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Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of sin-

gle molecules of poly-ubiquitin under a constant force [Kuo, Garcia-Manyes, Li, Barel, Lu, Berne,

Urbakh, Klafter, and Fernández, Proc. Natl. Acad. Sci. U.S.A. 107, 11336 (2010)]. In the present

paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the

experimental observations. This suggestion is made on the basis of a model in which the barrier to

chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic po-

tential under the action of fractional Gaussian noise according to a generalized Langevin equation.

The treatment of dynamic disorder within this model is pursued using Zwanzig’s indirect approach

to noise averaging [Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent clo-

sure scheme developed by Wilemski and Fixman [J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866

(1974)], this approach eventually leads to an expression for the chain unfolding probability that

can be made to fit the corresponding experimental data very closely. © 2011 American Institute of

Physics. [doi:10.1063/1.3582899]

I. INTRODUCTION

Chemical reactions that are influenced by spatial or tem-

poral randomness in their surroundings represent a class of

interesting time-dependent phenomena that Zwanzig, in an

early and influential paper, has called “rate processes with

[static or] dynamical disorder.”1 Such processes tend to devi-

ate from the kinetics defined by Arrhenius’s theory of reaction

rates, typically exhibiting non-exponentialities in the decay of

survival probabilities and other statistical measures of reactiv-

ity. Important dynamical information on reaction pathways is

often concealed in these deviations from Arrhenius behavior,

and can sometimes be inferred from careful single-molecule

studies of particle dynamics.2

This was nicely illustrated in recent work by Kuo et al.3

who used force-clamp spectroscopy to measure the increase

in length of single poly-ubiquitin molecules that had been

stretched by a constant force of between 90 to 190 pN ap-

plied to one end. They found that each of the nine compact

ubiquitin domains that made up the polymer unfolded in se-

quence and increased its length in fixed steps of 20 nm. They

also found that the duration of the individual unfolding steps

was not a constant, but varied between fractions of a sec-

ond to several seconds, and that a frequency histogram of the

unfolding times of an ensemble of many thousand such poly-

ubiquitin molecules (which is a direct measure of the prob-

ability that an unfolding event occurs in a time interval t)

showed clear departures from exponential decay. As an ex-

planation of these observations, Kuo et al. have suggested

that because of heterogeneity in the populations of their con-

formational sub-states, different poly-ubiquitin molecules in
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different experimental measurements do not follow exactly

the same trajectories or surmount exactly the same activation

barriers to reach their final configurations. In other words,

during the course of a given single-molecule measurement,

a selected poly-ubiquitin molecule is locked into a confor-

mation for which the barrier to unfolding is in general dif-

ferent from the barrier for any other molecule in a different

experiment. Individual chains in the ensemble of molecules

therefore evolve in an environment that is in effect, statically

disordered. When the results of different experiments are

combined, the disorder is averaged out according to the distri-

bution of static barrier heights, and the effects are then man-

ifested as deviations from Arrhenius behavior in the final,

observed dynamics, specifically in the decay of the survival

probability, S(t), of the folded state.

Based on Zwanzig’s model of static disorder,1 Kuo et al.

have derived an expression for the disorder-averaged S(t) [see

Eq. (5) in Sec. II] by generalizing Arrhenius’s reaction rate

theory to include Gaussian fluctuations around a mean barrier

free energy. This expression, which does not have a simple

closed form, can be very well fit (numerically) to data from

six sets of experiments carried out at different applied forces

after the mean kF and the variance σ 2 of the barrier height

fluctuations are adjusted for best fit. An expression for S(t)

that does have a closed form can be derived from Eq. (5) if one

considers the limit of small barrier height fluctuations (small

in relation to the thermal energy kB T ); this expression is

S(t) =
exp(−kF t)

√

1 + kFσ 2t/(kB T )2
. (1)

Although this expression is non-exponential, at early times it

is exponential to a very good approximation, so the fact that

under certain conditions the static disorder model predicts an
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exponential survival probability motivates a consideration of

other possible routes to non-exponential kinetics.

One such possibility is, of course, dynamic disorder,1

which refers to time-dependent fluctuations in a reaction rate

that originate in time-dependent fluctuations of a “control”

parameter r, such as a barrier height. But if these fluctua-

tions are fast, they would lead effectively to a single average

value of the rate constant, and the resulting kinetics would

then be exponential, and so no longer satisfactorily describe

the poly-ubiquitin data. The opposite limit—of slow fluctua-

tions of the control parameter—corresponds to the static dis-

order limit considered by Kuo et al., which can account for

these data, but as just discussed, does not seem to produce

the expected analytical forms for various probability distri-

butions in certain limits. There still remains the possibility—

as yet unconsidered—that the fluctuations of r actually oc-

cur on timescales intermediate between these extremes. This

limit is, in fact, closer to the conventional understanding of the

term dynamic disorder, and it involves “the entire history”1

of r along a single-molecule trajectory for some interval of

time t.

Incorporating the full time dependence of r into a the-

ory of unfolding kinetics may actually be essential to its

correct description for the following reason: protein confor-

mational fluctuations are known to span a wide range of

timescales.4 This is evidenced by the widespread occurrence

of sub-diffusive dynamics in the fluctuations of inter-residue

distances, which can be traced to power law correlations in the

time-dependent decay of protein memory functions.5 There

is therefore unlikely to be a clear separation of timescales

between chain dynamics and barrier crossing, in general, so

a treatment of reaction kinetics based on a model of either

very fast or very slow r fluctuations may not be entirely

realistic. It seems worthwhile therefore to explore the ef-

fects that the incorporation of a time-varying r into a model

of poly-ubiquitin unfolding have on quantities like the sur-

vival probability. This is what we set out to do in this pa-

per, which is essentially an adaptation of Zwanzig’s general

treatment of dynamic disorder to the model introduced by

Kuo et al.

Section II provides some mathematical background on

the role of static disorder in the first order kinetics of

chain unfolding. Section III discusses these kinetics from

the point of view of dynamic disorder, which is manifested

in the fluctuations of a control parameter that in this pa-

per is assumed to obey a generalized Langevin equation.

The analysis of dynamic disorder in our model follows

Zwanzig’s “indirect” approach to noise averaging.1 This ap-

proach leads to an equation for the survival probability that

closely resembles a reaction-diffusion equation. The solution

to this equation is provided in Sec. IV, in approximate form,

using a self-consistent closure scheme developed by Wilem-

ski and Fixman.6 The time-dependent decay of the solu-

tion is examined in Sec. V, in the short and long-time

limits. The paper concludes with a comparison of these

results with data from Kuo et al.’s experiments, and a

discussion of the implications of these results for under-

standing the origins of non-exponentiality in single-molecule

stretching.

II. BACKGROUND AND REVIEW: THE STATIC
DISORDER MODEL

One of the quantities that Kuo et al. extract from their

data on poly-ubiquitin unfolding times is the ensemble-

averaged probability density, S(t), that a given chain survives

in the folded state up to a time t under the action of a constant

applied force. To determine this quantity theoretically, they

consider a model in which the probability density for survival

in the folded state in a given experiment is assumed to depend

on a random variable r that modulates the height of the barrier

that is crossed during unfolding. This probability—denoted

S(r, t)—is in turn assumed to obey the following first order

rate equation,

d S(r, t)

dt
= −k(r )S(r, t), (2)

where k(r ) is a rate constant whose dependence on r is taken

to be

k(r ) = kF exp(−βr ). (3)

Here, kF is the rate constant for crossing a

barrier of fixed height, with kF given by kF

= A exp(−β{�Gavg − F�xavg}), where A is the usual

pre-exponential factor, β = 1/kB T , with kB Boltzmann’s

constant and T the temperature, �Gavg is the average height

of the free energy barrier in the absence of the applied force

F, and �xavg is the average distance between the folded and

transition states along the reaction coordinate. Kuo et al.

make the further assumption that the variable r is governed

by the probability distribution,

f (r ) =
1

√
2πσ 2

exp
[

−r2/2σ 2
]

, (4)

σ 2 being the variance of r. They then calculate (by numeri-

cal integration) a disorder-averaged survival probability, S̄(t),

from

S̄(t) ≡
∫

dr f (r )S(r, t) =
∫

dr f (r ) exp
[

−kF t exp (−βr )
]

(5)

and compare this quantity with the survival probability mea-

sured experimentally.

The analytical expression shown in Eq. (1) is obtained

from Eq. (5) by considering the limit β2σ 2 ≪ 1.

III. THE DYNAMIC DISORDER MODEL

The starting point of our own calculations is the follow-

ing rate equation for the evolution of the survival probability

along a single-molecule trajectory:

d S(r (t))

dt
= −k(r (t))S(r (t)), (6)

where r (t) is the same random variable introduced in Sec. II

that modulates the barrier free energy, except that here it is ex-

plicitly time-dependent. Its stochastic variation is assumed—

and this is the defining feature of the model—to be described
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by a generalized Langevin equation (GLE),7

λr (t) = −α

∫ t

0

dt ′K (t − t ′)ṙ (t ′) + ξ (t), (7)

where α and λ are essentially timescale parameters (whose

precise microscopic definition is not needed as they will

be combined later on with other phenomenological parame-

ters and then adjusted for best fit), and K (t − t ′)is a mem-

ory function that is related to the noise ξ (t) by K (|t − t ′|)
= (1/αkB T )

〈

ξ (t)ξ (t ′)
〉

. When ξ (t) is white noise, Eq. (7) re-

duces to the ordinary Langevin equation [K (t − t ′) becoming

proportional to δ(t − t ′)], and r(t) evolves according to sim-

ple Brownian motion. In our model, we assume that ξ (t) is

described by the process known as fractional Gaussian noise

(fGn),8 which is defined completely by the following prop-

erties: 〈ξ (t)〉 = 0 and (1/αkB T )
〈

ξ (t)ξ (t ′)
〉

= 2H (2H − 1)|t
− t ′|2H−2, where H, the so-called Hurst index, is a number

satisfying 1/2 ≤ H < 1 and is a measure of the temporal

range over which thermal forces in the medium are correlated.

(The limit H = 1/2 represents the complete lack of correla-

tion of these forces, while higher values of H represent force

correlations that are “persistent.”) The motivation behind the

choice of fGn to describe the trajectories of r is the fact that

fGn has been shown in several previous studies to provide

a highly satisfactory model of the environmental fluctuations

that underlie distance fluctuations in large proteins.9 In the

present context, its use is also dictated in some sense by the

physics of the problem, which is that the control parameter r

must exhibit bounded (i.e., not too large on average) fluctua-

tions in time, while simultaneously exhibiting decaying cor-

relations (so as to mimic the correlations that one expects will

be present in large molecules with strongly coupled dynami-

cal motions). The simplest equation that meets these require-

ments and yet can be derived rigorously from first principles7

is, we believe, Eq. (7), a GLE that describes the motions of a

fictitious particle confined to a harmonic potential and acted

on by random forces with power law correlations.

Equation (6) can be solved formally to give

S[r ] = exp[−
∫ t

0

dt ′k(r (t ′))], (8)

with k(r ) defined in Eq. (3). This relation defines S as a func-

tional of r [which is itself a functional of the noise ξ (t)], and

before it can be compared to its experimental counterpart, it

must first be averaged over the distribution of ξ (t). The di-

rect averaging of S[r ] over the statistics of ξ (t) is, in general,

highly non-trivial, but Zwanzig has shown how the averag-

ing may be performed indirectly.1 The idea is to construct

an equation for the joint probability density of S(t) and r(t)

in which the noise has been averaged out starting from the

“equations of motion” for these two variables. Equation (6)

defines such an equation for S(t). A related equation for the

evolution of r(t) has been derived elsewhere10 using the meth-

ods of functional calculus;11 without going into the details of

the derivation (which are given in detail in Ref. 10), we merely

note that the equation is given by

r (t) = −η(t)r (t) + θ (t), (9)

where η(t) = −d ln χ (t)/dt, χ (t) = E2−2H [−(t/τ )2−2H ],

τ = [αŴ(2H + 1)/λ]1/(2−2H ), and

θ (t) = χ (t)
d

dt
χ (t)−1

∫ t

0

dt ′φ(t − t ′)ξ (t ′). (10)

Here, Ea(z) is the Mittag-Leffler function12 [defined as

Ea(z) =
∑∞

n=0 zn/Ŵ(an + 1)], Ŵ(b) is the gamma function,

and φ(t) is the inverse Laplace transform of the function

φ̂(s) = 1/[λ + sα K̂ (s)], the caret denoting the Laplace trans-

form with respect to the variable s.

The probability density that at time t, S(t) has the value S

and r(t) the value r is given, in general, by

P(S, r, t) = 〈δ(S − S(t))δ(r − r (t))〉 , (11)

where the angular brackets refer to an average over all real-

izations of the noise. From here, a lengthy but straightforward

calculation (discussed in Ref. 10) shows that

∂ P

∂t
= k(r )

∂

∂S
S P + η(t)

∂

∂r
r P +

1

λ
η(t)kB T

∂2 P

∂r2
. (12)

By multiplying this equation by S and integrating over

all S from 0 to 1 (and setting the surface term P(1, r, t > 0)

to 0), one obtains an equation for the noise averaged survival

probability S̄(r, t) ≡
∫ 1

0
d SS P(S, r, t). This equation is

∂ S̄

∂t
= −k(r )S̄ + DS̄, (13a)

where the operator D is defined as

D ≡ η(t)

[

∂

∂r
r +

1

λ
kB T

∂2

∂r2

]

. (13b)

IV. THE SURVIVAL PROBABILITY IN THE
WILEMSKI-FIXMAN APPROXIMATION

Once Eq. (13a) is solved, and then integrated over r ,

the expression so obtained, viz., 〈S(t)〉 ≡
∫

dr S̄(r, t), can be

compared with the experimentally measured survival proba-

bility. Unfortunately, an exact solution of this equation prob-

ably cannot be found analytically for the given rate constant

expression [Eq. (3)]. However, the mathematical structure of

Eq. (13a) is identical to the equation we had used earlier to

study the non-exponential escape kinetics of DNA from an

α-haemolysin nanopore.13 That equation was solved approxi-

mately using a method developed by Wilemski and Fixman,6

the basic idea of which is to write the exact S̄(r, t) as the

product of two terms: one, an equilibrium survival probability

S̄eq (r ) that is taken to depend only on r and that is assumed to

describe the state of the system at the initial time t = 0, and

the other, a purely time-dependent function that is determined

self-consistently.

To implement this program, one first notes that the formal

solution to Eq. (13a) under the assumed initial condition is

S(r, t) = S̄eq (r ) −
∫ ∞

−∞
dr ′

∫ t

0

dt ′G(r, t − t ′|r ′)k(r ′)S̄(r ′, t ′),

(14)
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where the function G is the solution of (∂/∂t − D) G(r, t

− t ′|r ′) = δ(r − r ′)δ(t − t ′). The solution of this equation is

known; it is given by

G(r, t |r ′, 0) =

√

λ

2πkB T (1 − χ2(t))

× exp

[

−
λ(r − r ′χ (t))2

2kB T (1 − χ2(t))

]

. (15)

The limit t → ∞ of Eq. (15) defines the func-

tion S̄eq (r ), which can shown to be S̄eq (r )

=
√

λ/2πkB T exp[−λr2/kB T ]. Introducing the func-

tions w(t) ≡
∫ ∞
−∞ drk(r )S̄(r, t) and w̄ ≡

∫ ∞
−∞ drk(r )S̄eq (r ),

one now writes the Wilemski-Fixman approximation in the

form S̄(r, t) ≈ S̄eq (r )w(t)/w̄ . After substituting this approxi-

mation into the right-hand side of Eq. (14), multiplying both

sides of the equation by k(r ) and finally integrating over r,

the following equation for the unknown function w(t) can be

derived:

w(t) = w̄ −
∫ t

0

dt ′C(t − t ′)w(t ′)/w̄, (16a)

where

C(t − t ′) =
∫ ∞

−∞
dr

∫ ∞

−∞
dr ′k(r )G(r, t − t ′|r ′)k(r ′)S̄eq (r ′).

(16b)

From the given expressions for k(r ), G(r, t − t ′|r ′), and

S̄eq (r ), one easily evaluates C(t) as

C(t) = k2
F exp

[

β

λ
(1 + χ (t))

]

. (17)

Knowing C(t), it is possible, in principle, to exploit the con-

volution structure of Eq. (16a) to solve for w(t) using Laplace

transforms. But when χ (t) is a Mittag-Leffler function (as is

the case in our fGn-GLE model), it seems unlikely that we

can determine the Laplace transform of C(t) in closed form.

So as before we must resort to approximations.

V. THE SURVIVAL PROBABILITY IN THE SHORT
AND LONG-TIME LIMITS

A. The short time limit

In the limit t → 0, and from the definition of the

Mittag-Leffler function, it is possible to approximate χ (t)

by the expansion χ (t) = 1 + a1tb + O(t2b), where b = 2

− 2H, a1 = 1/τ bŴ(3 − 2H ), and τ = (αŴ(2H + 1)/λ)1/b.

C(t), in turn, can then be approximated to this order by

C(t) ≈ k2
F exp(2β/λ) exp(−a2tb), where a2 = a1β/λ. Thus,

at early times, C(t) behaves essentially as a stretched expo-

nential. To the same order, this behavior can be reproduced

by C(t) ≈ k2
F exp(2β/λ)Eb(−a2Ŵ(b + 1)tb). The reason for

writing C(t) in this form is that it can now be Laplace trans-

formed using tabulated results12 to yield,

Ĉ(s) =
a4sb−1

sb + a3

, (18)

where a3 = a2Ŵ(b + 1) and a4 = k2
F exp(2β/λ). Hence, from

Eq. (16a), we find that

ŵ(s) =
w̄(a3 + sb)

a3s + a4sb/w̄ + sb+1
=

w̄sb−1

a3 + sb + a4sb−1/w̄

+
a3w̄s−1

a3 + sb + a4sb−1/w̄
. (19)

The formal expansion14 of the two fractions on the right-hand

side of Eq. (19) yields

ŵ(s) = w̄

∞
∑

k=0

(

−
a4

w̄

)k sb−(b−(b−1)(k+1))

(a3 + sb)k+1

+ a3w̄

∞
∑

k=0

(

−
a4

w̄

)k sb−(b+1−(b−1)k)

(a3 + sb)k+1
.

(20)

In this form, the inverse Laplace transform of ŵ(s) can be

obtained analytically, again using tabulated results;12 we thus

find that

w(t) = w̄

∞
∑

k=0

(−1)k

k!

(a4

w̄

)

k

tk E
(k)
b,1+k(1−b)(−a3tb)

+ a3w̄

∞
∑

k=0

(−1)k

k!

(a4

w̄

)

k

tb+k E
(k)
b,1+b+k(1−b)(−a3tb),

(21)

where E p,q (x) is the so-called generalized Mittag-

Leffler function,12 which is defined by E p,q (x)

=
∑∞

n=0 xn/Ŵ(pn + q), and E (k)
p,q (x) is the kth deriva-

tive of the function with respect to its argument. From these

definitions, the early-time limit of w(t) is found to be

w(t) = w̄[Eb,1(−a3tb) + O(t)] + a3w̄[tb Eb,1+b(−a3tb)

+ O(tb+1)] ≈ w̄ Eb(−a3tb), (22)

where, in deriving the second equality in Eq. (22), we have

made use of the identity E p,1(x) = E p(x).

Substituting Eq. (22) into the Wilemski-Fixman approxi-

mation, we find that

S̄(r, t) ≈ S̄eq (r )Eb(−a3tb).

Hence,

〈S(t)〉 ≡
∫

dr S̄(r, t) = Eb(−a3tb). (23)

The corresponding unfolding probability in this regime, p(t),

(defined by the relation p(t) = −d 〈S(t)〉 /dt) is therefore

given by15

p(t) = a3tb−1 Eb,b(−a3tb). (24)

B. The long-time limit

In the limit t → ∞, the asymptotic behavior of the

Mittag-Leffler function can used to approximate the function
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χ (t) by the leading order expansion χ (t) ≈ 1/(t/τ )bŴ(2H

− 1), where τ and b are the same parameters defined in

Sec. V A above. The correlation function C(t) [Eq. (17)] is

therefore given approximately by C(t) ≈ a5 + a6t−b, where

a5 ≡ k2
F exp(β/λ) and a6 ≡ a5βτ b/λŴ(2H − 1). Hence,

the Laplace transform of C(t) becomes Ĉ(s) ≈ a5s−1

+ a6Ŵ(1 − b)s−(1−b). From this expression we find that

ŵ(s) =
w̄

a5/w̄ + s + a6Ŵ(1 − b)sb/w̄
. (25)

Using the same expansion procedure outlined in Sec. V A,

one can Laplace invert the above relation formally to produce

w(t) = w̄

∞
∑

k=0

(−1)k

k!

(a5

w̄

)

k

tk

× E
(k)
1−b,1+bk(−a6Ŵ(1 − b)t1−b/w̄). (26)

The Mittag-Leffler function in this equation is again expanded

asymptotically to leading order, after which it is differentiated

k times with respect to its argument. The resulting infinite se-

ries can be resumed in closed form to give

w(t) =
w̄2

a6Ŵ(1 − b)t1−b
Eb,b(−a5tb/a6Ŵ(1 − b)). (27)

Hence, after invoking the Wilemski-Fixman approximation,

the disordered averaged survival probability in this long-time

regime becomes

〈S(t)〉 =
w̄

a6Ŵ(1 − b)t1−b
Eb,b(−a5tb/a6Ŵ(1 − b)), (28)

so the corresponding unfolding probability, p(t), is15

p(t) =
w̄

a6Ŵ(1 − b)

[

(1 − b)

t2−b
Eb,b

(

−
a5tb

a6Ŵ(1 − b)

)

+
a5

a6Ŵ(1 − b)t2−2b

{

Eb,2b−1

(

−
a5tb

a6Ŵ(1 − b)

)

+ (1 − b)Eb,2b

(

−
a5tb

a6Ŵ(1 − b)

)}]

. (29)

VI. RESULTS AND DISCUSSION

In their experiments on poly-ubiquitin stretching un-

der a constant force, Kuo et al. have shown that the non-

exponentiality in the probability of chain unfolding, p(t),

which cannot be reconciled with a model based on simple Ar-

rhenius kinetics, can be plausibly explained by a model based

on a static distribution of reaction barriers. Interestingly, re-

cent simulation data by Li et al.16 on the role of water in the

forced unfolding of poly-ubiquitin suggest how a static distri-

bution of transition states might occur during the process as a

result of the intrusion of variable numbers of water molecules

into the space between H-bonded beta strands, with the con-

sequent weakening of the forces responsible for holding the

chain in a compact configuration. As the authors themselves

note, however, the timescales separating unfolding from wa-

ter intrusion are quite large, so the evidence in favor of this

FIG. 1. The unfolding probability p(t) as a function of the time t. The blue

curve corresponds to the probability reconstructed from the experimental

histogram of Fig. 1(c) in Ref. 3, as described in the text. The green curve

corresponds to Eq. (24), with the parameters H and a3 adjusted for best fit

to the values 0.605 and 0.848, respectively. The red curve corresponds to

Eq. (29), with H set to the same value of 0.605 used in the short time regime,

and the parameters a5/a6Ŵ(1 − b), and w̄/a6Ŵ(1 − b) adjusted for best fit to

the values 0.00094 and 1.732, respectively.

particular mechanism of generating static disorder—though

suggestive—is somewhat equivocal.

Dynamic disorder as an alternative explanation of the

data in Ref. 3 cannot, therefore, be ruled out. A comparison

of its predictions for p(t) [Eqs. (24) and (29)] with the ex-

perimental p(t) is shown in Fig. 1. The blue curve in this

figure corresponds to the experimental data and has been

reconstructed17 from the actual data points in the histogram

of Fig. 1(c) in Ref. 3 (which corresponds to the 110 pN force

experiment). The green curve corresponds to the early-time

limit given by Eq. (24), the parameters H and a3 in that equa-

tion having been set to the best fit values of 0.605 and 0.848,

respectively. The red curve corresponds to the long-time limit

given by Eq. (29), the parameter H having been fixed at the

value 0.605 obtained earlier for the short time behavior, and

the parameters a5/a6Ŵ(1 − b) and w̄/a6Ŵ(1 − b) having been

set, respectively, to the best fit values of 0.00094 and 1.732.

(The parameters a3 and a5/a6Ŵ(1 − b) can obviously be iden-

tified with decay constants, and w̄/a6Ŵ(1 − b) with a weight-

ing factor, but because we have adopted a phenomenological

approach in which a complex many-body problem has been

reduced to a one-dimensional problem in the dynamical vari-

able r, we cannot hope to specify the microscopic decay pro-

cess that these parameters correspond to.) As is evident from

Fig. 1, the degree of agreement between the experimental and

theoretical curves is very close. The same degree of agree-

ment cannot be achieved with H = 0.5 (the white noise limit),

where the survival probability would be found to decay expo-

nentially, suggesting that temporal correlations between the

fluctuations in r are important in producing non-exponential

unfolding kinetics.

Furthermore, the fact that the survival probability S(t) is

given by a generalized Mittag-Leffler function means that at

early times it behaves essentially as a stretched exponential,
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which is the kind of behavior that seems to characterize the

decay of at least some regions of the experimental curves in

Ref. 3.

The possibility that dynamic disorder underlies the non-

exponential kinetics of poly-ubiquitin unfolding suggests that

the chain might exist in a number of different conformational

sub-states that interconvert amongst themselves at rates that

span a range of timescales, including those comparable to

the timescales of unfolding. Other large globular proteins are

known to exhibit this timescale overlap between conforma-

tional fluctuations and barrier crossing dynamics, so it would

not be surprising if poly-ubiquitin behaved in essentially the

same way. In this scenario, the water intrusion that has been

suggested to play a role in generating static disorder would

probably have little direct bearing on the unfolding kinetics,

unless it were to contribute to the thermal fluctuations and to

produce the kind of temporal correlations among the random

forces acting on the chain that lead to colored noise effects.
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