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Cargo transport through the nuclear pore complex continues to be a subject of considerable interest

to experimentalists and theorists alike. Several recent studies have revealed details of the process that

have still to be fully understood, among them the apparent nonlinearity between cargo size and the

pore crossing time, the skewed, asymmetric nature of the distribution of such crossing times, and the

non-exponentiality in the decay profile of the dynamic autocorrelation function of cargo positions. In

this paper, we show that a model of pore transport based on subdiffusive particle motion is in quali-

tative agreement with many of these observations. The model corresponds to a process of stochastic

binding and release of the particle as it moves through the channel. It suggests that the phenylalanine-

glycine repeat units that form an entangled polymer mesh across the channel may be involved in

translocation, since these units have the potential to intermittently bind to hydrophobic receptor sites

on the transporter protein. © 2011 American Institute of Physics. [doi:10.1063/1.3651100]

I. INTRODUCTION

In living cells, the selective transport of macromolecules

across the barrier separating the cytoplasm from the nucleus is

mediated by an assembly of transmembrane proteins (called

the nuclear pore complex or NPC) that nicely illustrates Na-

ture’s precision engineering.1 But we still do not fully un-

derstand how this roughly 90 nm long hour-glass structure

that is about 70 nm wide at its ends and 45 nm at its waist

discriminates between different molecules, letting some go

through and blocking out others. We do know that molecules

with masses of 20–40 kDa and sizes less than about 9 nm get

across the channel by simple diffusion, and that molecules

with masses greater than 40 kDa and sizes of about 32–36 nm

are either turned back or are actively helped across by a mech-

anism that seems to be tied up with the hydrophobic protein

mesh that lines the pore walls and intrudes into its lumen.2

The role of cargo size is, in fact, one aspect of transport

through the channel that remains somewhat obscure. For in-

stance, simulations by Moussavi-Baygi et al.3 and Mincer and

Simon4 have shown, using coarse-grained models of the NPC

that incorporate a range of structural features with varying

degrees of fidelity to the actual architecture of the pore, that

above a certain threshold value the mean first passage time

(MFPT) to cross the channel varies nonlinearly with the size

of the cargo. Had simple diffusion been the underlying mech-

anism of transport, however (and assuming negligible con-

finement effects), one would have expected the variation to be

linear. Other aspects of the transport process do not seem to

conform to a simple diffusion model either. In particular, re-

cent single-particle tracking experiments by Lowe et al.5 have

found that the mean square displacement (MSD) of cargo par-

ticles is a sublinear function of the time. The observation of a

wide distribution of dwell times in these experiments as well

as in the most recent simulations of Moussavi-Baygi et al.6

a)Author to whom correspondence should be addressed. Electronic mail:
cherayil@ipc.iisc.ernet.in.

also seems to militate against a mechanism based on simple

diffusion. On the other hand, Hermann et al.7 have shown

from experiments on the fluorescence intensity correlation

function of labeled transporter proteins passing through free-

standing NPCs that simple diffusion can account for the time

dependence of fluctuations in cargo positions. That simple

diffusion seems to explain some findings but not others may

indicate that the actual transport mechanism is more general.

In this paper, we should like to suggest that, in fact, the

mechanism involves subdiffusion. As is well-known subdif-

fusive motion is characterized by mean square particle dis-

placements that vary sublinearly with time.8 It typically oc-

curs in viscoelastic media, such as polymer solutions, where

thermal fluctuations tend to be correlated over long periods

of time, and it can be explained on the basis of a continu-

ous time random walk model (CTRW) in which the waiting

time between successive steps in the walk is governed by a

power law distribution.9 Physically, subdiffusion may be vi-

sualized in terms of the motion of a diffusing particle that is

trapped every now and then, and then freed after a random

interval that is drawn from a distribution of algebraically de-

caying times. Transporter proteins do have sites that can bind

to the hydrophobic-rich regions of the phenylalanine-glycine

residues in the polymer brush that straddles the pore,10 so

stochastic binding and release is a plausible scenario for how

the proteins are ferried across the channel.

In the formalism of CTRWs with power law waiting

times, the probability density function of particle positions

at time t is governed by an equation that contains fractional

time derivatives9 and that is a generalization of the ordinary

Smoluchowski equation. If the NPC is idealized as a hol-

low cylinder (as was recently done by Licata and Grill11 in a

model based on intermittent attachment to the walls of a cylin-

der), the solution of this generalized Smoluchowski equation

under appropriate boundary conditions can, in principle, be

used to calculate various statistical properties of the trans-

port process. But if the MFPT is calculated in this way, us-

ing CTRWs, the result can be shown to diverge.12 So the

0021-9606/2011/135(15)/155101/8/$30.00 © 2011 American Institute of Physics135, 155101-1
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CTRW approach does not really work as a model of transport

through the NPC, even though the physics that underlies it—

random motion interrupted by random waiting times, leading

to subdiffusion—seems reasonable.

But there are other routes to subdiffusion. In particular,

it can be produced when the random forces that drive par-

ticle motion originate in fractional Gaussian noise13 (fGn),

and are therefore power law correlated in time. When this is

the case, the probability density function for particle positions

evolves by another variant of the Smoluchowski equation, one

in which the diffusion coefficient is time dependent.14 In a

cylindrical domain, this generalized Smoluchowski equation,

like the CTRW approach, should be able to serve as a model

of transport through the NPC, since it is also built around the

notion of subdiffusion. This is a possibility we explore in this

paper, following the general methods discussed by Licata and

Grill in Ref. 11 and Chaudhury and Cherayil in Ref. 15. In

particular, we use the model to calculate the MSD, the MFPT,

the MFPT distribution, and the fluorescence intensity corre-

lation function. From our results, we draw some general con-

clusions about transport through the NPC.

Section II sets down the generalized Langevin equation

(in Cartesian coordinates) that forms the basis of our theo-

retical analysis. This equation is used to derive expressions

for the MSD and the equation for the evolution of the proba-

bility density of particle positions, a Smoluchowski equation.

After a transformation to cylindrical coordinates, the Smolu-

chowski equation is solved under suitable boundary condi-

tions in Sec. III, and then used to determine, first, the MFPT

to cross the cylinder and the MFPT distribution, and next, in

Sec. IV, the dynamic autocorrelation function of fluorescence

intensity fluctuations. We discuss these results in Sec. V.

II. THEORETICAL FORMALISM

In general, the dynamics of a particle moving through

a fluid under the action of random thermal forces can be

described by a simple Langevin equation. If the fluid is vis-

coelastic, however, as we assume is the case for the medium

within the NPC, the dynamics are better described by the fol-

lowing generalized Langevin equation (GLE)16

mẍi(t) =−ζ

∫ t

0

dt ′K(t − t ′)ẋi(t
′) + θi(t), i = 1, 2, 3, (1)

where xi(t) is the ith component (in Cartesian coordinates)

of the position of a particle at time t, m is its mass, θ i(t)

is the ith component of the random force at time t, ζ is

a generalized friction coefficient, and K(t − t′) is a mem-

ory function. The random force and the memory function

are related by a fluctuation-dissipation theorem: 〈θ i(t)θ j(t
′)〉

= ζkBTK(|t − t′|)δij, with kB the Boltzmann constant and T

the absolute temperature. In the present calculations, we take

the random force to correspond to fGn, which means that for t

> 0, K(t) = 2H(2H − 1)|t|2H − 2, where H, the so-called Hurst

index, is a real number between 1/2 and 1 that provides a

measure of how strongly successive random forces are corre-

lated with each other in time. The larger the H, the greater the

correlation.

The mean square displacement of a particle that obeys

Eq. (1) has been determined earlier in one dimension;15 in

three dimensions, the corresponding expression (GLE) is

〈δx
2(t)〉 = 6

∫ t

0

dt ′D(t ′), (2a)

where δx(t) = x(t) − x(0) and D(t) are the effective dif-

fusion coefficient alluded to in the Introduction, which can

be shown15 to have the explicit form D(t) = (kBT/m)tE2H, 2[

− (t/τ )2H]. Here, Ea,b(−z) ≡
∑∞

k=0 (−z)k/Ŵ(ak + b) is the

generalized Mittag-Leffler function, Ŵ(x) is the gamma func-

tion, and τ ≡ (m/ζŴ(2H + 1))1/2H. The integral in Eq. (2a) can

actually be evaluated in closed form,15 after which 〈δx2(t)〉 is

reduced to

〈(δx(t)2〉 =
6kBT

m
t2E2H,3[−(t/τ )2H ], (2b)

or in dimensionless form to

〈(δx(t)2〉/6l2 = t̄2E2H,3[−t̄2H ], (2c)

where l ≡
√

kBT τ 2/m and t̄ ≡ t/τ . For large values of its

argument, the Mittag-Leffler function behaves asymptotically

as17 Ea,b(−z) ∼ 1/zŴ(b − a), so in the long time limit, that

is, when t/τ ≫1, 〈δx(t)2〉 ∼ t2−2H . In other words, when H

	= 1/2, the motion of the particle is subdiffusive, which is the

behavior we believe is characteristic of a transport mechanism

based on stochastic binding and release. (When H = 1/2, the

motion is, of course, diffusive, and D(t) → kBT/ζ = D0.)

For the purposes of calculating a MFPT, or a first pas-

sage time distribution, or a time correlation function, what

is needed is not the equation of motion of the particle itself,

but the equation for the evolution of its probability density

function, P(x, t), defined as P(x, t) = 〈δ(x − x(t)〉, where the

angular brackets denote an average over different realizations

of the noise, and of the initial equilibrium state of the system.

The conversion of Eq. (1) to an equivalent equation for P(x,

t) is a fairly standard exercise in functional calculus18 and has

been worked out earlier.15 We therefore report only the final

result, which is

∂P (x, t)

∂t
= D(t)∇2

xP (x, t), (3)

with D(t) defined above. Equation (3) must be solved subject

to boundary and initial conditions appropriate to the cylindri-

cal geometry we have assumed for the NPC channel. Because

of the radial symmetry of the problem, it proves convenient

to seek the solution in cylindrical coordinates (r, ϕ, z) rather

than Cartesian coordinates (x, y, z). The relation between the

two is defined by

x = r cos ϕ, y = r sin ϕ, z = z, (4)

where 0 ≤ r ≤ ∞, 0 ≤ ϕ ≤ 2π , and 0 ≤ z ≤ ∞. In cylindrical

coordinates, Eq. (3) is

[

∂

∂t
−D(t)

{

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2

}]

P (r, ϕ, z, t) = 0.

(5)
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For the calculation of the MFPT, we impose the following

boundary conditions on the solution of Eq. (5):

∂P

∂z

∣

∣

∣

∣

z=0

= 0,
∂P

∂r

∣

∣

∣

∣

r=R

= 0, and P |z=L = 0 (6a)

Here L is the length of the cylinder and R is its radius. The first

condition in Eq. (6a) corresponds to reflection at the plane z

= 0, the second to reflection at the cylinder walls (located at

r = R), and the last to absorption at the plane z = L. (In the

calculations of Licata and Grill,11 the second of the conditions

in Eq. (6a) was replaced by the absorption condition P(r = R)

= 0 in order to model a cylinder with sticky walls.) Equation

(6a) is supplemented by the initial condition

P (r, ϕ, z, 0) =
1

r
δ(r − r0)δ(ϕ − ϕ0)δ(z − z0). (6b)

For the calculation of the intensity autocorrelation function,

the boundary conditions are

∂P

∂z

∣

∣

∣

∣

z=0

= 0,
∂P

∂r

∣

∣

∣

∣

r=R

= 0, and
∂P

∂z

∣

∣

∣

∣

z=L

= 0, (7)

the initial condition remaining the same. The reflecting

boundary condition at z = L is introduced to ensure that there

is an equilibrium distribution of particles at long times.

III. THE MEAN FIRST PASSAGE TIME AND ITS
DISTRIBUTION

To solve Eq. (5) with the boundary conditions of Eq. (6a)

and the initial condition of Eq. (6b), we first expand P(r, ϕ, z,

t) in a complete set of eigenfunctions:

P (r,ϕ,z,t)=
∑

m1

∑

n1

∑

k1

Am1n1k1
eim1ϕJm1

(ym1n1
r/R)

× cos[(2k1+1)πz/2L] exp

[

−λm1n1k1

∫ t

0

dt ′D(t ′)

]

,

(8)

where Jm1
(x) is the Bessel function of order m1, ym1n1

is the

n1th zero of J ′
m1

(x), i.e., J ′
m1

(ym1n1
) = 0, the prime denoting

differentiation, and Am1n1k1
and λm1n1k1

are unknown constants

to be determined. The eigenvalues λm1n1k1
are found by sub-

stituting Eq. (8) into Eq. (5), and using the relation Jν ′′ (x)

+ (1/x)Jν ′ (x) + (1 − ν2/x2)Jν(x) = 0 (Ref. 19) to simplify

the expression; the result is

λm1n1k1
=

(ym1n1

R

)2

+

(

(2k1 + 1)π

2L

)2

. (9)

The parameters Am1n1k1
are found from the initial condition

applied to Eq. (8), which yields

1

r
δ(r − r0)δ(ϕ − ϕ0)δ(z − z0)

=
∑

m1

∑

n1

∑

k1

Am1n1k1
eim1ϕJm1

(ym1n1
r/R)

× cos[(2k1 + 1)πz/2L). (10)

This expression is multiplied by re−im2ϕJm2
(ym2n2

r/R)

cos[(2k2 + 1)πz/2L] and then integrated over ϕ from 0 to 2π ,

over r from 0 to R, and over z from 0 to L. The integrals over

ϕ and z on the right hand side of the equation are elementary;

they produce 2πδm1m2
and Lδk1k2

/2, respectively. The integral

over r, subject to the condition J ′
m2

(ym2n2
) = 0, is given by

∫ R

0

drrJm2
(ym2n1

r/R)Jm2
(ym2n2

r/R)

=
R2

2
δn1n2

(

1 −
m2

2

y2
m2n2

)

J 2
m2

(ym2n2
). (11)

From these results, one easily finds Am1n1k1
, and after substi-

tuting it back into the expression for P(r, ϕ, z, t), one finally

obtains

P (r, ϕ, z, t |r0, ϕ0, z0)

=
2

πLR2

∑

mnk

y2
mn

(y2
mn − m2)J 2

m(ymn)
eim(ϕ−ϕ0)Jm(ymnr/R)

×Jm(ymnr0/R) cos[(2k+1)πz/2L] cos[(2k+1)πz0/2L]

× exp

[

−λmnk

∫ t

0

dt ′D(t ′)

]

. (12)

The probability that a particle starting from r0, ϕ0, z0 is not

absorbed at time t is given by20

S(t |r0, ϕ0, z0) =

∫ 2π

0

dϕ

∫ R

0

drr

∫ L

0

dzP (r, ϕ, z, t |r0, ϕ0, z0).

(13)

The function S is, of course, the survival probability, and it

can be further simplified to

S(t) =
8

π

∑

n,k

(−1)k

(2k + 1)

J1(y0n)

y0nJ
2
0 (y0n)

exp

[

−λ0nk

∫ t

0

dt ′D(t ′)

]

,

(14)

if one assumes for convenience that r0 = z0 = 0. (It might

seem more realistic to set r0 to its equilibrium average

value, but if the distribution of r0 in the interval between

0 and R is assumed to be uniform, as is reasonable, one

can show that the final results are unchanged from those

obtained with the choice r0 = 0.) Both the mean first passage

time tMFPT and the distribution of first passage times f(t)

can be calculated from S(t), the former using the relation

tMFPT =
∫ ∞

0
dtS(t) and the latter the relation f(t) = −∂S(t)/∂t.

The evaluation of the derivative of S(t) is trivial, but in order

to normalize f(t), the integral N1 ≡
∫ ∞

0
dtf (t) must be

evaluated too. This is done by introducing the change of

variable x =
∫ t

0
dt ′D(t ′) into the integral, whereupon N1 be-

comes N1 = (8/π )
∑

n,k (−1)kJ1(y0n)/(2k + 1)y0nJ
2
0 (y0n).

Since ymn is the nth zero of Jm′ (x), and since, in gen-

eral, J0′ (x) = −J1(x), the zeros of J0′ (x) are also the

zeros of J1(x). Now the first zero of J1(x) is 0, and J1(x)

= (x/2)(1 − x2/8 + O(x4)) for small x; therefore, all but the

first term in the expansion of N1 over n vanish. Thus, N1

reduces to N1 = (4/π )
∑

k=0 (−1)k/(2k + 1) = 1. Hence, in
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dimensionless variables, we get the exact result

f (t)

(πkBTτ/mL2)
= t̄E2H,2[−t̄2H ]

∑

k=0

(−1)k(2k + 1)

× exp

[

−

(

(2k+1)π

2

)2(
l

L

)2

t̄2E2H,3[−t̄2H ]

]

,

(15)

where the parameters l and t̄ have been defined after Eq. (2c).

The evaluation of tMFPT cannot similarly be done exactly,

but a closed form expression for this quantity can be obtained

in the long time limit t/τ ≫1, where the asymptotic expansion

of the Mittag-Leffler function can be introduced. In this way,

one can show that

tMFPT =
Ŵ(q + 1)

π

(

ζL2Ŵ(2H + 1)Ŵ(3 − 2H )

4π2kBT

)q

×

[

ζ

(

p,
1

4

)

− ζ

(

p,
3

4

)]

, (16)

where q = 1/(2 − 2H), p = (2 − H)/(1 − H),

and ζ (a, b) is the generalized zeta function, defined as

ζ (a, b) ≡
∑∞

k=0 (k + b)−a; it appears by way of the sum
∑∞

k=0 (−1)k/(2k + 1)p, which has been evaluated in closed

form by MATHEMATICA.21

IV. THE INTENSITY CORRELATION FUNCTION

Fluctuations in the fluorescence intensity of labeled

transporter proteins passing through single NPCs can also

serve as a probe of transmembrane transport. Such fluctua-

tions have been monitored by Hermann et al.7 using near-

field scanning optical microscopy (NSOM) (Ref. 22) com-

bined with fluorescence correlation spectroscopy (FCS).23 In

these experiments, the intensity F of the fluorescence emit-

ted by the diffusing particles varies randomly with time (as a

result of Brownian motion) and is proportional to the inten-

sity I of the exciting light at a given location. I decays expo-

nentially with distance from the excitation source, which is

placed directly above the opening of the NPC. At time t, the

deviation δF(t) of the emitted intensity from the mean 〈F(t)〉

is given by δF(t) = F(t) − 〈F(t)〉 = C3[I(t) − 〈I(t)〉], where C3

is a proportionality constant. The normalized time correlation

function G(t) of the emission fluctuation intensity, which is

the quantity measured experimentally, is thus given by

G(t) =
〈δI (t)δI (0)〉

〈I (0)〉2
=

〈I (t)I (0)〉 − 〈I (t)〉 〈I (0)〉

〈I (0)〉2
, (17)

where

〈I (t)I (0)〉 = I 2
0

∫ R

0

drr

∫ 2π

0

dϕ

∫ L

0

dz

∫ R

0

dr0r0

∫ 2π

0

dϕ0

∫ L

0

dz0

×I (z)P (r, ϕ, z.t |r0, ϕ0, z0)I (z0)Peq(r0, ϕ0, z0),

(18)

I0 is the light intensity at z = 0,

〈I (t)〉 = 〈I (0)〉 = I0

∫ R

0

drr

∫ 2π

0

dϕ

∫ L

0

dzI (z)Peq(r, ϕ, z),

(19)

with Peq(r, ϕ, z) = lim
t→∞

P (r, ϕ, z, t |r0, ϕ0, z0), and we have

assumed, following Hermann et al.,7 that the emitted light

intensity varies only along the axis of the NPC, and that it

can be described by the function I(z) = I0e−z/d, d being some

characteristic distance.

The probability density function P(r, ϕ, z.t|r0, ϕ0, z0) that

is needed in the evaluation of Eq. (18) is obtained from the so-

lution of Eq. (5) under the boundary conditions of Eq. (7) and

the initial condition of Eq. (6b). Following the eigenfunction

expansion method discussed earlier, we can show that it is

given by

P (r, ϕ, z, t |r0, ϕ0, z0)

=
2

πLR2

∑

mnk

y2
mn

(y2
mn − m2)J 2

m(ymn)
eim(ϕ−ϕ0)Jm(ymnr/R)

×Jm(ymnr0/R) cos(kπz/L) cos(kπz0/L)

× exp

[

−χmnk

∫ t

0

dt ′D(t ′)

]

, (20a)

where

χmnk =

(ymn

R

)2

+

(

kπ

L

)2

. (20b)

We can also show from the long time limit of Eq. (20a) that

Peq(r, ϕ, z) =
2

πR2L
. (21)

Using these results in Eq. (18), along with standard or tabu-

lated integrals, we find that

〈I (t)I (0)〉=
16I 2

0

L2

[

d2

4
(1−e−L/d )2+

∑

k 	=0

d2(1−(−1)ke−L/d )2

4(1+d2k2π2/L2)2

× exp

(

−χ01k

∫ t

0

dt ′D(t ′)

) ]

. (22)

Similarly, from Eq. (19),

〈I (0)〉 =
2I0d

L
(1 − e−L/d ). (23)

Hence,

G(t) = 2

∞
∑

k=1

(1 − (−1)ke−L/d )2

(1 + d2k2π2/L2)2(1 − e−L/d )2

× exp

[

−k2π2 kBT

mL2
t2E2H,3[−(t/τ )2H ]

]

, (24)

which is the final expression for G(t).

V. DISCUSSION

The key results of this work are the expressions derived

above for the mean square displacement [Eq. (2c)], the distri-

bution of mean first passage times [Eq. (15)], the mean first

passage time itself [Eq. (16)], and the correlation of intensity

fluctuations [Eq. (24)].

Consider first the MSD [Eq. (2c)], which is shown graph-

ically in Fig. 1 as a function of t̄ = t/τ at three different
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FIG. 1. Variation of the mean square displacement with time (in dimension-

less form), as calculated from Eq. (2c) at three different values of the Hurst

index H: 0.5 (dashed green line), 0.76 (dashed red line), and 0.9 (dashed blue

line).

values of H (0.5, 0.76, and 0.90). The curves show the pro-

gressive effects of increasing the degree of temporal correla-

tion between the thermal forces that drive the particle, with

the H = 1/2 curve describing simple Brownian motion (un-

correlated forces), and the H = 0.76 and H = 0.9 curves

describing subdiffusive motion (moderately and highly cor-

related forces, respectively). The curve for H = 0.9 bears a

close qualitative resemblance to the data obtained in the ex-

periments of Lowe et al.5 (see Fig. 3e of their paper), which

tracked protein-functionalized quantum dots (QDs) as they

made their way through human NPCs. Ensemble averaged

trajectories of the QDs were consistent with a relation of the

form 〈δx2(t)〉 ∼ tα , with α ≈ 0.2 for motion parallel to the

pore axis (implying H = 0.9; hence, this choice of value in

our own analytical expression). The experimental results were

interpreted in terms of a scenario involving the “cumulative

action of multiple reversible substeps,”5 essentially the same

scenario that underlies both our model and a model introduced

recently by Xu et al.24 to explain the subdiffusive behavior of

colloidal particles functionalized with “sticky” DNA and al-

lowed to move across a surface coated with the compleme-

ntary DNA.

When particle motion is subdiffusive, an interesting rela-

tion is predicted to exist between the effective hydrodynamic

radius of the particle a and the mean first passage time tMFPT

to get from one end of the cylinder to the other. In a simple

liquid like water, where motion is diffusive, the friction co-

efficient of the particle ζ varies linearly with a, as dictated

by the Stokes equation: ζ = 6πηa, where η is the viscosity

of the medium. If the structure of this relation is assumed to

hold even when motion is anomalous, so that ζ continues to

vary linearly with a, and η remains, effectively, a measure of

viscosity (but now having units that depend explicitly on the

Hurst index H), we see from Eq. (16) that

tMFPT = bH a1/(2−2H ), (25)

FIG. 2. Variation of the mean first passage time (in ms) with cargo size (in

nm), as calculated from Eq. (25), for three different values of H: 0.5 (dashed

green line), 0.76 (dashed red line), and 0.9 (dashed blue line). The corre-

sponding bH values are 0.24 ms nm−1, 5.93 × 10−3 ms nm−2.083, and 5 ×

10−7 ms nm−5.

where bH is a size independent constant. It therefore follows

that tMFPT is a linear function of size when motion is diffusive

(H = 1/2), and a nonlinear function of size when motion is

subdiffusive (H > 1/2). A plot of tMFPT (in ms) vs a (in nm) is

shown in Fig. 2 for the following values of H: 0.50, 0.76 and

0.90. At these respective values of H, the parameter bH was

assigned the values 0.24 ms nm−1, 5.93 × 10−3 ms nm−2.083,

and 5 × 10−7 ms nm−5, which were chosen for convenience

of visual display. (As it happens, when H = 0.5, T = 300 K,

and L is set to the typical pore length of 90 nm, the corre-

sponding value of the viscosity η is 1.30 × 10−2 kg m−1s−1.

For a particle of size 10 nm, this translates into a diffusion

coefficient D of 1.69 × 10−12 m2s−1, which is a figure typ-

ical of small proteins in water. At the slightly larger size of

30 nm, D is 5.63 × 10−13 m2s−1. For the same pore length

L, the “viscosities” corresponding to H = 0.76 and H = 0.9

are, respectively, 0.108 kg m−1s−1.52 and 0.220 kg m−1s−1.8.)

Interestingly, the curve corresponding to H = 0.9 reproduces,

qualitatively, the trends in the variation of tMFPT with a in the

simulations of Mincer and Simon4 (see Fig. 5C of Ref. 4). In

these simulations, as well as those of Moussavi-Baygi et al.,3

the relation between tMFPT and a is clearly nonlinear, if not

necessarily of exactly the same form as Eq. (25); the relation

is distinguished, in particular, by an initial region where tMFPT

is relatively insensitive to a followed by a region where tMFPT

increases fairly rapidly with a. Up to a certain size threshold,

therefore, translocation across the channel can be said to oc-

cur fairly quickly; thereafter, it slows down considerably.

Information on the transport mechanism is also con-

tained in the distribution of mean first passage times, which

in the few experiments and simulations where it has been

determined, including those of Kustanovich and Rabin,25

Lowe et al.,5 and Moussavi-Baygi et al.,6 seems to be dis-

tinguished principally by being somewhat broad and asym-

metric. Moussavi-Baygi et al.6 have in fact suggested that the

distribution can be described by an inverse Gaussian function.
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FIG. 3. Time dependence of the first passage time distribution (in dimen-

sionless form) as calculated from Eq. (15), with H = 0.76, l = 71nm and

τ = 1 ms.

This is, of course, quite different from the function obtained

in the present calculations [Eq. (15)], which at early times is

essentially linear in t, while at late times it is more nearly like

a compressed Gaussian. A graph of f(t) [in the dimensionless

form given by Eq. (15)] is shown in Fig. 3 at a single repre-

sentative value of H (0.76) and at the values of l = 71nm and

τ = 1ms, which were chosen to correspond roughly to the

characteristic length and time scales associated with passage

through the NPC. The graph is remarkably similar in quali-

tative appearance to the inverse Gaussian curve that is fit to

the simulations of Moussavi-Baygi et al.6 At the other values

of H (0.50 and 0.90), and at the same τ but somewhat larger

l, the corresponding f(t)’s are of almost exactly the same the

shape, except for small decreases in height and width of the

peak.

The graphs in Figs. 1–3 are meant to illustrate the

general patterns of behavior of three different quantities cal-

culated from our model, and to note their broad similarity to

the behavior of their experimental or numerical counterparts.

We now attempt a somewhat more quantitative comparison

of the model’s predictions with real data, specifically data

from the experiments of Hermann et al.7 on the fluorescence

intensity correlations of tagged transporters passing through

the NPC. These data correspond to the difference of two sets

of experimental measurements, one the intensity correlation

function recorded above the pore, Gabove(t), and the other the

same function recorded beside the pore, Gbeside(t), the latter

being identified with background fluorescence. Hermann

et al.7 fit Gabove(t) − Gbeside(t) to the following function,

obtained from what they refer to as a confined diffusion

model (CDM):

GCDM (t) =

[

1 + 2

∞
∑

k=1

(1 − (−1)ke−L/d )2

(1 + d2k2π2/L2)2(1 − e−L/d )2

× exp(−k2π2D0t/L
2)

]

exp(−t/TR). (26)

GCDM(t) is identical to the H = 1/2 limit of Eq. (24) except for

two new terms. (An irrelevant proportionality constant has

been omitted in both Eqs. (24) and (26).) The new terms are

the factor of unity in front of the summation, and the exponen-

tial factor outside the square brackets. We believe the factor

of unity is the result of not subtracting the term 〈I(t)〉〈I(0)〉

= 〈I(0)〉2 from the term 〈I(t)I(0)〉 in the expression for the

correlation of the intensity fluctuation, 〈δI(t)δI(0)〉. This extra

factor in turn causes 〈δI(t)δI(0)〉 to decay to a finite value at

t → ∞ rather than to 0, as it should (by construction). The

finite long time limit is avoided by introducing, essentially

ad hoc, the factor of exp (− t/TR). Hermann et al.7 justify its

inclusion by arguing that it accounts for the kinetics of the

binding of the transporter to the pore, a “reaction” assumed to

take place on the timescale TR. TR is regarded as an adjustable

parameter in the theory, and when it is appropriately adjusted,

the GCDM(t) fits Gabove(t) − Gbesude(t) very well.

However, we believe that Gabove(t) itself may adequately

characterize fluorescence intensity correlations during the en-

tire process of translocation, from binding at the pore to exit

from the channel. Under that assumption, our own expres-

sion for the correlation function [Eq. (24)] provides a rea-

sonably satisfactory fit to Gabove(t), as shown in Fig. 4. In

this figure, the full black line is the experimental curve cor-

responding to Gabove(t), which we have reconstructed26 from

Fig. (6c) of Ref. (7). The dashed red line corresponds to Eq.

(24), with H set to 0.76, L set to 90 nm, and d set to 25 nm,

the value used in Hermann et al.’s calculations, and τ and m

set to the best fit values of 1.047 × 10−10s and 75.54 kDa, re-

spectively. For purposes of comparison, two other curves are

shown in Fig. 4: the dashed green line is obtained from Eq.

(24) using H = 0.5 and the best fit values of m = 51.5 kDa,

and τ = 1.047 × 10−13s, all other parameters remaining the

FIG. 4. Dynamic autocorrelation function of fluorescence intensity fluctu-

ations. The full black curve is a reconstruction of the experimental data

points in Fig. (6c) of Ref. 7. The colored dashed curves have been calculated

from Eq. (24) using different parameter values, as follows: Green (H = 0.5,

L = 90 nm, d = 25 nm, τ = 1.047 × 10−13 s, and m = 51.5 kDa); red (H

= 0.76, τ = 1.047 × 10−10s, m = 75.54 kDa, and L and d remaining the

same); and blue (H = 0.9, τ = 1.047 × 10−9 s, m = 41.27 kDa, and L and d

remaining the same).
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same, while the dashed blue is obtained from Eq. (24) using H

= 0.9 and the best fit values of m = 41.27 kDa and τ = 1.047

× 10−9s, all other parameters remaining the same.

The generally satisfactory agreement between the results

of our model and results from various measured or simulated

transport properties, as well as the direct observation of sub-

diffusion in the experiments of Lowe et al.,5 seem to suggest

that power-law correlations in time between random thermal

fluctuations in the medium (the key feature of our model) are

involved in the process of facilitated transport through the

NPC. Interactions between binding sites on the cargo pro-

tein and nucleoporin filaments could potentially produce such

power law correlations if their durations spanned a wide range

of timescales. That seems to be the case. In the simulations

of Moussavi-Baygi et al.,6 for instance, binding interactions

were found to last between a few nanoseconds to several mi-

croseconds. But in the simulations of Mincer and Simon,4 on

the other hand, the evidence suggests that cargo and filament

actually remain bound to each other for the entire duration of

the cargo’s residence within the NPC—a period on the order

of milliseconds—being separated only after action by RanGT-

Pase. Transient interactions of duration intermediate between

these extremes are also likely, given that binding affinities

span a range of values too, from a few nM to hundreds of

nM. It is entirely possible therefore that during translocation,

cargo proteins experience different combinations of binding

events, some short-lived, some long-lasting, all contributing

to the generation of multiple timescales of association.

The above process of stochastic capture and release is

also an important element in the models of Kustanovich and

Rabin25 and Zilman et al.,27 to name just two representa-

tive examples of early attempts to explain nucelocytoplas-

mic transport. The first is based on cargo diffusion through

a metastable nucleoporin network that can be opened by en-

ergetically favorable binding interactions, while the second is

based on diffusion through a one-dimensional array of poten-

tial wells that represent binding sites. A somewhat different

view is expressed in the “reduction of dimensionality” model

of Peters,28 which suggests that cargo proteins bind to nu-

cleoporins principally at the walls of the NPC, from where

they exit the channel by a two-dimensional (2D) rather than

a three-dimensional random walk, achieving generally higher

rates of throughput in the process. But the linearity between

the mean first passage time and cargo size that is predicted28

by this mechanism seems to be contradicted by existing data.

The importance of some form of intermittent binding dur-

ing the course of a transporter’s passage through the NPC was

also recognized by Licata and Grill,11 whose analysis of the

problem we have adapted. But they too assume, like Peters

in the reduced dimensionality approach, that it is principally

the walls of the cylinder that are responsible for “stickiness,”

which they model by an absorbing boundary condition. How-

ever, cargo motion itself is not assumed to be restricted to a

2D surface.

Many of the above effects, from subdiffusion to stochas-

tic binding to multiple timescales of association, appear to be

at least partly captured by our model through the assumed

complex viscoelasticity of the cellular fluid, which is de-

scribed in terms of a generalized Langevin equation with frac-

tional Gaussian noise. Related models were quite successful

in characterizing various aspects of single molecule enzyme

kinetics,29 thermally activated DNA escape from nanopores,30

fractional viscoelasticity in polymer melts,31 and the forced

unfolding of single polyubiquitin molecules.32 The present re-

sults are therefore broadly consistent with the common mech-

anisms that seem to underlie a number of seemingly disparate

biophysical processes.
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