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The transient rupture and reformation of hydrogen bonds between base pairs on distinct chains of

double-stranded DNA �“bubble” dynamics� is modeled in terms of the fluctuating distance between

the bases. The fluctuations in the distance are assumed to be governed by a simple Langevin

equation with a quadratic potential under conditions of high friction. A critical distance of separation

L must be achieved before a bubble defect is considered to have been formed. The decay of the

dynamic correlations between states of the DNA that have such defects and those that do not has

been calculated from the above model and has been found to reproduce the trends in experimental

measurements of the same quantity. © 2007 American Institute of Physics.

�DOI: 10.1063/1.2793781�

I. INTRODUCTION

The mechanism of DNA replication has proved to be a

far more complex and elaborately choreographed process
1

than Watson and Crick’s famously understated remarks on

the subject may have suggested.
2

The copying of genetic

information is now known to be more than a simple matter of

adding complementary bases to each polynucleotide strand

of the DNA. Nevertheless, for all its complexity, there are

steps in this process that appear to be simple, random, and

undirected, among them the step that may initiate replication

itself: the transient localized separation of one strand of

DNA from the other.
3

Strand separation and reclosing,

though sometimes assisted or promoted by enzyme action, is

also caused by thermal fluctuations in the medium, which

lead to the intermittent disruption �“breathing”� of the rela-

tively weak �on the order of a few kBT �Ref. 4�� H bonds that

exist between opposing base pairs. As a result, the DNA

forms “bubble” defects of randomly varying sizes for inter-

vals of time that can last up to milliseconds. Understanding

this most elementary of processes can be expected to en-

hance our understanding of the regulatory controls that gov-

ern the transmission of genetic information across repeated

cycles of cell division.

Recent single-molecule experiments by Altan-Bonnet et

al.
5

have now provided the first quantitative details of the

dynamics of DNA’s breathing modes of excitation. Using

synthetic double-stranded DNA constructs of defined se-

quence and length, Altan-Bonnet et al. have shown from

measurements of the random quenching and restoration of

fluorescence emission from a donor-acceptor pair located at

fixed sites on opposite strands of the DNA that the dynamic

correlations in the fluctuations in the fluorescence intensity

are multiexponential and can be described by a single uni-

versal decay curve. These results were found to be consistent

with a model of DNA breathing dynamics based on a distri-

bution of bubble sizes generated by the zipping and unzip-

ping of the DNA strands at constant rates.

More recently, Fogedby and Metzler
6

have attempted to

explain these results using a model derived from the Poland-

Scheraga picture of DNA denaturation,
7

which they mapped

on to the quantum mechanical problem of a particle moving

in a Coulomb potential subject to a centrifugal barrier. The

fluorescence intensity correlations calculated from this

model, for temperatures below the denaturation temperature

and in the asymptotic long-time limit, are in broad agreement

with the experimental data for a range of values of a param-

eter � that defines the strength of the centrifugal and Cou-

lomb contributions to the effective free energy. However, the

best fit to the data is achieved when � is 0; that is, when

these contributions are, in fact, neglected. However, under

these conditions, the model merely describes the stochastic

dynamics of a particle in a linear potential, and it is unclear

how relevant such a model is to bubble dynamics. Moreover,

for both the �=0 and ��0 cases, the early time behavior of

the theoretical intensity correlation function is predicted to

fall off as a power law, which does not appear to correspond

to the experimental behavior in this regime, or to agree with

the corresponding limit obtained from the model of Altan-

Bonnet et al.
5

In this paper, we would like to consider the results of

Ref. 5 from a somewhat different perspective. These results

are ultimately a reflection of the fluctuations in the distance x

separating the donor and acceptor chromophores attached to

the two DNA strands; whenever this distance is less than

some critical distance L, the fluorescence emission of the

donor is turned off, and whenever it exceeds this distance,

the emission is turned on. A bubble can be said to be tran-

siently formed each time x exceeds L, and the larger the

value of x, the larger the size of the bubble. In general, x

cannot grow indefinitely because the fluctuating base pairs to

which the chromophores are attached are held together both

by H bonds between themselves and by covalent bonds to

their neighbors. We show below that a model of the stochas-

a�
Author to whom correspondence should be addressed. Electronic mail:

cherayil@ipc.iisc.ernet.in

THE JOURNAL OF CHEMICAL PHYSICS 127, 155104 �2007�

0021-9606/2007/127�15�/155104/4/$23.00 © 2007 American Institute of Physics127, 155104-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.111.164.128 On: Mon, 10 Aug 2015 23:01:45



tic evolution of x that is consistent with these general con-

siderations provides a reasonable description of the dynamics

of intermittent strand separation in DNA and is in satisfac-

tory agreement with the experimental results of Ref. 5.

II. MODEL OF BREATHING DYNAMICS

Consider a pair of complementary H-bonded bases on

distinct strands of a DNA molecule, one attached to a fluo-

rescent donor and the other to an acceptor. During the time

the bases are held together at their equilibrium geometry, and

the two chromophores are in close proximity, the fluores-

cence from the donor is quenched, whereas during the time

the bases are apart, and the chromophores are separated by a

distance greater than L, the fluorescence is restored. The

fluorescent light intensity at time t, denoted as I�t�, can there-

fore be represented as

I�t� = B��x�t� − L� , �1�

where ��z� is the step function, defined as ��z�=1 for z�0

and ��z�=0 for z�0, B is a constant of proportionality

�whose precise value will not be needed�, and x�t� is the

distance separating the two chromophores at time t. The

quantity determined experimentally is the normalized auto-

correlation function C�t� of the fluorescent intensity at times

0 and t, which can be defined as

C�t� =
�I�t�I�0�� − �I�t���I�0��

�I�0�2� − �I�0��2
, �2�

where the angular brackets refer to an average over the fluc-

tuations in x.

To calculate C�t� theoretically, starting from the defini-

tion of I�t� in Eq. �1�, we model the dynamics of x�t� by the

motion of a particle of mass m undergoing simple Brownian

motion in a harmonic well. This is perhaps the simplest re-

alization of the idea that the distance separating the two

chromophores varies randomly in time and is mostly limited

to values that do not result in large excursions of the two

bases away from their equilibrium geometry. Refinements to

the model—such as the introduction of colored as opposed to

white noise to define the particle dynamics or the use of

more realistic potentials to model the effects of

confinement—are easily incorporated into this picture, but

do not appear to be necessary, and are not considered further.

For the present model, the evolution of x is governed by

the equation

�
dx

dt
= −

dU

dx
+ ��t� , �3�

where � is the friction coefficient of the particle, U�x� is the

external potential �which is given by m�2x2 /2, with � the

well frequency�, and ��t� is white noise, defined by the cor-

relations

���t�� = 0 �4a�

and

���t���t��� = 2kB�T��t − t�� , �4b�

with T the temperature and kB Boltzmann’s constant.

Equation �3� is equivalent to the following Smolu-

chowski equation for the probability density P�x , t� that the

particle is at x at time t:

�P�x,t�

�t
= �1

�

�

�x
U��x� + D

�2

�x2�P�x,t� , �5�

where U��x� stands for �U�x� /�x and D	kBT /� is the diffu-

sion coefficient. The solution of Eq. �5�, for x starting out

from x0 at time t=0, is well known; it is

P�x,t
x0,0� =� m�2

2	kBT�1 − 
2�t��

�exp�−
m�2�x − x0
�t��2

2kBT�1 − 
2�t��
� , �6�

where 
�t� is the function exp�−t /��, � being a characteristic

decay time, defined as � /m�2. In the limit of t→,

P�x , t 
x0 ,0� evolves to the equilibrium distribution Ps�x�,
where

Ps�x� =� m�2

2	kBT
exp�−

m�2x2

2kBT
� . �7�

Given the above expressions �Eqs. �6� and �7�� and assuming

that at time t=0, the variable x is distributed according to Eq.

�7�, the correlations in Eq. �2� can be written as follows:

�I�t�I�0�� = B2�
−



dx�
−



dx0��x − L�

���x0 − L�P�x,t
x0,0�Ps�x0� �8a�

and

�I�t�� = �I�0�� = B�
−



dx0��x0 − L�Ps�x0� . �8b�

Equations �6�, �7�, �8a�, and �8b� are the defining equa-

tions of the present model of intermittent strand separation;

they have exactly the same structure as the equations we had

used earlier to describe intermittency in single-molecule en-

zyme kinetics,
8

differing from them only in the nature of the

function 
�t� that enters into the definition of P�x , t 
x0 ,0�.
�Equation �8b� corrects a typographical error in Eq. �7� of

Ref. 8.� For the problem of enzyme kinetics, 
�t� is given by

the Mittag-Leffler function,
9

a reflection of the choice of

fractional Gaussian noise
10

rather than white noise to char-

acterize the effects of protein conformational fluctuations.
11

The two models are otherwise entirely equivalent, so we can

make use of results derived earlier
8

to write down the final

expression for C�t� at once,

C�t� =
2

	�1 − erf2��E/kBT��
�

0


�t�

dz
1

�1 − z2

�exp�−
2E

kBT�1 + z�
� . �9�
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Here, erf is the error function and E is defined as E	U�L�
=m�2L2 /2, which is effectively the barrier height that the

particle must reach before it makes a transition from the off

to the on state. A complete derivation of Eq. �9� may be

found in Appendix A of Ref. 8.

III. DISCUSSION

In this section, we seek to compare our theoretical pre-

dictions �as contained in Eq. �9�� with results from experi-

ment. The comparison is made, not with the actual experi-

mental data �which are only shown graphically in Ref. 5�,
but with a function G�t�, derived by Altan-Bonnet et al. from

the model referred to in the Introduction, which successfully

reproduces the decay profile of these data. The function G�t�,
reexpressed here in terms of the time t1/2 at which G�t
= t1/2�=0.5, is given by

G�x� = 1 +
bx

2
�erfc��bx/2� −�bx

	
exp�− bx/4� , �10�

where x	 t / t1/2, erfc is the complementary error function and

b is a parameter adjusted to ensure that G�1� is 0.5. The

value of b that yields this result is found to be 0.328. The

function C�t� can similarly be reexpressed in terms of x by

writing the variable t /� as cx, where c, defined as t1/2 /�, with

� given by � /m�2 as mentioned earlier, is taken to be an

adjustable parameter. We shall regard agreement of C�x�
with G�x� as effectively establishing the consistency of our

model with the experimental results of Ref. 5.

Figure 1 is a comparison of C�x� �dashed line� with G�x�
�full line� after the parameters c and E /kBT in the former

were adjusted so that C�1� was 0.5. The best fit values of

these parameters were found to be 0.015 and 29.3, respec-

tively. The two curves are seen to be in quite close agreement

with each other across essentially the entire time regime over

which experimental measurements were made. Moreover, in

both the short and long-time regimes �corresponding to the

limits of t→0 and t→, respectively�, it can be shown ana-

lytically that C�t� and G�t� vary in exactly the same way; in

the limit of t→0, they decay approximately as stretched ex-

ponentials with a stretch exponent of 1 /2, while in the limit

of t→, they decay as simple exponentials. This contrasts

with the behavior of the corresponding correlation function

in the Fogedby-Metzler model,
6

which appears to fit the ex-

perimental data only in the long-time regime; in this regime,

the decay is exponential, in agreement with the data, but in

the short time regime, the decay follows a power law.

Interestingly, the best fit values obtained above for the

parameters c and E /kBT do not appear to be entirely unique;

at least one other set of values, c=0.3 and E /kBT=0.29, do

reasonably well in comparisons of C�x� with G�x�, as shown

in Fig. 2. This seems to suggest that two possible scenarios

can describe the occurrence of nonexponentiality in the dy-

namics of intermittent strand separation at the location of a

given pair of H-bonded bases. In one, the harmonic well that

confines the bases is steep �� is large�, the bases overcome a

relatively large effective barrier E /kBT to achieve a strand

separation of L, and relaxation to the equilibrium geometry is

fast �t1/2 is small�. In the other, the confining well is shallow

�� is small�, the bases overcome a small effective barrier

E /kBT to achieve the same strand separation, and relaxation

to equilibrium is slow �t1/2 is large�. The first of these possi-

bilities seems to correspond more closely to what may actu-

ally happen in practice.

What we have attempted to do here is formulate the

problem of intermittency in DNA bubble dynamics in some-

what different terms from the successful model introduced

by Altan-Bonnet et al.
5

There �and in the Fogedby-Metzler

quantum Coulomb model
6�, the principal dynamical variable

was the number of open bases; in our treatment, it is the

distance separating the two bases to which the chromophores

are attached. Both points of view are built around roughly

the same molecular considerations, chiefly the presence of a

potential that holds the two strands together, and the exis-

tence of thermal fluctuations in the medium that disrupt this

structure.

FIG. 1. Comparison of G�x� �Eq. �10�, full line� with C�x� �Eq. �9� with t

replaced by t / t1/2 as described in the text, dashed line� after adjusting the

parameters c and E /kBT in Eq. �9� to the values of 0.015 and 29.3, respec-

tively, so as to obtain the best fit of C�x� to G�x�.

FIG. 2. The same comparison, as shown in Fig. 1, but with c and E /kBT in

Eq. �9� adjusted to the values of 0.3 and 0.29.
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