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Abstract: This study addresses a stochastic model predictive tracking problem for linear parameter-varying (LPV) systems
described by affine parameter-dependent state-space representations and additive stochastic uncertainties. The reference
trajectory is considered as a piecewise constant signal and assumed to be known at all time instants. To obtain prediction
equations, the scheduling signal is usually assumed to be constant or its variation is assumed to belong to a convex set. In this
study, the underlying scheduling signal is given a stochastic description during the prediction horizon, which aims to overcome
the shortcomings of the two former characterisations, namely restrictiveness and conservativeness. Hence, the overall LPV
system dynamics consists of additive and multiplicative noise terms up to second order. Due to the presence of stochastic
disturbances, probabilistic state constraints are considered. Since the disturbances make the computation of prediction
dynamics difficult, augmented state prediction dynamics are considered, by which, feasibility of probabilistic constraints and
closed-loop stability are addressed. The overall approach is illustrated using a tank system model.

1 Introduction
Linear parameter-varying (LPV) system representations have been
studied extensively and used in variety of applications (see, e.g. [1–
9] among many other references) to model and control non-linear
or time–space-dependent systems. Broadly speaking, dynamics of
LPV systems resemble that of linear time-varying (LTV) systems,
whose variation depends not only on a single-time evolution but
also on a measurable time-varying signal, also called scheduling
signal. By considering all possible realisations or valid trajectories
of the scheduling signal, a single LPV system describes a family of
LTV systems, from which the current measurement of this variable
selects the one that describes the continuation of the signal
trajectories, like inputs and outputs. Such a concept also allows to
embed the dynamics of a non-linear system into the solution set of
a linear representation [10]. The key advantage of adopting LPV
systems framework is that it preserves the advantageous properties
of linear time-invariant (LTI) systems, enabling convex control
synthesis and the use of industrial experience in LTI control tuning
to regulate non-linear or time-varying systems.

Driven by the control objectives in the process industry, model
predictive control (MPC) has been established as an effective
control algorithm that allows to cope with constraints. To join the
attractive properties of this framework, various MPC approaches
have been introduced for LPV systems described by state-space
representations, mostly under a deterministic setting, see [11–14].
However, the main difficulty encountered in MPC design for LPV
systems is that the scheduling signal in many applications is
measurable only at the current time instant, but unknown during
the prediction horizon. Under this setting, obtaining the prediction
equations for LPV systems becomes intractable. To handle this
issue, usually, while computing the predicted state and/or control
inputs during the prediction horizon, either the scheduling signal is
assumed to be constant [15] or by applying the robust control
concept, its variation is assumed to belong to a convex set [11–14].
While the former characterisation is quite unrealistic, the latter
situation, that falls under robust setting, is often too conservative
because a design of the control law is based on all variations of the

scheduling signal in the convex set during the prediction horizon.
In practice, especially for slowly varying systems, like process
control applications, during the prediction horizon, variations of
the scheduling signal may be limited to a much smaller set than the
convex set. Hence, we assume that during the prediction horizon,
the scheduling signal varies stochastically in a tube, where the
probability of future trajectories of the scheduling variable
describes the likely variations of the dynamics, rather than a worst
case approach stemming from the robust setting where unlikely
extremes of the variations are equally possible. Thus, our
representation aims at striking a balance between the previous two
situations: being realistic and at the same time less conservative. In
this article, we intend to use the framework of stochastic MPC,
which is suitable to address MPC problems with stochastic
objective function and/or stochastic constraints, see [16] for more
details. Related to our approach, the authors in [17] considered a
stochastic description for the scheduling signal, where a scenario-
based approach or an on-line sampling approach has been used to
address stability and feasibility of constraints for stochastic MPC
of LPV systems in a probabilistic sense. The key advantage of this
method in the current context is the consideration of randomly
extracted scenarios of the scheduling signal in the prediction
horizon. Though this approach is able to cope with arbitrary
disturbances, the on-line computation increases considerably as the
scenarios increase. Further, even the soft constraints, with given
probability of satisfaction, can only be satisfied with a confidence
level.

We further assume the presence of additive stochastic
disturbances in the LPV system dynamics, and address stochastic
MPC tracking of a reference trajectory. We consider that the
reference trajectory is a piecewise constant signal and assumed to
be known in advance. For simplicity, system matrices are assumed
to depend affinely on the scheduling signal. Due to stochastic
disturbances, we consider probabilistic constraints, which means
that occasional constraint violations are allowed, depending on the
probability of constraint satisfaction. Due to the above
considerations, the overall LPV system consists of additive and
multiplicative stochastic disturbances up to second order. To the
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best of our knowledge, stochastic MPC of LPV systems with the
above considerations has not been addressed before.

By using the techniques of stabilising stochastic MPC of linear
systems with multiplicative and/or additive noise terms [18, 19],
we address stochastic MPC tracking of LPV systems in the current
setting. The crux of the approach lies in forming an augmented
state of prediction dynamics and transferring the constraints over
the prediction horizon to the augmented state at the beginning of
the prediction horizon and makes use of probabilistic invariance to
address probabilistic constraints. This approach alleviates the
propagation of uncertainties during the prediction horizon, which is
difficult to handle in general.

The remainder of this article is organised as follows: Section 2
introduces the problem set-up. In Section 3, we provide an
augmented representation of the LPV system. In Section 4, we
address constraint handling problem via probabilistic invariance.
Section 5 presents an MPC algorithm along with the investigation
of closed-loop properties. In Section 6, the entire approach is
illustrated using a tank system example, and Section 7 concludes
the paper. Finally, we give majority of the proofs in the Appendix
to improve readability of the article.

Notation: ℕ denotes the set of positive integers including 0. Let
𝔼k z  denote the expectation of a random variable z conditional on
the information up to time k . At a given time k ∈ ℕ, for i ≥ 0, the
predicted value of y at k + i is denoted by y(k + i |k), which is
shortly denoted as y(i |k). For i, j ∈ ℕ, 𝕀i

j denote the numbers
i, i + 1, …, j. Multiple sums ∑i1

∑i2
⋯∑in

 are denoted as ∑i1, i2, …, in
.

For real vectors X and Y, X ≤ Y (X ≥ Y) denote element-wise
inequalities. Given real matrices L and M, (L ⪰ M) L ≻ M and
(L ⪯ M) L ≺ M denote that the matrix L − M is positive (semi)
definite and negative (semi) definite, respectively. Let I and 0 be
identity and zero matrices of appropriate dimensions, respectively,
according to the context. Symmetric terms in a matrix are denoted
by a symbol ∗. For given matrices A and P of suitable dimensions,
APA⊤ is shortly denoted by AP ⋆ if required. The acronym cdf
stands for cumulative distribution function.

2 Problem set-up
Consider a discrete-time LPV system described by the following
affine parameter-dependent state-space representation:

x(k + 1) = A(p(k))x(k) + B(p(k))u(k) + δ(k), (1a)

A(p(k)) = A0 + ∑
j = 1

np
p j(k)A j, (1b)

B(p(k)) = B0 + ∑
j = 1

np
p j(k)B j, (1c)

C(p(k)) = C0 + ∑
j = 1

np
p j(k)C j, (1d)

where k ∈ ℕ, x(k) ∈ ℝ
nx is the state variable, u(k) ∈ ℝ

nu is the
control input, p(k) := [p1(k)⋯pnp

(k)]⊤ ∈ ℝ
np is the scheduling

signal, and δ(k) ∈ ℝ
nx is an independent and identically distributed

(i.i.d.) additive noise process with zero mean and covariance
matrix Σδ ∈ ℝ

nx × nx. Let A j, B j, and C j for j ∈ 𝕀0

np be the matrices of
appropriate dimensions. As we would like to address control of (1)
in a state-feedback sense, we assume that x(k) is perfectly available
at each time instant k ∈ ℕ. Let us consider the following
assumptions.
 
Assumption 1: Let the scheduling signal p(k) be measurable and
belong to a hyper rectangle 𝒫 ⊂ ℝ

np at each time instant k ∈ ℕ;
i.e. p(k) varies in a hyper-rectangle 𝒫 ≜ [p11, p21], …, [p1np

, p2np
]

for some finite scalars p1 j and p2 j such that p1 j < p2 j for j ∈ 𝕀1

np.
 

Assumption 2: Let the reference signals to be tracked by system (1)
be piecewise constant signals. Furthermore, in line with the
anticipative concept of MPC, assume that the reference signals are
known before hand. This means that various targeted set point pairs
(xS, pS, uS) are known in advance, where xS denotes the set point of
the state variable to be tracked, pS denotes the corresponding
scheduling signal and let uS denotes the corresponding control
input at each time instant, which “realises” the set point xS.
 
Remark 1: In Assumption 2, given xS and pS, the corresponding uS

can be obtained as follows. Due to the presence of stochastic
disturbances in (1), xS can also be viewed as the expected steady
state. Similarly, uS can be understood as the expected value of the
input required for the steady state. However, one needs a constant,
i.e. expected value of the scheduling signal, say pS, to compute uS

from (1) via xS = A(pS)xS + B(pS)uS. It often happens in practical
situations that there exists a possibly non-linear relation
pS = μ(xS, uS), where the scheduling variable also expresses
operating points or non-linearities in the system. Hence, such an
assumption is well grounded from the practical point of view.
Thus, we consider that the values of pS are assumed to be known to
compute uS. Also, the values of pS and uS need to be admissible,

i.e. we assume that pS ∈ 𝒫 and uS ∈ 𝒰 ⊂ ℝ
nu, which, based on

our previous motivation, again naturally happens in practical
applications. Finally, observe that the set point pairs (xS, pS, uS)
can be computed off-line by the above method. Alternatively, one
may also verify or obtain the steady-state values (xS, pS, uS)
experimentally also.

In the sequel, we give a characterisation of predicted values of
the scheduling signal that enable us to obtain prediction equations
for (1) to be employed in an MPC setting. Given p(k), we assume
that the values p(i |k), for i ≥ 0, are not known a priori, but are
allowed to vary in a tube as the convex polytopic set
Ω ≜ {ζ ∈ ℝ

np ∣ G ζ − p(k) ≤ H}, with Ω ⊂ 𝒫, probabilistically:

Pr G p(i |k) − p(k) ≤ H ∣ p(k) ≥ ξ, i ≥ 0, (2)

where G ∈ ℝ
⋅ × np, H ∈ ℝ⋅, while ξ ∈ (0, 1) denotes the probability

level of the evolution of future scheduling signals in Ω. Here we
consider that the tube Ω is centred at p(k). Notice that, we
preferred the representation of 𝒫 as a hyper rectangle while Ω is a
polytope.
 
Remark 2: One can also consider the predicted dynamics of the
scheduling signal as the rectangular constraints on individual
elements of the scheduling signal or the hyper-rectangular
constraint of the scheduling signal vector given probabilistically,
thus obtaining the predicted dynamics equivalently or by an
approximation. However, note that, (2) deals with much more
complex constraints (which includes rectangular constraints also).

The scheduling variables p(i |k), satisfying the probabilistic
constraint (2), are characterised as

p(i |k) = p(k) + βw(k + i), i ≥ 0, (3)

where for the simplicity of the exposition, we consider β to be a
diagonal matrix belonging to ℝnp × np, w( . ) ∈ ℝ

np are i.i.d. normal
random vectors. A method to compute β for both scalar and vector-
valued cases of p(k) is given in Section 10.

In the context of (3), while representing the predicted dynamics
of p(i |k), one would expect p(0 |k) to be equal to p(k). By using
this natural assumption p(0 |k) = p(k) in the scheduling signal
representation (3), the entire approach of this article grows
significantly in complexity, because this would result in two-state
prediction equations: one for i = 0, and another one for i ≥ 1; this
is apparent from the dynamics of state prediction given in the next
section. On the other hand, measurements of p(k) may not be
accurate in practice. For instance, in LPV modelling of high-purity
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distillation columns, the scheduling signal is chosen as the bottom
and top product composition, where measurement errors in p(k)
exist [20]. Thus, additional observers would be required to estimate
the scheduling signal. So, while dealing with MPC design for such
systems, one possible strategy would be to consider p(k) to be
uncertain at k, for instance as in (3). This can be viewed as a way to
approach the entire problem, but not a limitation, as including
p(0 |k) = p(k) would only increase the technical clutter of the
paper. Let us consider the following assumption.
 
Assumption 3: We assume that the elements of the vector w(k) are
independent of the elements of δ(k) for every k ∈ ℕ. If this
assumption is relaxed, then one can obtain the results of this article
by moderate extensions if the probability distribution of δ(k) is
assumed to be known.

From the above discussion, one can observe that only the
current measured scheduling function p(k) is assumed to belong to
𝒫, while the future scheduling variables during the prediction
horizon are given a stochastic description. In the literature of LPV
MPC, while computing the predicted state and/or control inputs
during the prediction horizon, either the scheduling signal is
assumed to be constant [15] or its variations belong to 𝒫 [11–13],
where the latter refers to a robust but conservative approach to
handle future variations of the system dynamics. As explained in
Section 1, our representation (3) offers a balance between these
two situations: being realistic and at the same time less
conservative.

Consider the probabilistic state constraint of the form:

Pr{ | x(k) − xS ∣≤ h} ≥ α, α ∈ (0, 1), (4)

where h ∈ ℝ
nx and hi > 0 for i ∈ 𝕀1

nx, and α is the level of constraint
satisfaction. It means that the difference between state variable and
the set point is probabilistically constrained at each time instant k.
From (4) and Assumption 2, it is implicit that the updated set point
xS is also reflected in (4) at each k.

Let x(i |k) and u(i |k) be the predicted state and the predicted
control input of (1) at time k + i, respectively, which are to be
computed at time instant k. Then, for a given set point pair
xS, pS, uS  at time k, the objective of the current MPC strategy is:

min
{u(i |k)}i ≥ 0

Jk ≜ ∑
i = 0

∞

𝔼k x(i |k) − xS
⊤Q ⋆ + u(i |k) − uS

⊤R ⋆

subject to (1), (2), (4),

where Q ≻ 0 and R ≻ 0 are the given weighting matrices and
x(0 |k) = x(k). The expectation operator in Jk is due to the
stochastic uncertainties present in (1). It is shown in the subsequent
sections that the cost Jk becomes unbounded due to the additive
uncertainties in the predicted dynamics, accordingly, the cost will
be modified to make it bounded.

To address the above problem in the presence of probabilistic
constraint (4) in a tractable way, we apply the so-called closed-loop
dual mode paradigm [21, 22] with a parameter-dependent state
feedback. In this case, the control input is considered as

u(i |k) =
K(p(i |k)) x(i |k) − xS + uS + c(i |k) if i ∈ 𝕀0

N − 1

K(p(i |k)) x(i |k) − xS + uS if i ≥ N
(5)

where N is a finite control horizon, c(i |k) ∈ ℝ
nu is optimisation

variables and the parameter-dependent state feedback gains are
given by

K(p(i |k)) = K0 + ∑
j = 1

np

p j(i |k)K j,

with Kl ∈ ℝ
nu × nx for l ∈ 𝕀0

np, and p j(i |k) is given by (3). Though
u(i |k) is given in the state feedback form (5), we assume that it
belongs to a compact set 𝒰. In practice, the set 𝒰 denotes the
limitations of the actuator equipment. For instance, in process
control applications, input denotes the opening of a valve which is
inherently bounded and also results in a bounded flow rate of
substance (inputs or outputs). We further assume that the input
constraints are always satisfied, in other-words, input constraints
are feasible at all times. The similar kind of probabilistic state and
hard input constraints for the MPC of LTI systems in process
control applications has been addressed in [23].

3 Augmented representation
In this section, first, we consider the overall LPV system
representation (1) with the scheduling signal characterisation (3)
and the state-feedback control law (5). Then, we provide an
augmented representation [18] to address the closed-loop system
stability and constraint satisfaction in the later sections.

Overall, the state evolution of the LPV state-space
representation (1) under (3), (5) and Remark 1 can be given by (see
(6)) where Φk = Āk + B̄kK̄k, Φ

~
k j = β j A j + B jK̄k + B̄kK j ,

Āk = A0 + ∑ j = 1
np p j(k)A j, B̄k = B0 + ∑ j = 1

np p j(k)B j,

K̄k = K0 + ∑ j = 1
np p j(k)K j, B j

β = β jB j, pk j = p j(k) − P
S

j and
Km

β = βmKm. It is important to observe that the state prediction (6)
depends only on the value of p(k), the input, the noise processes
w( . ), δ( . ) and x(k) at k, which is possible due to the
characterisation (3) of the scheduling function.
 
Remark 3: Notice that based on the previous definitions, and
considerations taken, we have a dynamical system with
multiplicative noise (6), which resembles the system given in [18,
19] for a case of stabilising MPC controller. However, our
considered setting has additional multiplicative noise terms of
second order. Due to this resemblance, we will examine how the
techniques presented in [18, 19] can be extended and used in the
sequel to address the current MPC problem.

In MPC, the terminal constraints are usually enforced at the end
of the prediction horizon to ensure feasibility of constraints and
closed-loop stability [24]. However, in the presence of
uncertainties, the same may be difficult due to the propagation of
uncertainties. Alternatively, computationally efficient method has
been addressed in [18, 25], where the augmented formulation of
the prediction dynamics has been employed to handle feasibility
and stability at the beginning of the prediction horizon via one-step
ahead invariance conditions.

Let

z(i |k) = x(i |k) − xS
⊤ f ⊤(i |k)

⊤
,

where f (i |k) = [c⊤(i |k)⋯c⊤(i + N − 1|k)]⊤. Then, the augmented
representation for (6) is given by

z(i + 1|k) = Ψ̄i |k(w)z(i |k) + ν(k + i), (7)

x(i + 1|k) − xS = Φk + ∑
j = 1

np

Φ
~

k jw j(k + i) + ∑
j, m = 1

np

B j
βKm

β w j(k + i)wm(k + i) x(i |k) − xS + B̄k + ∑
j = 1

np

B j
βw j(k + i) c(i |k)

+ δ(k + i) + ∑
j = 1

np

(pk j + β jw j(k + i)) A jxS + B juS ,

(6)
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with

Ψ̄i |k(w) = Ψk + ∑
j = 1

np

Ψ
~

k jw j(k + i)

+ ∑
j, m = 1

np

Ψ
^

jmw j(k + i)wm(k + i),

where

Ψk =
Φk B̄kΓu

⊤

0 𝓜

, Ψ
~

k j =
Φ
~

k j B j
β
Γu

⊤

0 0

,

Ψ
^

jm =
B j

βKm
β

0

0 0

, Γu =

I

0

⋮

0

, 𝓜 =

0 I 0 ⋯ 0

0 0 I ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ 0 I

0 0 ⋯ ⋯ 0

,

ν(k + i) =
δ(k + i) + ∑

j = 1

np

(pk j + β jw j(k + i)) A jxS + B juS

0

.

4 Constraints handling
In this section, first, the probabilistic constraint (4) is handled using
the technique of one-step ahead probabilistic invariance [18, 26].
Then, sufficient conditions for the satisfaction of constraint is given
in terms of linear matrix inequalities (LMIs). According to this
methodology, the constraint (4), for i = 0 (beginning of the
prediction horizon), is rewritten as

Pr |x(0 |k) − xS | ≤ h ≥ α ⟺ Pr 𝓖
⊤z(0 |k) ≤ h

^
≥ α, (8)

where

𝓖
⊤ =

Γx
⊤

−Γx
⊤

, Γx
⊤ = I 0  and h

^
=

h

h
. (9)

 
Remark 4: In the constraint (8), the augmented state at the
beginning of the prediction horizon is forced to belong to an
ellipsoidal set that leads to satisfaction of the constraint (8) via the
machinery of probabilistic invariance. Our objective is to construct
a ℰz ⊂ ℝ

nx + Nnu, such that

z(0 |k) ∈ ℰz ⟹ Pr 𝓖
⊤z(1 |k) ≤ h

^
≥ α, (10)

then the constraint (8) will be ensured at each k. It is intuitively
clear from (10) that, to achieve such a property, set ℰz needs to be
invariant in a probabilistic sense.
 
Definition 1 (Probabilistic invariance [18, 26]: For the augmented
representation (7), a set ℰz is said to be invariant with probability
α, if for every z(0 |k) ∈ ℰz, the next state z(1 |k) belongs to ℰz with
probability α.

Let ℰz = z: z⊤Pzz ≤ 1 , where Pz is a symmetric matrix and
Pz ≻ 0. It is apparent that, for every ℰz, there exists an ellipsoid

ℰx = x − xS: x − xS
⊤Px x − xS ≤ 1 ⊂ ℝ

nx,

with Px = Γx
⊤Pz

−1
Γx

−1
, where Γx is given in (9), Px is a symmetric

matrix and Px ≻ 0. Here, the relation between Px and Pz is
provided in terms of their inverses, which is only for the ease of
computing Pz, via an optimisation problem, given in Section 5.

 
Assumption 4: For wl(k), l ∈ 𝕀1

np and δ(k), it is possible to have
confidence regions 𝒬w and 𝒬v with probability α for all k. This

means that, for l ∈ 𝕀1

np, for k ∈ ℕ,

Pr wl(k) ∈ 𝒬w ≥ α and Pr δ(k) ∈ 𝒬v ≥ α . (11)
For each l ∈ 𝕀1

np, wl(k) is a scalar, and thus without loss of
generality, let 𝒬w be a symmetric interval around the origin with

extremes denoted by wv1 for v1 = 1, 2. Observe that δ(k) is a vector,
and hence we let 𝒬v be a convex polytope with vertices denoted by

δ
v2 for v2 ∈ 𝕀1

nQv. Also, let χ
v3 for v3 = 1, 2, denote an interval vertex

representation with extremes χ
1 = 0 and χ

2 = F χ
−1(α), where F χ

−1( . )
is the inverse cdf of a Chi-square distribution with 1 degree of
freedom. Let P

~
k ≜ ∑ j = 1

np pk j A jxS + B juS  and

νk

v1, v2 =
δ

v2 + P
~

k + ∑
j = 1

np

β j A jxS + B juS w
v1

0

, (12a)

Ψ̄k(w
v1, χ

v3) = Ψk + ∑
j = 1

np

Ψ
~

k jw
v1 + ∑

j, m = 1

np

Ψ
^

jm χ
v3 . (12b)

In (12b), the variable χ
v3 can be understood as a vertex

representation of the second-order noise terms of Ψ̄i |k(w) in (7),
that have Chi-square distribution. We give the following
proposition for the feasibility of the probabilistic constraint (4).
 
Proposition 1: The probabilistic constraint (4) can be satisfied by
the control law (5), if there exist a scalar λ ∈ [0, 1] and a
symmetric matrix Pz

−1 ≻ 0 such that

−λPz
−1

0 Pz
−1

Ψ̄k

⊤(w
v1, χ

v3)

∗ λ − 1 νk

v1, v2
⊤

∗ ∗ −Pz
−1

⪯ 0, (13a)

−(e j
⊤h

^
)2

e j
⊤
𝓖

⊤Pz
−1

∗ −Pz
−1

⪯ 0, (13b)

for v1 = 1, 2, v2 ∈ 𝕀1

nQv and v3 = 1, 2, where νk

v1, v2 and Ψ̄k(w
v1, χ

v3)

are given by (12a) and (12b), respectively, 𝓖⊤ is given by (9), and
e j denotes the jth column of I2nu × 2nu

.
 
Proof: Given in Section 10. □
 
Remark 5: Observe that the computation of Pz in Proposition 1
depends on the set point pair xS, pS, uS . Hence, to avoid the
computational burden of solving this operation on-line, for given
set point pairs xS, pS, uS  corresponding to a sufficiently dense
grid of the operating regime, each Pz can be computed off-line by
solving the optimisation problem 𝒪𝒫2 given in Section 5, and
stored in a lookup table.

5 MPC algorithm
In this section, we present an MPC design algorithm along with its
closed-loop properties. As a first step, we rewrite Jk in terms of the
augmented state variable. Then, an MPC algorithm is provided,
which ensures the closed-loop system stability.
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5.1 Reformulation of the cost function

The cost function Jk in Section 2 is rewritten as

Jk = ∑
i = 0

∞

Si |k, (14a)

Si |k = 𝔼k x(i |k) − xS
⊤Q ⋆ + u(i |k) − uS

⊤R ⋆ , (14b)

where u(i |k) = K̄k x(i |k) − xS  +∑ j = 1
np β jw j(k + i)K j x(i |k) − xS

+uS + c(i |k) and Si |k can be described as a stage cost. It can be
observed from (14b) that the minimum value of the stage cost can
never be made zero, due to the presence of noise covariance
matrices. Since x(i |k) is independent of w j(k + i), it follows that

𝔼k u(i |k) − uS
⊤R ⋆

= 𝔼k x(i |k) − xS
⊤ K̄k

⊤
RK̄k + ∑

j = 1

np

β j
2
K j

⊤RK j ⋆

+ x(i |k) − xS
⊤K̄k

⊤
Rc(i |k)

+c⊤(i |k)RK̄k x(i |k) − xS + c⊤(i |k)R ⋆ ) .

Thus, the cost Jk (14a) is given by

Jk = ∑
i = 0

∞

𝔼k z⊤(i |k)Q
~

k ⋆ , (15)

where

Q
~

k =
Q + K̄k

⊤
RK̄k + ∑

j = 1

np

β j
2
K j

⊤RK j K̄k
⊤

RΓu
⊤

∗ ΓuR ⋆

. (16)

In the sequel, under the assumption of mean square stability of (7)
without additive noise (which is implied by (18) in Proposition 2 in
the sequel), we observe that the stage cost Si |k reaches a non-zero
value asymptotically as i → ∞. This non-zero asymptotical stage
cost is due to the additive noise terms present in the state evolution
(6), whose covariance matrix is non-zero at all time instants. The
cost Jk in (15) can be modified by subtracting the asymptotical
stage cost from each of the terms Si |k for i ≥ 0 [19]. Before
proceeding, we introduce an operator ℒk( . ) as (see (17)) where M
is a matrix of appropriate dimensions and the remaining matrices
are as in (7). Now, we give a proposition to compute the
asymptotical stage cost.
 
Proposition 2: If there exists a symmetric matrix P ≻ 0, such that

ℒk(P) ≺ P, (18)

then for any k ∈ ℕ, limi → ∞ 𝔼k z(i |k) = 0 and
limi → ∞ 𝔼k z(i |k)z⊤(i |k) = Ωk, where Ωk is given by the solution
of the matrix equation

ℒk(Ωk) + Σ
~

δ = Ωk, (19)

with

Σ
~

δ = diag Σδ + P
~

kP
~

k

⊤
+ ∑

j = 1

np

β j
2

A jxS + B juS A jxS + B juS
⊤
,

0 .

 
Proof: Given in Section 10. □
 
Remark 6: Note that in Proposition 2, the expected value of the
augmented state z(i |k) reaches 0 asymptotically as i → ∞, which
also implies that c(i |k), that is to be obtained by solving the MPC
design problem in the sequel, reaches 0 asymptotically. This is to
be expected, since the constraints are satisfied in the steady state.

These observations allow to modify Jk (see (15)) as

∑
i = 0

∞

𝔼k z⊤(i |k)Q
~

k ⋆ − lim
j → ∞

𝔼k z⊤( j |k)Q
~

k ⋆

= ∑
i = 0

∞

𝔼k z⊤(i |k)Q
~

k ⋆ − tr Q
~

kΩk := J
^

k,

(20)

which shows that the modified cost J
^

k is now finite valued. From
Proposition 2, it is clear that 𝔼k[z⊤(i |k)Q

~
kz(i |k)] → tr(Q

~
kΩk) as

i → ∞, which makes J
^

k finite.
The cost function J

^

k can be computed in a tractable way at each
time instant k ∈ ℕ by the following proposition.
 
Proposition 3: The cost J

^

k in (20) is given by

J
^

k =
z(0 |k)

1

⊤

Θk ⋆ , (21)

where

Θk =
Θ11(k) Θ12(k)

Θ12
⊤(k) Θ22(k)

=
ℒk(Θ11(k)) + Q

~
k Ψk

⊤
Θ12(k) + ∑

j = 1

np

Ψ
^

j j

⊤
Θ12(k)

∗ −tr(Θ11(k)Ωk)

.

(22)

 
Proof: Given in Section 10. □

5.2 Design of the stochastic LPV MPC law

In this section, using the reformulated cost in the previous section,
the proposed MPC law is given by Algorithm 1 (see Fig. 1). The
objective of the MPC algorithm is to minimise J

^

k in (20) at each
k ∈ ℕ as provided in Steps 7 and 9 of the algorithm, given
x(k) − xS ∈ ℰx. Since x(0) is the initial state of the system (1), we
consider that x(0) can be suitably initialised to belong to ℰx. In
Algorithm 1 (Fig. 1), z

∗(k − 1) denotes
x⊤(k − 1) − xS

⊤ f
∗⊤(k − 1)

⊤
, where f

∗(k − 1) is the optimum
control input obtained at time k − 1. It ensures that z(0 |k) ∈ ℰz,
which makes z(1 |k) satisfy the probabilistic constraints (4) via
(10). If x(k) − xS ∉ ℰx, then the state must be steered to ℰx by
driving 𝔼k x(1 |k) − xS  towards ℰx, i.e. by minimising the
objective function 𝔼k (x(1 |k) − xS)⊤Px ⋆  (Step 11). This means,
whenever infeasibility occurs at some k ∈ ℕ, the objective shifts to
ensuring feasibility instead of minimising J

^

k. Let the scalar real

ℒk(M) ≜ Ψk
⊤MΨk + ∑

j = 1

np

Ψk
⊤MΨ

^

j j + ∑
j = 1

np

Ψk
⊤MΨ

^

j j

⊤
+ ∑

j = 1

np

Ψ
~

k j

⊤
MΨ

~
k j + 3 ∑

j, l = 1

np

Ψ
^

j j

⊤
MΨ

^

ll + ∑
j, m = 1

np

Ψ
^

jm

⊤
MΨ

^

jm + ∑
j, m = 1

np

Ψ
^

jm

⊤
MΨ

^

mj , (17)
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number ϱ < ∞ and sufficiently large such that the right hand terms
of (24b) and (25) are positive. 

By following similar arguments as in [19, Thoeorem 5], it can
be shown that, under an MPC controller defined by Algorithm 1
(Fig. 1), specifically, by the optimisation in (23), (24a) and
constraints (24b), (25), the closed-loop system (1) is stable in the
following sense:

lim
T → ∞

1
T

∑
k = 0

T

𝔼0

x(k) − xS

f
∗(k)

⊤

Q
~

k ⋆ ≤ ϱ .

Furthermore, if z(0 |k) ∈ ℰz at each k ∈ ℕ, then z(1 |k) satisfies the
probabilistic constraint in (4).

5.3 Selection of the tuning parameters in Algorithm 1 (Fig. 1)

In Algorithm 1 (Fig. 1), at each k ∈ ℕ, one requires the values of
K0, …Knp

, Θk, Pz. Before proceeding, we present a lemma that is
useful in performing off-line computations in the sequel.
 
Lemma 1: Consider that the scheduling signal
p(k) = [p1(k) … pnp

(k)]⊤ varies in a hyper-rectangle
[p11, p21], …, [p1np

, p2np
] . Let

M12(k) = X0 + ∑
j = 1

np

p j(k)X j Y0 + ∑
j = 1

np

p j(k)Y j

+Z0 + ∑
j = 1

np

p j(k)Z j .

Then, for suitable matrices M11, M22, X0, …, Xnp
, Y0, …, Ynp

 and
Z0, …, Znp

,

M11 M12(k)

∗ M22

⪯ 0, (23)

is implied by

𝓕m, n
i, j ≜

1
np

2 M11 M
~

12

∗
1
np

2 M22

⪯ 0,

where M
~

12 = (1/np
2 ) X0Y0 + Z0  +(pmj/np) X0Y j + X jY0 + Z j

+ pmjpniXiY j, for m = 1, 2, n = 1, 2, i ∈ 𝕀1

np and j ∈ 𝕀1

np.
 
Proof: Briefly, the proof is given as follows. Let
p j(k) = ε1 j(k)p1 j + ε2 j(k)p2 j, where ε1 j(k) ≥ 0, ε2 j(k) ≥ 0 and

ε1 j(k) + ε2 j(k) = 1 for all j ∈ 𝕀1

np and for each k ∈ ℕ. Then, one can
readily obtain the result by noting that

∑
i, j = 1

np

∑
m, n = 1

2

εmj(k)εni(k)𝓕m, n
i, j ⪯ 0,

which implies (23). □

Fig. 1  Algorithm 1: Stochastic LPV MPC algorithm
 

IET Control Theory Appl., 2017, Vol. 11 Iss. 12, pp. 1862-1872
© The Institution of Engineering and Technology 2017

1867



Now, we address the computation of K0, …, Knp
, which is

performed off-line. A possible choice for K0, …, Knp
 is by solving

the unconstrained problem of minimising Jk since f (i |k) = 0 for
i ≥ N. Thus, an LPV state-feedback synthesis problem is posed as
follows. Find a symmetric matrix W ≻ 0 that

𝒪𝒫1: max
W−1 ≻ 0, Y0, …, Yn

p

tr(W−1)

s.t. ℒ̄k(W) ≺ W ,

(24)

where Yi = KiW
−1 and

ℒ̄k(W) = Φk
⊤WΦk + ∑

j = 1

np

Φk
⊤WB j

βK j
β + ∑

j = 1

np

Φk
⊤WB j

βK j
β ⊤

+ ∑
j = 1

np

Φ
~

jk

⊤
WΦ

~
jk + Ξk(W),

Ξk(W) = 3 ∑
j, m = 1

np

B j
βK j

β ⊤
W Bm

β Km
β

+ ∑
j, m = 1

np

B j
βKm

β ⊤
W B j

βKm
β

+ ∑
j, m = 1

np

B j
βKm

β ⊤
W Bm

β K j
β ,

for i ∈ 𝕀0

np. The constraint (24) in 𝒪𝒫1 is obtained by the mean
square stabilising condition (18) in the absence of additive
disturbances with c(i |k) = 0.

Since computing K0, …, Knp
 depends on the scheduling signal

p(k), it leads to an infinite dimensional problem due to the need for
verifying the LMI (24) for all possible values of p(k). However,
Lemma 1 can be used to tractably compute K0, …Knp

 for p(k) ∈ 𝒫

by solving a finite set of LMIs.
Once K0, …, Knp

 have been computed, Θk can be obtained from
Proposition 3. Finally, Pz can be selected to maximise the volume
of ℰx as follows:

𝒪𝒫2: max
Pz

−1, λ ∈ [0, 1]
logdet Γx

⊤Pz
−1

Γx

s.t.  (13a) and (13b) .

Note that the computation of Pz in 𝒪𝒫2 depends on the set point
pairs xS, pS, uS  and p(k). Similar to the above reasoning, by using
Lemma 1, for set point pairs (xS, pS, uS), the corresponding Pz can
be computed off-line and stored in a lookup table. This implies that
Step 5 in Algorithm 1 (Fig. 1) should be implemented off-line.
 
Remark 7: In Algorithm 1 (Fig. 1), one requires the off-line values
of the state-feedback gains K0, …, Knp

 and the ellipsoid invariance
matrix Pz. The computational complexity of LMIs in obtaining
K0, …, Knp

 are of order 𝒪(nx
2
np

2 ), thus independent of the prediction
horizon N. However, in computing Pz, the LMIs in 𝒪𝒫1 are of
order 𝒪((nx + N)2). This means that the number of computations
for ensuring feasibility of constraints via obtaining Pz increases as
N increases, which is to be expected. For the optimisations in Step
7, Step 9 and Step 11, theoretically each of them need roughly
𝒪((nx + N)3) iterations.

6 Example
Consider a laboratory setup of a tank system with its schematic
given in Fig. 2. 

A first principle laws-based dynamical model of the process is
given by

ḣ(t) = − az

Av

At

2gh(t) +
1
At

Qi(t) + δ(t), (25)

where h is the liquid level, Qi is the liquid input flow rate,
Qo = 2gh(t)  is the output flow rate, At and Av are the surface
areas of the tank and the connecting pipe, respectively, and az is the
fluid constant for the valves. Here δ(t) denotes the disturbances in
the process, which are modelled as a Gaussian white noise with
zero mean and variance 0.2. The source of these disturbances are
irregularities in the input flow and evaporation/condensation
effects inside the tank itself. The parameter values for the setup
(TTS20 three-tank-system by Gurski-Schramm) are given in Table
1. An LPV representation of (25) can be found as

ḣ(t) = A(p(t))h(t) +
1
At

Qi(t) + δ(t), (26)

where p(t) = 1/ h(t), A(p(t)) = − az(Av/At) 2gp(t). From the
specifications of the tank system, the height of the tank is 70  cm.
Let the initial liquid level of the tank be 36  cm, and hence the
scheduling variable p(t) lie in 𝒫 := [0.1195, 0.1667]. The
corresponding limits on the flow rate are given by
[104.2, 145] cm3/s. By Euler's forward method, the discrete-time
dynamics of (26) with a sampling period T = 5 s is given by

h(k + 1) = (1 + TA(p(k)))h(k) +
T

At

Qi(k) + δ(k), (27)

where A(p(k)) = − az(Av/At) 2gp(k) and δ(k) is a white noise
process with δ(k) ∼ 𝒩(0, 1). Let the liquid level track a step
reference that varies slowly, where hd is the reference level at each
time instant. We choose a large sampling period, which is common
in process control applications; otherwise, small sampling periods
require larger prediction horizons for an effective MPC
performance, which increases the computational burden. 

For each reference level hd, the corresponding flow rate is
denoted as Qid. Due to the presence of disturbances, the liquid level
is probabilistically constrained as

Pr |h(k) − hd | ≤ 2 ≥ 0.85. (28)

Regarding the prediction of the scheduling signal, consider the
probabilistic constraint (2) with G = [1 −1]⊤, H = [0.02 0.02]⊤

Fig. 2  Schematic of a single tank in the three tank system
 

Table 1 Parameter values of the tank system
Parameter Value Unit
At 149 cm2

Av 0.5 cm2

az 0.785

g 980.66 cm/s2
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 and ξ = 0.9, which results in the value of β as 0.0122 from (31) in
the Appendix. Thus, using this β in (3), one can observe a tractable
prediction via (3) of the scheduling variations defined by (2). Also
the cost function Jk in (14a) is given with x(i |k) = h(i |k) − hd and
u(i |k) = Qi(i |k) − Qid. The state-feedback control law is

Qi(i |k) = K0 + K1p(i |k) h(i |k) − hd + Qid + c(i |k) . (29)

By 𝒪𝒫1 and Lemma 1, the state-feedback gains are calculated off-
line as K0 = − 29.88 and K1 = 17.62. By 𝒪𝒫2 and Lemma 1, Pz

−1

and Px
−1 can be obtained for each reference pair hd, Qid  and stored

in a lookup table. Let N = 5, Q = 1 and R = 1. For a given
reference profile, by solving Algorithm 1 (Fig. 1) via computer
simulations, six sample realisations of the flow rate, the
corresponding liquid levels and the scheduling functions are given
in Figs. 3–5. 

It can be roughly observed from Fig. 3 that the flow rates vary
around 110 and 123 cm3/s, which correspond to the set point liquid
levels 40 and 50 cm (see Fig. 4), respectively. Also, one can
qualitatively observe the occasional constraint violations from Fig.
4, where the red coloured line indicates a reference profile for the
liquid level and the dashed green coloured lines indicate the
allowed limits by the probabilistic constraint (28). Due to
fluctuations in the liquid level, one can also apparently observe the
fluctuations in the scheduling function in Fig. 5. For 100 different
noise realisations, we perform the same experiment with the same
initial condition and obtain the average (over 100 realisations)
constraint violation points as 81 with minimum 74 and maximum
96 (on a time scale of 500 points). To examine the probabilistic
invariance (10), we consider 1000 different realisations of the noise
and the initial state x(0) that belongs to ℰx, and observe that x(1)
belongs to ℰx 876 times (giving a sample estimate of the
probability 0.876 which is close to 0.85).

7 Conclusion
In this article, we addressed stochastic model predictive tracking of
piecewise constant reference signals for linear parameter-varying
systems subject to additive stochastic uncertainties. Due to the
assumed affine, parameter-dependent state-space representation
and stochastic formulation of the scheduling signal, the overall
system consists of additive and multiplicative noises up to second
order. Probabilistic constraints are addressed via probabilistic
invariance by solving a set of linear matrix inequalities. The
control law is considered to have an affine state-feedback
formulation, where the state feedback gains, computed off-line,
ensure closed-loop system stability while the affine terms,
computed on-line, solve the given MPC problem. We showed that,
under the given control law, closed-loop system stability and
feasibility are satisfied while solving the MPC problem.
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10 Appendix
 
10.1 Computation of β in (3)

Notice that, in (3), the elements of β are unknown variables, which
needs to be computed such that the probabilistic constraint (2) is
satisfied. To proceed, two cases are considered.

Case 1: Scalar valued p(k): Since we consider the tube Ω

centred at p(k), the constraint (2) can be interpreted for np = 1 as

Pr{ − ϖ ≤ (p(i |k) − p(k)) ≤ ϖ ∣ p(k)} ≥ ξ, (30)

where G = [1 −1]⊤ and H = [ϖ ϖ]⊤ for some known ϖ > 0.
Thus,

Pr{ − ϖ ≤ (p(i |k) − p(k)) ≤ ϖ ∣ p(k)}
≥ ξ ⟺ Pr{ − ϖ ≤ βw(k + i) ≤ ϖ} ≥ ξ

⟺ Fw

ϖ

β
≥

ξ + 1
2

⟺
ϖ

β
≥ Fw

−1 ξ + 1
2

,
(31)

where Fw( . ) and Fw
−1( . ) are the cdf and the inverse cdf of the

normal random variable, respectively.

Case 2: Vector-valued p(k): In this case, by the arguments given
in [27], we obtain the following sufficient condition to satisfy (2):

e j
⊤δ

2
Gββ⊤G⊤e j ≤ e j

⊤H
2

⟹ Pr{G(p(k + i) − p(k)) ≤ H ∣ p(k)} ≥ ξ,
(32)

where e j denotes the jth column of I ⋅ × ⋅ and δ is Fnp, Chi
−1 (ξ), where

Fnp, Chi
−1 ( . ) is the inverse Chi-square cdf with np degrees of freedom.

Thus, β can be computed from (31) or (32) subsequently.
Observe the equivalence and sufficiency in (31) and (32),
respectively; the sufficiency in (32) is due to the type of joint
probabilistic constraint (2).

10.2 Proof of Proposition 1

First, we address the probabilistic invariance of ℰz, which means
that we would like to obtain a condition for

z(0 |k) ∈ ℰz ⟹ Pr z(1 |k) ∈ ℰz ≥ α,

z(0 |k)⊤Pz ⋆ ≤ 1 ⟹ Pr z(1 |k)⊤Pz ⋆ ≥ α .
(33)

From (11), the probabilistic constraint Pr z(1 |k)⊤Pz ⋆ ≥ α can be
ensured if

Ψ̄k(w
v1, χ

v3)z(0 |k) + νk

v1, v2
⊤

Pz ⋆ ≤ 1, (34)

for v1 = 1, 2, v2 ∈ 𝕀1

nQv and v3 = 1, 2. To guarantee that ℰz is
invariant with probability α, it is sufficient to ensure that
z⊤(0 |k)Pz ⋆ ≤ 1 implies (34). By applying the 𝒮-procedure with
the parameter λ ≥ 0, we get

Ψ̄k(w
v1, χ

v3)z(0 |k) + νk

v1, v2
⊤

Pz ⋆ − 1

−λ z⊤(0 |k)Pz ⋆ − 1 ≤ 0.
(35)

Let P
~

11 = Ψ̄k

⊤(w
v1, χ

v3)Pz ⋆ − λPz, P
~

12 = Ψ̄k

⊤(w
v1, χ

v3)Pzν
v1, v2 and

P
~

22 = νk

v1, v2
⊤

Pz ⋆ + λ − 1. Now (35) can be rewritten as

z(0 |k)

1

⊤ P
~

11 P
~

12

∗ P
~

22

⋆ ≤ 0,

which holds iff

P
~

11 P
~

12

∗ P
~

22

⪯ 0 . (36)

As Pz ≻ 0, by Schur complement, (36) is equivalent to

−λPz 0 Ψ̄k

⊤(w
v1, χ

v3)

∗ λ − 1 νk

v1, v2
⊤

∗ ∗ −Pz
−1

⪯ 0 . (37)

Multiplying both sides of (37) with diag Pz
−1, 1, I  (congruence

transformation) gives (13a). To guarantee the probabilistic
constraint (4), it is sufficient to ensure

z(1 |k): z⊤(1 |k)Pz ⋆ ≤ 1 ⊆ z(1 |k):𝓖
⊤z(1 |k) ≤ h

^
.

The above constraint of bounding an ellipsoid inside a convex
polytope can be readily implied by

e j
⊤
𝓖

⊤Pz
−1

𝓖e j ≤ (e j
⊤h

^
)2 .

Applying the Schur complement to the above inequality leads to
(13b), which completes the proof.

10.3 Proof of Proposition 2

Let z(i |k) = γ(i |k) + φ(i |k); then the dynamics of (7) can be
represented by

γ(i + 1|k) = Ψ̄i |k(w)γ(i |k),

φ(i + 1|k) = Ψ̄i |k(w)φ(i |k) + ν(k + i),
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with γ(0 |k) = z(0 |k) and φ(0 |k) = 0. First, we find the asymptotic
value of 𝔼k γ(i |k)γ⊤(i |k)  as i → ∞. Consider a stochastic
Lyapunov function with a symmetric matrix P ≻ 0,

𝔼k γ⊤(i + 1|k)Pγ(i + 1|k) = 𝔼k γ⊤(i |k)Ψ̄i |k

⊤ (w)PΨ̄i |k(w)γ(i |k)

= 𝔼k γ⊤(i |k)Δ
~

kγ(i |k) ,
(38)

where

Δ
~

k = Ψk
⊤PΨk + Ψk

⊤P ∑
j = 1

np

Ψ
^

j j + ∑
j = 1

np

Ψ
^

j j

⊤
PΨk + ∑

j = 1

np

Ψ
~

k j

⊤
PΨ

~
k j

+ ∑
j, m, l, h = 1

np

Ψ
^

jm

⊤
PΨ

^

lh δ jmδlh + δ jlδmh + δ jhδml 𝔼 w
4 ,

and w ∼ 𝒩(0, 1). Since 𝔼 w
4 = 3, after simplification,

𝔼k γ⊤(i + 1|k)Pγ(i + 1|k) = 𝔼k γ⊤(i |k)ℒk(P)γ(i |k) ,

where ℒk is defined by (17). By (18),

𝔼k γ⊤(i + 1|k)Pγ(i + 1|k) ≺ 𝔼k γ⊤(i |k)Pγ(i |k) .

Since P ≻ 0, it implies limi → ∞ 𝔼k γ(i |k)γ⊤(i |k) = 0, thus
limi → ∞ 𝔼k γ(i |k) = 0. Also notice that 𝔼k φ(i |k) = 0, which
implies that limi → ∞ 𝔼k φ(i |k) = 0. Thus limi → ∞ 𝔼k z(i |k) = 0.
Next, we find the asymptotic value of 𝔼k φ(i |k)φ⊤(i |k)  as i → ∞.
Consider

𝔼k φ(i + 1|k)φ⊤(i + 1|k)

= 𝔼k Ψ̄i |k(w)φ(i |k)φ⊤(i |k)Ψ̄i |k

⊤ (w) + Ψ̄i |k(w)φ(i |k)ν⊤(k + i)

+ν(k + i)φ⊤(i |k)Ψ̄i |k

⊤ (w) + ν(k + i)ν⊤(k + i) .

Since Ψ̄i |k(w), φ(i |k) and ν(k + i) are independent,

𝔼k φ(i + 1|k)φ⊤(i + 1|k)

= 𝔼k Ψ̄i |k(w)φ(i |k)φ⊤(i |k)Ψ̄i |k

⊤ (w) + Σ
~

δ,
(39)

where

Σ
~

δ = diag Σδ + P
~

kP
~

k

⊤
+ ∑

j

β j
2

A jxS + B juS A jxS + B juS
⊤
, 0 .

By following a similar simplification as in (38), equation (39) can
be expressed as

𝔼k φ(i + 1|k)φ⊤(i + 1|k) = ℒk(𝔼k φ(i |k)φ⊤(i |k) ) + Σ
~

δ .

Now let Ω̄i |k ≜ 𝔼k φ(i |k)φ⊤(i |k) − Ωk, and thus

Ω̄i + 1|k = 𝔼k φ(i + 1|k)φ⊤(i + 1|k) − Ωk

= ℒk 𝔼k φ(i |k)φ⊤(i |k) + Σ
~

δ − Ωk

= ℒk(Ω̄i |k + Ωk) + Σ
~

δ − Ωk .

Since the operator ℒk( . ) is linear,
ℒk(Ω̄i |k + Ωk) = ℒk(Ω̄i |k) + ℒk(Ωk). Thus

Ω̄i + 1|k = ℒk(Ω̄i |k) + ℒk(Ωk) + Σ
~

δ − Ωk .

From (19), we arrive at Ω̄i + 1|k = ℒk(Ω̄i |k). From (18), it can be
readily concluded that Ω̄i |k  is a decreasing sequence in i. Thus,

limi → ∞ Ω̄i |k = 0. This implies that
limi → ∞ 𝔼k φ(i |k)φ⊤(i |k) = Ωk, and hence
limi → ∞ 𝔼k z(i |k)z⊤(i |k) = Ωk.

10.4 Proof of Proposition 3

Let
g(i |k) = z⊤(i |k)Θ11(k)z(i |k) + z⊤(i |k)Θ12(k) + Θ12

⊤(k)z(i |k) + Θ22(k).
This implies that
g(i |k) = z⊤(i |k)Θ11(k)z(i |k) + 2Θ12

⊤(k)z(i |k) + Θ22(k). Consider,

𝔼k g(i |k) − 𝔼k g(i + 1|k)

= 𝔼k z⊤(i |k)Θ11(k) ⋆ + 2Θ12
⊤(k)z(i |k) + Θ22(k)

−𝔼k z⊤(i + 1|k)Θ11(k) ⋆ + 2Θ12
⊤(k)z(i + 1|k) + Θ22(k) .

(40)

To simplify (40), consider the term

z⊤(i + 1|k)Θ11(k) ⋆ = 𝔼k Ψ̄i |k(w)z(i |k) + ν(k + i) ⊤
Θ11(k) ⋆

= 𝔼k Ψ̄i |k(w)z(i |k) ⊤
Θ11(k) ⋆ + ν⊤(k + i)Θ11(k)

By following a similar simplification as in (38),

𝔼k z⊤(i + 1|k)Θ11(k) ⋆

= 𝔼k z⊤(i |k)ℒk(Θ11(k))z(i |k) + tr Θ11(k)Σ
~

δ .
(41)

Also, consider the term

𝔼k Θ12
⊤(k)z(i + 1|k)

= 𝔼k Θ12
⊤(k) Ψ̄i |k(w)z(i |k) + ν(k + i)

= 𝔼k Θ12
⊤(k)Ψk + Θ12

⊤(k) ∑
j = 1

np

Ψ
^

j j z(i |k) .

(42)

Thus, by (41) and (42), we can simplify (40) as

𝔼k g(i |k) − 𝔼k g(i + 1|k)

= 𝔼k z⊤(i |k) Θ11(k) − ℒk(Θ11(k)) z(i |k) + 2 Θ12
⊤(k)

−Θ12
⊤(k)Ψk − Θ12

⊤(k) ∑
j = 1

np

Ψ
^

j j z(i |k) − tr Θ11(k)Σ
~

δ .

From (22), we obtain
𝔼k g(i |k) − 𝔼k g(i + 1|k) = 𝔼k z⊤(i |k)Q

~
kz(i |k) − tr Θ11(k)Σ

~
δ .

Now, again from (22), multiplying (19) by Θ11(k) on the right side
and applying the trace operator, we obtain

tr ℒk(Ωk)Θ11(k) + tr Σ
~

δΘ11(k) = tr ΩkΘ11(k) ,

tr Ωkℒk(Θ11(k)) + tr Σ
~

δΘ11(k) = tr ΩkΘ11(k) ,

tr Σ
~

δΘ11(k) = tr ΩkQ
~

k .

(43)

Thus, using (43), we have

𝔼k[g(i |k)] − 𝔼k[g(i + 1|k)]

= 𝔼k z⊤(i |k)Q
~

kz(i |k) − tr ΩkQ
~

k .

By recursively adding the above equation for i ≥ 0,

g(0 |k) − lim
i → ∞

𝔼k g(i |k)

= ∑
i = 0

∞

𝔼k z⊤(i |k)Q
~

kz(i |k) − tr ΩkQ
~

k = J
^

k .

Now, consider
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lim
→ ∞

𝔼k g(i |k) = lim
i → ∞

𝔼k z⊤(i |k)Θ11(k)z(i |k) + 2Θ12
⊤(k)z(i |k) + Θ22(k

= tr(Θ11(k)Ωk) + Θ22(k) .

From (22), we obtain that limi → ∞ 𝔼k g(i |k) = 0. Thus, the cost J
^

k

equals to g(0 |k), which completes the proof.
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