra. In most quantum systems, we usually have a

tendency to differentiate between simple/fundamental

fields, and composite operators built from them, and it

is unclear how the action of the SK-BRST charges on

the former commutes with the operator product

expansion (OPE) structure. This observation is

independent of the number of BRST symmetries

acting on the system and is equivalent to asking

whether there is a Leibniz rule for SK-BRST charges

consistent with the OPE.

(ii) In checking the Schwinger-Keldysh Ward identities,

and constructing the partner ghost correlators, Ref. [9]

had to argue for a background ghost insertion to soak

up putative zeromodes. Since the argument was at the

operator level, a careful analysis of the functional

integral for zero modes was not made, and while the

storywas shown to be consistent, it was left unclear as

to how these background ghosts arise.

(iii) The analysis ofRef. [9] also presupposes the existence

of a BRST closed final state; the details of its exact

structure and the future boundary condition on the

ghost modes were not fully explored.

The main aim of the current discussion is to try to clear

up these loose ends and give a clean description of the

Schwinger-Keldysh formalism including these SK-BRST

symmetries. To illustrate various points without getting

tangled up in details, we choose to work in the context of

single-particle quantum mechanics and moreover use the

harmonic oscillator as our prime example to illustrate some

important features of the construction. A clear advantage is

that the operator algebra is now spanned by finitely many

generators, which are the canonically conjugate variables of

the system. Once we address the aforementioned questions

in this primitive setting, we should then be able to make a

general argument that would apply in other quantum

systems [including quantum field theory (QFTs)].

We find that there is ample freedom in howone can embed

the Schwinger-Keldysh doubled formalism into an enlarged

Hilbert spacewhere ourBRST symmetries act naturally. The

initial state of our quantum system as well as the future

boundary condition of the Schwinger-Keldysh construction

are uplifted into this extendedHilbert space, albeitwith some

freedom. Along with this uplift, we also demonstrate how to

uplift the operator algebra in a fashion consistent with the

OPE structure. A novel feature of this discussion, whichwas

not fully appreciated in Ref. [9], is the fact that the difference

operators of the Schwinger-Keldysh formalism get dressed

withBRSTghost bilinears to ensure that theOPE structure is

sensible. We furthermore find that the quantum mechanical

problem singles out Weyl ordering of operators; these are

natural in the Schwinger-Keldysh construction, owing to the

fact that the temporal ordering is reversed between the

forward and backward legs of the time-fold contour.

The outline of the paper is as follows. In Sec. II, we give a

quick synopsis of background material relating to the

Schwinger-Keldysh formalism and the BRST symmetries

we need for the discussion. In Sec. III, we then rephrase this

discussion directly in terms of a Hilbert space picture and

outline the necessary conditions we must satisfy when we

1
Much of the focus of Refs. [7,10] lies only in the case of

near-thermal density matrices, in which one has to additionally
account for the KMS condition. Our present discussion is
general and not restricted to thermal states. For comments
specific to thermal states, please refer to Refs. [6,9,12] for
additional embellishments on the current discussion. It is also
worth noting that the analysis of near-thermal systems in all these
works requires an embedding into a superspace with two Grass-
mann-odd directions, though the origins for this structure are
motivated very differently in Refs. [6,7].

2
To be clear, the discussion in Ref. [13], strictly speaking, only

requires that the renormalized open ϕ4 theory admits an extension
to include the aforementioned BRST structure. The authors show
that the constraints they derive from a standard Schwinger-Keldysh
doubled formalism can be derived much more simply by positing

the action of BRST charges fQSK ; Q̄SKg that we espouse, together
with a specific BRST-allowed form of the ghost action (and
assuming further that the ghosts decouple in loops).
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extend the structure to include the BRST ghosts. In Sec. IV,

we demonstrate how these constraints can be satisfied in the

simplest quantum mechanical setting: a quantum harmonic

oscillator. Finally, we close in Sec. V with a discussion,

indicating how the construction can begeneralized to include

interactions and go beyond single-particle quantummechan-

ics, and lay out some other interesting open questions.

II. BRST SYMMETRY IN

SCHWINGER-KELDYSH: A REVIEW

The Schwinger-Keldysh generating functional that
computes real-time correlation functions in a specified
(possibly mixed) initial state ρ̂initial is

ZSK½J R;J L� ¼ TrðU½J R�ρ̂initialðU½J L�Þ†Þ: ð2:1Þ
The basic idea behind this construction is that one wishes to
be agnostic about the final-state system when acted upon
with sources. To ensure that one can probe the system,
correlation functions are defined as matrix elements in the
initial state, which requires that one evolves the system,
inserts various operators, and then evolves back to the
initial state (the formalism is hence sometimes referred to as
the “in-in formalism”).
One common way to interpret the Schwinger-Keldysh

path integral is to view the integration contour as extending
into complex time, in which the forward and backward legs
have infinitesimal separation in the imaginary direction.
The forward-evolving segment possesses background
fields J R, while the backward-evolving segment contains
fields J L, corresponding to evolution according to U½J R�
and U½J L�†, respectively. Alternately, we can consider the
forward and backward legs of the contour as independent
evolutions and work with two copies of the original
quantum system (indexed now by R and L) with matching
boundary conditions at the turning point. From a calcula-
tional viewpoint, the latter interpretation is often conven-
ient, and thus one naturally ends up working with two
copies of the original system. In what follows, we will work
with the conventions of Ref. [9], in which elements of the
operator algebra of the quantum system of interest will be

denoted with a hat Ô, while the Schwinger-Keldysh
double-copy operators will be unhatted but subscripted,
viz., OR and OL, respectively.
Since in the Schwinger-Keldysh construction we can

insert operators on either the L or R contours via functional
differentiation, ZSK½J R;J L� gives us access to a larger
number of correlation functions than the standard single-
copy partition function [4], which generates time-ordered
expectationvalues.

3
This implies that there should be various

relations between the Schwinger-Keldysh contour correla-

tors. These are captured by simple rules (cf., Ref. [5]):

(i) Any correlation function of an arbitrary number of

difference operators,Odif ≡ OR −OL, vanishes inde-

pendently of the location of the insertions.

(ii) Correlators with a difference operator as the future-

most insertion vanish, i.e., the largest time equation

holds,
�
T SKOdifðtÞ

Y

i

OiðtiÞ
�

¼ 0; ð2:2Þ

if t > ti for all i.
The first rule is, of course, a special case of the second. These

relations can be inferred directly from (2.1) by noting that the

Schwinger-Keldysh path integral involves the source

deformed action

SSK ¼ S½ΦR� − S½ΦL� þ
Z

ddxðJ ROR − J LOLÞ: ð2:3Þ

Byabasis rotationOav ¼ 1

2
ðOR þOLÞ, theLorentz signature

source-operator coupling can be put in light-cone form:

J difOav þ J avOdif . Since the average sources couple to the

difference operators, setting J L ¼ J R in (2.1) suffices to

generate difference operator insertions. At the same time, by

unitarity of the evolution operator, the generating functional

(2.1) collapses into the trace over the initial state:

ZSK½J ;J � ¼ 1: ð2:4Þ

The vanishing of difference operator correlators, tanta-

mount to a statement of unitarity, should be encapsulated as a

general principle of the Schwinger-Keldysh construction. It

was therefore posited in Ref. [6] and elaborated upon further

in Ref. [9] that a useful way of viewing the Schwinger-

Keldysh path integral is in terms of a quadrupled operator

algebrawith a topological BRST symmetry. Asmentioned in

the Introduction, related observations were also made in

Ref. [7] (see also Ref. [10]).

To wit, it was proposed that there are CPT-conjugate

BRST charges QSK and Q̄SK , satisfying a superalgebra,

fQSK;QSKg ¼ fQ̄SK; Q̄SKg ¼ fQSK; Q̄SKg ¼ 0; ð2:5Þ

which are engineered such that the difference operators are

BRST descendants. That is,

∃OG;OḠ∶Odif ¼ −½QSK;OḠ�� ¼ ½Q̄SK;OG��: ð2:6Þ

The nilpotency of QSK; Q̄SK then implies that

½QSK;Odif �� ¼ ½Q̄SK;Odif �� ¼ 0: ð2:7Þ

The operators OG and OḠ carry opposite Grassmann

statistics relative to the original operator Ô and have equal

and opposite (conserved) ghost number. The BRST struc-

ture can be summarized by the (graded) commutation

diagram

3
The number of contour n-point correlators is 2n, while there

are only 2n−1 Schwinger-Keldysh ordered correlators. The latter
count follows from the number of time orderings of n operators
involving Heisenberg evolution with exactly one forward and one
backward contour, also known as one time fold or 1-OTO. See
Ref. [14] for further details.

SCHWINGER-KELDYSH SUPERSPACE IN QUANTUM MECHANICS PHYS. REV. D 97, 105023 (2018)

105023-3



ð2:8Þ

In other words, the fQSK; Q̄SKg action on the operator

algebra is

½QSK;Oav�� ¼ OG; ½QSK;OG�� ¼ 0;

½QSK;OḠ�� ¼ −Odif ; ½QSK;Odif �� ¼ 0;

½Q̄SK;Oav�� ¼ OḠ; ½Q̄SK;OḠ�� ¼ 0;

½Q̄SK;OG�� ¼ Odif ; ½Q̄SK;Odif �� ¼ 0: ð2:9Þ

These transformation rules can be efficiently summa-

rized by introducing superspace, in which operators are

taken as functions of spacetime (just time in quantum

mechanics) and two Grassmann-odd coordinates, θ and

θ̄ð¼ θ†Þ, respectively. All operators in the theory get

uplifted to superoperators, and the multiplet (2.8) can be

collected into a single superfield:

O
∘

¼ Oav þ θ̄OG þ θOḠ þ θ̄θOdif : ð2:10Þ

In superspace, the Schwinger-Keldysh supercharges then

act as superderivations

QSK ∼ ∂ θ̄; Q̄SK ∼ ∂θ; ð2:11Þ

which satisfy the algebra (2.5). More generally, our

notation follows conventions used in Ref. [9]. In particular,

we use j to denote the projection to the bottom component

and abbreviate the average and difference operators as

O≡Oav; Õ≡Odif . That is,

O
∘

j≡O
∘

jθ¼θ̄¼0; so that O
∘

j ¼ Oav ¼ O;

∂θ∂ θ̄O
∘

j ¼ Odif ¼ Õ: ð2:12Þ

III. SCHWINGER-KELDYSH IN HILBERT SPACE

The preceding discussion introduced the Schwinger-

Keldysh partition function in its familiar setting of the

functional integral, which is usually the most practical for

computational purposes. However, the entire construction

reviewed in Sec. II can be formulated directly on Hilbert

space. We will be working in the canonical formulation

since it makes operator ordering issues more explicit and

sheds light on the superspace structure. The remainder of

the paper is focused on developing this approach. At the

end of the day, we will end up with an extended Hilbert

space including ghosts, on which we have an explicit action

of QSK and Q̄SK as linear operators.

We begin by rephrasing the two-copy interpretation of

the Schwinger-Keldysh contour in a Hilbert space picture

in Sec. III A. We will then describe how to extend this to a

supersymmetric description in Sec. III B.

A. States in the doubled Hilbert space

We begin with the Schwinger-Keldysh partition func-

tion, written explicitly as a trace over a Hilbert space H

with basis jii

ZSK½J R;J L� ¼ TrðU½J R�ρ̂initialU½J L�†Þ
¼

X

i;jk

ρjkhijURjjihkjU†
Ljii; ð3:1Þ

where we have abbreviated U½J R;L�≡UR;L.

The system has been prepared in a possibly mixed initial

state,

ρ̂initial ¼
X

jk

ρjkjjihkj; ð3:2Þ

which is itself a state in the tensor product H ⊗ H�. We

will think of this as a pure state in the doubled Hilbert space

using the Choi isomorphism.
4
Denote

jiihjj ↦ kij⟫: ð3:3Þ

These states form a basis for H ⊗ H�.5 The system thus

begins in the state

ρ̂initial ↦ kρSK⟫ ¼
X

jk

ρjkkjk⟫: ð3:4Þ

Similarly, the trace is represented by the (un-normalized)

maximally entangled state in H ⊗ H�,

kfSK⟫ ¼
X

i

kii⟫: ð3:5Þ

We can then rewrite the Schwinger-Keldysh generating

functional as a matrix element,

4
The Choi isomorphism, or what sometimes is referred to as

the channel-state duality or the Jamiolkowski-Choi isomorphism,
is formally the statement that any quantum channel can be
equivalently represented as a state in a bipartite Hilbert space.
While the idea is usually applied to quantum gates implementing
operations, since the density matrix is also an operator acting on
the Hilbert space, we find it natural to extend the terminology to
apply to mixed states. We should also note that there are some
operational distinctions, involving conjugations, etc., in the way
various maps are defined on quantum operations; see Ref. [15] for
an overview of the literature.

5
For the sake of clarity, it is helpful to indicate the Hilbert

space index explicitly at the outset, i.e., jiRihjLj and kiRjL⟫,
respectively. We refrain from using the labels in the text to avoid
clutter; the HR states precede those of HL states in both the bra
and the ket of HR ⊗ H�

L.
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X

i;jk

ρjkhijURjjihkjU†
Ljii ¼ ⟪fSKkUSKkρSK⟫; ð3:6Þ

where we have denoted the Schwinger-Keldysh pro-

pagator as

USK ¼ U½J R�U½J L�† ¼ e−iHSKt;

HSK ≡HR −HL ¼ Ĥ ⊗ 1 − 1 ⊗ Ĥ: ð3:7Þ

All told,

ZSK½J R;J L� ¼
X

⟪fSKkUSKkρSK⟫: ð3:8Þ

This is a trivial rewriting of (3.1). Conceptually, however,

one imagines starting from the initial state, ρ̂initial, evolving

the kets forward and the bras backward and subsequently

evaluating the overlap with the (un-normalized) maximally

entangled state.

Operators inserted on the right and left contours of the

Schwinger-Keldysh path integral then enter the canonical

formalism as acting on kets and bras, respectively. Hence,

we denote

AR ¼ Â ⊗ 1; AL ¼ 1 ⊗ Â: ð3:9Þ

Here, Â is a given operator on H, and AR and AL are

operators on H ⊗ H�. We will always denote operators

acting on H with a hat and index operators with R and L

subscripts to indicate whether they act from the right or the

left on the density matrix in (3.1).

While seemingly trivial, there are some subtle issues

with regard to operator ordering once we adopt this Choi

map. Operators on the first and second Hilbert spaces in

H ⊗ H� act as

ARBLjiihjj ¼ ÂjiihjjB̂ ↦ ARBLkij⟫ ¼ Â ⊗ B̂kij⟫:
ð3:10Þ

Since L operators act on bras on the right, after the Choi

map, the algebra induced on operators on H ⊗ H� is

somewhat nonintuitive; products of operators on H� are

reversed. That is,

jiihjjÂ B̂ ↦ ð1̂ ⊗ B̂Þð1̂ ⊗ ÂÞkij⟫ ¼ BLALkij⟫: ð3:11Þ

More succinctly,

BLAL ¼ ðABÞ
L
: ð3:12Þ

In general, given a string of R operators, the analogous

string of L operators involves an order reversal.

B. Superspace uplift and constraints

While this is the story for the standard Schwinger-Keldysh

contour, we would like to ask whether we can extend this

construction to an enlargedHilbert space that will allow us to

identify the ghost operators and topological symmetries.

There are two independent sets of requirements for such an

embedding. One involves constructing suitable states to

represent the system in the extended Hilbert space. The

other involves working out the correct multiplet structure of

the superoperators (particularly for composite operators). It

was assumed inRef. [9] that both of these could bedone. This

turns out to be true, but there are some important subtleties in

the construction that become obvious in the Hilbert space

picture and that we will try to flesh out here. In this section,

wewill discuss the embedding in the extendedHilbert space.

We turn to the more subtle issue of the supermultiplet

structure in Sec. IV B.

1. States in the extended Hilbert space

In Ref. [9], the idea was to extend the operator algebra to

a superalgebra by introducing opposite Grassmann parity

ghost operators into the path integral. In the Hilbert space

picture, this amounts to extending the Hilbert space:

H ⊗ H�
→ H ⊗ H� ⊗ Hghosts;

Hghosts ≡HG ⊗ HḠ: ð3:13Þ

The initial and final states need to be specified in the

enlarged Hilbert space. We denote these as kf
∘

⟫ and kρ∘⟫,
which extend (3.4) and (3.5) into the quadrupled Hilbert

space:

kρ∘⟫ ¼ ρijαβkijαβ⟫;

kf
∘

⟫ ¼ fijαβkijαβ⟫: ð3:14Þ

We demand that superextension satisfies the following

requirements:

(1) kf
∘

⟫ is annihilated by QSK and Q̄SK .

(2) kf
∘

⟫ is a zero-energy eigenstate of the (extended)

Hamiltonian H.

(3) kρ∘⟫ and kf
∘

⟫ are selected so that correlation func-

tions without ghost insertions reduce to those

computed using the original generating functional

(3.8). This translates to the condition

⟪f
∘

kO ⊗ 1ghostskρ
∘
⟫ ¼ ⟪fSKkOkρSK⟫ ð3:15Þ

for any operator O on the doubled Hilbert space

H ⊗ H�. For instance, ⟪f
∘

kρ∘⟫ ¼ 1.
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Note that it is by no means obvious that these conditions

can be satisfied. Demonstrating their consistency is the

main goal of this paper.

Of the above, condition 3 is most intuitive, since in the

absence of ghost insertions the correlation functions should

reduce to the ones computed in the doubled theory.

Condition 1 is imposed so as to not break supersymmetry

by our selection of the final state. In particular, we would

like the largest time equation to arise from the QSK and

Q̄SK exactness of difference operators. Condition 2 con-

strains the final state so that the partition function on the

now-extended Hilbert space localizes after the future-most

operator insertion. It is equivalent to requiring that

⟪f
∘

kUðtÞð� � �Þkρ∘⟫ is bereft of any phase factors coming

from unitary evolution.

The dynamics in the extended Hilbert space is dictated

by the Hamiltonian

H ¼ HSK ⊗ 1ghosts þHghosts; UðtÞ ¼ e−iHt; ð3:16Þ

acting on the enlarged Hilbert space. Our aim is to keep this

extension compatible with the supersymmetry so that

½QSK;H� ¼ ½Q̄SK;H� ¼ 0 ð3:17Þ

when the sources are aligned J R ¼ J L (which we are

always implicitly assuming). As we shall see, Hghosts only

has nontrivial action on the ghost Hilbert space for free

theories but will contain a nontrivial bosonic part in

interacting theories.

Should such a superextension exist, one can directly

calculate all correlation functions, including those of the

ghost partners OG and OḠ. In Ref. [9], it was argued that

one needs to admit a background ghost dressing into the

correlation functions for these to be consistent. This was

necessary to ensure no violations of the largest time

equation. Clearly, with an explicit Hilbert space realization

of the ghosts and supercharges at hand, we should be able

to clarify the origin of the background ghosts. In Sec. IV D,

we find that they are simply the images of the initial state

under QSK and Q̄SK. That is, they are ghost partners of the

density matrix itself,

QSKkρ
∘
⟫; Q̄SKkρ

∘
⟫: ð3:18Þ

Finally, now that we have discussed how to incorporate

ghosts in the canonical formulation of quantum mechanics,

let us take a moment to pause and discuss our motivations.

One might ask why we are adding ghosts, since the original

theory does not possess them. In Ref. [9], it was argued that

ghosts arise by gauge fixing a field reparametrization

symmetry. Here, we remain agnostic about how ghosts

arise in practice but merely assume they arise in some

formulation, in the hope that this will make the symmetries

of the Schwinger-Keldysh partition function manifest.

However this happens, the theory will then contain the

original physical degrees of freedom plus ghosts, and the

reader may take that as our starting point. For a system as

simple as the quantum harmonic oscillator, we do not

anticipate that this will teach us anything new about the

system itself; our goal in this paper is rather to examine the

consequences of these ghosts in detail in a setting in which

the proposal can be made precise. It should be clear from

the standard mode decomposition of operators in quantum

field theory that a consistent formalism for the quantum

harmonic oscillator goes a long way toward applying the

same techniques to interacting theories (see Sec. VA).

2. Superoperators and the OPE

Implicit in the above is the idea that we take every

element of the operator algebra and convert it into an

element of the operator superalgebra. While this appears to

be reasonable, the operator algebra is required to be

associative under the OPE, and one should ask how the

QSK , Q̄SK action distributes across the OPE. This becomes

an issue, as we shall later see, in quantum systems in which

the algebra is built from a fundamental set of operators

(which could, for example, be simply the creation/annihi-

lation operators for a fundamental field) and for composite

operators more generally.

Let us first give an abstract description of the task at

hand. Given two operators in the single-copy theory Â, B̂,

we would construct composite operators ∶cAB∶k by using

the OPE to normal-order terms. In the doubled Schwinger-

Keldysh formalism, this picture continues to hold in the L

and R segments independently. As such, we would then

naively want to associate new superpartners to these

composite operators by invoking the action of the SK-

BRST charges. To wit, if we assume the superstructure for

A, B is given by the action in (2.8), we hope that we can

then compute theQSK; Q̄SK action on composites. Naively,

we would be tempted to write

½QSK; ∶AB∶R�� ¼? ½QSK;AR��BR þ AR½QSK;BR��
∶AB∶G ¼? ∶AGBR þARBG∶ ð3:19Þ

and equivalently for the L operators. We have made implicit

some difficulties in implementing this in explicit examples

with the question mark. This is the second issue we have to

address to give a prescription for the superextension of the

Schwinger-Keldysh formalism.

Without further ado, we now turn to tackle these questions

in the setting of single-particle quantum mechanics.

IV. QUANTUM HARMONIC OSCILLATOR

We first explore the questions raised in Sec. III B by

considering a free quantum theory and add interactions.
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Since nothing comes simpler than a harmonic oscillator, we

begin our discussion in this context. This already turns out

to involve all the complications that need to be overcome,

so there is no reason to consider a more complicated theory

at this point.

The standard harmonic oscillator action can be easily

adapted to the Schwinger-Keldysh functional integral, by

considering the action (with sources switched off)

SSK ¼ 1

2

Z
dtðm_x2R −mω2x2R −m_x2L þmω2x2LÞ: ð4:1Þ

We work in units in which m ¼ ω ¼ ℏ ¼ 1 for simplicity.

Since the theory is given in terms of a fundamental field

x, it is easy to check that the natural action of the SK-BRST
charges takes the form

½QSK;xR;L�� ¼ψ ; ½Q̄SK;xR;L�� ¼ ψ̄ ;

½Q̄SK;ψ �� ¼ xR−xL; ½QSK; ψ̄ �� ¼−ðxR−xLÞ: ð4:2Þ

Consequently, including the ghost sector, we have the

explicit BRST invariant action

S ¼ 1

2

Z
dtð_x2R − x2R − _x2L þ x2L þ 2 _̄ψ _ψ −2ψ̄ψÞ: ð4:3Þ

Passing to quantum mechanics, x ↦ X̂, _x ↦ P̂, ψ ↦ Ψ,

_ψ ↦ P
Ψ̄
, the Hamiltonian is

H ¼ 1

2
ðP2

R þ X2
R − P2

L − X2
LÞ þ PΨPΨ̄

þ Ψ̄Ψ; ð4:4Þ

with canonical commutation relations

½XR; PR� ¼ i; ½XL; PL� ¼ −i;

fΨ; PΨg ¼ i; fΨ̄; P
Ψ̄
g ¼ −i: ð4:5Þ

Recall that XR¼X̂⊗1;PR¼P̂⊗1, and XL¼1⊗X̂;PL¼
1⊗P̂. The above is then consistent with ½X̂; P̂� ¼ i.

The action of the supercharges fQSK; Q̄SKg given in

(4.2), suitably uplifted to the operator algebra, can then be

implemented as follows:

ð4:6Þ

This can be achieved by writing down an explicit

operator representation for the supercharges,

QSK ¼ iðPR − PLÞΨ − iðXR − XLÞPΨ̄
;

Q̄SK ¼ iðPR − PLÞΨ̄ − iðXR − XLÞPΨ; ð4:7Þ

which act on the operator algebra by graded commutators.

These charges satisfy a Hermiticity condition, QSK
† ¼

Q̄SK , in which we also take Ψ̄ ¼ −Ψ†.

It is helpful at this stage to introduce superspace, in which

the supercharges fQSK; Q̄SKg act as superderivations

fQSK ∼ ∂ θ̄; Q̄SK ∼ ∂θg. Following Ref. [9], we pick

Grassmann-odd coordinates θ and θ̄ with nonzero ghost

number (normalized such that ghðθÞ ¼ þ1 and ghðθ̄Þ ¼
−1). The charge assignment is consistent with the

Hermiticity condition: θ† ¼ θ̄. One can then upgrade the

operators to superoperators O ↦ O
∘

, e.g.,

X
∘

¼ 1

2
ðXR þ XLÞ þ θΨ̄þ θ̄Ψþ θ̄θðXR − XLÞ;

P
∘

¼ 1

2
ðPR þ PLÞ þ θPΨ þ θ̄P

Ψ̄
þ θ̄θðPR − PLÞ: ð4:8Þ

Wewill often find it convenient to abbreviate the average and

difference operators above as

X ≡ Xav ¼
1

2
ðXR þ XLÞ; X̃ ≡ Xdif ¼ XR − XL: ð4:9Þ

In particular, note that theXwithout a hat refers to the average

Schwinger-Keldysh operator in the doubled theory.

A. Ladder superoperators and Hilbert space

The Hilbert space is constructed from the application of

creation/annihilation operators. These naturally reside in

superoperators

a
∘ ¼ aþ θ̄cþ θbþ θ̄θd;

a
∘ † ¼ a† − θ̄b† − θc† þ θ̄θd†; ð4:10Þ

where a and d are complex Grassmann-even fields and b
and c are Grassmann-odd fields with ghost charge ghðbÞ ¼
−1 and ghðcÞ ¼ 1, respectively.

6
Here, we have passed to

the average/difference basis, and the relation with the R/L

operators is

a≡
1

2
ðaR þ aLÞ; d≡ aR − aL: ð4:11Þ

The position and momentum superoperators are related to

these as usual:

6
Note that the Grassmann statistics and Hermiticity conditions

imply signs under conjugation, viz., ðθbÞ† ¼ b†θ† ¼ b†θ̄ ¼
−θ̄b†. This is responsible for our anti-Hermiticity condition

Ψ̄ ¼ −Ψ†.
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X
∘

¼ 1ffiffiffi
2

p ða∘ þ a
∘ †Þ; P

∘

¼ iffiffiffi
2

p ða∘ † − a
∘Þ: ð4:12Þ

For reference, this is equivalent to

XR ¼ 1ffiffiffi
2

p ða†R þ aRÞ; PR ¼ iffiffiffi
2

p ða†R − aRÞ;

XR ¼ 1ffiffiffi
2

p ða†L þ aLÞ; PR ¼ iffiffiffi
2

p ða†L − aLÞ;

Ψ ¼ 1ffiffiffi
2

p ðc − b†Þ; PΨ ¼ −
iffiffiffi
2

p ðc† þ bÞ;

Ψ̄ ¼ −
1ffiffiffi
2

p ðc† − bÞ; P
Ψ̄
¼ −

iffiffiffi
2

p ðcþ b†Þ: ð4:13Þ

The commutation relations follow from (4.5):

½aR; a
†
R� ¼ 1; ½aL; a

†
L� ¼ −1;

fb; b†g ¼ 1; fc; c†g ¼ −1: ð4:14Þ

As indicated earlier, the supercharges act as derivations,

leading to the following action on the creation/annihilation

operators:

½QSK; a� ¼ c; fQSK; bg ¼ −d;

½QSK; a
†� ¼ −b†; fQSK; c

†g ¼ d†;

½Q̄SK; a� ¼ b fQ̄SK; cg ¼ d;

½Q̄SK; a
†� ¼ −c†; fQ̄SK; b

†g ¼ −d†: ð4:15Þ

One can also check that the Hamiltonian for the system

(after applying the Choi map) is given in terms of these

creation/annihilation operators as

H ¼ a†RaR − a†LaL þ b†bþ cc†; ð4:16Þ

while the supercharges themselves can be expressed as

QSK ¼ −ðaR − aLÞb† − ða†R − a†LÞc;
Q̄SK ¼ −ðaR − aLÞc† − ða†R − a†LÞb: ð4:17Þ

The system has two Uð1Þ charges. First, there is a global
symmetry under which aR, aL, b, and c are charge þ1,

while their conjugates a†R, a
†
L, b

†, and c† carry charge −1.

There is also an Uð1ÞR symmetry under which aR and aL

and their conjugates are neutral while ghðc; b†Þ ¼ 1

and ghðb; c†Þ ¼ −1.

The total Hilbert space of the system is the tensor product

of the two oscillators (R and L) and a two-state system for

the SK-BRST ghosts. Note that the L oscillators are

inverted, so aL should be treated as a creation operator,

while a†L is the annihilation operator, which is clear from

(4.14). We find it convenient to pick the following basis: for

HR and HL, choose the usual number operator basis

aRjmRi¼
ffiffiffiffiffiffi
mR

p jmR−1i; a†RjmRi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mRþ1

p
jmRþ1i;

a†LjnLi¼
ffiffiffiffiffi
nL

p jnL−1i; aLjnLi¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nLþ1

p
jnLþ1i:

ð4:18Þ

This can also be derived from aR ¼ a ⊗ 1 and aL ¼ 1 ⊗ a
and the reversal of operator orderings that occurs in the

second factor of the tensor product. For the b and c
oscillators, select a ground state j00i annihilated by both,

bj00i ¼ cj00i ¼ 0. The ghost Hilbert space is then

spanned by j00i and

j10i≡ b†j00i;
j01i≡ c†j00i;
j11i≡ b†c†j00i: ð4:19Þ

One can furthermore check that for α ¼ 0, 1

bj0αi ¼ b†j1αi ¼ 0; cjα0i ¼ c†jα1i ¼ 0; ð4:20Þ

b†j0αi ¼ j1αi; bj1αi ¼ j0αi; ð4:21Þ

c†jα0i ¼ ð−1Þαjα1i; cjα1i ¼ ð−1Þαþ1jα0i: ð4:22Þ

The inner product on the ghost Hilbert space may be found

in the Appendix. Therefore, the total Hilbert space after

applying the Choi map can be decomposed as

H ¼ HR ⊗ H�
L ⊗ Hb ⊗ Hc ¼ spanfkijαβ⟫≡ jiiR ⊗ jjiL ⊗ jαib ⊗ jβicji; j ∈ Zþ; α; β ∈ f0; 1gg: ð4:23Þ

Dynamics on this Hilbert space is dictated by the Hamiltonian (4.16), which acts as

Hkijαβ⟫ ¼ ði − jþ αþ β − 1Þkijαβ⟫: ð4:24Þ

B. Composite operators

Now that we have explicit expressions for the supercharges, we can ascertain how they act on composite operators. One

might a priori be tempted to posit that an operator of the form Xn
R − Xn

L should be the top component of a superfield since it

is a difference operator. It is, however, easy to check that these are not QSK; Q̄SK closed:
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½QSK; X
n
R − Xn

L � ¼ nðXn−1
R − Xn−1

L ÞΨ;
½Q̄SK; X

n
R − Xn

L � ¼ nðXn−1
R − Xn−1

L ÞΨ̄: ð4:25Þ

Our plan is to remedy this by adding a suitable ghost

dressing; that is, we need keep track of ghost contributions

to difference operators not considered in Ref. [9]. However,

this dressing should be incorporated without affecting

physical correlators.

The simplest way to proceed is to pass to superspace

and construct superoperators satisfying certain require-

ments. It will be useful to introduce for any superoperator

O
∘

a deformation parametrized by a number ζ ∈ ½−1; 1�,
which shifts the bottom component by an amount propor-

tional to the top component. Let

O
∘

ζ ¼ O
∘

þ ζ

2
∂θ∂ θ̄O

∘

¼ O
∘

þ ζ

2
Õ ð4:26Þ

so that O
∘

ζ¼1j ¼ OR and O
∘

ζ¼−1j ¼ OL.

Given the many composite operators in the theory,

one can in principle construct many different supermultip-

lets. Let us enumerate a few salient multiplets in the

extended operator superalgebra that will turn out to be

sufficient for a comprehensive understanding of the struc-

tures of correlators.

1. Product multiplet

This multiplet is the simplest to construct. Simply take

suitable products of fundamental superfields. Starting with

the position and momentum superoperators, we could, for

example, write

Π
∘

m;n ≡ X
∘ m

P
∘ n

≡ ðX þ θΨ̄þ θ̄Ψþ θ̄θX̃Þm

× ðPþ θPΨ þ θ̄P
Ψ̄
þ θ̄θP̃Þn: ð4:27Þ

While simple, product multiplets will not play much of a

role in our discussion.

2. Difference multiplet

This is the multiplet we seek. Our plan is to engineer the

top component to be a difference operator modulo addi-

tional ghost terms. Before doing so, we have to face up to

the operator ordering issue seriously, since the sequence of

operators on the left have to be reversed.

Given a composite operator X̂
m
P̂
n in the single-copy

description, the corresponding difference operator is

actually Xm
R P

n
R − Pn

LX
m
L . We can choose to normal order

any (post-Choi) operator as X
p
RP

q
RP

r
LX

s
L, thus keeping track

of the reversal explicitly. In principle, there is a straightfor-

ward algorithmic way of constructing the requisite ghost

corrections to these difference operators; however, we

found it cumbersome to implement generally.
7

One way to circumvent the issue is by switching to a

Weyl-ordered basis. We will denote the Weyl ordering of an

operator Â built from X̂’s and P̂’s as ∶Â∶W . For instance,

∶X̂P̂
2
∶W ¼ 1

3
ðX̂P̂

2 þ P̂ X̂ P̂þP̂
2
X̂Þ: ð4:28Þ

Similar statements hold for the double-copy operators.

Since Weyl-ordered operators are palindromic in the basic

operator alphabet (e.g., X̂ and P̂ for the harmonic oscil-

lator), we have complete symmetry between the L and R.

This choice then renders operator ordering concerns moot.

Given its simplicity, we adapt it in what follows. Note that

in the functional integral the Weyl ordering of operators is

achieved by evaluating position-dependent terms at the

midpoint in the usual discretization procedure (see, e.g., the

discussion in Ref. [16]).

We construct the general Weyl-ordered difference oper-

ator as the top component of the superoperator built from an

integral of powers of X
∘

ζ þ αP
∘

ζ. The parameter α is a book-

keeping device used to pick out terms with a fixed number

of momentum operators (i.e., it allows us to discuss a one-

parameter family of multiplets simultaneously). The

expression ðX
∘

ζ þ αP
∘

ζÞk is a sum of Weyl-ordered products

∶X
∘ k

ζP
∘ k−i

ζ ∶W with coefficient αi. Define the difference

multiplets as

D
∘

k ¼
Z

1

−1

dζ

2
ðX
∘

ζþαP
∘

ζÞ
k

¼Dkþ θ̄kDk−1ðΨþαP
Ψ̄
ÞþθkDk−1ðΨ̄þαPΨÞþ θ̄θD̃k

Dk≡

Z
1

−1

dζ

2

�
XþαPþ ζ

2
ðX̃þαP̃Þ

�
k

: ð4:29Þ

It is easy to see that the top component of this multiplet

contains the difference operator we seek:

7
For instance, to construct the difference operator with Grass-

mann-even part being Xm
R P

n
R − Pn

LX
m
L , we write down operators

Sm;n ¼
P

p;q;r;sc
m;n
pqrsX

p
RP

q
RP

r
LX

s
L and determine the coefficients

cm;n
pqrs such that fQ̄SK; ½QSK ; Sm;n�g ¼ Xm

R P
n
R − Pn

LX
m
R þ ghosts.

While we were able to write recursion relations that generate the

required solution, the general structure was not immediately

transparent. We therefore focus primarily on Weyl-ordered

operators, which we think are more natural from the perspectives

of both the Choi isomorphism and the Schwinger-Keldysh

operator algebra. If desired, once the Weyl-ordered composite

operators are determined, the canonical commutation relations

may be employed to infer the superoperator structure for the

normal-ordered ones. We have checked that this agrees with the

aforementioned analysis for small values of m and n.
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D̃k ¼
Z

dθdθ̄D
∘

k

¼
Z

1

−1

dζ

2

Xk−1

m¼0

ðXζ þ αPζÞmðX̃ þ αP̃ÞðXζ þ αPζÞk−1−m

þ kðk − 1ÞDk−2ðΨ̄Ψþ αðPΨΨþ Ψ̄P
Ψ̄
Þ þ α2PΨPΨ̄

Þ
¼ ðXR þ αPRÞk − ðXL þ αPLÞk

þ kðk − 1ÞDk−2ðΨ̄Ψþ αðPΨΨþ Ψ̄P
Ψ̄
Þ þ α2PΨPΨ̄

Þ:
We have used the canonical commutation relations to bring
the ghost contributions to a canonical form, although we
could have left them in Weyl-ordered form, too (this is
more convenient for later computations).

The above formulas are convenient since they efficiently

collect the components of a difference multiplet into a

single superfield. However, they can be rather opaque.

Equivalently, one can show that the bottom component of

the difference multiplet withm factors of X and n factors of

P is [the binomial coefficient ðm
n
Þ picks a convenient

normalization]

Dm;n ¼
�
mþ n

m

�Z
1

−1

dζ

2
∶Xm

ζ P
n
ζ∶W : ð4:30Þ

This can be lifted to a superfield D
∘

m;n. The ghost partners

are then

½QSK; Dm;n� ¼ mDm−1;nΨþ nDm;n−1PΨ̄
;

½Q̄SK; Dm;n� ¼ mDm−1;nΨ̄þ nDm;n−1PΨ; ð4:31Þ
while the top component is

fQ̄SK; ½QSK;Dm;n�g¼
�
mþn

m

�
ð∶Xm

R P
n
R∶W −∶Xm

L P
n
L∶WÞþmðm−1ÞDm−2;nΨ̄Ψ

þmnDm−1;n−1ðPΨΨþ Ψ̄P
Ψ̄
þnðn−1ÞDm;n−2PΨPΨ̄

Þ: ð4:32Þ

3. Average multiplet

This is the multiplet generated by the action ofQSK; Q̄SK

on average operators. Continuing to focus on Weyl-ordered
operators, we construct the average superoperator

8

A
∘

k ¼
1

2
ðX
∘

ζþαP
∘

ζÞ
k
���
ζ¼1

þ1

2
ðX
∘

ζþαP
∘

ζÞ
k
���
ζ¼−1

¼Akþ θ̄kAk−1ðΨþαP
Ψ̄
ÞþθkAk−1ðΨ̄þαPΨÞþ θ̄θÃk

Ak ¼
1

2
½ðXRþαPRÞkþðXLþαPLÞk�

Ãk ¼ kAk−1ðX̃þαP̃Þþkðk−1Þ
×Ak−2ðΨ̄ΨþαðPΨΨþ Ψ̄P

Ψ̄
Þþα2PΨPΨ̄

Þ: ð4:33Þ

In components, the bottom component of an average

multiplet with m factors of X and n factors of P is

Am;n ¼
1

2

�
mþ n

m

�
ð∶Xm

RP
n
R∶W þ ∶Xm

LP
n
L∶WÞ: ð4:34Þ

The ghost partners are

½QSK; Am;n� ¼ mAm−1;nΨþ nAm;n−1PΨ̄
;

½Q̄SK; Am;n� ¼ mAm−1;nΨ̄þ nAm;n−1PΨ; ð4:35Þ

while the top component is

fQ̄SK; ½QSK;Am;n�g¼mAm−1;nX̃þnAm;n−1P̃þmðm−1ÞAm−2;nΨ̄ΨþmnAm−1;n−1ðPΨΨþ Ψ̄P
Ψ̄
þnðn−1ÞAm;n−2PΨPΨ̄

Þ:
ð4:36Þ

There are various other multiplets we could construct,
but the last two will play a starring role in our discussion.
It is instructive to note that not only are composite
difference operators dressed with the ghost bilinears as

in (4.30) but also that the average composite operator and
the difference composite operator belong to different
multiplets. So, when we compute Schwinger-Keldysh
Average-Difference correlators, we should choose our
superoperators accordingly.

9

8
For average operators, it is easy enough to pass to the usual

normal-ordered basis, since the superoperator 1

2
ðX
∘ m

ζ¼1P
∘ m

ζ¼1þ
P
∘ n

ζ¼−1X
∘ m

ζ¼−1Þ gives the correct Schwinger-Keldysh average for

the composite operator X̂mP̂n in the single-copy theory; i.e.,
the symmetrization and order reversal can be carried out
explicitly by hand.

9
The discussion in Sec. 9 of Ref. [9] ignores both these

distinctions when deriving various constraints on superoperator
correlators. In our analysis below, we will clarify some of the
statements described therein. Structurally, nothing really changes,
but one has to account carefully for the above-mentioned
differences.
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The ghost dressing comprises three distinct combinations

of bilinears:

Ψ̄Ψ; PΨPΨ̄
; PΨΨþ Ψ̄P

Ψ̄
: ð4:37Þ

The fourth ghost number zero combination, PΨΨ − Ψ̄P
Ψ̄
,

does not enter into any ghost dressing. In itself,

this is an interesting statement, since a priori it is

not clear that the ghost dressings do not mess up the

argument about difference operator correlators vanishing.

The fact the one linear combination is unconstrained

allows sufficient freedom to argue that the superalgebra

structure described in Sec. II works as advertised.

C. Superembedding of states

We have now assembled the machinery to implement the

discussion of Sec. III B. We would like to construct a

superembedding of an arbitrary initial state ρ̂initial and find a

final state satisfying conditions 1–3 outlined therein. We

cannot get by with any superembedding because as we have

seen the operators (especially the difference operators) get

dressed with ghost corrections. We have to ensure that these

dressings do not spoil the physical requirement that we

reproduce the Schwinger-Keldysh correlators and work

such that the ghosts decouple in the appropriate observ-

ables (3.15).

To achieve this, we would like to set correlation functions

involving ghost corrections to zero by suitably extending

kfSK⟫ and kρSK⟫ to states in the quadrupled Hilbert

space kf
∘

⟫ and kρ∘SK⟫. Passing into the creation/annihilation
basis, the ghost corrections are

2Ψ̄ΨðtÞ ¼ −bb† þ bce2it þ c†b†e−2it − c†c;

2PΨPΨ̄
ðtÞ ¼ −bb† − bce2it − c†b†e−2it − c†c;

− iðPΨΨþ Ψ̄P
Ψ̄
ÞðtÞ

¼ c†b†e2it − bce−2it; ð4:38Þ

where we are considering the Heisenberg operators in the

extended Hilbert space OðtÞ ¼ U†ðtÞOUðtÞ.
First, the general implementation of (3.14) in the present

context is given by (with a suitable normalization for the

initial state)

kf
∘

⟫ ¼
X

i;j;α;β

fijαβkijαβ⟫;

kρ∘⟫ ¼
X

i;j;α;β

ρijαβkijαβ⟫: ð4:39Þ

We need to choose the coefficients fmnij and ρmnij

appropriately to ensure that we satisfy conditions 1–3

and in the process ensure that (4.38) are innocuous. The

general solution to our requirements is
10

kf
∘

⟫ ¼
X

i

�
f1;0kii10⟫þ f0;1kii01⟫

þ
�
fi;0;0 þ

1ffiffiffiffiffiffiffiffiffiffi
iþ 1

p
�
kiðiþ 1Þ11⟫

þ fi;0;0kðiþ 1Þi00⟫
�
: ð4:40Þ

We, however, can get by without using all the freedom in

the above solution. It suffices to simply pick a state that is

the ground state in the ghost Hilbert space. The basic

solution we will work with is simply

kf
∘

⟫ ¼
X

i

kii10⟫; kρ∘⟫ ¼
X

i;j

ρijkij10⟫: ð4:41Þ

This extension has the following properties:

(i) The ghost corrections (4.38) for one-point functions

vanish for all time:

hΨ̄ΨðtÞi ¼ hPΨPΨ̄
ðtÞi ¼ hðPΨΨþ Ψ̄P

Ψ̄
ÞðtÞi ¼ 0:

ð4:42Þ

The correlation functions above are the

Schwinger-Keldysh observables, viz., hO1 ���Oni¼
⟪f

∘

kO1 ���Onkρ
∘
⟫¼⟪fSKkO1 ���OnkρSK⟫ for purely

bosonic operators. Equation (4.42) ensures sure that

one-point functions of composite difference oper-

ators vanish, consistent with the Schwinger-Keldysh

theory.

(ii) However, we can, in fact, make a much more

powerful statement: the ghost corrections annihilate

the initial and final states:

10
One can check that conditions 2 for a final state kf

∘

⟫ of the
form given in Eq. (4.39) give

fi;j;1;0 ¼ δi;jfi;1;0 fi;j;0;1 ¼ δi;jfi;0;1

fi;j;1;1 ¼ δiþ1;jfi;1;1 fi;j;0;0 ¼ δi;jþ1fj;0;0

and condition 3 gives

fi;0;1 ¼ fiþ1;0;1

ffiffiffiffiffiffiffiffiffiffi
iþ 1

p
ðfi;1;1 − fi;0;0Þ ¼

ffiffi
i

p
ðfi−1;1;1 − fi−1;0;0Þfi;1;0 ¼ fiþ1;1;0

ffiffiffiffiffiffiffiffiffiffi
iþ 1

p
ðfi;1;1 − fi;0;0Þ ¼

ffiffi
i

p
ðfi−1;1;1 − fi−1;0;0Þ:

This is solved by fi;0;1¼f0;1;fi;0;1¼f1;0 and fi;1;1¼fi;0;0þ 1ffiffiffiffiffiffi
iþ1

p .
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⟪f
∘

kΨ̄Ψ ¼ 0; Ψ̄Ψkρ∘⟫ ¼ 0;

⟪f
∘

kPΨPΨ̄
¼ 0; PΨPΨ̄

kρ∘⟫ ¼ 0;

⟪f
∘

kðPΨΨþ Ψ̄P
Ψ̄
Þ ¼ 0; ðPΨΨþ Ψ̄P

Ψ̄
Þkρ∘⟫ ¼ 0:

ð4:43Þ

As a result, we can always insert a ghost correction,
making the difference operators constructed in
(4.29), QSK and Q̄SK , exact, without altering corre-
lators computed from the standard Schwinger-
Keldysh construction. The only place where we
have new behavior is when we consider additional
ghost operator insertions between the difference
operator and both the initial and final states.

(iii) Importantly, correlation functions on the extended

Hilbert space match those in the physical theory. For

any string of operators picked from fOR;OLg, we
have

hfOR;OLgi¼⟪fSKkUSKðTÞfOR;OLgUSKðtÞkρSK⟫

¼⟪f
∘

kUðTÞðfOR;OLg⊗1ghostsÞUðtÞkρ
∘
⟫:

ð4:44Þ

(iv) While we have by construction ensured that the final

state kf
∘

⟫ isQSK and Q̄SK closed, the same is not true

about the initial state kρ∘⟫. The background ghosts

introduced in Ref. [9] can be understood as the

contributions obtained from QSKkρ
∘
⟫ and Q̄SKkρ

∘
⟫,

respectively.

D. Superspace correlators

We are now in a position to revisit the superspace

constraints on correlation functions described in Sec. 9

of Ref. [9]. We remind the reader that the authors’

discussion assumed the existence of a suitable multiplet

with the bottom component being average and the top

component being a difference operator, which is only true

at the level of fundamental operators. Furthermore, the

underlying BRST supersymmetry relates correlators of

objects within a single supermultiplet. These BRST

Ward identities were easiest to derive in superspace, since

there they follow from supertranslation invariance.
The supercorrelators of interest are generic n-point

functions of superoperators with suitable Schwinger-

Keldysh ordering:

hT
∘

SKO
∘

1O
∘

2 � � �O
∘

ni

≡

�
T
∘

SK

Yn

k¼1

ðOk þ θkOḠ;k þ θ̄kOG;k þ θ̄kθkÕkÞ
�
:

ð4:45Þ

We have schematically indicated the structure of the
superoperators in the definition above (more on this below).
Expanding the correlator in superspace will lead to various

terms involving the Grassmann coordinates θ̄i and θj.
Imposing supertranslation invariance in these coordinates
implies relations between these components of the corre-
lator. A consistent set of solutions to such relations was
found in Ref. [9], only upon inserting into the correlation
function a background ghost operator,

O
∘

0 ¼ 1þ θ0ḡ0 þ θ̄0g0 þ θ̄0θ0d0; ð4:46Þ
the elements of which were interpreted as zero modes. As
presaged in Sec. IV C, this background ghost can be
understood as arising from the superembedding of the
initial density matrix.
Nonvanishing correlators are those with vanishing ghost

number, which provides a superselection rule. Furthermore,
since the relations alluded to above relate terms with an

equal number of θ̄iθj pairs, we break up the supercorre-

lation function into levels based on the number of these
pairs. Following Ref. [9], the set of n-point correlation
functions having nd pairs of θ̄iθj is said to be at level nd,
and these are denoted as n

Lnd
. It was assumed that a

correlator of type n
Lnd

contains at most nd difference fields.
In the present context, the more precise statement is that
n
Lnd

contains correlators with at most nd top component

fields (which need not be difference fields, depending on
the supermultiplet used). We will continue to use this
nomenclature to refer to correlation functions with at most
nd difference operators (and any other operator as long as it

is not QSK and Q̄SK exact).
In Ref. [9], it was assumed that each superoperator has

an average operator for the bottom component and the
difference operator for its top component. We have seen

that this is true only for the fundamental operators X
∘

and P
∘

but not for composite operators built out of these. In
particular, we have to contend with two distinct multiplets,

D
∘

k and A
∘

k, introduced in (4.29) and (4.33), respectively, if
we wish to talk about Schwinger-Keldysh average and

difference operators. In addition, the top component of D
∘

k

involves not just the difference operator of interest but also
its ghost dressing.
To proceed, let us record the schematic structure of our

generic average and difference multiplets visually. We have
two different multiplets, and they are both involved when
we derive the selection rules arising from supertranslational
invariance. To facilitate the discussion, let us abstract the
operators of interest as follows:

ð4:47Þ
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Each operator in these diagrams schematically stands for an

infinite number of composite operators that may occur in the

average and differencemultiplets. To be explicit, we can take

a ∈ fAm;ng; fd ∈ fDm;ng ð4:48Þ

as defined in (4.34) and (4.30), respectively. The remaining

fields in these diagrams are then as in Sec. IV B.

We would like to show the following: All correlation

functions involving ghosts are determined in terms of

standard Schwinger-Keldysh correlators of a and d.
Furthermore, these are consistent with the largest time

equation, which says that difference operators cannot be

future most.
Demonstrating this in full generality would require us to

consider all possible multiplets (which may not be

exhausted by the average and difference multiplets). We

refrain from this task and simply give an abstract argument

that it holds true; we have in previous sections presented an

explicit Hilbert space embedding. Any arbitrary correlation

function can be computed using the rules of the previous

sections, which manifestly implement the SK-BRST sym-

metries. Since supertranslational invariance of supercorre-

lators is equivalent to the action of the SK-BRST charges,

the statement above must hold.
While this abstract argument is sufficient, it is more

instructive to give some examples. To this end, we turn

again to average and difference multiplets. Consider the

supercorrelation function

hT
∘

SKO
∘

1O
∘

2 � � �O
∘

nO
∘

0i≡ ⟪f
∘

kO
∘

1O
∘

2 � � �O
∘

nkρ
∘
⟫: ð4:49Þ

The argument is structurally the same as the one given in

Ref. [9] with two main new ingredients:

(i) The background ghost operatorO
∘

0 is equivalent to a

consistent superspace uplift of ρ̂initial.

(ii) We will account for the structure of the average/

difference composite operator multiplets in (4.47).

1. One-point functions

The simplest analysis is for one-point functions (these

were not considered in Ref. [9]). One can either have an

average or a difference multiplet, and in either case, the

bottom component can have a nonvanishing expectation

value depending on the initial state. The top components,

however, would have to have a vanishing expectation value;

for the difference supermultiplet, this embodies the largest

time equation. Let us see how this works in turn, organizing

the discussion by levels as described above:
1
L0: The only correlators here are hai or hfdi, which are

unconstrained since they do not contain any ghosts.
1
L1: These are correlators containing one difference

operator. The largest time equation demands that

hdi ¼ 0. However, we find that the top component

of the difference multiplet for composite operators is

not simply d but rather gets dressed with ghost

bilinears. Superspace Ward identities only can de-

mand that QSK and Q̄SK exact operators have vanish-

ing correlators, so we are only free to conclude that

hdþ dgḡi ¼ 0. We can draw two conclusions from

this. First, using the boundary conditions (4.43), we

infer the largest time equation,

0 ¼ hdþ dgḡi

¼ hdi þ ⟪f
∘

kmðm − 1ÞDm−2;nΨ̄ΨþmnDm−1;n−1ðPΨΨþ Ψ̄P
Ψ̄
þ nðn − 1ÞDm;n−2PΨPΨ̄

Þkρ∘⟫

¼ð4.43Þhdi; ð4:50Þ

for any value of k. Second, we can extract the complete set of constraints on the ghost correlators at this level. To this

end, we start with

0 ¼ hdþ dgḡi ¼ ⟪f
∘

kfQ̄SK; gdgkρ
∘
⟫ ¼ −⟪f

∘

kfQSK; ḡdgkρ
∘
⟫: ð4:51Þ

We can then use fact that the final state is annihilated by QSK and Q̄SK to infer that

0 ¼ ⟪f
∘

kgdQ̄SKkρ
∘
⟫ ¼ ⟪f

∘

kḡdQSKkρ
∘
⟫ ⇒ 0 ¼ hgdḡ0i ¼ hḡdg0i; ð4:52Þ

where in the last step we identify

Q̄SKkρ
∘
⟫ ¼ ḡ0kρ

∘
⟫; QSKkρ

∘
⟫ ¼ g0kρ

∘
⟫: ð4:53Þ
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We now see explicitly that the ghost zero modes of

Ref. [9] are simply insertions of the Schwinger-

Keldysh supercharges themselves.
11

2. Two-point functions

Let us look at two-point functions in which the operators

are inserted at times t and t0, respectively, and we suppose

for definiteness that t0 > t:
2
L0: This set contains correlators of the form haðt0ÞaðtÞi
or other bottom components. These correlation func-

tions do not involve any difference operators nor

ghosts, and consequently there is nothing to be con-

strained.
2
L1: At level 1, we have the insertion of a single

difference operator. This can either be at t0 or at t,
and we treat these in turn (thus being explicit about the

Schwinger-Keldysh time ordering).

Let us first examine correlators with the difference

operator at the largest time t0. By commuting the

supercharges across the operator insertions (which is

equivalent to imposing supertranslational invariance),

we find

hðd0 þ d0gḡÞai ¼ hfQ̄SK; g
0
dgai ¼ hg0dQ̄SKai

¼ hg0dð½Q̄SK;a� þ aQ̄SKÞi
¼ hg0dḡai þ hg0daḡ0i

¼ ⟪f
∘

kg0dḡa þ g0daQ̄SKkρ
∘
⟫: ð4:54Þ

Similarly, we derive a second identity using the fact

that the top component of the difference multiplet is

QSK-exact, viz.,

hḡ0dgai þ hḡ0dag0i ¼ ⟪f
∘

kḡ0dga þ ḡ0daQSKkρ
∘
⟫:

ð4:55Þ

If we consider the average operator to be at the

largest time, we derive instead

ha0di þ hḡ0agdi ¼ ⟪f
∘

ka0gdQ̄SKkρ
∘
⟫

ha0di þ hg0aḡdi ¼ þ⟪f
∘

ka0ḡdQSKkρ
∘
⟫: ð4:56Þ

These are the equations obtained from supertransla-

tional invariance in Ref. [9], cf., the first two equations

of Eq. (9.8) in [9]. The other two equations can be

similarly derived, and one finds similar expressions

with d0kρ
∘
⟫≡ Q̄SKQSKkρ

∘
⟫:

ha0ad0i ¼ −ha0ḡag0i − hḡ0aag0i
ha0ad0i ¼ −ha0gaḡ0i − hg0aaḡ0i: ð4:57Þ

This determines all average-difference-ghost correla-

tors at this level in terms of standard Schwinger-

Keldysh correlators.

One can go further by using the boundary con-

ditions (4.43). For instance, these imply that

hðd0 þ d0gḡÞai ¼ hd0ai, which vanishes if t0 > t due

to the largest time equation.
2
L2: Finally, consider two-point functions with two differ-

ence operators and suitable ghost dressing.Wenowhave

to modify the statements in Ref. [9]. For instance,

Eq. (9.10) of [9] of that paper is modified by ghost

corrections dgḡ. This happens because the ghost cor-

rections appear sandwiched in between two ghost

operators and so cannot annihilate the initial or fi-

nal state.

To be self-contained, let us start with hd0di ¼ 0, and

using the superalgebra, one furthermore finds

0 ¼ hg0dðdþ dgḡÞḡ0i;
0 ¼ hḡdðdþ dgḡÞg0i: ð4:58Þ

It is easy to continue with this analysis for higher-point

functions. The ingredients are always the largest-time

equation, boundary conditions, and supertranslational

invariance. Up to some small adjustments to take care of

the ghost dressing, the basic story outlined in Ref. [9]

carries through. One finds precisely the same constraints as

in Ref. [9], the only modification being that average,

difference, and ghost operators get replaced by the respec-

tive components of either average or difference multiplets.

In fact, one obtains two sets of relations, each isomorphic to

those in Ref. [9]: those for the average and those for the

difference multiplet.

It is instructive that we have now given a physical picture

for the background ghost insertion in the correlation function

(4.43). The readers can convince themselves that the total

number of relations obtained from supertranslational invari-

ance is identical to that described in Ref. [9], though now the

relation does not quite set certain correlators to zero but rather

fixes them in terms of some other correlation function.

Furthermore, the ghost bilinear PΨΨ − Ψ̄P
Ψ̄
did not appear

in any of the dressings discussed here. Its correlators are

however determined by the explicit superembedding.

3. Example

For illustration, let us check (4.54) in a particular

case. When the difference operator is XR − XL and the

average operator is 1

2
ðPR þ PLÞ, we have g0d ¼ Ψ, ḡa ¼ PΨ.

Equation (4.54) then reads

0 ¼ ⟪f
∘

kΨPΨ þ 1

2
ðPR þ PLÞΨQ̄SKkρ

∘
⟫: ð4:59Þ

11
In (4.53), the ghost zero modes are indicated as operators that

act on the extended Hilbert space. Equivalently, one can view
them as the Grassmann-odd ghost partners of the density matrix
as can be seen from the first line of (4.52).
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For simplicity, we have taken both operator insertions to be

at t ¼ 0 but with the difference operator placed to the left of

the average operator.

If the system is in the ground state j0i of the quantum

harmonic oscillator, the extension (4.41) gives

kρ∘⟫ ¼ k0010⟫; kf
∘

⟫ ¼
X

i

kii10⟫: ð4:60Þ

It is then a simple matter to explicitly compute the

expectation values using (4.13) and (4.17):

⟪f
∘

kΨPΨkρ
∘
⟫ ¼ i;

1

2
⟪f

∘

kðPR þ PLÞΨQ̄SKkρ
∘
⟫ ¼ −i: ð4:61Þ

We see that the relation (4.59) is satisfied.

V. GENERALIZATIONS AND OPEN QUESTIONS

In this work, we have addressed certain subtleties in the
doubling of Hilbert space and the operator structure of
ghosts associated with the Schwinger-Keldysh construc-
tion, which were not evident in the abstract analysis of
Ref. [9]. Our discussion was facilitated by moving from a
general path integral description to a Hilbert space–based
construction in the simplest of quantum models: the
quantum harmonic oscillator. This also allowed us to
demonstrate in this elementary setup various general claims
relating to the structure of Schwinger-Keldysh theories.

The main features missing from the earlier discussions

are as follows:

(1) Ghost dressing of composite difference operators by

ghost bilinears.Here, using an explicit construction,we

are able to describe how this dressing works for an

arbitrary composite operator in the quantum oscillator.

(2) Ghost partners of the density matrix (also referred to

as ghost zero modes) playing a crucial role. This was

assumed without derivation in the aforementioned

previous work. Here, we can explicitly construct and

confirm the picture posited before.

(3) Final-state boundary condition. We have shown that

there exists a final state that is annihilated by the

BRST charges, which provides an appropriate future

boundary condition for the ghost fields.

With these two ideas taken into account, we have demon-

strated that the full operator structure of the quantum

oscillator can be embedded within the superspace formal-

ism. Given that perturbative QFTs can be recast into

deformations of a theory of infinitely many quantum

oscillators, we expect our discussion to carry through to

them in a straightforward way, as we now argue, before

turning to some general lessons.

A. Interacting theories

Let us first see that we can straightforwardly add inter-

actions to our quantum mechanics model. For concreteness,

we can add a quartic interaction Hint ¼ λ
4!
X̂

4, though all of

the discussion applies equally well to any more general

interaction.

Fortunately, the formalism developed above is readily

adapted. The uplift to the quadrupled Hilbert space works

in exactly the same way, with the same supercharges given

in (4.7) and the same kf
∘

⟫. As before, we demand that the

superextension satisfies three requirements. Since we have

not modified the supercharges, kf
∘

⟫ remains in the kernel of

QSK and Q̄SK. We also require that kf
∘

⟫ is a zero-energy

eigenstate of the extended Hamiltonian H. However, for

this to be the case, we must first determine H for the

interacting system. As discussed extensively above, the

naive difference operators for composite operators, such as

our interaction term X̂
4, must be dressed with ghost

corrections in order to be QSK and Q̄SK exact.

Therefore, if the (extended) Hamiltonian is to be QSK

and Q̄SK exact, then we must include these ghost correc-

tions in H,

H ¼ H0 þ
λ

4!
ðX4

R − X4
LÞ þ

λ

2
D2;0Ψ̄Ψ

¼ H0 þ
λ

4!
ðX4

R − X4
LÞ þ

λ

2

�
X2 þ 1

12
X̃2

�
Ψ̄Ψ; ð5:1Þ

using the notation of (4.30). With this extended

Hamiltonian and our choice of kf
∘

⟫ in (4.41), it is

straightforward to check that Hkf
∘

⟫ ¼ 0. Note that super-

space is designed to compactify notation: in the above

example, we can simply write H ¼ H0 þ
R
dθdθ̄ λ

4!
D
∘

4;0.

The argument readily extends to general interactions; we

just note that with our choice of final state (4.41) Ψkf
∘

⟫ ¼
P
Ψ̄
kf
∘

⟫ ¼ 0. Therefore, taking Hint ¼ fQ̄SK; ½QSK; Dm;n�g,
we have

Hintkf
∘

⟫ ¼ Q̄SK½QSK; Dm;n�kf
∘

⟫

¼ Q̄SKðmDm−1;nΨþ nDm;n−1PΨ̄
Þkf

∘

⟫ ¼ 0:

Superspace again allows for compact notation: Hint ¼R
dθdθ̄D

∘

m;n.

Finally, we need to check that the extension does not

modify any of the purely bosonic correlators. The only

place the interactions could modify this condition is via the

ghost terms in the Hamiltonian that will arise from

unitarities implementing time evolution. However, since

these ghost corrections annihilate our final state, cf.,

Eq. (4.43), the same argument as in the noninteracting

case applies. Thus, the addition of interactions does not

pose any obstacles to lifting the theory to the extended
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Hilbert space, and the formalism applies for generic

Hamiltonians.

B. Lessons for QFTs

The main rationale behind undertaking the exercise of

analyzing the Hilbert space picture of Schwinger-Keldysh

formalism and the postulated BRST symmetries inherent

therein is to get a clearer picture in favor of the abstract

arguments described in Ref. [9]. We now turn to ask how far

we can take the lessons from the quantummechanics picture.

We will now attempt an argument directly at the level of

the operator algebra, notwithstanding the fact that beyond

quantum mechanics we have to confront an abstract

structure that may not necessarily be generated in terms

of simple fundamental building blocks (perturbative field

theories can be dealt with as in Secs. IVand VA). The basic

hypotheses underlying our construction are (a) the exist-

ence of a pair of BRST symmetries fQSK; Q̄SKg, the action
on the doubled Schwinger-Keldysh operator algebra of

which is well defined, and (b) this action can be uplifted

into a graded Hilbert space with suitable ghosts appended.

With these assumptions, we are left with testing the Ward

identities arising from the BRST symmetries. For one, we

want to ensure that the Schwinger-Keldysh difference

operators can be suitably dressed with ghost bilinears to

lie in the BRST cohomology. It is clear, however, that the

BRST cohomology will contain other elements as well; for

instance, the average supermultiplet’s top component has a

bosonic part that is not necessarily a Schwinger-Keldysh

difference operator. Determining the full set of such

operators amounts to solving for the BRST cohomology,

a well-defined problem, given the operator algebra and the

action of fQSK; Q̄SKg.
There are two issues about this structure that are worth

elaborating upon:

(1) The BRST Ward identities arising from correlation

functions involving top components of supermultip-

lets must be self-consistent. They should not con-

strain the structure of the Schwinger-Keldysh theory

beyond correlators involving ghosts. This can, of

course, be checked to hold, given an explicit con-

struction (as carried about above), but it seems

implausible that it can fail once it is shown that

the BRST cohomology is well defined.

(2) Additionally, we can ask if all the correlation func-

tions of the extended theory are determined in terms of

standard Schwinger-Keldysh correlators. Wemay not

expect this to be unambiguous, since there is some

freedom in the choice of the embedding of the initial

state (Likewise there is some ambiguity in the final

state, though we expect that leads to no additional

freedom in observables). We believe it should be

possible to fix all the correlation functions for the

ghost sector in terms of usual Schwinger-Keldysh

correlators; i.e., we anticipate that the discussion of

Ref. [9] will carry through with the new elements of

ghost dressing discussed in Sec. IVD. The only part

for which we have not yet given a clean argument are

the ghost bilinears that do not appear as the dressing of

any double-copy operator. For example, in the har-

monic oscillator, we did not encounter PΨΨ − Ψ̄P
Ψ̄

as the ghost dressing for any operator. In this case, we

can, however, appeal to our explicit Hilbert space

embedding to determine its correlations. How this

structure extends more generally is a question that is

worth investigating further.

As mentioned earlier, the aforementioned issues should

not be a problem for perturbative QFTs. Here, we may

readily employ the same strategy as in our quantum

mechanics example. Moreover, discussions of operator

ordering, etc., will be moot if we only consider, as is

often the case, interaction terms that are built out of fields

alone (and not their conjugate momenta).

An interesting example for future analysis would be to

understand nonperturbative interacting theories (say two-

dimensional minimal model conformal field theories) in this

framework. The challenge here is to embed the standardOPE

structure by adding ghost operators, ghost bilinear operators,

and appropriate difference operator dressing by ghost bilin-

ears. One would like to check whether ghost bilinear sectors

and dressing can be made consistent with the closure of the

OPE. This appears to be a concrete setting in which we can

hope to get a handle on the questions raised above.

Additional motivation for such an analysis comes from

the idea of seeing whether the Schwinger-Keldysh super-

space is a useful way of thinking about unitarity in these

theories. Progress in this direction could potentially also

prove useful in giving a simple proof of the unitarity in

superstring field theory, cf. Ref. [17] for the existing proof.

Another direction that goes to the heart of the reason for the

introduction of these BRST symmetries and ghosts is in

applications to open quantum systems and effective non-

unitary field theories arising out of coarse graining. It

would especially be interesting to address the implications

of our analysis for open ϕ4 theory (see the discussion in

Ref. [13]) and how in general open quantum systems are to

be embedded within superspace.
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APPENDIX: GHOST HILBERT SPACE

In this Appendix, we construct the inner product on the

ghost Hilbert space. In the main text, we demand the

Hermiticity condition

Ψ
† ¼ −Ψ̄: ðA1Þ

While other choices are possible, this is convenient as it is

equivalent to

Q† ¼ Q̄: ðA2Þ
Consistency with the Schrodinger equation for the

Heisenberg picture ghost momenta

PΨ ¼ ∂tΨ̄ ¼ −i½H; Ψ̄�;
P
Ψ̄
¼ ∂tΨ ¼ −i½H;Ψ� ðA3Þ

then implies that

P†

Ψ
¼ i½H;Ψ� ¼ −P

Ψ̄
ðA4Þ

as well. With this choice, and using the definitions of the b

and c ghosts in (4.13), we then find that b† and c† truly are

the Hermitian conjugates of b and c, respectively, so there

is no inconsistency of notation.

We can now construct the inner product that respects

these Hermiticity conditions. In the b sector,

h1j1i ¼ h0jbb†j0i ¼ h0jfb; b†gj0i ¼ h0j0i;
h1j0i ¼ h0jbj0i ¼ 0;

h0j1i ¼ h0jb†j0i ¼ 0; ðA5Þ

fixing the inner product up to a constant. We choose

hαjβi ¼ δij. In the c sector, the same manipulations give

h1j1i ¼ h0jcc†j0i ¼ h0jfc; c†gj0i ¼ −h0j0i;
h1j0i ¼ h0jcj0i ¼ 0;

h0j1i ¼ h0jc†j0i ¼ 0; ðA6Þ

determining (up to a constant) that hαjβi¼ηαβ¼diagð1;−1Þ.
For the states jαβi, we have

hαβjγδi ¼ δαγηβδ ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA; ðA7Þ

states being presented in the matrix from left to right and

top to bottom as j00i, j01i, j10i, and j11i.
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