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We study the kinetics of crystallisation in deeply supercooled liquid silicon employing computer simulations
and the Stillinger-Weber three body potential. The free energy barriers to crystallisation are computed
using umbrella sampling Monte Carlo simulations, and for selected low temperature and zero pressure state
points, using unconstrained molecular dynamics simulations to reconstruct the free energy from a mean first
passage time formulation. We focus on state points that have been described in earlier work [Sastry and
Angell, Nature Mater., 2, 739, 2003] as straddling a first order liquid-liquid phase transition (LLPT) between
two metastable liquid states. It was argued subsequently [Ricci et al., Mol. Phys., 117, 3254, 2019] that
the apparent phase transition is in fact due the loss of metastability of the liquid state with respect to the
globally stable crystalline state. The presence or absence of a barrier to crystallisation for these state points is
therefore of importance to ascertain, with due attention to ambiguities that may arise from the choice of order
parameters. We discuss our choice of order parameters and also our choice of methods to calculate the free
energy at deep supercooling. We find a well-defined free energy barrier to crystallisation and demonstrate
that both umbrella sampling and mean first passage time methods yield results that agree quantitatively.
Our results thus provide strong evidence against the possibility that the liquids at state points close to the
reported LLPT exhibit slow, spontaneous crystallisation, but they do not address the existence of a LLPT
(or lack thereof). We also compute the free energy barriers to crystallisation at other state points over a
broad range of temperatures and pressures, and discuss the effect of changes in the microscopic structure of
the metastable liquid on the free energy barrier heights.

I. INTRODUCTION

The phase behaviour of liquid silicon is a subject of
continuing interest due to the many anomalous properties
it exhibits reminiscent of water and of other tetrahedral
liquids. Of particular interest is deeply supercooled sili-
con, i.e., the liquid cooled to temperatures significantly
lower than the melting temperature. Here, as in water,
anomalous behaviour such as a density maximum and the
possibility of the existence of a first order phase transi-
tion between two metastable liquid states – a high den-
sity liquid (HDL) and a low density liquid (LDL) – has
been the subject of numerous investigations that have ap-
proached the question from different directions1–14. The
existence of a first order transition between “amorphous”
and liquid states was first proposed based on experimen-
tal observations15–18 and the possibility of a liquid-liquid
transition was suggested on the basis of a simple two
state model by Aptekar10. Notable experimental works
since then, probing the phase behaviour of deeply su-
percooled silicon include the work of Kim et al

11, where
electrostatic levitation was used to prevent crystallisa-
tion induced by the container walls and temperatures as
low as T = 1350K were probed. Subsequently, Beye et

a)Electronic mail: sastry@jncasr.ac.in

al
12 used ultra-fast pump probe spectroscopy to discern

changes in the electronic structure to identify a two-step
change in the melt from semi-conductor to semi-metal to
a high temperature metallic liquid.
Owing to the difficulties of conducting experiments on

liquid silicon at these temperatures, as well as the difficul-
ties in avoiding crystallisation11,12,19–24, computer simu-
lations have played a significant role in efforts to study
the liquid-liquid transition in silicon1–5,7–9,13,14,25,26. A
number of simulation studies, including some of the most
recent investigations in this area, employ ab-initio meth-
ods and identify liquid-liquid and liquid-solid transitions
based on changes in the electronic structure reminiscent
of those found in experiments; silicon is a semiconductor
in the solid-state, a semi-metal in the low density liquid
state and a metallic liquid in the high temperature, high
density liquid state6–9,13,27–30.

Classical simulations using the Stillinger-Weber (SW)
potential31 have been performed extensively to probe rel-
evant time scales whereby the metastable liquid phase
can be studied in order to explore the possibility of
a liquid-liquid transition1,3–5,13,25,26,32,33. At the rele-
vant temperatures and pressures, the dynamics of the
metastable liquid is sufficiently slow (relaxation times of
tens of nanoseconds and longer) to make computer sim-
ulations challenging. On the other hand, crystal nucle-
ation occurs on comparable time scales making exper-
imental studies challenging. Employing simulations of

http://arxiv.org/abs/2108.13749v1
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SW silicon, Sastry and Angell3 observed a discontinuous
change in enthalpy below the melting temperature, sug-
gesting a first order phase transition between two states
that were identified to be liquid-like based on structural
and dynamical properties. Vasisht et al, 20114, identified
a co-existence region and a transition line that ended at
a critical point at negative pressures. These works es-
timated the transition temperature to be ∼ 1060K at
P = 0 GPa. Vasisht et al

4 further illustrated the be-
haviour of important thermodynamic loci consistent with
their observation of approach to a second critical point,
similar to a number of models of water34–36.

The question of the existence of two metastable liquid
states for supercooled SW silicon has since been investi-
gated through attempts to construct two dimensional free
energy surfaces that may display distinct minima corre-
sponding to the two liquid phases in addition to that
corresponding to the stable crystal phase. Studies by
Limmer and Chandler25,37 and by Ricci et al5, evaluat-
ing the free energy surfaces, did not find any evidence of
a metastable LDL. In fact, it was argued in these works
that the metastable liquid was no longer stable with re-
spect to crystallisation at the state points where earlier
studies had found evidence of an LDL phase, and that
crystallisation was spontaneous. In the context of water,
a coarse-grained model of water based on reparametris-
ing the SW model was employed to argue that increased
crystallisation rates precluded the possibility of a trans-
formation to the low density liquid phase38, consistently
with the above arguments. Nevertheless, from simula-
tions of more explicit multi-site models of water such as
the ST2, TIP4P and TIP5P models, and for the single-
site spherically symmetric Jagla ramp potential, clear ev-
idence of an LLPT ending at a critical point has been
shown, notably in36,39–42 among others.

In the case of SW silicon, the claim that no free energy
barrier separates the liquid sate from the crystal free en-
ergy minimum for state points in the vicinity of ∼ 1060K
at P = 0GPa is puzzling, given the long simulation times
over which the simulated systems have been observed in
the liquid state3,4,43,44. A possible origin of such incon-
sistency is that the order parameters chosen to construct
the free energy surfaces in 5,25,37 lead to artefacts in the
presence of low barriers to crystallisation, as briefly dis-
cussed in5. In particular, the choice of a global order
parameter (Q6) as a measure of the degree of crystalline
order may not permit a reversible control of crystallisa-
tion with the bias potentials used in umbrella sampling
simulations. Related considerations with respect to the
use of the global order parameter (Q6) for evaluating free
energy barriers have already been noted45.

In the present work, we address one aspect of the issues
surrounding the possibility of a liquid-liquid transition in
SW silicon. As the discussion above makes clear, crystal
nucleation rates play a central role, and among the pos-
sibilities that cast doubt on the possibility of the liquid-
liquid transition, the most extreme case is that the liq-
uid is simply not stable in the relevant state points, and

crystal nucleation is spontaneous, or barrierless. Thus,
the first question that needs to be addressed is whether
the liquid state is metastable, and hence finite free en-
ergy barriers to crystallisation exist, for the relevant state
points. If the liquid state can be demonstrated to be
metastable, one must address the separate question of
whether two forms of the liquid exist, which we do not
address in this work.
In order to reliably compute free energy barriers to

crystallisation, we need to also demonstrate that no arte-
facts arise as a result of the choice of order parame-
ters in constrained simulations such as umbrella sam-
pling. To this end, at deeply supercooled conditions,
we compute the free energy profile for crystallisation
using two independent methods, namely, (i) kinetic re-
construction of the free energy from unbiased molecular
dynamics (MD) runs in the constant temperature, pres-
sure and number of particles (NPT) ensemble, using the
method described by Wedekind et al

46–48 and (ii) Um-
brella Sampling Monte Carlo simulations (USMC) in the
NPT ensemble49, specifically, the prescription described
by Saika-Voivod, Poole and Bowles,50. Both of these
works have focused on cases of low free energy barriers
and have discussed the specific considerations that be-
come relevant to accurately measure them.
We find that finite free energy barriers and well-defined

critical nuclei, albeit small, exist for all the state points
we investigate. We also demonstrate that the free en-
ergy profiles obtained using two independent methods
agree well with each other for the state points consid-
ered. Thus, our results rule out the possibility that the
liquid state is not stable for the range of state points
across which a liquid-liquid transition has previously
been claimed to arise.
The rest of the paper is organised as follows: Sec-

tion II describes the model potential used, the three-body
Stillinger-Weber potential, the order parameters and the
free energy calculation methods used. Section III shows
results obtained using the USMC simulations and from
the kinetic reconstruction of the free energy from MD
runs. A comparison of the free energy profiles is made.
Finally, a discussion of the results, ongoing work and out-
standing issues follows in Section IV.

II. MODEL AND METHODS

In this section we briefly describe the model potential
and methods used in this study. A detailed description
and discussion of the same is provided in Appendix A.
We use the classical three-body Stillinger-Weber poten-
tial to model silicon31. The model is designed to favour
local tetrahedral ordering through the three-body in-
teraction term and is the most widely used classical
model of silicon. In order to identify crystalline parti-
cles and crystalline clusters, we use the local analogue of
the Steinhardt-Nelson bond orientational order parame-
ters51. The local bond ordering, typically denoted ql, is
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calculated for each particle. Here, we use q3(i), noting
that q6(i) can be used equivalently43,52. The q3(i) gives
information about the ordering of the neighbours around
the particle i. To determine bulk crystalline particles, we
first identify particles with similarly ordered neighbour-
hoods by calculating q3(i).q3(j). Two particles are said to
be “bonded” if Re(q3(i).q3(j)) < −0.23 and a bulk crys-
talline particle is one which has q3(i) > 0.6 and is bonded
to at least 3 of its neighbours40,45,53–55. Two bulk crys-
talline atoms that are within the Stillinger-Weber cut-off
distance, 3.78Å, of each other are said to belong to the
same cluster. We consider both the largest cluster, de-
noted nmax, as well as the number of clusters of a given
size n, denoted N(n).
Free energy reconstructions are performed using two

independent methods at low temperatures, along the
P = 0GPa isobar, in order to obtain reliable estimates
of the free energy barriers. The first method we employ
is a kinetic reconstruction using the mean first passage
time (MFPT) from unconstrained MD runs46–48. In this
method, the steady state probability of nmax, Pst(nmax),
as well as the mean first passage time, τMFPT (nmax) are
computed from a collection of independent, crystallising
trajectories and used to reconstruct the free energy us-
ing Eq. 1 and Eq. 2. Further details are contained in
Appendix A3.

β∆G(x) = β∆G(x = 1) + ln

(

B(x)

B(1)

)

−

∫ x

1

dx′

B(x′)
(1)

B(x) = −
1

Pst(x)

[

∫ b

x

Pst(x
′)dx′ −

τ(b)− τ(x)

τ(b)

]

. (2)

Here, x is the order parameter, which in this context
is the size of the largest crystalline cluster, nmax. b is
the size of the largest crystalline cluster at which an ab-
sorbing boundary is imposed. ∆G(x) is the free energy
of forming a crystalline nucleus of size x. In order to
compute the free energy using this method, 600 inde-
pendent NPT MD of N = 512 particles simulations were
started from disordered configurations with no crystalline
particles and allowed to crystallise. The MD runs are
performed on the LAMMPS software suite using the ve-
locity Verlet algorithm with a timestep of 0.3830 fs56.
Thermostatting and barostatting are done with a Nosé-
Hoover thermostat/barostat with time constants of 100
and 1000 steps respectively.
The other technique used to construct the free ener-

gies is umbrella sampling Monte Carlo49. Simulations are
performed in the NPT ensemble with constraints applied
on the size of the largest crystalline cluster, nmax. Two
bias potentials are used, a harmonic bias and a hard wall
bias50. Parallel tempering swaps between simulations ad-
jacent in temperature or bias potential are performed to
speed up equilibration. For simulations where a hard wall
bias is used, we begin simulations by applying a harmonic
bias potential for 107 MC steps before switching the bias
potential. The auto-correlation functions of density (ρ),

Q6 and potential energy were monitored under the ap-
plication of the hard wall bias and the relaxation time
found to be similar and less than 105 MC steps for all the
windows and for each of the three quantities considered.
Keeping in mind a relaxation time of τ = 105 MC steps,
we use an equilibration length, under application of hard
wall bias, of 50τ and a production length of 250τ . We
note here that the thermodynamic stability of the liquid
is determined by whether there is a non-zero free energy
cost to form small crystalline clusters which is maximum
for some critical cluster size n∗ > 0. In using nmax as
the order parameter, we presume that P (nmax) ≈ P (n),
which is not necessarily true for small cluster sizes, par-
ticularly at low temperatures45. Further P (nmax) is ex-
pected to show a system size dependence while P (n) is
not. The statistics of the largest cluster, nmax reveal
that configurations containing a small cluster (i.e., where
the largest cluster is small) are more frequently sampled
than configurations where there are no crystalline clus-
ters at all. This leads to the appearance of an artifi-
cial minimum in β∆G(nmax) at small values of nmax.
This issue has been discussed in the literature48,50,57–59

and a more extensive discussion is also included in Ap-
pendix A6. Thus, in simulations where the hardwall bias
is used, we gather statistics on the number of clusters of
size n, N(n). The quantity P (n) = N(n)/N(0) can be
related to the free energy as β∆G(n) = −ln (P (n)) with-
out the need to determine any additive constant since the
way in which P (n) is defined applies the constraint that
β∆G(n = 0) = 0. To obtain statistics for the smallest
cluster sizes, we perform simulations with a hardwall bias
and use the full cluster size distribution to compute the
free energy.
When reconstructing the free energy using either um-

brella sampling or the kinetic reconstruction with nmax

as the order parameter we additionally specify that the
free energy as a function of the largest cluster size,
β∆G(nmax) be equal to −ln (P (n)), for small cluster
sizes. By doing this, one obtains an estimate that can
be meaningfully compared with β∆G(n), the free energy
from the full cluster size distribution. Similar techniques
have been used in Ref. 48 and in Ref. 59.
We also perform free energy reconstructions with the

globalQ6 as the order parameter (see Appendix B for the
definition of Q6), using both of the methods described
above, and conclude that it is not a reliable order pa-
rameter to use to estimate the barrier to crystallisation.
Details are contained in Appendix B.

III. RESULTS

The results of free energy calculations performed at
different state points are shown in this section, with a
specific focus on temperatures across the previously re-
ported LLPT at P = 0 GPa4. At these temperatures,
free energy calculations are performed using both the
kinetic reconstruction from the MFPT and using um-
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brella sampling with a hard wall bias. The results for
these state points are compared, showing a free energy
barrier to the crystallisation transition at all the tem-
peratures considered, demonstrating that crystallisation
is not spontaneous. The rest of the results are subse-
quently presented showing the free energy cost to crys-
tallisation at other state points where the question of
loss of metastability of the liquid does not arise. This in-
cludes free energy calculations performed at higher tem-
peratures along the P = 0 GPa isobar. Calculations at
low temperatures along the P = 0.75 GPa isobar are
also performed. Along other isobars, the choice of state
points is restricted to those understood to correspond to
the high density liquid, based on the results in Ref. 4.
The free energy curves are also constructed along lines
of constant coordination number, CNN , and of constant
isothermal compressibility, κT , in an attempt to under-
stand the effect of density fluctuations and of the degree
of tetrahedral ordering in the metastable liquid on the
barrier to crystallisation. A further set of calculations
is performed, crossing the line of maximum compress-
ibility, known as the Widom line39,60, beyond the LLCP
reported in4, where the two purported metastable liquids
cease to be indistinguishable.
Results for the different sets of state points are now

presented in turn, after first illustrating the methodology
for the treatment of free energy profiles at small cluster
sizes, and the MFPT method. We then discuss briefly
the relationship between the free energy barrier and the
critical nucleus size, and a comparison with the expecta-
tion based on classical nucleation theory (CNT). Finally,
for the low temperature T = 1055K at zero pressure, we
consider whether the choice of the initial ensemble of con-
figurations (HDL-like or LDL-like) will make a difference
to the estimation of free energy barriers, and answer it
in the negative.

A. Comparing results at small cluster sizes

Following the procedure described in detail in Ap-
pendix A6, we make a comparison between β∆G(n) ob-
tained from umbrella sampling runs with a hard wall
bias to β∆G(nmax) obtained from both the kinetic re-
construction and umbrella sampling runs with a hard
wall bias. At T = 1070K, P = 0 GPa (see Fig. 1), using
nlow = nhi = 1 gives nearly exact quantitative agreement
between β∆G(n) and β∆G(nmax) at N = 512 regardless
of the method used to generate the curves. As expected,
free energy curves constructed from USMC simulations
using the equilibrium P (n) show no system-size depen-
dence. In Fig. 1 (b), β∆GHW (nmax) for small nmax

from umbrella sampling runs for N = 4000 is obtained
using nlow = 3, nhi = 5 (see Appendix A6, Eq. A33).
At lower temperatures, or even larger system sizes, as
the appropriate value of nlow becomes larger a compari-
son between β∆G(nmax) and β∆G(n) can no longer be
meaningfully made. Having described how to compare
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FIG. 1. A comparison of free energy reconstructions at
T = 1070K, P = 0 GPa using both n and nmax as order
parameters at two system sizes, N = 4000 and N = 512. (a)
Comparison, at N = 512, of results from the MFPT method
using nmax as the order parameter with results from the hard
wall bias umbrella sampling using either n or nmax as the
order parameter. (b) Comparison of results using either n

or nmax as the order parameter from the umbrella sampling
simulations at two system sizes, N = 512 and N = 4000. For
the purpose of comparison of β∆G(n) with β∆G(nmax), the
error in Eq. A33 is minimised. For N = 4000, the error is
minimised for 1 < n ≤ 3.

the free energy results using the two methods, a compar-
ison is made at P = 0 GPa at temperatures where the
crystallisation transition is of particular interest. These
results are shown in Section. III C.
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B. Kinetic reconstruction of free energy from MFPT

The two main ingredients to reconstruct the free en-
ergy using this method are the MFPT, τMFPT (nmax),
and the steady state size distribution of the largest crys-
talline cluster, Pst(nmax). These can be used as shown
in Eqs. 1 and 2 to get the free energy with the largest
cluster size as the order parameter, β∆G(nmax). The
MFPT and steady state probability are shown in Fig. 2
for the temperatures studied here. These results are gen-
erated from NPT MD runs of N = 512 particles. Results
using this method are produced at state points where the
pressure is P = 0 GPa and the temperature is varied in
a range from high temperatures where the liquid can be
unambiguously sampled in equilibrium before nucleating
(T = 1070 K, 1080 K) to lower temperatures where the
loss of liquid metastability with respect to crystallisation
becomes a consideration (T < 1070 K). The order pa-
rameter is the size of the largest cluster, nmax and the
absorbing boundary condition is placed at nmax = 100.
In Fig. 2, we see that the MFPT, τMFPT (nmax), shows
a progressively decreasing sigmoidal character as we de-
crease the temperature from T = 1080K to T = 1055K.
This suggests that the difference between the nucleation
timescale and the timescale of cluster growth decreases.
As discussed in Appendix A6, the steady state prob-

ability Pst(nmax) shown in Fig. 2 (a) peaks at small
values of nmax ( which shows up as a minimum in
−ln(Pst(nmax))) and decays exponentially close to the
absorbing boundary. At the higher temperature of T =
1080K, post-critical clusters grow rapidly. For this rea-
son, we sample nmax with a higher frequency to obtain
smoother data for τMFPT (nmax) that captures the post-
critical growth phase well.

C. Comparison of free energy profiles at deep supercooling

The behaviour of supercooled liquid silicon is a mat-
ter of debate at deep supercooling, particularly in the
vicinity of T = 1060K at P = 0 GPa. To address
the question of whether crystallisation is spontaneous at
these state points, the free energy barrier to the growth
of crystalline clusters is calculated using the two methods
described above. We find that a clear and significant bar-
rier to the growth of the crystalline phase exists at each
of the state points considered and that the two meth-
ods give results that are in agreement, shown in Fig. 3.
Mendez-Villuendaz et al

61, find that the largest cluster,
nmax, is the appropriate order parameter to determine
the thermodynamic stability of the parent phase based
on stronger coupling between the nucleation kinetics and
the free energy profile as a function of nmax in the context
of supercooled gold nanoclusters in the liquid phase. As
also in other work,57,62, a monotonically decreasing free
energy as a function of nmax is argued61 to mark the loss
of metastability of the liquid with respect to crystallisa-
tion. This conclusion is derived from the argument that
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FIG. 2. (a) −ln(Pst(nmax)) plotted against nmax for different
temperatures. 600 NPT MD simulations at P = 0GPa were
run with a system size ofN = 512. (b) τMFPT (nmax) plotted
against nmax from the same set of MD runs.

nmax is the order parameter that is best coupled to nucle-
ation timescales. However, the thermodynamic stability
of the metastable liquid is determined by the free energy
cost to the growth of any cluster of size n, β∆G(n). In
the present case, we point out that at all the state points
we have considered, the free energy profile, β∆G(nmax),
is not monotonically decreasing with nmax and displays a
clear barrier. The procedure described in Appendix A6
is followed to produce a comparison between the Hard
Wall bias umbrella sampling results and those from the
kinetic reconstruction. At T = 1055K, 1058K, we find
that the difference between P (nmax) and P (n) (or be-
tween the corresponding steady state probabilities for the
MFPT results, Pst(nmax)) and Pss(n)) persists to larger
values of n (or nmax) than at higher temperatures. It is
worth noting that the comparison between Pst(nmax) and
Pss(n) is only meaningful for n or nmax) small enough
that the steady state probabilities are good approxima-
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tions to the equilibrium probabilities. When the differ-
ence between P (nmax) and P (n) persists to larger values,
the only meaningful comparison between results from the
two methods, umbrella sampling and the MFPT method,
are those where the order parameter is the same, namely,
nmax. Notwithstanding the difficulty in making a satis-
factory quantitative comparison with the free energy pro-
files obtained using the different methods at the lowest
two temperatures, we close by pointing out two salient
features of the results that are reported in Fig. 3, which
are central to the main focus of the present study: (i)
At all temperatures studied, a clear and significant free
energy barrier is present for crystal nucleation, and the
different estimates, β∆GMFPT (nmax), β∆GHW (nmax)
and β∆GHW (n) are in reasonable quantitative agree-
ment. (ii) The free energy profiles β∆GMFPT (nmax) and
β∆GHW (nmax), obtained using the same order parame-
ter nmax are in very good quantitative agreement at all
temperatures, including the lowest two temperatures at
which their comparison with β∆GHW (n) is not very sat-
isfactory. At higher temperatures along the P = 0 GPa
isobar (see Fig. 4, where such ambiguities do not arise,
we perform free energy calculations using umbrella sam-
pling runs with a harmonic bias and study the effect of
changes in the properties of the metastable liquid on the
free energy barriers. The calculations are made starting
from T = 1296K (∼ 23% undercooling) to T = 1107K
(∼ 35% undercooling).

D. Free energy profiles along different isobars across the

phase diagram

In the next set of results, the free energy profiles at
different state points, indicated in Fig. 5, are calculated.
In Fig. 6, we show the β∆G computed across a range of
temperatures for P = 0.75GPa, −1.13GPa, −1.51GPa
and −3.02GPa respectively. With the exception of tem-
peratures below T = 1000K in Fig. 6 (a), these state
points correspond to the HDL region of the phase dia-
gram as understood from the results of Ref. 4. The free
energy profiles at P = −1.88GPa, for state points across
the Widom line, are discussed separately below.

E. Free Energy profiles and Compressibility

The next question of interest is how free energy barrier
changes as the reported critical point is approached from
other isolines, namely the line of constant coordination
number, where the isothermal compressibility increases
as we approach the critical point, and the line of con-
stant isothermal compressibility, where the coordination
number changes. The state points of both sets of data
are chosen such that they are roughly parallel to both the
line of compressibility maxima (the Widom line) and the
line of maximum density (see Fig. 5). We first describe
the results for state points of varying compressibiliity,

but keeping the coordination number fixed.
A number of studies in the literature have highlighted

the role of enhanced fluctuations in the metastable liq-
uid in reducing the free energy barrier to crystal nucle-
ation63–65. In these cases, the enhanced fluctuations are
brought about by proximity to a fluid-fluid phase transi-
tion or fluid-fluid critical point. To understand the effect
of fluctuations on the free energy barriers for supercooled
liquid silicon, we construct the free energy profile along
a locus of constant coordination number, or degree of
tetrahedrality, of the metastable liquid with varying com-
pressibility. We have chosen state points such that the
coordination number remains constant (Cnn = 4.66) as
the compressibility increases. The isothermal compress-
ibility of the liquid changes along the line of state points
considered while the overall tetrahedral character of the
liquid is fixed; we can analyse the effect of density fluctu-
ations on the free energy barrier. We find that all these
state points sit parallel to the line of compressibility max-
ima reported in Ref. 4, also known as the Widom line.
In Fig. 7 we observe that as we approach the critical
point, the compressibility increases and the free energy
barrier decreases to around 10kBT . The critical nucleus
size changes from 35 atoms to less than 10 atoms. While
it is difficult to determine from this analysis whether the
decrease in the work required for samples to crystallise is
determined by the fluctuations in density or by possibly
associated fluctuations in bond order, suggested in earlier
work on hard sphere crystallisation64, we highlight that
larger fluctuations appear to destabilise the metastable
liquid with respect to crystallisation as also seen in pre-
vious work. Further, we reiterate that the state points
chosen fall on a locus of constant coordination number
and the average degree of tetrahedrality in the liquid is
expected to be the same.

F. Free Energy profiles and Coordination Number

We next look at the effect of local coordination num-
ber on the free energy barrier keeping the compressibility
fixed. Keeping the compressibility fixed we try to find the
effect of coordination number on β∆G of the system. We
chose the compressibility value such that the difference in
the coordination number is largest between the two state
points accessible at that compressibility. In Fig. 8 (inset)
we show the dependence of compressibility on the pres-
sure for two isotherms T = 1259K and T = 1510K. The
symbols in the inset represent the chosen state points,
which have equal compressibility and a difference in co-
ordination number of 3%. In Fig. 8 (main panel) we show
the corresponding change in the free energy, wherein we
find a dramatic change in the free energy barrier and crit-
ical nucleus size as we approach the smaller coordination
number. The data suggest that an increase in the tetra-
hedral ordering in the parent liquid can significantly alter
the characteristics of the crystallisation transition. How-
ever, it is difficult to conclude what drives the transition
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FIG. 3. Free energy profile obtained using the MFPT method and using umbrella sampling with a hard wall bias at (a)
T = 1055K, (b) T = 1058K, (c) T = 1065K, (d) T = 1070K, (e) T = 1080K. The procedure described in Appendix A 6
is used to make a comparison between β∆G(nmax) and β∆G(n). The free energy for the MFPT reconstruction is obtained
from 600 independent NPT MD runs of N = 512 particles at P = 0 GPa. The free energy for the umbrella sampling runs is
produced from simulations of N = 512 particles at P = 0 GPa. The small n or nmax behavior is obtained from −ln(Pss(n))
as explained in the text, which is shown for comparison.

the most. Given the stark difference in the barrier to
crystal nucleation, understanding the observed free en-
ergy barrier remains an interesting question.

G. Free Energy profiles at P = −1.88 GPa, across the

Widom line

We next evaluate the change in β∆G across the Widom
line for the P = −1.88GPa isobar. The line of compress-
iblity maxima, called the Widom line, that extends be-
yond the liquid-liquid critical point in water and related
systems, has been the focus of several studies39,40,60,66,67.
In these studies, sharp (if continuous) changes in var-
ious properties have been reported across the Widom
line. We investigate whether crossing this line at constant
pressures below the critical pressure reveals any indica-
tion of a marked change in the nucleation barriers The
pressure is fixed at P = −1.88GPa, a value lower than
the reported critical point, and the temperature varied
from T = 1385K to T = 1171K. The compressibility
maximum at P = −1.88 GPa is at T ∼ 1230K. The

free energy barrier is found to decrease monotonically
with temperature in Fig. 9. On the low temperature
side of the reported Widom line, the free energy barrier
changes by 2kBT for a 50K change in temperature while
on the high temperature side, we find that for a similar
change in temperature, the free energy barrier changes
by > 10kBT . Thus, our results indicate that indeed,
a change in the temperature dependence of nucleation
barriers occurs upon crossing the Widom line. Consider-
ing the critical nucleus size, n∗, we find a more striking
change, with the critical nucleus size becoming nearly
constant below the Widom line. While such a change in
temperature dependence is of interest, the presence of a
free energy barrier to crystallisation exists at state points
above and below the Widom line, and points to the liquid
retaining metastability at all these state points.
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at P = 0GPa with N = 4000 at higher temperatures using
umbrella sampling runs with a harmonic bias and statistics
of nmax are gathered. Additional runs with a hard wall bias
are performed, sampling P (n), to improve statistics for small
n (or nmax

H. Dependence of barrier height and critical size on

temperature

Trends in the critical cluster size n∗ and the barrier
height, β∆G∗, as a function of temperature along the
P = 0 GPa isobar are shown in Fig. 10 (a) and (b).
Fig. 10 (c) contains a parametric plot of the barrier
height and the corresponding cluster size. Interestingly,
one finds that a n2/3 scaling of the barrier height fits
the data well at state points where n∗ is large. This
is in accordance with the CNT prediction. At deep su-
percooling where the critical cluster is small and poorly
approximated to a sphere, the predictions from CNT are
not expected to be obeyed given that a number of the
assumptions made in CNT are not satisfied when n∗ is
small. Interestingly, we find that all the state points
which show deviations from the CNT prediction fall on
the lower temperature side of the liquid-liquid phase tran-
sition or the Widom line estimated in Ref. 4.

I. Effect of changing the ensemble of starting

configurations at T = 1055K

We compare the free energy curves produced when the
ensemble of initial conditions is changed from the disor-
dered liquid considered earlier to a liquid more typical of
T = 1055K, noting the significant difference in the char-
acteristics of the two at this temperature. One expects
that if the sampling along other order parameters can be
assumed to be complete, regardless of the set of start-
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FIG. 5. The phase diagram of SW silicon showing the loci
of interest and the isolines along which the free energy bar-
rier to crystallisation is calculated. Each of the isolines is
labelled, with the key as follows - (1) P = 0 GPa isobar,
(2) P = 0.75 GPa isobar, (3) P = −1.13 GPa isobar, (4)
P = −1.5 GPa isobar, (5) P = −3.02 GPa isobar, (6) Line
of constant coordination number CNN = 4.66 (7) Line of con-
stant isothermal compressibility κT , (8) P = −1.88 GPa iso-
bar crossing the line of maximum isothermal compressibility.
Inset Zoomed in to the temperatures along the P = 0 GPa

and P = 0.75GPa isobars at which the free energy calculation
is performed, showing the estimated liquid-liquid coexistence
line in blue.

ing configurations, then the two sets of results should be
exactly the same. This is seen in the case of the um-
brella sampling runs with the hard wall bias, shown in
Fig. 11. We compare results when the starting config-
urations are of randomly place particles in a box corre-
sponding to density 2.48 gcc−1 to those where the start-
ing set of configurations are selected from MD runs at
T = 1055K, P = 0 GPa satisfying the following criteria:
(a) ρ ≤ 2.37 gcc−1, (b) nmax ≤ 5, and (c) ntot ≤ 10
where ntot is the total number of crystalline atoms. The
resulting free energy profiles display no dependence on
the initial ensemble of configurations.

IV. DISCUSSION

In summary, we have investigated crystal nucleation
barriers in Stillinger-Weber silicon for a wide range of
state points, employing two distinct methods, namely
umbrella sampling and the reconstruction of the free
energy barriers through the computation of mean first
passage times from unconstrained molecular dynamics
simulations. In particular, we focus on state points
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FIG. 6. Free energy difference ∆G(nmax) against the nucleus size (nmax) obtained from NPT umbrella sampling MC simulation
along the (a) P = 0.75GPa,(b) P = −1.13GPa,(c) P = −1.51GPa and (d) P = −3.02GPa isobars with N = 4000. For
T < 1000K along the P = 0.75 GPa isobar, β∆G(n) is calculated from P (n) obtained from umbrella sampling runs with a
hard wall bias. At each other temperature and pressure, umbrella sampling runs with a harmonic bias on nmax is used, and
statistics of nmax are gathered. Additional runs with a hard wall bias are performed, sampling P (n), to improve statistics for
small n (or nmax.

close to the liquid-liquid transition that has previously
been studied, although in the present work we do not
directly address the liquid-liquid transition itself. In-
stead, we focus on the question of whether a free en-
ergy barrier to crystal nucleation exists at the relevant
state points, since it has been suggested in some pre-
vious works that no such barrier exists and crystal nu-
cleation occurs spontaneously5,25,37. Based on the two
independent methods of estimating free energy barriers
mentioned above, we consistently find that at all state
points we investigate, finite free energy barriers to crys-
tallisation are present. Thus, our results confirm that in
small systems such as are often used in simulations, a
barrier to crystallisation exists, and the supercooled liq-

uid therefore has a well-defined metastable state. The
resulting nucleation rates for N = 512 (Fig. 2) are of
the order of 2.5× 107s−1. The corresponding nucleation
rates for macroscopic or even nanoscopic droplets (e.g.,
sub-micron droplets) would be very large, and the liquid
would be too short-lived to be probed under normal ex-
perimental conditions, and would require well-designed,
ultrafast, measurements to detect12. In addition to the
low temperature state points at zero pressure that we
focus on primarily, we compute the free energy barriers
across a wide range of temperatures and pressures. We
show that an increase in compressibility at fixed coor-
dination number as well as a decrease in coordination
number towards the tetrahedral value of 4 at fixed com-
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FIG. 9. Free energy difference β∆G against the nucleus
size obtained from NPT umbrella sampling MC simulation
at P = −1.88GPa. (a) Low temperature side of Widom line,
N = 512 (b) High temperature side of Widom line, N = 4000.
For the low temperature side in (a), the full cluster size dis-
tribution, P (n), is obtained from runs with a hard wall bias
on nmax and used to construct the free energy curves. For
the high temperature side, (b), umbrella sampling runs are
performed with a harmonic bias on nmax, and statistics of
nmax are gathered. Additional runs with a hard wall bias are
performed, sampling P (n), to improve statistics for small n
(or nmax). The inset shows the temperature dependence of
the free energy barrier height, β∆G∗ and the critical nucleus
size n∗.

pressibility, lead to a strong decrease in the free energy
barriers. We show that crossing the Widom line at con-
stant pressure leads to a change in the temperature de-
pendence of the free energy barrier and the critical nu-
cleus size – both become slower functions of temperature
– indicating a change in the character of the liquid across
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(c) A parametric plot of the barrier height, β∆G∗ and the
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as open symbols in the main panel and the corresponding
temperatures and pressures are marked as open red circles in
the inset. The solid brown points in the inset are the state
points for which the free energy barrier varies as n2/3, which
are shown as solid symbols in the main panel.

the Widom line.

Finally, we compare the dependence of the free energy
barrier height, β∆G∗ on the size of the critical nucleus,

n∗, with the CNT prediction that β∆G∗ ∼ n∗
2/3

. Re-
markably, we find that the CNT prediction is satisfied
for the high temperature and pressure state points, that
lie above the boundary defined by the liquid-liquid transi-
tion line and the Widom line taken together, as estimated
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FIG. 11. Comparison of the free energy profiles from two
sets of umbrella sampling runs with the hard wall bias. Sim-
ulations are performed at T = 1055K, P = 0 GPa with a
system size N = 512. Data points labelled ”quench” are ob-
tained starting from a set of randomly placed particles in a
box such that the density is 2.48 gcc−1. Data points labelled
”LDL” are obtained starting from a set of configurations se-
lected from MD runs at T = 1055K, P = 0 GPa with low
density and low degree of crystallinity as discussed in the text.
The full cluster size distribution, P (n), is obtained from runs
with a hard wall bias on nmax and used to construct the free
energy curves.

in Ref.4, and one observes deviations from the CNT pre-
diction for state points across this boundary. Clearly, a
change in character of the liquid takes place across this
boundary.
Our results thus clearly establish that finite barriers

to crystal nucleation exist at state points across which
a liquid-liquid transition have been argued to exist for
Stillinger-Weber silicon by some previous works4 and
where the metastability if the liquid has been questioned
in others5,25,37. They also point to changes in the na-
ture of these barriers across state points which have been
identified previously as corresponding to the liquid-liquid
transition or the Widom line. These results do not di-
rectly address the existence of the liquid-liquid transition
itself, but establish the necessary condition for questions
about such a possibility to be meaningfully investigated.
Ascertaining the existence of a liquid-liquid transition in
a manner that satisfactorily addresses doubts that have
been raised in previous work is the subject of future in-
vestigation.
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Appendix A: Detailed model and methods

1. The Stillinger-Weber potential

The Stillinger-Weber potential, employed here, is the
most widely used classical potential of silicon. It consists

of a two-body term and a three-body term, U2 and U3,
respectively.31

USW =

N
∑

j>1

U2(rij) +

N
∑

i<j<k

U3(ri, rj, rk) (A1)

The vectors, ri,rj ,rk, are position vectors for atoms i, j, k
and rij is the distance between the ith and jth atoms. N
is the total number of atoms in the system.

U2(rij) =

{

ǫA
(

B
r4ij

− 1
)

e
1

rij−rc if r < rc

0 if r ≥ rc
(A2)

The three-body interaction term is defined by

U3(ri, rj, rk) = h(rij , rik, θjik) + h(rij , rjk, θijk)+

h(rik, rjk, θikj)
(A3)

In turn,

h(rij , rik, θjik) =

{

ǫ λ [cosθjik + α]2 e
γ

rij−rc
+ γ

rik−rc if rij , rik < rc
0 if rij or rik ≥ rc

(A4)

The constants used in the equations above are listed in
the table below:

Symbol A B rc λ α γ
Value 7.04955 0.60222 1.80 21.0 1/3 1.20

2. Order parameters

The thermodynamics of whether the liquid is
metastable with respect to crystallisation at a given tem-
perature and pressure is determined by constructing the
Landau free energy as a function of an order param-
eter. The order parameter(s) is chosen such that it
distinguishes the liquid from the crystalline state suffi-
ciently well. Here the strategy that is used is to identify
crystalline particles and calculate the free energy cost
to the growth of crystalline clusters of different sizes.
Such an approach is broadly in consonance with Classi-
cal Nucleation Theory68,69 where the transition from the
metastable liquid to the crystalline state occurs through
rare fluctuations that generate crystalline clusters of dif-
ferent sizes. These clusters have a lower free energy in the
bulk than the surrounding liquid, whereas the formation

of an interface between the liquid and the solid induces
a free energy cost. The bond orientational order param-
eters of Steinhardt and Nelson,51 Ql serve to distinguish
local crystalline structures from disordered liquid ones.
Specifically, the local analogue of these order parame-
ters, ql, can be used to distinguish the neighbourhoods
of individual particles and classify them as being ordered
or disordered. In terms of

qlm(i) =
1

nb(i)

nb(i)
∑

j=1

Ylm[θ(rij), φ(rij)], (A5)

the order parameter ql is obtained by summing over m′s:

ql(i) = [
4π

(2l + 1)

l
∑

m=−l

|qlm(i)|2]1/2 (A6)

In the present work, we use q3(i)
3, noting that using q6(i)

is equally feasible, and gives very similar results43,52. The
number of neighbours, nb(i), is taken to be the atoms
within the first coordination shell of the pair-correlation
function, i.e., atoms within a cut-off of 2.95 Å from the
reference atom. Other works have considered other defi-
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nitions, such as considering only the four nearest neigh-
bours. However, when there are more than four atoms at
similar distances from the reference atom, certain arte-
facts arise such as the apparent decrease of tetrahedral
ordering with density or an increase with pressure43. We
therefore employ a distance-based cut-off to specify near-
est neighbours. To identify crystalline particles, we com-
pute the correlations in the local orientational order of
neighbouring atoms, following the prescription described
in the literature40,45,53–55. Atoms with correlated neigh-
bourhoods of high local orientational order are classified
solid-like particles.
Quantitatively, this correlation is given by,

Re (q3(i).q3(j)) = Re

(

3
∑

−3

q3m(i)q∗3m(j)

)

(A7)

A particle i and a particle j are considered to be
“bonded” if Re(q3(i).q3(j)) < −0.23 (see Fig. A1,
Fig. A2). We note here the significance of the the cut-off
value of −0.23 which demands that the crystal structure
formed is diamond cubic, to the exclusion of the diamond
hexagonal crystal structure which also has local tetrahe-
dral ordering55.
Crystalline particles have a q3 > 0.6 and are “bonded”
to at least 3 neighbours. Further, crystalline particles
within the SW-cutoff distance of each other belong to
the same cluster. In this study we employ both the size
of the largest cluster, nmax and the full distribution of
cluster sizes P (n).
The distributions of q3 and Re(q3(i).q3(j)) are shown
in Fig. A1 and Fig. A2. The distribution for the liq-
uid at T = 1055K, P = 0 GPa is obtained from a
non-crystallising MD trajectory of 90 ns and system
size of N = 512. The distribution for the liquid at
T = 1100K, P = 0 GPa is obtained from a non-
crystallising MD trajectory of 10 ns and system size of
N = 512. The histogram of number of bonded neigh-
bours for the differently labelled particles is shown in
Fig. A3. We note here that using q6(i).q6(j) to identify
crystalline particles gives nearly identical results when
the appropriate cut-off is chosen52. The choice of cut-off
will depend on whether a normalisation factor is included
in the definition5.

3. Kinetic reconstruction of free energy

The work here follows the method developed and de-
scribed by the group of David Reguera where the kinet-
ics of nucleation from a large number of free MD runs is
utilised to obtain the free energy barrier to nucleation
from the mean first passage time (MFPT)46–48. The
quantity that is often of most interest in the context of
crystallisation is the crystallisation rate. For activated
processes, which involve the crossing of a free energy bar-
rier, the rate of crossing depends heavily on the height
of the free energy barrier. In terms of a general reaction
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FIG. A1. Distribution of q3 for different types of configura-
tions, high density liquid, crystal at T = 1260K and a non-
crystallised, low density liquid (LDL) configuration.
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coordinate, x, this can be written as69

Jcross =
1

2
k e−β∆G(x∗) (A8)

where x∗ is the value of the order parameter where the
free energy β∆G(x∗) is maximum and k is a kinetic pre-
factor. In Classical Nucleation Theory, this free energy
function is understood to have a dependence on the order
parameter, x in the following way:

∆G(x) = −∆µx+ σx2/3 (A9)

Here, ∆µ is the difference in chemical potential between
the bulk crystal and the bulk liquid and σ is a term that
describes the free energy cost due to the growth of the
interface. Note that, when written in this form, the order



14

0 1 2 3 4 5 6
Number of bonds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

fr
ac

tio
n 

of
 s

ys
te

m

Crystal
Liquid at T=1100K
Liquid at T=1055K

P=0 GPa

FIG. A3. Typical distribution of number of connections per
atom in high density liquid, low density liquid and in the pure
crystalline phase.

parameter, x, is in fact the size of clusters and this equa-
tion describes the work of formation of different clusters
of size x. Whereas the applicability of the form of ∆G(x)
described above is debated, the work of formation is still
broadly understood to include a net free energy gain in
the bulk crystalline phase and a free energy cost to the
growth of the interface between liquid and crystal, thus
implying (under metastable conditions) that the free en-
ergy has a maximum.
In the description that follows, our goal is to calculate

the free energy cost to the growth of clusters of size x,
β∆G(x), however, rather than to use the form described
above, which requires the calculation of the chemical po-
tential and the interfacial free energy, we use a method
that relies on the kinetics of the process alone, without
assumptions about the specific form of the free energy
barrier.
The full theoretical basis for this method is excellently

described in the original series of papers46–48. However,
we summarize the formalism here for the sake of com-
pleteness. One can write the rate of crossing the nucle-
ation barrier, assuming a diffusive crossing of an energy
barrier which can be modelled using the Smoluchowski
equation in one dimension, as follows. The process is
described by the Smoluchowski equation

∂P (x, t)

∂t
=

∂

∂x

[

D(x)e−β∆G(x) ∂

∂x
(Pst(x)e

β∆G(x))

]

=
−∂J(x, t)

∂x
(A10)

where J(x, t) is the current, D(x) is the order parameter
dependent diffusivity, ∆G(x) is the free energy function
and P (x, t) is the time dependent distribution function of
the order parameter In the steady state, with P (x, t) =
Pst(x) we can write the expression for the rate of barrier

crossing70 as:

J = −D(x)e−β∆G(x) ∂

∂x
(Pst(x)e

β∆G(x)). (A11)

In cases where the free energy ∆G(x) is not known,
one can rearrange and arrive at

β∆G(x) = −lnPst(x) − J

∫

dx′

D(x′)Pst(x′)
+ C (A12)

One can also write the mean first passage time for a tra-
jectory starting at x0, to reach x, with a reflecting bound-
ary condition a, and absorbing boundary at b70:

τ(x;x0, a) =

∫ x

x0

1

D(y)
dyeβ∆G(y)

∫ y

a

dze−β∆G(z) (A13)

One can also write this in the following way:

∂2τ

∂x2
=

[

∂β∆G(x)

∂x
+

∂D(x)

∂x

]

∂τ

∂x
+

1

D(x)

This equation can be re-arranged and one can substitute
A(x) = ∂τ(x)/∂x to get,

∂ln(A(x)D(x))

∂x
=

1

D(x)A(x)
+

∂β∆G(x)

∂x
(A14)

Further, one can write B(x) = A(x)D(x) to get

β∆G(x) = ln(B(x))−

∫

dx′

B(x′)
+ C (A15)

From here, using J = 1/τ(b) (where τ(b) is the mean
first passage time at which the absorbing boundary at b
is reached), Eq. A14 can be combined with Eq. A12 to
get

∂(B(x)Pst(x))

∂x
= Pst(x)− τ(b)

∂τ(x)

∂x
(A16)

Integrating this equation gives us,

β∆G(x) = β∆G(x = 1) + ln

(

B(x)

B(1)

)

−

∫ x

1

dx′

B(x′)
(A17)

B(x) = −
1

Pst(x)

[

∫ b

x

Pst(x
′)dx′ −

τ(b)− τ(x)

τ(b)

]

(A18)

Eq. A17 and Eq. A18 are the equations used to recon-
struct the free energy from the MFPT and the steady
state probability. For the case of crystal nucleation, x
can be replaced with nmax, the size of the largest crys-
talline cluster, while nmax = 1 is taken to be the second
bin from the reflecting boundary condition. β∆G(x = 1)
(or β∆G(nmax = 1)) is an unknown constant at this
point. Further, the small nmax behaviour of involves spe-
cial consideration. We will discuss this issue and describe
how the constant is determined in Appendix A6.
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The use of this method requires that the size of the
largest cluster, nmax, be tracked in each of an ensemble
of MD trajectories. From this, the steady state probabil-
ity, Pst(nmax), and the mean first passage time, here-
after labelled τMFPT (nmax), is calculated. Note that
steady state here refers to the converged probability from
an ensemble of MD trajectories rather than any steady
state achieved in the trajectories. Each of the trajec-
tories is extended till an absorbing boundary conditions
is reached. An important practical aspect of using this
method is that the ensemble of MD runs should prefer-
ably start from configurations with no crystalline order-
ing to effectively sample τMFPT (nmax) and Pst(nmax)
for the smallest possible nmax values. This is especially
important when one does not have the guarantee that un-
constrained MD runs will fully sample the order parame-
ter space starting from configurations with any arbitrar-
ily chosen starting value of the order parameter. More
details of the MD simulations performed for this method
are given below in Appendix A3. Our barrier calcula-
tions from MFPTs assume that the diffusion over the
barrier satisfies the Smoluchowski equation, and hence
that the trajectory over the barrier is continuous. Haji-
Akbari has pointed out the need to carefully account for
the fact that this assumption may not be satisfied for
crystal nucleation, where the nucleus size can jump dis-
continuously due to attachment or detachment of clus-
ters71. The consistency between our kinetic and ther-
modynamic reconstruction of the free energy profiles for
nucleation suggests that discontinuities due to attach-
ment/detachment processes do not appear to matter for
the systems and conditions we have studied in this work.
Rationalising the underlying reasons would be interesting
to investigate further.
This method has been used in a number of studies of

nucleation26,59,72,73.
For a sufficiently high barrier, the mean first passage

time, τ(x), is sigmoidal in form and can be used to ex-
tract information regarding the steady-state nucleation
rate, the critical cluster size and the curvature at the
top of the barrier, also known as the Zeldovich factor 48.
This aspect of the mean first passage time is not explored
in this work; the barrier profile is used to determine the
barrier height and critical cluster size. Moreover, in the
general case, this method does not make any assump-
tions about the diffusivity of the order parameter, D(x)
or the shape of the energy barrier, β∆G(x), beyond the
overall framework of a diffusive barrier crossing in which
the expression for τ(x) is written.

Simulation details

The initial ensemble of configurations for the MD runs
at each temperature of interest, at zero pressure, was
prepared by first running a simulation in the isobaric,
isothermal (NPT) ensemble at a high temperature of
T = 1400K, P = 0 GPa and system size N = 512

for 10 ns. The MD runs are performed on the LAMMPS
software suite using the velocity Verlet algorithm with
a timestep of 0.3830 fs56. Thermostatting and barostat-
ting are done with a Nosé-Hoover thermostat/barostat
with time constants of 100 and 1000 steps respectively.
These configurations have a mean density of 2.48g cc−1

with standard deviation of 0.012g cc−1. The relaxation
time at these state points is of the order of 0.01 ns with
diffusivities of the order of 10−4cm2/s 1. After ignoring
an initial transient, 600 uncorrelated configurations were
chosen as starting configurations. Energy minimisation
was performed and the velocities were set to zero before
being replaced with velocities corresponding to the tar-
get temperature. The length of the initial transient is
chosen such that the liquid relaxes from the initial high
temperature configuration. Subsequently, the liquid sam-
ples an initial metastable state corresponding to the tar-
get temperature, as discussed in Appendix C. Each of
the trajectories were simulated in the NPT ensemble us-
ing the velocity Verlet algorithm with the same timestep,
thermostat and barostat. at the target temperature at
P = 0 GPa till they crystallised. The first 0.04 ns were
discarded and data gathered from the first time step af-
ter this where the total number of crystalline particles
ntot = 0. This is to ensure that at t = 0 the configura-
tions are highly disordered with no crystalline ordering.
An absorbing boundary condition is applied so that

data is gathered only until the absorbing boundary is
crossed for the first time. From this data, the free en-
ergy curve β∆G(nmax) is calculated using Eq. A17 and
Eq. A18 with an Euler integration scheme Here, we em-
phasize that each of the independent trajectories needs
to be extended till they reach the absorbing boundary.

4. Umbrella sampling

The other technique used to determine the free energy
cost to the growth of crystalline clusters is the umbrella
sampling scheme which facilitates the reversible sampling
of cluster sizes that are otherwise rarely sampled. The
free energy cost to the growth of crystalline clusters of
size n, βG(n) is obtained (up to an additive constant)
from the equilibrium probability density of sampling clus-
ters of size n, with

β∆G(n) = −ln(P (n)) + const. (A19)

Umbrella sampling is performed with NPT Monte Carlo
simulations49,74 to sample the desired range of order
parameters effectively. An in-house code was used for
the umbrella sampling simulations that used an efficient
double-sum implementation of the three-body Stillinger
Weber potential described in Ref. 75 and Ref. 76. A
standard Metropolis scheme is used for the Monte Carlo
(MC) simulations with an MC step consisting of either
N single particle trial displacements or a trial change in
the volume. Trial displacements are accepted or rejected



16

with a probability

Paccept(o → n) = min{1, exp [−β(En − Eo)]} (A20)

Trial changes in the volume are accepted with the prob-
ability

Paccept(o → n) = min{1, exp

[

−β [(En − Eo) + P (Vn − Vo)] + (N + 1)ln
Vn

Vo

]

} (A21)

Two variants of this method are used, both of which
involve the imposition of a bias potential on the size
of the largest cluster, nmax, based on previous work54.
However, as will be discussed in forthcoming sections, in
general, P (nmax) 6= P (n) except under certain condi-
tions. This issue has been discussed in the literature as
well48,50,58,59,63. The general expression for the Hamilto-
nian under application of bias is given by:

HC = H +W (nmax) (A22)

where W (nmax) represents the bias potential and H is
the original Hamiltonian.
In the first instance, a harmonic bias of the form

W (nmax;n
0
max, knmax) =

1

2
knmax(nmax−n0

max)
2 (A23)

is used to enhance sampling around a desired value of
nmax, labelled n0

max. The sampling of different values of
nmax is enhanced by running multiple simulations with
each independent simulation having a different bias cen-
tre, n0

max, or bias potential W (nmax;n
0
max), thus sam-

pling different windows of nmax values.
In order to address the complications arising from the

choice of a harmonic bias on the order parameter50, nmax,
we also consider a different bias protocol for the umbrella
sampling scheme when attempting to measure the free
energy barrier at deep supercooling. Here, the Hamilto-
nian is modified by adding a constraining potential of the
hard wall form rather than a harmonic bias, as described
by Saika-Voivod et al50. The hard wall bias strictly con-
strains the size of the largest cluster to be between nl

max

and nu
max as described in Eq. A24. Different independent

simulations constrain sampling within different bounds.
The full cluster size distribution is also used, from which
we can calculate free energy using Eq. A19. For the pur-
poses of comparison, the free energy as a function of nmax

is also calculated from simulations with the hard wall
bias.
The corresponding bias potential then takes the form:

W =

{

0 nl
max ≤ nmax < nu

max

∞ otherwise
(A24)

To improve equilibration, we perform parallel tempering,
wherein simulations at different temperatures or for dif-
ferent bias potentials (n0

max or [nl
max, n

u
max] values) are

run in parallel, and configurations for distinct tempera-
tures or bias potentials (with adjacent values of n0

max or

[nl
max, n

u
max]) are swapped periodically, using the paral-

lel tempering Metropolis scheme.
Short segments of the trajectory of 50 MC steps are gen-
erated with the unbiased Hamiltonian. These are then
accepted or rejected with a probability,

Paccept(o → n) = min{1, exp [−β(Wn −Wo)]} (A25)

In this case, the o and n configurations refer to those at
the beginning of the trajectory segment and at the end,
respectively. Note that for the case of the hard wall bias,
Wn−Wo is either 0 or ∞. These simulations are used to
generate a distribution of nmax values Pb(nmax), where
the subscript b refers to sampling in the biased ensemble.
One can obtain the unbiased distribution of nmax (up to
normalisation) using the relation

P (nmax) = Pb(nmax)e
βW (nmax) (A26)

where P (nmax) is the frequency with which the largest
cluster samples a size, nmax.
From the unbiased distribution, one obtains the Landau
free energy as a function of nmax as:

β∆G(nmax) = −ln(P (nmax)) + const. (A27)

From Eq. A27, we wish to identify the constant the yields
β∆G(0) = 0. The estimates are obtained from simu-
lations with different n0

max or [nl
max, n

u
max] bounds and

sample different but overlapping windows of nmax. Here,
we make a distinction between the free energy calculated
at high temperatures, where the critical cluster is ex-
pected to be large, and free energies calculated when the
critical cluster is expected to be small. In the former case,
the missing constant in each independent simulation,
specified by index d, is obtained by fitting β∆Gd(nmax)
to a single polynomial of nmax. This is done by a least
square fit, by minimising

χUS =

Nsim
∑

d=1

nd
hi
∑

nmax=nd
lo

[

β∆Gd(nmax) + a0nmax

−a1n
2/3
max −

p
∑

i=2

(ain
i
max)− bd

]2
(A28)

where Nsim is the number of independent simulations
and nd

lo and nd
hi are respectively the lower and upper

bounds within which nmax is sampled in the simula-
tion indexed d. The index d runs from 1 to Nsim. p
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is the order of the polynomial with coefficients ai, and
bd will give us the missing constants. The CNT ex-
pression β∆G(n) = −a0n + a1n

2/3 can be expected to
be valid for sufficiently large critical clusters and high
free energy barriers. Hence a polynomial of the form
a0n+ a1n

2/3 + a2n
2 + a3n

3 · · · is used.
Where the critical cluster is expected to be small, we

make no assumption of a CNT-like polynomial fit. The
overlap between β∆G(nmax) obtained from different sim-
ulations sampling adjacent bounds is maximised by iden-
tifying the appropriate constant for each independent
simulation, bd. This is done by minimising the follow-
ing quantity:

χHW =

Nsim
∑

d=1

nd
hi
∑

nmax=nd
lo

[

β∆Gd(nmax)

−β∆Gd+1(nmax)− bd

]2
(A29)

Nsim is the number of independent simulations and
[nd

lo, nhi]
d] is the range of n over which adjacent simu-

lations overlap. The index, d, runs over each indepen-
dent simulation, starting from d = 1 to d = Nsim. This
procedure yields the free energy, β∆G(nmax), up to an
unknown constant as given in Eq. A27. As mentioned
for the reconstruction of β∆G(nmax) through the MFPT
approach, as well as umbrella sampling, the procedure
used to determine this remaining unknown constant is
described in Appendix A6.
The umbrella sampling runs using the hard wall bias

are also used to obtain β∆G(n). β∆G(n) can also be
obtained from N(n) from umbrella sampling runs with a
harmonic bias, which we do not do here. The unbiased
expectation value of N(n) (the number of clusters of size
n) can be written as:

〈N(n)〉 =

〈

N(n)eβW
〉

C
〈

eβW )
〉

C

(A30)

The expectation subscript C is the sampled probabil-
ity from the simulation under the modified Hamilto-
nian. The un-biasing described in Eq. A30 simplifies
since W = 0 or W = ∞ depending on the size of the
largest cluster. For the case of the hard wall bias poten-
tial, one can thus replace 〈N(n)〉 = 〈N(n)〉C within the
constrained region.
We compute β∆G(n) from −ln (N(n)) up to an un-

known constant, within the window in which we per-
form biased sampling. We use the equilibrium data of
P (n) = N(n)/N(0) at small n and demand that P (n)
from simulations sampling other values of n sequentially
match these, as described by Eq. A31. From a set of
independent simulations, each indexed by d and having
distinct but adjacent bounds, one obtains the free energy
differences β∆Gd(n) up to an undetermined constant,
bd. The constants, bd, are obtained by minimising the

error described in Eq. A31, χHW , sequentially between
overlapping data points from simulations with adjacent
bounds.

χHW =

Nsim
∑

d=1

nd
hi
∑

n=nd
lo

[β∆Gd(n)− β∆Gd+1(n)− bd]
2

(A31)
This is done in the same way as in Eq. A29, but subject
to the constraint β∆Gd(0) = 0 if nd

lo = 0. Note
that unlike the procedure in Eq. A29 for β∆G(nmax),
the added constraint in Eq. A31 that β∆Gd(n = 0) = 0
if nd

lo = 0 does not leave behind an undetermined addi-
tive constant. Another important point here is that no
assumption to fit the CNT form is made; β∆G(0) = 0 as
a consequence of how quantities have been defined.

Simulation details

Umbrella sampling Monte Carlo simulations in the
NPT ensemble were started by first randomly placing
N particles in a box, taking care to prevent any two par-
ticles being too close so that large repulsive interactions
are avoided. The initial box size corresponded to a den-
sity of 2.48g cc−1. For simulations at deep supercooling,
where the hard wall bias is applied, simulations were ini-
tially equilibrated with a harmonic bias potential for 107

MC steps with a spring constant of knmax = 0.01ǫ. The
harmonic bias was replaced with the hard wall bias af-
ter the initial equilibration under a harmonic constraint,
taking care that the cluster size in each window be within
the desired bounds. Thereafter, 5 × 106 MC steps were
performed with the hard wall bias before statistics were
gathered for a subsequent 2.5×107 MC steps. The auto-
correlation functions of density (ρ), Q6 and potential en-
ergy were monitored under the application of the hard
wall bias and the relaxation time found to be similar and
less than 105 MC steps for all the windows and for each
of the three quantities considered. Thus, keeping in mind
a relaxation time of τ = 105 MC steps, we use an equili-
bration length of 50τ = and a production length of 250τ .
Hard wall constraints are placed at (nl

max, n
u
max) =

[0, 2], [1, 3], [2, 4] . . . with parallel tempering swaps per-
formed between simulations with adjacent and overlap-
ping constraint, or adjacent temperatures, to speed up
equilibration (see Appendix A5). At state points where
the free energy barrier is expected to be high, and the
liquid is unambiguously metastable, a number of inde-
pendent NPT MC simulations are initialised, each con-
straining nmax in the vicinity of some n0

max with the use
of a harmonic potential with spring constant knmax . Each
independent simulation is equilibrated for 106 MC steps
or 10τ . Parallel tempering swaps were performed be-
tween simulations with adjacent n0

max, or adjacent tem-
peratures, to speed up equilibration. The length of the
production run over which the order parameters are sam-
pled is determined in the following way. Each simulation
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is assigned a bias potential, specified either by the bias
center or the bounds (n0

max or [nl
max, n

u
max]), as well as

a temperature. Parallel tempering exchanges result in
swaps between simulations with adjacent temperatures
or bias potentials. This process should result in each
simulation, with a “native” temperature and bias poten-
tial, “visiting” every other temperature or bias potential
a finite number of times. We measure the time taken for
the simulation with the lowest temperature or bias po-
tential to visit the highest temperature or bias potential
10 times. The length of the production run is taken as
the number of MC steps required for 10 such exchanges
to happen, along each of the two axes, temperature and
bias potential. An exception to this is when the num-
ber of MC steps taken for 10 exchanges to occur is less
than 107 MC steps, in which case the production length
is taken to be 107 MC steps.
At these state points, umbrella sampling with a har-

monic bias is used, taking statistics on nmax, to construct
the free energy curves. Additional runs with a hard wall
bias on nmax are performed where statistics for P (n) are
obtained for the smallest cluster sizes. This is done to
enhance sampling near n = 0, and to avoid the issues
described below in Sec. A 6.

5. Parallel Tempering

The general expression for probability of acceptance of
parallel tempering swaps in the NPT ensemble between
simulations indexed i and j is given by

Paccept = min

(

1, exp
[

[

(Ei − Ej) + P (Vi − Vj)
]

(βi − βj)
]

exp
[

−βjWi(nmaxj )− βiWj(nmaxi)
]

exp
[

βiWi(nmaxi) + βjWj(nmaxj )
]

)

(A32)

The details of parallel tempering are as follows:

• Consider N independent simulations run in parallel
- different temperatures or different bias potentials.

• To ensure better sampling of the phase space r(t)
and consequently of the order parameter, we swap
adjacent configurations periodically.

• Two types of swaps are performed, one type where
simulations with different temperatures but the
same bias potential exchange configurations and
one type where simulations at the same temper-
ature but different bias potentials exchange config-
urations.

• A swap between adjacent simulations indexed i
and j, at different temperatures, 1/βi and 1/βj,

but with the same bias potential is executed with

a probability of min

(

1, exp
[

(Ei − Ej) + P (Vi −

Vj)
]

(βi − βj)

)

• For cases where β is the same but the
bias potential varies, the probability is
min (1, exp [β(WN −WO)])

• Here, the term WN −WO represents the sum of the
bias potentials after the swap minus the sum of the
bias potentials before the swap (the sum being over
the bias applied on the two runs in consideration.

WN = Wj(nmaxi) +Wi(nmaxj )

WO = Wi(nmaxi) +Wj(nmaxj )

For the hard wall bias, the swap is accepted with
probability 1 if the nmaxi and nmaxj are both
within the new constraints after the swap and re-
jected otherwise.

6. Consistency of free energy reconstructions at small

cluster sizes

In computing the free energy barrier to nucleation, the
size of crystalline clusters, n, is employed as the order pa-
rameter, and the equilibrium probability density of clus-
ter sizes, P (n) is related to the free energy cost to the
formation of a crystalline cluster of size n, by Eq. A19.
Using Eq. A31 subject to the constraint that β∆G(0) = 0
allows us to relate β∆G(n) to −ln (P (n)) without any
unknown constants.
Often, (including parts of the present work) the or-

der parameter, nmax, and the corresponding distribu-
tion, P (nmax), is used as a proxy to P (n). The use
of nmax as the order parameter describing the crystalli-
sation transition is appropriate only when P (nmax) =
P (n).45,48,50,58,59. In a finite volume, the statistics of the
largest cluster, nmax, often show that configurations con-
taining a small cluster (i.e., where the largest cluster is
small) are more frequently sampled than configurations
where there are no crystalline particles at all. As men-
tioned earlier in Section II, this leads to the appearance
of an artificial minimum in β∆G(nmax) at small values
of nmax as discussed at length in48,50,57–59. This effect
is more pronounced at deeper supercooling and larger
system sizes as shown (and later discussed) in Fig. 1
where the deviation between the largest cluster distri-
bution, P (nmax), and the full cluster size distribution,
P (n), is significant48,58.
For clusters larger than a size nlow, such that clusters

of size nlow are rare, P (nmax) = P (n) ∀ n, nmax ≥
nlow

50,77,78. Here, rare clusters are those for which the
frequency with which clusters of size nlow are observed
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is well-approximated by the probability of observing one
such cluster, and for which the formation of multiple
such clusters can be considered independent events.
In this limit, P (nmax) does not display system-size
dependence, while for smaller clusters (nmax < nlow),
system-size dependence is apparent. A different system
size effect is evident when considering state points with
large critical clusters whose diameter is greater than half
the box length, thus inducing ordering across periodic
images (see Appendix D).

On the other hand, P (n) is independent of system
size for all n. Given β∆G(nmax) up to an unknown
additive constant, the question is how this relates to
β∆G(n). One uses the fact that β∆G(n) = −ln(P (n)).
However, P (nmax) = e−β∆G(nmax) is known to deviate
from P (n) for small n, up to some (as yet unknown)
cluster size nlow. For β∆G(nmax) obtained from um-
brella sampling runs, we employ the procedure of using
the equilibrium distribution P (n) to define our estimate
of β∆G(nmax) up to an n value nhi > nlow, and de-
manding that β∆G(nmax = 0) = 0. In the case of the
MFPT runs, we make the reasonable assumption that
the steady state probability of observing clusters of size
n, Pss(n) = 〈N(n)/N(0)〉, is equal to the equilibrium
probability, P (n), for n ≤ nhi. Here, nhi ≥ nlow

is an as yet unknown upper limit up to which this as-
sumption holds and the average is over an ensemble
of independent, unconstrained MD trajectories. Note
that Pss(n) is not the steady state probability of sam-
pling the largest crystalline cluster, Pst(nmax). An ex-
plicit comparison is made in Fig. 1 to show that this
approximation holds for some nhi. On the other hand,
for the umbrella sampling runs, we obtain P (n) from
N(n)/N(0) as described before. This procedure is rep-
resented by the expression in Eq. A33 where we require
that β∆G(nmax) = −ln(P (n)) ∀ nmax ≤ nlow and
make the demand that β∆G(nmax) ≈ − ln(P (n)) for
nlow ≤ nmax ≤ nhi. The following error is then
minimised:

χc =

nhi
∑

n,nmax=nlow

|β∆G(nmax) + ln(P (n)) + C| δn,nmax

(A33)
Here, the sums are over n and nmax, considering only
those terms where n = nmax. The unknown constant C
that minimizes the difference between β∆G(nmax) and
−ln(P (n)) within the range [nlow, nhi]is determined. The
choice of nlow and nhi, as motivated by the discussion
above, is determined by the deviation of P (nmax) from
P (n) at small n or nmax, as well as the limit up to which
the equilibrium P (n) is well-approximated by Pss(n).
Similar methods have been used in Ref. 48 and Ref.

59. The applicability of the procedure described in this
section has limits if nlow itself shifts to values comparable
to the critical size n∗. At lower temperatures, as P (nmax)
and P (n) become progressively more different and the
appropriate nlow, beyond which P (nmax ≈ P (n), shifts

to larger values, this comparison between β∆G(n) and
β∆G(nmax) becomes more difficult to the point that it
is eventually no longer tenable.

Appendix B: Free energy reconstruction with Q6 as the

order parameter

We perform free energy reconstructions to obtain
β∆G(Q6) using both the mean first passage time method
as well as umbrella sampling. We define the global bond
orientational order, Q6 in the following way. We first
define the global parameters Qlm as

Qlm =
1

Nb

N
∑

i=1

nb(i)
∑

j=1

Ylm[θ(rij), φ(rij)]. (B1)

Here, nb(i) is the number of neighbours for the ith par-
ticle. Ylm is the spherical harmonic and Nb is the total
number of neighbor pairs. neighbours are defined to be
particles separated by a distance less than the first mini-
mum of the radial distribution function. The global bond
orientational order can now be expressed in terms of Qlm

Ql = [
4π

(2l + 1)

l
∑

m=−l

|Qlm|2]1/2 (B2)

For the mean first passage time method, we use the same
set of 600 NPT MD crystallising trajectories of N = 512
particles to sample Pst(Q6) and τMFPT (Q6). One can
identify the liquid basin atQ6 = 0.03 from Pst(Q6). Data
from each trajectory is gathered from when Q6 first at-
tains a value of 0.03 until an absorbing boundary condi-
tion at Q6 = 0.12 is reached. The absorbing boundary
is chosen to be clearly on the crystalline side of the free
energy barrier5.
Umbrella sampling MC simulations are performed in

the NPT ensemble withN = 512 particles at T = 1070K,
P = 0 GPa with a harmonic bias on Q6. Parallel temper-
ing swaps between adjacent bias windows are performed.
The auto-correlations of density and potential energy are
found to decay over a timescale of 5×105−106 MC steps.
Equilibration is performed for 15× 106 MC steps with a
subsequent production run of 15× 106 MC steps.
One can check for consistency between β∆G(nmax)

and β∆G(Q6) by expressing nmax as a parametric func-
tion of Q6. From each point on a trajectory, one obtains
an nmax) and a Q6. One can compute the average nmax

corresponding to a given Q6, 〈nmax(Q6)〉 by aggregat-
ing data over all points on a trajectory and over mul-
tiple trajectories. One can also do the converse to get
〈Q6(nmax)〉. In Fig. B1, the parametric dependence is
shown from the set of crystallising NPT MD trajectories.
One can relate β∆G(nmax) to β∆G(Q6) in the following
way by considering that the equilibrium distributions can
be related by

Peq(Q6)dQ6 = Peq(nmax)dnmax (B3)
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From this, we can write

β∆Gmap(Q6) = β∆G(nmax)− ln

∣

∣

∣

∣

dnmax

dQ6

∣

∣

∣

∣

(B4)

The comparison between β∆G(Q6) and β∆Gmap(Q6) is
made in Fig. B2 for T = 1070K, P = 0 GPa to demon-
strate the point. One observes that while the MFPT
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FIG. B1. The parametric dependence of nmax on Q6 and
vice versa. Data gathered from the set of 600 independent
unconstrained NPT MD runs of N = 512 particles at T =
1070K, P = 0 GPa. Error bars indicate standard deviations.
We use 〈nmax(Q6)〉 to compute the derivative in Eq. B4 and
map the free energies.

reconstruction shows a barrier at T = 1070K that can
be shown to be consistent with β∆G(nmax), β∆GUS(Q6)
does not. Moreover, β∆GUS(Q6) will clearly not show
similar consistency under a transformation of variables.
We stress that β∆G(nmax) gives results that are in quan-
titative agreement at all the state points considered re-
gardless of the choice of order parameter. Another point
worth mentioning is that estimates for β∆GUS(Q6) from
overlapping regions for adjacent bias windows do not
match under the conditions described here suggesting
that the configurations that are sampled do not have
a one-to-one correspondence with the value of Q6. We
note that the issues described herein are of particular
relevance when using Q6 to estimate the barrier between
the liquid and the crystalline state. However, the free en-
ergy difference between the liquid and the fully crystalline
state is accurately estimated using Q6, as discussed in
the context of water in Ref. 41, which contains internal
consistency checks for the free energy difference between
the metastable liquid and crystalline basins. Further, the
liquid-liquid coexistence conditions in Ref. 41, from free
energy calculations, are consistent with 2-state model cal-
culations in79.
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FIG. B2. The free energy reconstruction as a function of Q6

using the MFPT reconstruction, labelled, β∆GMFPT (Q6) is
compared with the reconstruction using umbrella sampling,
labelled β∆GUS(Q6). Additionally, the parametric depen-
dence of nmax on Q6, computed from the average 〈nmax(Q6)〉
is used to map order parameters and use β∆G(nmax) (see

Fig. 1) to obtain β∆G
〈nmax(Q6)〉
map (Q6).

Appendix C: Variation of the properties of the metastable

liquid with temperature

The mean first passage time of the density, ρ, shows
that the liquid explores high density configurations on
the timescale of < 1 ns before the density begins to drop
(see Fig. C1). To understand the initial metastable state
into which the liquid settles, we observe the change in
the density profile of the metastable liquid with temper-
ature during the first 0.5 ns. We ignore the first 0.038 ns
as a transient during which the thermostat and barostat
come into effect. The dependence of the mean density on
the target temperature is compared, and the procedure
is repeated for inherent structure energies as well. Given
that the statistics are similar with a similar trend, regard-
less of the ensemble of starting configurations, this sug-
gests that the sampled configurations are independent of
starting configurations. An important point is that both
sets of initial configurations are highly disordered with no
crystalline ordering – one may not expect that the liquid
will relax to the same initial metastable state if the initial
configuration already has significant crystalline ordering.

Appendix D: System size effects for large critical cluster

In addition to system size effects noted while using
nmax as the order parameter, related to the extensivity
of P (nmax), another system size effect comes into play
at state points where the critical cluster size is large.
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FIG. C1. The mean first passage time of the density, ρ from
a set of independent MD runs at five temperatures. At each
temperature, 600 independent NPT MD runs were conducted
at P = 0 GPa and a system size of N = 512.
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FIG. C2. Average density ((a)) and inherent structure energy
((b)) vs temperature at P = 0 GPa and N = 512 from two
sets of starting conditions – 8 from random initialisation and
600 from the quench. The initial 0.038 ns were discarded as
the initial transient and the next 0.5 ns were used. The error
bars represent the uncertainty in the mean.

This is best understood by considering the fact that
the density of a crystal is approximately ρc = 0.45σ−3

( ∼ 2.3 gcc−1). We also know that ρc = N/(l3) = from
which we get the box length for a given system size as
l = (σ3N/0.45)1/3. For N = 512, 1000, 4000 respectively
this comes to approximately 10σ, 13σ, 21σ. We now con-
sider the radial extent of a crystalline cluster (assumed
to be spherical) of size nmax = 80. This is given by

r3 =

(

nmax
4
3πρ

)1/3

σ (D1)

For nmax = 80 we get r ≈ 3.5σ. The diameter of this
cluster will be greater than l/2 for N = 512 and we can
therefore expect the crystalline cluster to induce effects
across periodic images. In order to avoid these effects,
free energy calculations are best performed at N = 4000
at state points where the critical cluster is large. This is
illustrated in Fig. D1 where we calculate the free energy
at T = 1221K, P = 0 GPa at three system size.
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FIG. D1. Free energy calculations performed using USMC
runs with a harmonic bias on nmax at T = 1221K, P =
0 GPa at 3 values of the system size N = 512, 1000, 4000.
Additional runs with a hard wall bias at small nmax are used
to obtain improved sampling for small cluster sizes. We ex-
trapolate the dependence of the barrier height on the system
size and find that for N = 4000, the free energy barrier ap-
proaches close to the asymptotic value for infinite system size.
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72A. Pérez and A. Rubio, The Journal of chemical physics 135,
244505 (2011).

73J. Wedekind et al., Scientific reports 5, 11260 (2015).
74D. Frenkel and B. Smit, Understanding molecular simulation:

from algorithms to applications, volume 1, Elsevier, 2001.



23

75S. Saw, N. L. Ellegaard, W. Kob, and S. Sastry, Physical review
letters 103, 248305 (2009).

76D. Makhov and L. J. Lewis, Physical Review B 67, 153202
(2003).

77S. Auer and D. Frenkel, The Journal of chemical physics 120,
3015 (2004).

78H. Reiss and R. K. Bowles, The Journal of chemical physics 111,
7501 (1999).

79V. Holten, J. C. Palmer, P. H. Poole, P. G. Debenedetti, and
M. A. Anisimov, The Journal of chemical physics 140, 104502
(2014).


