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Abstract: State-dependent jump linear systems (SJLSs) are a set of linear systems whose switching is determined by a finite
state random process with state-dependent transition rates. In this study, a SJLS is considered with state multiplicative noise
and stochastic perturbations. In particular, the jump process is regarded to have dissimilar transition rates among sets of state
evolution space. The aim of this study is to consider stochastic ℋ∞ control of such systems using state-feedback control input.
Sufficient conditions for stochastic ℋ∞ are obtained by solving linear matrix inequalities, which are validated by a simulation
example.

1 Introduction
Stochastic switching systems effectively model dynamics with
abrupt changes in their working modes. Such systems have
widespread applications, for instance, in fault tolerant control [1,
2], networked systems [3], manufacturing systems [4], economics
[5]. In switching systems literature, Markov jump linear systems
(MJLSs) are widely studied where set of systems are linear and
switching follows a homogeneous Markov process with finite
states. Various applications of MJLSs can be found in [4, 6, 7] for
instance. Also, for [8, 9] and references therein deal with several
results related to control design and stability analysis of MJLSs. In
MJLSs, the switching process is homogeneous Markovian, which
is rather a restriction to apply it to more general scenarios.

As a way to be more general, a class of switching systems
considered in this article are called state-dependent jump linear
systems (SJLSs), where the set of systems is linear and switching
process is state-dependent. Such SJLS modelling stems from the
following scenarios. State-dependent failure rate of components is
considered in [10], in submarine engines, random failures are
modelled as state-dependent Markov process [11], also state-
dependent switching [12] is employed in modelling of financial
time series. Several other examples or scenarios of state-dependent
regime switching can be observed in other applications.

Available works related to stability analysis and control design
of SJLSs have been scanty, which are reviewed here. Uniqueness
and ergodicity of a non-linear system with diffusion and state-
dependent switching is addressed in [13]. For flexible
manufacturing systems with state-dependent failures, a control
design via dynamic programming is addressed in [14]. For a jump
system subject to diffusions with state-dependent transitions and
dual time scales, an optimal control is addressed in [15]. For a case
of switching rate of the underlying jump process depending both
on system state and input, an optimal control policy is addressed in
[16]. For SJLSs, a model predictive control problem is considered
in [7], while stability and robust stabilisation for SJLSs are
addressed in [17–19].

On the other hand, systems affected by multiplicative noise
have attracted a lot of attention in widespread applications
including altitude estimation, guidance motivated tracking filter,
terrain following, adaptive motion control to name a few, see, for
instance [20–22] and reference therein. A well established ℋ∞

analysis of linear systems affected by state multiplicative noise is
addressed in [20, 23] for instance. For MJLSs, the same has been

investigated by [9] for instance. However, ℋ∞ analysis to SJLSs
with state multiplicative noise is yet to be addressed. Compared to
the existing works, this paper focuses on the consideration of state
multiplicative noise for SJLSs, which has not been addressed so
far.

In particular, the state-dependent switching rates are considered
as follows: the state evolution space is divided as finite sets and the
switching rates variation depends on each such set. It is a
legitimate assumption to make, since at any time the state variable
traverses one of these sets, where transitions rates are considered to
be dissimilar in each set. With the given assumptions, a ℋ∞

control synthesis is addressed via Dynkin's formula and given in
terms of linear matrix inequalities (LMIs).

The paper is organised as follows. A mathematical description
of SJLS and ℋ∞ control problem is provided in Section 2.
Precursory results are provided in Section 3 and further the major
results are given in Section 4. A simulation example is furnished in
Section 5, while the conclusions are provided in Section 6.

Notation: ℝ+ stands for the positive real line. For a random
vector or scalar x, E[x] denotes its expectation. A

⊤ indicates the
transpose of a matrix A, λmin(A) denotes the least eigenvalue of A. In

designates the identity matrix of size n × n and I denotes an
identity matrix of suitable size. For a matrix P, which is real and
symmetric, P ≻ 0 (P ≺ 0) denotes that P is positive definite
(negative definite), respectively. In a matrix, ⋆ denotes symmetric
terms. diag{P1, P2, …, Pn} denotes diagonal matrix formed by
P1, P2, …, Pn. ϕ represents the null set. For two scalars x and y,
x ∧ y represents the minimum of x and y.

2 Problem formulation
In this section, dynamics of SJLS are provided.

In a probability space Ω, ℱ, Pr , consider a SJLS with a state-
dependent noise and stochastic perturbations:

dx(t) = Aθ(t)x(t) dt + A
~

θ(t)x(t) dw1(t) + B
~

θ(t)v(t) dw2(t)
+Bθ(t)v(t) dt + Eθ(t)u(t) dt

(1a)

z(t) = Cθ(t)x(t) + Dθ(t)v(t) + Fθ(t)u(t) . (1b)

Such models without switching process are often result from
linearisation, see, for instance, a tracking problem in [24] and
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robust control design in [23]. Here the state vector x(t) ∈ ℝnx, the
control input u(t) ∈ ℝnu, the performance output z(t) ∈ ℝnz, initial
state x(0) = x0, stochastic disturbance v(t) ∈ ℝnv, w1(t) and w2(t) are
real scalar Wiener processes with zero mean where
E (wl(t) − wl(s))(wm(t) − wm(s)) = qlm(t − s), l, m = 1, 2,
t, s ∈ ℝ+, t >, and the system matrices Aθ(t) ∈ ℝnx × nx, A

~
θ(t) ∈ ℝnx × nx,

B
~

θ(t) ∈ ℝnx × nv, Bθ(t) ∈ ℝnx × nv, Eθ(t) ∈ ℝnx × nu, Cθ(t) ∈ ℝnz × nx,
Dθ(t) ∈ ℝnz × nv and Fθ(t) ∈ ℝnz × nu dependent on θ(t), which are
considered to be known. Let a mode process of the system θ(t) be
{θ(t), t ≥ 0} ∈ S := {1, 2, …, nS}, and the switching between
different modes of (1) dependent on the system state as

Pr{θ(t + ϵ) = j θ(t) = i, x(t)}

=

μi j
1
ϵ + o(ϵ), if x(t) ∈ C1,

⋮

μi j
Kϵ + o(ϵ), if x(t) ∈ CnK

,

(2)

where ϵ > 0, limϵ → 0 (o(ϵ)/ϵ) = 0, C1, C2, …, CnK
⊆ ℝnx are non-

empty Borel sets, where each of them is a connected set that span
ℝnx and disjoint, i.e. ∪ι = 1

nK Cι = ℝnx and Cl ∩ Cm = ϕ for any
l, m ∈ K ≜ {1, 2, …, nK}, l ≠ m. For m ∈ K, i, j ∈ S, μi j

m is the
switching rate of θ(t) from i to j where μi j

m ≥ 0  for every i ≠ j with
μii

m = − ∑ j = 1, j ≠ i
nS μi j

m.
First, examine system (1) for the case of no control input

dx(t) = Aθ(t)x(t) dt + A
~

θ(t)x(t) dw1(t) + B
~

θ(t)v(t) dw2(t)
+Bθ(t)v(t) dt

(3a)

z(t) = Cθ(t)x(t) + Dθ(t)v(t) . (3b)

 
Remark 1: In SJLS (3), the perturbation process v(t) ∈ ℝnv is

considered as a stochastic noise in this paper in-line with model of
[23] for linear systems. The system dynamics (3) consists of
multiplicative state noise terms and the stochastic disturbance
terms that may be viewed as system matrix perturbations involving
white noise as

dx(t) = (Aθ(t) + A
~

θ(t)ẇ1(t))x(t) dt + (Bθ(t) + B
~

θ(t)ẇ2(t))v(t) dt .
Define ℒ2

s(0, T) as a space of adapted processes
y( . ) = (y(t))t ∈ [0, T] adapted to σ-algebras (ℱ̄t)t ∈ [0, T], where ℱ̄t ⊂ ℱ
with t ∈ ℝ+ satisfying

y( . )
ℒ2

s

2
≜ E ∫

0

T

∥ y(t) ∥2 dt < ∞ .

 
Definition 1: The system (3) is called internally stable if, for

v(t) = 0, for any θ(0) ∈ S and x0 ∈ ℝnx,

E ∫
0

∞

∥ x(t) ∥2 dt < ∞ .

 
Definition 2: The system (3) is called externally stable if, for

every v( . ) ∈ ℒ2
s(0, ∞), for any θ(0) ∈ S and zero initial state

condition, ∃ a real scalar γ ≥ 0 satisfying

z( . ) ℒ2
s

2

≤ γ v( . ) ℒ2
s

2

. (4)
The objective of this paper is to find a minimum γ such that (4)

is satisfied while being internally stable, which we call stochastic
ℋ∞ problem. In relation to (4), let the perturbation operator ∥ L ∥
be

∥ L ∥ = sup
v ∈ ℒ2

s , v ≠ 0

∥ z ∥ℒ2
s

∥ v ∥ℒ2
s
,

whose norm is the minimum γ ≥ 0 such that (4) is satisfied, where
z and v are given according to Definition 2.

Consider the following integral:

J(T) = ∫
0

T

E z(t)
2

− γ
2 ∥ v(t) ∥2 dt, (5)

for T → ∞, where it is shown in later sections that minimising (5)
will lead to the solution of stochastic ℋ∞ problem.

3 Preliminaries
In this section, to tackle the state-dependent transitions (2) in the
current setting, the descriptions of SJLS (3) and mode θ(t) (2) are
slightly altered, which leads to an equivalent model of (3).

Consider a finite state process ζt ∈ K denoting the partition the
state belongs at time t as

ζt =

1, if x(t) ∈ C1,

⋮
nK, if x(t) ∈ CnK

.

Let r(ζt, t) ∈ S (equivalent to θ(t)) be a finite state random process
with state-dependent switching whose switchings depend on ζt for
i ≠ j,

Pr{r(ζt + ϵ, t + ϵ) = j r ζt, t = i, ζt}

=

μi j
1
ϵ + o(ϵ), if ζt = 1,

⋮

μi j
nKϵ + o(ϵ), if ζt = nK,

(6)

where μi j
m, for m ∈ K, are described in (2). Thus, SJLS (3) is

rewritten as

dx(t) = Ar(ζt, t)x(t) dt + A
~

r(ζt, t)x(t) dw1(t)

+B
~

r(ζt, t)v(t) dw2(t) + Br(ζt, t)v(t) dt
(7a)

z(t) = Cr(ζt, t)x(t) + Dr(ζt, t)v(t) . (7b)

The analysis of system (7) with mode process (6) tantamounts to
analysing system (1) with mode process (2). As can be seen in later
sections, this equivalence facilitates the derivation of main results
in a non-clutter manner.

 
Remark 2: From (6), observe that for r(ζt, t) = i ∈ S,

r ζt + ϵ, t + ϵ  relies on the state variable x(t) for any ϵ > 0, which
further relies on r(ζs, s), s < t from (7). Thus the process r(ζt, t) is
not Markovian.

For l ∈ K and t2 ≥ t1 ≥ 0, Ψl(t1, t2) describes a flow of system
(7) on the interval [t1, t2], for the switching rate of r(ζt, t) being μi j

l

when ζt = l, for i ≠ j ∈ S. Using the flows of system (7), first exit
times τ0, τ1, … are defined as follows.

For m = 0, 1, 2, …, given τm − 1, im − 1 ∈ K, let x(τm − 1) ∈ Cim,
where im ≠ im − 1, im ∈ K. Let τm be the first exit time of x(t) from
set Cim after τm − 1 as

τm = inf t ≥ τm − 1: Ψim(t, τm − 1)Ψim − 1(τm − 1, τm − 2)

⋯Ψi0(τ0, 0)x(0) ∉ Cim ,
(8)

where

τ0 = inf{t ≥ 0: Ψi0(t, 0)x(0) ∉ Ci0} .
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Remark 3: From (8), {ζt, t ≥ 0} can be given in an alternative

form as

ζt =

i0, if t ∈ [0, τ0),

⋮
im, if t ∈ [τm − 1, τm),

⋮

where {i0, i1, …, im, …} ∈ K. Also k* represents the number of
switchings attained by ζt.

Let ℱt be the natural filtration of (x(t), r(ζt, t), ζt), a solution of
(6) and (7), over [0, t]. Then it can be shown by applying the steps
of Lemma 1 of [18] that x(t), r(ζt, t), ζt  is a joint stochastic process
adapted to ℱt. Also, continuing the treatment of the first exit times,
it can be observed that the first exit times τ0, τ1, τ2, … are ℱt-
stopping times since the events {τi ≤ t} for i = 0, 1, 2, … are ℱt-
measurable.

 
Definition 3: Let a joint stochastic process

η(t) ≜ x(t), r(ζt, t), ζt , a solution of (6) and (7), be a joint Markov
process and τ0, τ1, τ2, … be the stopping times, then for an
admissible Lyapunov function V(η(t)), by the Dynkin's formula
[25, 26], we can write

E[V(η(t)) η(0)] − V(η(0))

= ∑
k = 0

k*

E ∫
t ∧ τk − 1

t ∧ τk

AV(η(s)) ds η(s) ,
(9)

where k = 0, 1, …, k*, k* ∈ [0, ∞], τ−1 = 0 and τk* ≤ ∞, with
domain [0, ∞) × ℝn × S × K and

AV η(t) = lim
dt → 0

1
dt

E V η(t + dt) η(t) − V η(t) . (10)

4 Main results
In this section, first the integral (5) is rewritten and then a sufficient
condition for internal stability of (7) is provided, which are utilised
to provide sufficient conditions for stochastic ℋ∞ of system (7).
Further, a control synthesis via state feedback for the same is
addressed.

4.1 Reformulation of the integral (5)

 
Proposition 1: The integral (5) can be rewritten as

J(T) = x⊤(0)Pr(ζ0, 0)x(0) − E x⊤(T)Pr(ζT , T)x(T)

+E ∫
0

T

x⊤(t) v⊤(t) Λr(ζt, t)

x(t)
v(t)

dt ,
(11)

where

Λr(ζt = κ, t) = i =

Ai
⊤
Pi + PiAi + ∑

j = 1

nS

μi j
κ Pj q12A

~
i
⊤
PiB

~
i + Ci

⊤
Di + PiBi

+q11A
~

i
⊤
PiA

~
i + Ci

⊤
Ci

⋆ q22B
~

i
⊤
PiB

~
i − γ

2I + Di
⊤
Di

.

(12)
 

Proof: Consider a Lyapunov function
V x(t), r(ζt, t), ζt ≜ x⊤(t)Pr(ζt, t)x(t), where Pr(ζt, t) ≻ 0. By (10), for
i ∈ S and κ ∈ K, AV η(t)  leads to

AV x(t), r(ζt = κ, t) = i, ζt = κ

= lim
dt → 0

1
dt

E V x(t + dt), r(ζt + dt, t + dt), ζt + dt x(t),

r(ζt = κ, t) = i, ζt = κ − V x(t), r(ζt = κ, t) = i, ζt = κ

= lim
dt → 0

1
dt

∑
j = 1

nS

Pr{r(ζt + dt, t + dt) = j r(ζt = κ, t) = i, ζt = κ}

E x⊤(t + dt)Pjx(t + dt) − E x⊤(t)Pix(t)

= lim
dt → 0

1
dt

∑
j = 1, j ≠ i

nS

μi j
κ dtE x⊤(t + dt)Pjx(t + dt)

+ (1 + μii
κ dt)E x⊤(t + dt)Pix(t + dt) − x⊤(t)Pix(t) ,

(13)

where x(t + dt) ≃ x(t) + Aix(t) dt + A
~

ix(t) dw1(t) + B
~

iv(t) dw2(t)
+Biv(t) dt. Using Itô's lemma [27], (13) is simplified to

AV x(t), r(ζt = κ, t) = i, ζt = κ

= x⊤(t){Ai
⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑

j = 1

nS

μi j
κ Pj}x(t)

+E x⊤(t)PiBiv(t) + q12x
⊤(t)A

~
i
⊤
PiB

~
iv(t) + q12v

⊤(t)B
~

i
⊤
PiA

~
ix(t)

+q22v
⊤(t)B

~
i
⊤
PiB

~
iv(t) + v⊤(t)Bi

⊤
Pix(t)

= x⊤(t){Ai
⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑

j = 1

nS

μi j
κ Pj}x(t)

+ x⊤(t) v⊤(t)
q11A

~
i
⊤
PiA

~
i q12A

~
i
⊤
PiB

~
i + PiBi

⋆ q22B
~

i
⊤
PiB

~
i

x(t)
v(t)

.

From (9), for any i0 ∈ K, we can write

E V x(t), r(ζt, t), ζt x(0), r(ζ0 = i0, 0), ζ0 = i0

−V x(0), r(ζ0 = i0, 0), ζ0 = i0

= ∑
k = 0

k*

E ∫
t ∧ τk − 1

t ∧ τk

AV x(s), r(ζs, s), ζs ds (x(s), r(ζs, s), ζs)

= E ∫
0

t

AV x(t), r(ζt, t), ζt dt (x(t), r(ζt, t), ζt) ,

(14)

where k*, τ−1 and τk* are given in (9) and noting that
∑k = 0

k* ∫t ∧ τk − 1

t ∧ τk = ∫0

t. Taking the expectation of (14) and letting the
final time as T, we obtain

E x⊤(T)Pr(ζT , T)x(T) − x⊤(0)Pr(ζ0, 0)x(0)

= E ∫
0

T

AV x(t), r(ζt, t), ζt dt

= E ∫
0

T

x⊤(t){Ai
⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑

j = 1

nS

μi j
κ Pj}x(t) dt

+E ∫
0

T

x⊤(t) v⊤(t)

q11A
~

i
⊤
PiA

~
i q12A

~
i
⊤
PiB

~
i

+PiBi

⋆ q22B
~

i
⊤
PiB

~
i

x(t)
v(t)

dt

for any ζt = κ and r(ζt = κ, t) = i. Let
ℳiκ ≜ Ai

⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑ j = 1

nS μi j
κ Pj,

Ni ≜

q11A
~

i
⊤
PiA

~
i q12A

~
i
⊤
PiB

~
i

+PiBi

⋆ q22B
~

i
⊤
PiB

~
i

, and consider
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J(T) + E x⊤(T)Pr(ζT , T)x(T) − x⊤(0)Pr(ζ0, 0)x(0)

= E∫
0

T

∥ z(t) ∥2 − γ
2 ∥ v(t) ∥2 + x⊤(t)ℳiκx(t)

+ x⊤(t) v⊤(t) Ni

x(t)
v(t)

dt

= E∫
0

T

∥ Cix(t) + Div(t) ∥2 − γ
2 ∥ v(t) ∥2 + x⊤(t)ℳiκx(t)

+ x⊤(t) v⊤(t) Ni

x(t)
v(t)

dt,

which, after rearrangement, will lead to (11). □

4.2 Internal stability

 
Proposition 2: If ∃ Pi ≻ 0, ∀κ ∈ K and ∀i ∈ S, such that

Ai
⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑

j = 1

nS

μi j
κ Pj ≺ 0, (15)

then system (7) is internally stable.
 

Proof: Consider V x(t), r(ζt, t), ζt ≜ x⊤(t)Pr(ζt, t)x(t). From (13),
we obtain AV  as

AV x(t), r(ζt = κ, t) = i, ζt = κ

= lim
dt → 0

1
dt

∑
j = 1, j ≠ i

nS

μi j
κ dtE x⊤(t + dt)Pjx(t + dt)

+ (1 + μii
κ dt)E x⊤(t + dt)Pix(t + dt) − x⊤(t)Pix(t) ,

(16)

where x(t + dt) ≃ x(t) + Aix(t) dt + A
~

ix(t) dw1(t) since v(t) = 0.
Using Itô's lemma, (16) is simplified as

AV x(t), r(ζt = κ, t) = i, ζt = κ

= x⊤(t) Ai
⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑

j = 1

nS

μi j
κ Pj x(t) .

(17)

From (15), define

Ai
⊤
Pi + PiAi + q11A

~
i
⊤
PiA

~
i + ∑

j = 1

nS

μi j
κ Pj ≜ − Wκi (18)

with −Wκi ≺ 0. Thus, from (15), AV  (17) simplifies to

AV x(t), r(ζt = κ, t) = i, ζt = κ

≤ − x⊤(t)Wκix(t)

≤ − min
κ ∈ K, i ∈ S

{λmin(Wκi)}x⊤(t)x(t) .
(19)

From (9), for any i0 ∈ K, we can write

E V x(t), r(ζt, t), ζt x(0), r(ζ0 = i0, 0), ζ0 = i0

−V x(0), r(ζ0 = i0, 0), ζ0 = i0

= ∑
k = 0

k*

E ∫
t ∧ τk − 1

t ∧ τk

AV x(s), r(ζs, s), ζs ds (x(s), r(ζs, s), ζs) ,

(20)

where k*, τ−1 and τk* are given in (9). In view of remark 3, let
{i0, i1, i2, …} ∈ K be the sequential state values of ζt. Then (20) can
be recast as (see (21)) . By (19), the above term reduces to

E V x(t), r(ζt, t), ζt x(0), r(ζ0 = i0, 0), ζ0 = i0

−V x(0), r(ζ0 = i0, 0), ζ0 = i0

≤ − min
κ ∈ K, i ∈ S

{λmin(Wκi)} E ∫
0

τ0

∥ x(s) ∥2 ds

+E ∫
τ0

τ1

∥ x(s) ∥2 ds + ⋯ + E ∫
t ∧ τk* − 1

t ∧ τk*

∥ x(s) ∥2 ds .

(22)

By noting ∑k = 0
k* ∫t ∧ τk − 1

t ∧ τk = ∫0

t, (22) is simplified as

E V x(t), r(ζt, t), ζt x(0), r(ζ0 = i0, 0), ζ0 = i0

−V x(0), r(ζ0 = i0, 0), ζ0 = i0

≤ − min
κ ∈ K, i ∈ S

{λmin(Wκi)}E ∫
0

t

∥ x(s) ∥2 ds .

Thus we obtain,

min
κ ∈ K, i ∈ S

{λmin(Wκi)}E ∫
0

t

∥ x(s) ∥2 ds

≤ V x(0), r(ζ0 = i0, 0), ζ0 = i0

−E V x(t), r(ζt, t), ζt x(0), r(ζ0 = i0, 0), ζ0 = i0

≤ V x(0), r(ζ0 = i0, 0), ζ0 = i0 ,

which is recast as

E ∫
0

t

∥ x(s) ∥2 ds ≤
V x(0), r(ζ0 = i0, 0), ζ0 = i0

minκ ∈ K, i ∈ S {λmin(Wκi)}
.

For t → ∞,

E ∫
0

∞

∥ x(s) ∥2 ds ≤
V x(0), r(ζ0 = i0, 0), ζ0 = i0

minκ ∈ K, i ∈ S {λmin(Wκi)}
< ∞ .

Hence system (7) is internally stable. □

4.3 Stochastic ℋ∞

In this section, a proposition for verifying the stochastic ℋ∞

condition (4) is provided.
 

Proposition 3: If ∃ Pi ≻ 0, ∀κ ∈ K and ∀i ∈ S, satisfying

Λr(ζt = κ, t) = i ≺ 0, (23)

E V x(t), r(ζt, t), ζt x(0), r(ζ0 = i0, 0), ζ0 = i0

−V x(0), r(ζ0 = i0, 0), ζ0 = i0

= E ∫
0

τ0

AV x(s), r(ζs = i0, s), ζs = i0 ds x(s), r(ζs = i0, s), ζs = i0

+E ∫
τ0

τ1

AV x(s), r(ζs = i1, s), ζs = i1 ds x(s), r(ζs = i1, s), ζs = i1

+⋯ + E ∫
t ∧ τk* − 1

t ∧ τk*

AV x(s), r(ζs, s), ζs ds (x(s), r(ζs, s), ζs) .

(21)
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then system (7) is internally stable while satisfying stochastic ℋ∞

condition (4).
 

Proof: Observe that, from (23) and (12), we can write

Ai
⊤
Pi + PiAi + ∑

j = 1

nS

μi j
κ Pj + q11A

~
i
⊤
PiA

~
i + Ci

⊤
Ci ≺ 0, (24)

which implies

Ai
⊤
Pi + PiAi + ∑

j = 1

nS

μi j
κ Pj + q11A

~
i
⊤
PiA

~
i ≺ 0, (25)

thus from (15), system (7) is internally stable. Now from (11), (12),
and (23), the integral J(T) (5) simplifies to

∫
0

T

E ∥ z(t) ∥2 − γ
2 ∥ v(t) ∥2

≤ x⊤(0)Pr(ζ0, 0)x(0) − E x⊤(T)Pr(ζT , T)x(T)

≤ 0,

which is due to zero initial condition for verifying (4). □

4.4 State-feedback control

In this section, control synthesis while satisfying stochastic ℋ∞ is
addressed.

With the non-zero control input, we get system (7) dynamics as

dx(t) = Ar(ζt, t)x(t) dt + A
~

r(ζt, t)x(t) dw1(t) + B
~

r(ζt, t)v(t) dw2(t)

+Br(ζt, t)v(t) dt + Er(ζt, t)u(t) dt
(26a)

z(t) = Cr(ζt, t)x(t) + Dr(ζt, t)v(t) + Fr(ζt, t)u(t) dt . (26b)

Assuming the availability of the mode process r(ζt, t), consider
state-feedback control law

u(t) = Kr(ζt, t)x(t), (27)

where Kr(ζt, t) ∈ ℝnu × nx for r(ζt, t) ∈ S. Hence the controlled
dynamics lead to

dx(t) = Ār(ζt, t)x(t) dt + A
~

r(ζt, t)x(t) dw1(t) + B
~

r(ζt, t)v(t) dw2(t)

+Br(ζt, t)v(t) dt + Er(ζt, t)u(t) dt,
(28a)

z(t) = C̄r(ζt, t)x(t) + Dr(ζt, t)v(t) + Fr(ζt, t)u(t) dt, (28b)

where

Ār(ζt, t) = Ar(ζt, t) + Er(ζt, t)Kr(ζt, t) (29)

and

C̄r(ζt, t) = Cr(ζt, t) + Fr(ζt, t)Kr(ζt, t) . (30)

 
Proposition 4: If ∃ Φi ≻ 0 and Υi, ∀κ ∈ K and ∀i ∈ S, such that

(33) holds, where

Ωκi = [ μi1
κ Φi … μii − 1

κ Φi, μii + 1
κ Φi … μinS

κ Φi] (31)

Γi = diag{Φ1⋯Φi − 1, Φi + 1⋯ΦnS
}, (32)

then system (28) achieves stochastic ℋ∞ condition (4) by control
law (27), and the stabilising controller is given by Ki = ΥiΦi

−1.
 

Proof: From proposition 3, controlled system (28) satisfies the
stochastic ℋ∞ condition if (34) is satisfied ∀κ ∈ K and ∀i ∈ S,
where Āi = Ai + EiKi and C̄i = Ci + FiKi. Now the Schur
complement of (34) leads to (35), where qi j

−1 = (Q−1)i j. Let
Φi = Pi

−1, Υi = KiΦi and applying the congruent transformation of
(35) with diag{Pi

−1, I, I, I, I} leads to (36), where Ωκi is given in
(31), Γi is given by (32) and controller gains are computed by
Ki = ΥiΦi

−1. □

5 Example
Let x(t) ∈ ℝ2 and scalar u(t) in (28) with θ(t) ∈ S := {1, 2, 3} and

A1 =
1 −1
2 0

, A2 =
2 −4
8 0

, A3 =
3 4
0 −1

,

A
~

1 = A
~

2 = A
~

3 = −
1 0
0 1

, B1 = B2 = B3 = 0 1 ⊤,

B
~

1 = B
~

2 = B
~

3 = 1 0 ⊤, C1 = C2 = C3 = 0 1 ,

D1 = D2 = D3 = F1 = F2 = F3 = 1, E1 = 4 0 ⊤,

E2 = 2 0 ⊤, E3 = 4 0 ⊤ .

Consider θ(t) (2) with C1 ≜ {x(t) ∈ ℝ2: x1
2(t) + x2

2(t) < δ},
C2 ≜ {x(t) ∈ ℝ2: x1

2(t) + x2
2(t) ≥ δ}, δ = 5, and K := {1, 2}.

Consider

μi j
1

3 × 3
=

−8 3 5
6 −11 5
3 3 −6

, μi j
2

3 × 3
=

−7 5 2
3 −4 1
6 6 −12

.

Fig. 1  State trajectories
 

Fig. 2  Mode process θ(t)
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Let γ = 4. From proposition 4, a solution of LMIs (33) can be
given by

Φ1 =
0.9153 −0.0989

−0.0989 0.5253
, Φ2 =

0.5495 −0.1189
−0.1189 0.6267

,

Φ3 =
0.7773 −0.1068

−0.1068 0.5942
,

Υ1 = −1.2497 −0.2468 , Υ2 = −1.5220 −0.6949 ,
Υ3 = −1.1583 −0.4971

and the resulting controller gains are: K1 = −1.4454 −0.7402 ,
K2 = −3.1382 −1.7040 , K3 = −1.6456 −1.1322 .

A sample evolution of the system states with initial mode as 2
and x1(0) = 3, x2(0) = − 2 is shown in Fig. 1. Also, an evolution of
θ(t) is depicted in Fig. 2. From the Monte Carlo simulations of
1000 runs, ∥ L ∥ is obtained as 3.0853 < γ.

(see (33)) 
(see (34)) 
(see (35)) 
(see (36)) 

6 Conclusions
In this paper, a stochastic ℋ∞ analysis for a SJLS affected by state-
dependent noise and stochastic perturbations is addressed. The
underlying state-dependent jump process is assumed to have
dissimilar transition rates among sets of state evolution space. For
no input case, using Dynkin's formula and Itô's lemma, tractable
conditions for stochastic ℋ∞ are obtained by employing
Lyapunov's second method. Further, the results are stretched to
state-feedback control synthesis. As a perspective, the obtained

results can be applied to fault tolerant control systems affected by
state-dependent failures.
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