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The utility of an approximate heuristic version of Kramers’ theory of reaction rates that was earlier

used �Chaudhury and Cherayil, J. Chem. Phys. 125, 024904 �2006�� to successfully describe the

nonexponential waiting time distributions of the enzyme �-galactosidase is reassessed. The original

model, based on the Smoluchowski equation, is reformulated in terms of the phase space variables

of the reaction coordinate, without neglecting inertial contributions. A new derivation of the Fokker–

Planck equation �FPE� that describes the dynamics of this coordinate is presented. This derivation,

based on functional methods, provides a more direct alternative to the existing distribution function

approach used by Hanggi and Mojtabai �Phys. Rev. A 26, 1168 �1982��. The time-dependent

coefficients in the FPE, when incorporated into the exact expression for the transmission coefficient

obtained from a reactive-flux formalism �Kohen and Tannor, J. Chem. Phys. 103, 6013 �1995��, are

found to yield virtually the same results as the earlier heuristic model. © 2008 American Institute

of Physics. �DOI: 10.1063/1.2969767�

I. INTRODUCTION

In an early and incomplete effort at understanding obser-

vations of stochasticity in the reactions of single enzymes,
1

we had proposed a simple model of catalytic activity based

on the generalized Langevin equation �GLE� and Kramers’

theory of thermally activated barrier crossing.
2

The model

proved to be surprisingly successful in reproducing nonex-

ponentiality in the measured waiting time distributions of the

enzyme �-galactosidase.
3

Unlike Kramers’ approach, which

was formulated in terms of the phase space dynamics of a

reaction coordinate evolving under white noise near a har-

monic barrier, our own approach employed a reduced de-

scription, in which the reaction coordinate evolved in posi-

tion space alone �under overdamped conditions�, its motion

governed by power-law correlated random forces that were

intended to reflect the multiple time scale dynamics of the

surrounding protein.
4

In this approach, the calculation of the

waiting time distribution was reduced to the calculation of a

time-dependent barrier crossing rate from the generalized

diffusion equation to which the GLE could be exactly trans-

formed. The rate was calculated as the ratio of the flux of

particles over the barrier to the population of particles in the

metastable well, exactly as in Kramers’ method, except that

these quantities were no longer evaluated in the stationary

limit. This meant that the flux and population in our method

were time dependent, and their ratio—the barrier crossing

rate—was time dependent as well �and hence not strictly a

rate at all.� However the use of this rate in the calculation of

waiting time distributions led to a good agreement with data

from the experiments on �-galactosidase by English et al.
3

The various approximations in this approach were

largely ad hoc, but we did show that in the long-time limit its

results agreed qualitatively with the corresponding results of

two exact formulations of a non-Markovian generalization of

Kramers’ barrier crossing model: one by Hanggi and

Mojtabai
5

and the other by Kohen and Tannor.
6

We also

showed,
7

in an extension of our approach, that a model based

on the subdiffusive dynamics of a particle in a double well

potential led to an expression for the waiting time distribu-

tion that reproduced its earlier scaling structure, but this sec-

ond calculation also used approximations �including a short-

time limit� whose validity was not entirely clear.

The aim of the present note is to show, first of all, how

the functional methods of our earlier calculations can be used

to exactly re-express the GLE model as an equivalent phase

space Fokker–Planck equation �FPE� without neglecting in-

ertial contributions. Such methods are amongst the most di-

rect and economical routes to the derivation of diffusion

equations from Langevin equations, and their importance as

a calculational tool can be gauged by the number of reviews

that have been written about them.
8

Their application to the

GLE model leads to a FPE that is identical �as it should be�
to the equation obtained by Hanggi and Mojtabai

5
using a

different approach based on the distribution function of the

phase space variables.
9

Our derivation of the FPE is new and

sets down what we believe are important guidelines for the

proper conversion of the coupled equations for positions and

momenta to the equivalent equation for their joint probability

density when these variables are governed by Gaussian col-

ored noise. A second aim is to reconcile the results of our

earlier approximate calculations with the results of Hanggi

and Mojtabai
5

and Kohen and Tannor.
6

In particular it is to

show that when the results of the FPE are combined with the

exact results of Kohen and Tannor
6

to calculate the transmis-

sion coefficient, the expression that is then obtained is virtu-

ally identical to the expression obtained from the original

flux-overpopulation method, suggesting that the approxima-
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tions used in its derivation were not necessarily as severe as

previously believed. Waiting time distributions determined

from the approximate transmission coefficient compare as

favorably with data from Ref. 3 as those determined from the

present expression.

There are three sections in this paper: Section II A below

briefly recapitulates the main results of Ref. 1, Sec. II B de-

scribes the results of the present calculations, and Sec. III

discusses their implications. The Appendix provides details

of the derivation of the phase space FPE using functional

methods. The Appendix may be omitted by readers not inter-

ested in the technical minutiae of the calculations.

II. DYNAMICS OF THE ENZYMATIC REACTION
COORDINATE

A. Recapitulation of some results from Reference 1

Assuming that the fluctuations of a single stochastic dis-

tance variable x�t� are the underlying cause of the fluctua-

tions in the rate at which single enzymes convert substrates

to products during one catalytic turnover cycle, the time evo-

lution of enzyme activity can be described by the time evo-

lution of x�t�, which we assume is governed by the following

GLE
10

for a particle of mass m moving in a potential U�x�:

mv̇�t� = − U��x� − ��
0

t

dt�K�t − t��v�t�� + ��t� . �1�

Here v�t�= ẋ�t� is the velocity of the particle, � is its friction

coefficient, and ��t� is a Gaussian colored noise with the

moments ���t��=0 and ���t���t���=�kBTK��t− t���, where

K�t� is a memory function, kB is Boltzmann’s constant, and T

is the temperature.

In Ref. 1, the potential was chosen to correspond to the

inverted parabola U�x�=U�xb�−m�b
2�x−xb�2

/2, where xb is

the location of the barrier top, �b is a frequency, and ��t� was

chosen to correspond to fractional Gaussian noise
11 �to

model the effects of protein conformational fluctuations�, so

the memory function was given by
12

K��t− t���=2H�2H

−1��t− t��2H−2 �for t� t��, with H a phenomenological param-

eter lying between 1 /2 and 1 that is a measure of the extent

of temporal correlations in the noise. Furthermore, it was

assumed that the friction was sufficiently large that the iner-

tial term in Eq. �1�, mẍ�t�, could be neglected. The resulting

equation could then be exactly transformed to the following

Smoluchowski equation for the probability density P�x , t�
that the particle is at x at time t,

�P�x,t�

�t
= ��t�	 �

�x
�x − xb� −

kBT

m�b
2

�2

�x2
P�x,t� , �2a�

where ��t��−�̇�t� /��t�, with ��t� the inverse Laplace trans-

form of the function

�̂�s� =
�K̂�s�

s�K̂�s� − m�b
2

. �2b�

Here the Laplace transform ĝ�s� of a function g�t� is defined

by the relation ĝ�s�=�0
�dte−stg�t�. It was found that to fit the

results of this model to the dynamic distance data of the

protein complex fluorescein-antifluorescein,
13

the parameter

H had to be assigned the value of 3 /4. For this special value

of H, the function ��t� was found �from Eq. �2b�� to equal
14

E1/2�
t /��, where E	�z� is the Mittag–Leffler function and

���3�

 /4m�b
2�2 is some relaxation time.

From the solution of Eq. �2a�, under the initial condition

P�x ,0�=��x−x0�, a time-dependent flux and a time-

dependent population were determined, from which, using

Kramers’ method, the transmission coefficient ��t� was

found to be

��t� = −
��t�

�b

. �3�

The distribution of waiting times, f�t�, between barrier cross-

ing events was then calculated from

f�t� = −
d

dt
exp	− kTST�

0

t

dt���t��
 , �4�

where kTST is the barrier crossing rate calculated from tran-

sition state theory. The above distribution, after setting H to

3 /4 and adjusting the other phenomenological parameters in

kTST and ��t� for best fit, was found to agree very well with

the waiting time distribution determined from the single-

molecule experiments on �-galactosidase.
3

B. Exact treatment of Equation „1…

Without neglecting the inertial term in Eq. �1�, and as-

suming only that ��t� is Gaussian, with the same moments as

defined above, the phase space FPE analogous to Eq. �2a�
�after setting xb to 0 for convenience, but without loss of

generality�, is shown in the Appendix �and by Hanggi and

Mojtabai in Ref. 5� to be given by

�P

�t
= − v

�P

�x
+ 


�

�v

vP − �2x
�P

�v

+ ��2 − �b
2�

kBT

m�b
2

�2P

�v�x

+ 

kBT

m

�2P

�v
2

, �5�

where P� P�x ,v , t�, and 
 and �2 are time-dependent coef-

ficients, which, from the definitions given in the Appendix,

can be shown to be


�t� =
��t����t� − �̇�t��̈�t�

�̇�t�2 − ��t��̈�t�
�6a�

and

�2�t� =
�̇�t����t� − �̈�t�2

�̇�t�2 − ��t��̈�t�
, �6b�

where ��t� is the inverse Laplace transform of the function

�̂�s� =
s + �K̂�s�/m

s2 + s�K̂�s�/m − �b
2

, �7a�

and the dots on ��t� denote derivatives with respect to time.

Equation �7a� is the generalization to the inertial regime of

the function �̂�s� introduced in the preceding section �see

Eq. �2b�� and reduces to it in the overdamped limit.
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As shown by Hanggi and Mojtabai,
5

Kramers’ flux-

overpopulation method can be applied directly to Eq. �5� to

determine the barrier crossing rate k in the stationary limit.

From their analysis, it immediately follows that

k =
�0

2
�b

	

�
2

4
+ ��

2 −

�

2

exp�− �E/kBT� , �7b�

where �0 is the oscillator frequency at the bottom of the

well, �E is the barrier height, and 
� and ��
2 are the

t→� limits of 
�t� and �2�t�, respectively.

Furthermore, since x�t� and v�t� are Gaussian random

variables, the solution of Eq. �5� is given by

P�x,v,t� =

C

2

exp�−

1

2
�D11�x − x̄�t��2 + 2D12�x − x̄�t��

��v − v̄�t�� + D22�v − v̄�t��2�� , �8a�

where the constants Dij are the elements of the matrix

D = � C�
v

2�t� − C�xv
�t�

− C�xv
�t� C�x

2�t�
� , �8b�

with C=det D= ��x
2�t��

v

2�t�−�xv

2 �t��−1. The time-dependent

coefficients in Eqs. �8a� and �8b� are the moments of P; i.e.,

x̄�t�=�dx�dvxP�x ,v , t� and v̄�t�=�dx�dvvP�x ,v , t�, while

�x
2�t�=�dx�dvx2P�x ,v , t�− x̄�t�2, �

v

2�t�=�dx�dvv
2P�x ,v , t�

− v̄�t�2, and �xv
�t�=�dx�dvxvP�x ,v , t�− x̄�t�v̄�t�. From Eq.

�5�, these moments are seen to satisfy the following equa-

tions:

�x̄�t�

�t
= v̄�t� , �9a�

�v̄�t�

�t
= − v̄�t�
�t� + �2�t�x̄�t� , �9b�

��x
2�t�

�t
= 2�xv

�t� , �9c�

��
v

2�t�

�t
= − 2
�t��

v

2�t� + 2�2�t��xv
�t� +

2kBT

m

�t� , �9d�

and

��xv
�t�

�t
= �

v

2�t� + �2�t��x
2�t� − 
�t��xv

�t� +
kBT

m�b
2
��2�t�

− �b
2� . �9e�

By directly solving Eq. �1� for x�t� and v�t�, as done, for

example, in recent papers by Viñales and Despósito,
15

these

equations can be shown to be satisfied by

x̄�t� = x0��t� +
v0

�b
2
�̇�t� , �10a�

v̄�t� = x0�̇�t� +
v0

�b
2
�̈�t� , �10b�

�x
2�t� = −

kBT

m
	 1

�b
4
�̇�t�2 −

1

�b
2
��2�t� − 1�
 , �10c�

�
v

2�t� =
kBT

m
	1 +

1

�b
2
�̇�t�2 −

1

�b
4
�̈�t�2
 , �10d�

and

�xv
�t� =

kBT

m
	 1

�b
2
��t��̇�t� −

1

�b
4
�̇�t��̈�t�
 , �10e�

where x0 and v0 are, respectively, the initial position and

velocity of the particle. Kohen and Tannor
6

showed how an

exact expression for the transmission coefficient ��t� can be

derived from a bivariate Gaussian distribution function hav-

ing the structure of Eq. �8a� using the reactive flux

formalism;
16

their results immediately establish that

��t� =
�̇�t�

�b
2
 �̇�t�2

�b
4

+
m

kBT
�x

2�t�

, �11�

which from Eq. �10c� simplifies to

��t� =
�̇�t�

�b��t�
1 − ��t�−2
. �12�

Equations �7b� and �12� are among the main results of the

paper.

III. DISCUSSION

From the expressions for 
�t� and �2�t� given in Eqs.

�6a� and �6b�, it can be shown that in the overdamped limit—

for the special case of fractional Gaussian noise—with H

=3 /4 �and ��t� therefore given by E1/2�
t /���, Eq. �7b� re-

duces to

k =
�0

2
�b�
exp�− �E/kBT� , �13�

where � is defined after Eq. �2b�. This is exactly the expres-

sion that the barrier crossing rate in Ref. 1 also reduces to,

but in that reference it had not been possible to show that the

limit was identical to the result obtained from the Hangi–

Mojtabai rate expression.

Further, comparing Eqs. �12� and �3� �and recalling that

��t��−�̇�t� /��t��, one sees that apart from the factor of


1−��t�−2, the two expressions for the transmission coeffi-

cient are also of the same form �the ��t�’s in these expres-

sions are, of course, different�, and they become exactly the

same when the overdamped limit is taken in Eq. �7a� and t is

made large. In this limit, then, both the flux overpopulation

method and the reactive flux formalism yield a ��t� that

scales as �̇�t� /��t�. If the distribution of barrier crossing

times, f�t�, is now determined from Eq. �4� �which is a con-

sequence of defining the rate as a flux over a population
1�,

with ��t� having the form above, one sees that f�t�
� �̇�t� /��t��, where � is some nonuniversal constant that

contains details of the potential, the temperature, etc. This is

also exactly the scaling structure of f�t� that we had obtained

from another model of barrier crossing;
7

that model used an
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approximate Smoluchowski equation to determine f�t� as the

solution to a first passage time problem for the dynamics of

an overdamped particle evolving under fGn in a continuous

symmetric double well potential in which the barrier height

was fixed by a single real number A �where −1 /2�A�0�.
The present calculations therefore establish quantita-

tively what it had earlier only been possible to suggest quali-

tatively, that Eq. �3� is entirely consistent with the results of

the Hanggi–Mojtabai barrier crossing rate,
5

the Kohen–

Tannor transmission coefficient,
6

and the first passage time

distribution for the double well potential.
7

They also confirm,

therefore, that the approximations used earlier to simplify

Kramers’ treatment of barrier crossing were reasonable and

well motivated. Furthermore, by showing that the methods of

functional calculus can be extended without approximation

to phase space variables in the inertial regime, the calcula-

tions also complete and unify the program begun in Refs. 1

and 7 to describe single enzyme dynamics in the framework

of Kramers’ theory of chemical reaction rates.

However, these remarks must be qualified by an impor-

tant caveat. With f�t� in our calculations given by

N�̇�t� /��t��, N being a time-independent prefactor, the mean

barrier crossing time �t�=�0
�dttf�t� is

�t� =
N

1 − �
lim
t→�

t��t�1−� −
N

1 − �
�

0

�

dt��t�1−�. �14�

Now for both the inverted parabolic potential of Ref. 1

�which is also the potential used in the present calculations�
and the symmetric double well potential of Ref. 7, the factor

1−� is negative and the function ��t�, given by

E2−2H��t /��2−2H�, grows as an exponential at long times; so

�t� in Eq. �14� is finite. This means that, asymptotically, a

well-defined barrier crossing rate exists. However in a recent

exact calculation,
17

Goychuk and Hanggi showed that in

overdamped conditions the survival probability of a particle

driven by 1 / f noise in a cusp-shaped parabolic potential is

asympotically a power law in the time and that the escape

time out of the potential, �t�GH, is therefore infinite, implying

the absence of a well-defined barrier crossing rate.

The divergence of �t�GH in these calculations has an in-

teresting source: it comes from the integral shown below,

�t�GH � �
0

�

dt�GH�t��, �15�

where �GH�t�=E	�−�t /�D�	�, and 	, �, and �D are constants.

The parallels between Eqs. �14� and �15� are obvious, but the

difference in the sign of the arguments of the two Mittag–

Leffler functions �which reflects the differences in the shapes

of the respective potentials� leads to drastically different pre-

dictions because, on the one hand, Ea�−z�→
z�1

z−1, whereas on

the other, Ea�z�→
z�1

exp�z1/a�.
A meaningful rate description is recovered from the

Goychuk–Hanggi model if an exponential cutoff at low fre-

quencies is incorporated into the expression for the memory

kernel, in which case the survival probability decays expo-

nentially at long times �as in Eq. �14�� and the integral in

Eq. �15� no longer diverges. One way of ensuring finiteness

of the barrier crossing rate is to increase the height of the

barrier, which would entail a clear separation of time scales

between barrier crossing and equilibration within the meta-

stable well. It is presumably exactly this condition that is

implicit in the equation �Eq. �4�� that we have used to deter-

mine f�t�. These facts must be borne in mind whenever one

considers escape processes governed by subdiffusive

dynamics.

Other theoretical developments in the field of single-

molecule enzyme dynamics have occurred over the past few

years, including extensions of our model
1

that consider reac-

tion and diffusion within the Michaelis–Menten

mechanism
18

and that consider particle dynamics on free en-

ergy surfaces of two dimensions,
19

to cite two recent

examples.

By way of conclusion, and for the sake of completeness,

we now use Eq. �12� in the overdamped limit to recompute

f�t� from Eq. �4� for the case of fractional Gaussian noise,

with H chosen to be 3 /4 as before and ��t�=E1/2�
t /��. The

calculated curves of the distribution are shown as full lines in

Fig. 1, where they are compared with data on

�-galactosidase from Ref. 3 at four different concentrations

of added substrate: 10 �M, open squares; 20 �M, open tri-

angles; 50 �M, plus signs; and 100 �M, open circles. In

constructing these curves �which have been normalized by

the value of f�t� at some t0 chosen to ensure that they coin-

cide with the experimental data at the same initial time�, the

well frequency �0 and the barrier height �E were adjusted

for a best fit to the data, keeping m�B
2 and � /m�B

2 fixed,

respectively at 1 �in suitable units� and 0.714 s1/2. �The de-

cay constant � thus assumes the fixed value of 0.9 s.� The

FIG. 1. Comparison of the theoretical waiting time distribution f�t�, normal-

ized to a time t0, calculated from Eq. �12� �full lines� with the corresponding

experimental data of English et al. �Ref. 3� on the enzyme �-galactosidase

�symbols� at four different substrate concentrations �10 �M, open squares;

20 �M, open triangles; 50 �M, plus signs; and 100 �M, open circles�. The

theoretical curves were constructed by adjusting the well frequency �0 and

the barrier height �E /kBT for best fit to these data after fixing m�b
2 to 1 �in

appropriate units� and � /m�b
2 to 0.714 s1/2. The best fit values of �0 and

�E /kBT at the four substrate concentrations are given in the text. Also

shown are normalized curves �dashed lines� derived from a fitting function

discussed in Ref. 3.

075104-4 Chaudhury, Chatterjee, and Cherayil J. Chem. Phys. 129, 075104 �2008�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

152.3.102.242 On: Tue, 11 Aug 2015 00:46:57



best fit values of �0 and �E /kBT were found to be, respec-

tively, 3.8
�1011 s−1 and 25.0 �for the 10 �M data�, 8

�1011 s−1 and 24.8 �for the 20 �M data�, 1.45
�1012 s−1

and 24.67 �for the 50 �M data�, and 2
�1012 s−1 and 24.67

�for the 100 �M data�. These values are physically reason-

able and very close to the corresponding values determined

earlier.
1

Also shown in the figure are curves obtained from

the fitting function discussed in Ref. 3 �dashed lines�. The

theoretical curves obtained from Eq. �12� are seen to be in

very good agreement with the experimental data at all con-

centrations, and their fits are indistinguishable, for all prac-

tical purposes, from the fits found in the corresponding cal-

culations of Ref. 1.

Owing to the limited time span over which the data on

�-galactosidase have been collected, the agreement between

experiment and theory in Fig. 1 is not necessarily a valida-

tion of our model, and other simpler models might do

equally well in fitting the data. However, the present results

should be seen in the context of the success that the model

�or its variants� has had in characterizing the dynamics of

other complex soft matter system.
20

ACKNOWLEDGMENTS

S.C. acknowledges financial support from the Centre for

Scientific and Industrial Research �CSIR�, Government of

India. The authors are grateful to Brian English for the data

on �-galactosidase and to Sunney Xie, Sam Kou, and Wei

Min of Harvard University for fruitful discussions on single

enzyme kinetics.

APPENDIX: THE PHASE SPACE FOKKER–PLANCK
EQUATION

To derive the phase space FPE shown in Eq. �5� using

functional methods,
8

the definition v�t�= ẋ�t� is first substi-

tuted into Eq. �1�, and the equation then solved for x�t�, using

Laplace transforms. With U�x� an inverted parabola, the re-

sult is

x�t� = x0��t� + v0�
0

t

dt���t − t����t�� − xb�b
2�

0

t

dt���t − t��

���t�� +
1

m
�

0

t

dt���t − t����t�� , �A1�

where �̂�s�=1 / �s+�K̂�s� /m�, �̂�s�= �̂�s� /s, �̂�s�= �̂�s��̂�s�,

and �̂�s�=1 / �s−�b
2�̂�s��. An equation for ẋ�t� in which x0 has

been eliminated is now derived by multiplying all but the

first term on the right hand side of Eq. �A1� by ��t� /��t� and

then differentiating the equation with respect to t. This yields

ẋ�t� = − ��t�x�t� + v0�̄�t� − xb�b
2�̄�t� + �̄�t� . �A2�

Here ��t�=−�̇�t� /��t�, �̄�t� /��t�= �d /dt����t , t��, �̄�t� /��t�
= �d /dt����t , t��, and �̄�t� /��t�= �1 /m��d /dt����t , t��, with

�z�t , t���1 /��t��0
t dt���t− t��Z�t�� and Z�t� standing for ��t�,

��t�, or ��t�.

The function �̄�t� can be simplified to �̄�t�=

−��t��̇�t� /�b
2 by evaluating �0

t dt���t− t����t�� from

L
−1�̂�s��̂�s� �L−1 being the inverse Laplace operator� after

replacing �̂�s� by its expression in terms of �̂�s�. In the same

way, �̄�t� can be reduced to �̄�t�=−��t� /�b
2. Equation �A2� is

the defining equation for the evolution of x�t�.
A related equation for the evolution of v�t� in which v0

has been eliminated is obtained by multiplying all but the

second term on the right hand side of Eq. �A2� by �̄�t� / �̄�t�
and then differentiating the equation with respect to t; after

substituting �̄�t�=−��t� /�b
2 into the equation and collecting

terms, it is found that

v̇�t� = − 
�t�v�t� + �2�t��x�t� − xb� + ��t� , �A3�

where 
�t�=��t�− �̄
˙�t� / �̄�t�, �2�t�=−�̄�t��d /dt����t� / �̄�t��,

and ��t� is a new random variable: ��t�� �̄�t��d /dt�

��̄�t� / �̄�t��. Equation �A3� is the defining equation for v�t�.
The equations for ẋ�t� and v̇�t� are substituted into the

expression obtained after differentiating �with respect to t�
the definition of the phase space probability density,

P�x ,v , t�����x−x�t����v−v�t���; the use of Novikov’s

theorem
21

in the result yields

�P

�t
= − v

�P

�x
+ 
�t�

�

�v

vP − �2�t��x − xb�
�P

�v

+
�2P

�v�x
Y1

+
�2P

�v
2

Y2, �A4�

where Y1��0
t dt����t���t�����x�t� /���t��� and Y2

��0
t dt����t���t�����v�t� /���t���. The functional derivatives

in Y1 and Y2 are obtained as follows. First, Eq. �A2� is func-

tionally differentiated with respect to ��t��, producing

�d /dt���x�t� /���t��� = − ��t���x�t� /���t��� + ��̄�t� /���t��.
The equation for ��t� is next rewritten as d�̄�t� /dt

= ��̄˙�t� / �̄�t���̄�t�+��t� and similarly differentiated with re-

spect to ��t�� to give �d /dt����̄�t� /���t���= ��̄˙�t� / �̄�t��
����̄�t� /���t���+��t− t��. The solution of this equation is

��̄�t� /���t��=H�t− t��exp��
t�

t
ds��̄˙�s� / �̄�s���, where H�x� is

the step function. From these equations, it is easily shown

that

�x�t�

���t��
=

1

�̄�t��
�

t�

t

ds�̄�s�exp	− �
s

t

ds���s��
 . �A5�

The relation �̄�s�=−��s��̇�s� /�b
2 is now substituted into

the term I1��
t�

t
ds�̄�s�exp�−�s

tds���s���, and the result is in-

tegrated by parts to produce I1= �1 /�b
2���̇�t�−��t�

���̇�t�� /��t����, which is then substituted into the integral

Y1, along with Eq. �A5� and the definition of the random

variable ��t� �defined after Eq. �A3��. This leads to

Y1 =
1

�b
2���t��

0

t

dt��̄�t��� d

dt�

�̄�t��

�̄�t��
�

�
1

�̄�t��
��̇�t� − ��t�

�̇�t��

��t��
�� . �A6�

After the integration of Eq. �A6� by parts, substitution of
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�̄�0�=0 �as indicated later, �̄�0�=1�, and use of the relation

d��t� /dt=−�b
2��̄�t� /��t��, it is found, after some algebra, that

Y1 =� �̄�t���t�
d

dt
� 1

�̄�t�
�

0

t

dt�
�̄�t��̄�t��

��t�� �� − ��̄�t�2� .

�A7�

Double Laplace transforms are introduced into the definition

of �̄�t� �defined after Eq. �A2�� to evaluate the correlation

function ��̄�t��̄�t���. In this way it can be shown that

��̄�t��̄�t��� =
1

m2
��t���t��	mkBT

�b
2

�̇�t��

��t��2

��−
�̇�t�

��t�2
���t − t��� +

1

��t�

d

dt
���t − t����

−
mkBT

�b
2

1

��t��
�−

�̇�t�

��t�2

d

dt�
���t − t���

+
1

��t�

d

dt

d

dt�
���t − t���� −

mkBT

�b
4

�̇�t��̇�t��
 .

�A8�

From the definition of �̄�t�, it can also be shown that �̄�0�
=��0�=1 and that �̈�0�=�b

2. So, from Eq. �A8�, we eventu-

ally find

��̄�t�2� = −
kBT

m�b
2
���t�2 − �b

2� −
kBT

m�b
4
��t�2�̇�t�2. �A9�

The integral I2��0
t dt��1 /��t�����̄�t��̄�t��� in Eq. �A7� is now

written as I2= �1 /2m2����t��d /dt��1 /��t�2��0
t dt1�0

t dt2��t
− t1���t− t2���t1���t2�� by substituting the definitions of �̄�t�
and �̄�t�� and rearranging. The application of double Laplace

transforms to the result yields I2= �kBT /m�b
2���̇�t� /��t�2�

− �kBT /m�b
4���t���t��̇�t�. Substituting I2 into Eq. �A7�, using

�̄�t�=−��t��̇�t� /�b
2, and simplifying further, we have

Y1 = �
0

t

dt����t���t���
�x�t�

���t��

=
kBT

m�b
2	 �̇�t����t� − �̈�t�2

�̇�t�2 − ��t��̈�t�
− �b

2
 . �A10�

The above relation leads to the identification, �2�t�
= ��̇�t����t�− �̈�t�2� / ��̇�t�2−��t��̈�t��. For the purely Markov-

ian case, the memory function in Eq. �1� is delta correlated,

and ��t� is the sum of two exponentials; in this case, �2�t�
reduces to �b

2, so the mixed derivative contribution to the

phase space FPE vanishes, as it should.

The evaluation of Y2 �see Eq. �A4�� is carried out along

much the same lines. Since ẋ�t�=v�t�, the expressions for

d�̄�t� /dt, �x�t� /���t��, and I1 together yield

�v�t�

���t��
= −

1

�b
2

��t�

�̄�t��
��t��− ��t� + ��t��� + ��t − t��

�̄�t�

�̄�t��
.

�A11�

Therefore,

Y2 =
1

�b
2���t��

0

t

dt�� d

dt�

�̄�t��

�̄�t��
����t�2��t�

− ��t���t���t�� + �b
2�̄�t��� � IA − IB + IC, �A12�

where IA can be found at once, IA= �1 /�b
2����t���t�2��t�

���̄�t� / �̄�t���. IB is evaluated by first substituting �̄�t�
=−��t��̇�t� /�b

2 into the expression, after which it is written

as IB= IA+ I
B

�1�
, where I

B

�1�
= ���t���t���t��0

t dt���̄�t�� /��t����.
This integral, after introducing ��t� and simplifying, pro-

duces I
B

�1�
= �̄�t���t���t��d /dt��1 /��t��I2−��t���̄�t�2�. Here, I2

is the same integral defined after Eq. �A9�. Finally, IC can be

immediately reduced to IC=−��̄˙�t� / �̄�t����̄�t�2�+ �1 /2��d /dt�
��̄�t�2�. After putting these results for IA, IB, and IC back into

the expression for Y2, substituting for ��̄�t�2�, and simplify-

ing, the result is

Y2 = �
0

t

dt����t���t���
�v�t�

���t��
= − � �̄

˙�t�

�̄�t�
− ��t�� kBT

m�b
2
�b

2,

�A13�

which leads, finally, to the identification 
�t�=��t�

− �̄
˙�t� / �̄�t�= ���t����t�− �̇�t��̈�t�� / ��̇�t�2−��t��̈�t��. For the

purely Markovian case, 
�t� reduces to the constant � /m, as

it should.
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