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Abstract. Ground-based microwave measurements per-

formed at water vapor and oxygen absorption line frequen-

cies are widely used for remote sensing of tropospheric wa-

ter vapor density and temperature profiles, respectively. Re-

cent work has shown that Bayesian optimal estimation can

be used for improving accuracy of radiometer retrieved wa-

ter vapor and temperature profiles. This paper focuses on

using Bayesian optimal estimation along with time series

of independent frequency measurements at K- and V-bands.

The measurements are used along with statistically signif-

icant but short background data sets to retrieve and sense

temporal variations and gradients in water vapor and tem-

perature profiles. To study this capability, the Indian Institute

of Tropical Meteorology (IITM) deployed a microwave ra-

diometer at Mahabubnagar, Telangana, during August 2011

as part of the Integrated Ground Campaign during the Cloud

Aerosol Interaction and Precipitation Enhancement Experi-

ment (CAIPEEX-IGOC). In this study, temperature profiles

for the first time have been estimated using short but statis-

tically significant background information so as to improve

the accuracy of the retrieved profiles as well as to be able to

detect gradients. Estimated water vapor and temperature pro-

files are compared with those taken from the reanalysis data

updated by the Earth System Research Laboratory, National

Oceanic and Atmospheric Administration (NOAA), to deter-

mine the range of possible errors. Similarly, root mean square

errors are evaluated for a month for water vapor and temper-

ature profiles to estimate the accuracy of the retrievals. It is

found that water vapor and temperature profiles can be es-

timated with an acceptable accuracy by using a background

information data set compiled over a period of 1 month.

1 Introduction

Water vapor along with temperature affects various atmo-

spheric processes, particularly cloud formation, initiation of

convective storms (Trenberth et al., 2005) and tropical cy-

clones (Needs, 2009; Ali, 2009). Therefore, accurate infor-

mation about their spatial and temporal distribution as well

as variation in the lower troposphere is essential for the ini-

tialization of numerical weather prediction models, which in

turn improves the forecast of various weather events (NRC,

2009).

Various instruments are used to measure water vapor and

temperature profiles in the lower troposphere, i.e., radioson-

des, Raman lidar and microwave radiometer. Radiosondes

are by far the main source of water vapor and temperature

profiles information for numerical weather prediction. The

measured profiles have a vertical resolution of approximately

10 m in the lowest 3 km of troposphere but are launched

once or twice a day at most sites around the world (Wang

et al., 2008). Therefore, they cannot be used to detect the

temporal variations and gradients in the atmospheric hu-

midity and temperature profiles at regular intervals of time

and space. Raman lidars (Goldsmith et al., 1998) and dif-

ferential absorption lidars (DIAL) (Spuler et al., 2015) are

also used during clear sky conditions for sensing humid-
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16 S. Panda et al.: Time series analysis of ground-based microwave measurements

ity profiles with a vertical resolution comparable to that

of a radiosonde from ground to an altitude of 3 km. Since

lidars are quite expensive, they cannot be deployed in a

dense network to provide information on spatial distribu-

tion and variation on water vapor and temperature. In ad-

dition to these instruments, microwave radiometers, both

ground-based and airborne, operating in the 20–60 and 166–

190 GHz ranges are used for the retrieval of water vapor,

temperature and liquid water profiles. Ground-based mi-

crowave radiometers have been designed, fabricated and used

to sense water vapor and temperature profiles from ground

to 10 km altitude (Iturbide-Sanchez et al., 2007; Solheim,

et al., 1998). Satellite-based instruments like Advanced Mi-

crowave Sounding Units (AMSU-A and B) on board NOAA-

15 (Susskind et al., 2011; Rosenkranz, 2001) as well as

Sondeur Atmospherique du Profil d’Humidité Intertropicale

par Radiometrie (SAPHIR) Microwave Analysis and De-

tection of Rain and Atmospheric Systems (MADRAS) on

board the Megha-Tropiques (Rao, et al., 2013) have been

used to retrieve humidity and temperature profiles in addition

to a range of other parameters. The AMSU-A and B chan-

nels operate close to the 22.235, 60 and 183 GHz absorption

lines as well as at the 89 GHz window frequency. In addi-

tion to these instruments a mini-satellite flower constellation

of millimeter-wave radiometers for atmospheric observations

known as FLORAD operates at frequencies close to the 89,

118 and 183 GHz to estimate water vapor, temperature, cloud

liquid content and precipitation rate (Marzano, et al., 2009).

Both the ground-based and airborne microwave radiometers

have a fine temporal resolution ranging from a few millisec-

ond to a few minutes depending on the integration time of the

measurement channel. However, radiometers have a variable

vertical resolution and accuracy depending on the thermody-

namic property being retrieved.

Humidity and temperature profiles have been retrieved

from microwave radiometer measurements by Westwater

(Westwater, 1993) using various retrieval techniques while

Scheve (Scheve et al., 1999) used the minimum variance

estimation technique. Sahoo (Sahoo et al., 2015b) used the

Bayesian optimal estimation technique while focusing on

sensing the gradients and temporal changes associated with

water vapor profiles retrieved by using K-band radiometer

measurements and an optimized background data sets.

The novel feature of the work discussed in this paper is the

estimation of water vapor density and temperature profiles

within certain limits of accuracy while detecting temporal

variations and gradients in the profiles. The profiles are es-

timated by inverting K- and V-band measurements using the

Bayesian algorithm along with a background data set com-

piled over a period of 1 month. The background data set com-

piled for a period of 1 month is specific to the time period of

radiometer measurements and conforms to the weather con-

ditions during that period. This method results in a significant

improvement of accuracy over the normal method of using

a large data set collected for a long period of time (usually

3–4 years). However, the improved results discussed in this

paper are specific for a location and the method needs be

adapted for a particular region.

The Bayesian optimally estimated profiles are then com-

pared with profiles estimated using the neural network (NN)

method as well as profiles taken from the reanalysis data

from Earth System Research Laboratory, National Oceanic

and Atmospheric Administration (NOAA). Here, the reanal-

ysis data are considered as truth and the error in this study is

the difference between the radiometer retrieved profiles (us-

ing both neural network and Bayesian optimal estimation)

and those from the reanalysis data.

2 Instruments deployment

Indian Institute of Tropical Meteorology (IITM) had de-

ployed a microwave radiometer in Mahabubnagar (16◦44′ N,

77◦59′ E), Telangana, for the whole month of August 2011

as part of the Integrated Ground Campaign during the Cloud

Aerosol Interaction and Precipitation Enhancement Experi-

ment (CAIPEEX-IGOC) (Leena et al., 2015). This is a fre-

quency agile radiometer and operated at 8 frequencies in the

range 22–30 GHz and 14 frequencies from 51.0 to 58.0 GHz

in V-band, at elevation angles of 15, 90 and 165◦. The resolu-

tion of the instrument varies from 0.1 to 1 K depending on in-

tegration time, i.e., 0.01 to 2.5 s (Radiometrics Corporation,

2008). The accuracy of the brightness temperature measure-

ments is approximately 0.2 K and the bandwidth of the chan-

nels is 300 MHz. This instrument also has a single channel

infrared radiometer in addition to surface pressure, humid-

ity and temperature sensors. The multichannel microwave ra-

diometer is calibrated by injecting noise from a noise diode to

remove the system gain fluctuations. Two sided tipping curve

calibration method has been used to determine the bright-

ness temperatures from the measured voltages for water va-

por channels and the cold (liquid nitrogen) and hot load cal-

ibration (internal black body at ambient temperature) is used

to calibrate the temperature channels measurements.

Radiometer measurements during the field campaign were

performed throughout day and night under varying atmo-

spheric conditions which included clear and cloudy skies.

The time series of calibrated brightness temperatures for

22.23, 25.0, 51.243 and 53.36 GHz are shown in Fig. 1. It can

be observed that brightness temperatures at 22.23 GHz are

comparatively higher than those at 25 GHz. This is because

22.23 GHz is the water vapor resonance frequency and is

more sensitive to water vapor in the atmosphere than 25 GHz,

which is significantly far away from the water vapor reso-

nance frequency. Similarly, measurements at 53.36 GHz are

higher than those at 51.243 GHz because of the proximity

of 53.36 GHz to the oxygen complex. Thus, measurement

frequencies are sensitive to water vapor and temperature to

a varying extent as explained in Sect. 3.1. This can also be

confirmed by analyzing the weighting functions correspond-
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Figure 1. Time series of brightness temperature at 22.23, 25.0,

51.243 and 53.36 GHz.

ing to water vapor and temperature frequencies shown in

Fig. 2. Figure 2a shows that weighting function values for

22.234 GHz are higher than those at 25.00 GHz at altitudes

above 2 km while weighting function values at 25 GHz have

slightly higher values than those at 22.234 GHz below 2 km.

This is because the measurements at 22.234 GHz are compar-

atively more sensitive to changes in water vapor at altitudes

above 2.5 km while those at 25.00 GHz are more sensitive

to changes in water vapor below that altitude. However, the

weighting function values at 22.234 GHz for altitude range

2.5–8 km are significantly higher than those at 25.00 GHz so

that brightness temperatures at 22.234 GHz are still higher

than those at 25.00 GHz.

The temperature measurement frequencies shown in

Fig. 2b are most sensitive to temperature variations from 0

to 4 km altitude. The 53.36 GHz weighting function (repre-

sented by green line in Fig. 2b) is higher than 51.248 GHz

weighting function (represented by blue line in Fig. 2b) at all

altitudes.

To complement the radiometer measurements, Vaisala

RS92-SGP radiosondes were launched everyday at

12:00 UTC. These radiosondes were launched from the

radiometer deployment location to provide vertical profiles

(with temporal resolution of two seconds) of relative humid-

ity, temperature, dew point temperature, pressure and wind.

These radiosondes data have been used as the source of

a-priori information as well as the source of background data

set during this study and analysis, as explained in Sect. 3.2.
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Figure 2. (a) Weighting functions for measurement frequencies

used for water vapor profile retrieval. (b) Weighting functions for

measurement frequencies used for temperature profile retrieval.

3 Theoretical background

3.1 Remote sensing of water vapor and temperature

profile

Remote sensing of water vapor and temperature is based on

the measurement of microwave radiation emitted by water

vapor and oxygen molecules. The emission and absorption of

microwave radiation due to water vapor and oxygen in each

tropospheric layer causes the change in microwave radiation

that reaches the ground. This variation in radiation is due to

the concentration of water vapor in the atmosphere and the

temperature at various altitudes. Therefore, this microwave

radiation reaching the ground is source of information about

the humidity distribution and temperature variation in the at-

mosphere at different heights.

Measurement of this radiation at the weak water vapor ab-

sorption line (centered at 22.235 GHz) is used for the sensing

of water vapor profile variation. This is based on humidity

absorption line pressure broadening. This broadening is due

to motion of the water molecules and their collisions with

other water vapor molecules. Thus change in pressure has

a significant impact on the width of the absorption lines as

well as the absorption values. Therefore, a decrease in the at-

mospheric pressure (at high altitudes) results in reduction of

the line width and increase of the water vapor absorption line

strength, which is most prominent at 22.235 GHz (the center

of the absorption line). Therefore, the closer the proximity

of the measurement frequency is to the weak water vapor

resonance frequency, the higher the sensitivity to water va-

por at high altitudes. As the pressure increases the absorption

line widens, resulting in reduced sensitivity of resonance fre-

quency measurements to water vapor at high altitudes. How-

ever, frequencies farther away from the center frequency are

more sensitive to water vapor changes close to ground level.

This is again proven by the weighting functions values at

various frequencies. Weighting functions closest to the wa-

ter vapor resonance frequencies are almost twice more sen-

sitive to water vapor at 8 km than the weighting function far-

ther away from the resonance frequency. Frequencies further
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away from the resonance peak are most sensitive to changes

close to ground level. Therefore, a combination of various

frequency measurements is able to detect the profile infor-

mation about water vapor.

Similarly, microwave radiation from oxygen at the 60 GHz

absorption complex can be used for retrieving temperature

profile information because atmospheric absorption in the

50–75 GHz range is primarily due to oxygen molecules.

The oxygen absorption line between 51.5 and 67.9 GHz

(Rosenkranz 1993) is primarily due to the magnetic moment

33 spin-rotational lines. These spin-rotational lines merge to-

gether at lower altitude to form a pressure broadened line

which has a shape similar to an absorption band centered

at 60 GHz. However, the oxygen absorption line intensity

is not the result of simple addition of isolated line inten-

sities but rather the “overlap interference” which gives rise

to a very complex absorption band called the oxygen com-

plex. This oxygen complex results in the opacity at 60 GHz

being significantly higher than that at 50 GHz, so a ground-

based radiometer measuring at 60 GHz just observes the ra-

diation emitted close to the ground surface. Thus, to sample

the temperature at various altitudes of the troposphere, mea-

surements need to be performed at a number of frequencies

away from the center frequency.

Since oxygen is the most uniformly mixed gas in the at-

mosphere and its proportion in the lower atmosphere is al-

most constant and altitude independent from ground level

to 80 km, the microwave radiation at the oxygen absorption

lines contain atmospheric temperature profile information.

3.2 Retrieval techniques

3.2.1 Bayesian optimal estimation

The Bayesian optimal estimation is an inversion method

which uses multiple K- and V-band microwave frequency

measurements to retrieve profiles of humidity and tempera-

ture. This retrieval of water vapor and temperature profiles

from brightness temperature measurements is a nonlinear

and ill-posed problem. To overcome the ill-posed problem

Bayesian optimal estimation retrieval technique uses a pri-

ori humidity and temperature information as well as back-

ground information covariance matrix as constraint to deter-

mine a unique solution to the inverse problem. A priori in

this paper represents the measurement of water vapor and

temperature profiles prior to the radiometer brightness tem-

perature measurements. This is also known as the initializa-

tion profile in this paper. The a priori information is taken

from radiosonde launched a few hours before the radiometer

performs the measurement.

In addition to the a priori information, water vapor den-

sity and temperature background information statistics are

also used. Background information statistics here mean the

background information covariance information represented

by the matrix Sa as discussed later in this section. This ma-

trix provides variability information associated with the at-

mospheric humidity and temperature profiles as well as the

inter-layer correlation for a particular time period. The num-

ber of elements in the background data set and the relation-

ships among them determines the values of the background

information covariance matrix elements. Since in this study

the data set used for calculating the background statistics has

been taken close to measurement time, it will be more repre-

sentative of weather conditions during that time period and

location.

The Bayesian optimal estimation uses the Levenberg–

Marquardt (LM) optimization method (Rodgers, 2000) given

in Eq. (1).

x̄i+1 = x̄i +

(

(1 + γ )S
−1

a + K
T

i S
−1

ǫ K i

)−1

(

K
T

i S
−1

ǫ

[

T̄ ′
B − T̄B(x̄i)

]

− S
−1

a [x̄i − x̄a]

)

, (1)

where i is the iteration index, K i is the kernel or weighting

function matrix and determines the sensitivity of the mea-

surements at various frequencies to changes in the parame-

ter of interest at various altitudes, x̄i is the water vapor den-

sity or temperature profile which is updated at each itera-

tion and is same as initialization profile for i = 1, T̄ ′
B is the

measured brightness temperature vector at water vapor den-

sity or temperature measurement frequencies and x̄a is the

a priori profile and is same as the initialization profile in this

case because a small data set is used as background data set.

T̄B(x̄i) is the radiative transfer model simulated brightness

temperature using the absorption coefficients calculated from

a Rosenkranz model (Rosenkranz, 1993, 1998).

Sǫ is the observation error covariance matrix and con-

tains the uncertainty information associated with the mea-

surement. The observation error covariance matrix takes into

consideration the radiometric measurement noise (E), repre-

sentativeness error (M) and radiative transfer model errors

(F ). Radiometric noise is determined based on radiometric

resolution, which is the minimum difference in scene bright-

ness temperature that can be sensed by the receiver. This

value for MP3000-A varies from 0.1 to 1 K depending on

integration time (Radiometrics Corporation, 2008). The typ-

ical value is 0.25 K for each measurement frequency while

considering an integration time of 250 ms. In addition to the

radiometric noise, forward model errors are introduced due

to inadequate absorption models. These are determined us-

ing the difference between brightness temperatures simulated

by two absorption models, i.e., the Rosenkranz model and

MPM93 (Liebe et al., 1993). Another source of uncertainty

is the representativeness error, which takes into consideration

the radiometer’s sensitivity to fluctuations in the atmosphere

on a time scale shorter than what can be represented by any

numerical weather prediction model or radiosondes profiles.
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Figure 3. The observation error covariance matrix for (a) water va-

por frequency measurements (b) temperature measurements.

The representative covariance is calculated in Eq. (2).

M = E
(

T̄ ′
B(t + 1t) − T̄ ′

B(t)
)(

T̄ ′
B(t + 1t) − T̄ ′

B(t),
)T

(2)

where t is time and 1t is the time scale of difference. The

observation error covariance matrix is shown in Fig. 3, where

the axes represent the number of measurement frequencies.

The diagonal elements of the observation error covariance

matrix are approximately in the range of 0.23 to 0.29 K2 and

some of the off-diagonal elements are close to zero.

Sa is the background covariance matrix, which is

computed using information from 50 radiosonde profiles

launched over a period of 1 month. γ is the LM factor and

its value is updated at each iteration based on value of J (x)

from Eq. (3). Various initial values of γ in the range of γ = 1

and γ = ∞ have been considered for starting of the iteration.

For γ = 1, the iteration might move towards a local minima

while in case of γ = ∞ the iteration immediately moves to-

wards the global minima, which gives a solution that does

not converge. Therefore, the initial value of γ is assumed to

be 1. It is observed that the algorithm does not converge with

a valid output for this initial value of gamma so the initial

value of gamma is increased at regular intervals to check the

convergence. It is found empirically that gamma with an ini-

tial value of 5000 converges the algorithm for all cases. As

part of the iteration, if the value of J (x) increases, then the

iteration is discarded and the value of γ is increased 10 fold

and the iteration is repeated. This is done so as to discard any

invalid output which could be close to one of the local min-

ima. If value of J (x) decreases, then the iteration is valid and

the value of γ is reduced by a factor of 2 for the next iteration

even if the convergence criteria is not satisfied, i.e., Eq. (4)

(Hewison, 2007). This process is followed until the conver-

gence criterion given by Eq. (4) is validated by the output

profile. The normalized cost function and gamma values are

shown in Fig. 4. It can be observed that as the cost function

decreases, the gamma value decreases and vice versa.
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LM technique output is dependent on the cost function

represented by J (x) in Eq. (3):

J (x) =

[

x̄ − x̄b
]T

S
−1

a

[

x̄ − x̄b
]

+

[

T̄B (x̄i) − T̄B
′
]T

S
−1

ǫ

[

T̄B (x̄i) − T̄B
′
]

, (3)

where x̄b and x̄ are the initialization profiles (either water va-

por or temperature) and output profile (either water vapor or

temperature) for each iteration, respectively. The final water

vapor or temperature output profiles are determined by the

convergence criterion given by Eq. (4):

[

T̄B (x̄i+1) − T̄B (x̄i)
]T

S
−1

δy

[

T̄B (x̄i+1) − T̄B (x̄i)
]

≪ m, (4)

where m is 5 and 7 (dimension of water vapor and temper-

ature measurement vector) for water vapor and temperature

profile retrieval and Sδy is the covariance between T̄ ′
B and

T̄B(x̄i). Equation (4) determines the termination of the iter-

ative process. The iteration stops when Eq. (4) reaches the

value q, which is very small in comparison to m. Therefore,

the value of q is chosen to be 0.05 and 0.07 for water va-

por and temperature profile retrieval, respectively, which is

1/100 times the number of measurements used.

3.2.2 Impact of background data set on retrieval

As already studied and determined by Scheve (1999), Hewi-

son (2007), Solheim et al. (1998) and Sahoo et al. (2015a),

the number of measurement frequencies which provide alti-

tude related information about water vapor and temperature

is limited by the information content or degrees of freedom of

the measurements. Thus, use of these measurements in var-

ious inversion methods to retrieve the thermodynamic prop-

erties at more number of altitudes than the information con-

tent limit is an ill-posed as well as a nonlinear problem. To

overcome these shortcomings, Bayesian optimal estimation

method uses background information statistics.
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Background information statistics here mean the back-

ground covariance information represented by the matrix Sa.

The background data set is very important for the perfor-

mance of the retrieval algorithm in terms of accuracy and

ability to sense temporal changes. This is because it deter-

mines the range of variability information associated with

water vapor or temperature profiles during a time period.

Thus the background data set taken closer in time to the ra-

diometer measurement will describe the atmospheric condi-

tions, i.e., the temperature and humidity profiles during the

measurements while background data set taken over a long

period (1 year or so) of time will take into consideration the

variability information for the whole year and hence will over

shadow variability information which might be more useful

in a short period of time.

The atmospheric conditions during a particular season or

month are correlated because the atmospheric conditions

are similar throughout the time period accept a few outliers

which cannot be correlated to the time of interest. Therefore,

measurements along with the background data set and the

a priori will retrieve the most probable water vapor and tem-

perature profile while an outlier might or might not be de-

tected depending on whether that event is properly described

by the background covariance matrix.

The background information covariance matrix used in

this paper is shown in Fig. 5a and b, calculated using water

vapor density and temperature profiles, respectively, which

have been measured over a period of 1 month. It can be ob-

served from Fig. 5a that most of the water vapor variability

information is between 20 and 40 layers, which correspond

to the altitude range of 2–4 km. However, Fig. 5b shows that

the temperature variability information is primarily below al-

titude of 1 km and also in the range of 2–4.2 km. In contrast to

these results, when background information covariance ma-

trix is computed from a large data set, important weather

events or temporally varying conditions are overshadowed

because the covariance matrix takes into consideration the

overall variability information while reducing the weight of

certain weather conditions which correspond to a particular

season (Sahoo et al., 2015b).

The goal of this study is to retrieve water vapor and tem-

perature profiles with improved accuracy while using a back-

ground data set measured over a period of 1 month so as to

detect the temporal changes and gradients in the lowest 8 km

of the profiles.

3.3 Neural network estimation

Estimation of water vapor and temperature profiles from mi-

crowave radiometer brightness temperatures is done using a

proprietary NN method developed by Radiometrics Corpora-

tion (Solheim, et al., 1998). NN zenith estimation of temper-

ature, water vapor density profiles, relative humidity profiles

and liquid water content is performed at a time from the mi-

crowave measurements as well as the infrared channel mea-

Figure 5. Background information covariance matrix for 80 layers

(each layer is 100 m thick): (a) water density and (b) temperature

profiles. The x and y axes are in kilometers for both the figures.

surements. The retrieved profiles are estimated at 58 height

levels at every 50 m steps from the surface up to 500 m, then

at every 100 m steps to 2 km, and then the step size is in-

creased to 250 m from 2 to 10 km. However, it has to be noted

that above approximately 7 km, the atmospheric water vapor

density and temperature approach the climatological mean

values.

As part of the retrieval process the training of the NN

is performed using a back-propagation algorithm and ra-

diosonde data which have been collected over a period of

time, i.e., usually 4 to 5 years. The radiosonde data used

for training the network are taken from one or more sites

which have climatological conditions similar to the observa-

tion site. The radiosonde profiles are used for simulating the

brightness temperature using absorption models and radia-

tive transfer equations. The NN estimation uses a standard

feed-forward network (Radiometrics Corporation, 2008) to

retrieve the temperature, humidity and liquid water profile

that is most consistent with the atmospheric conditions and

radiometric measurements.

However, in this case sufficient radiosonde profiles were

not available for Mahabubnagar, so a slightly different ap-

proach was used in this study for neural network estimation

of profiles. Radiosonde profiles were still used as training

data set but these were taken from areas which had simi-

lar weather conditions and same altitude and latitude (but

different longitude) as Mahabubnagar, Telangana. However,

two sites at the same altitude and longitude may have sig-

nificantly different weather depending on the general confor-

mation of the mountains in the area, the marine currents as

well as the advection processes. This could lead to biases in

the training of the radiometer algorithm which in turn would

increase the error of the retrieved profile.

4 Retrieval of atmospheric profiles

The Bayesian optimal estimation and NN zenith estimation

methods are applied to the zenith microwave measurements
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to estimate water vapor density and temperature profiles from

ground to an altitude of 8 km in the troposphere for various

days and times. The Bayesian optimal estimation method re-

quires an initialization profile which is taken from radioson-

des launched every day at 12:00 UTC. The initialization pro-

files from radiosondes are vertically averaged to correspond

to 100 m layer thickness of retrieval. In addition to the mea-

surements and initialization profile, background information

covariance matrix is also required, which is calculated from

the data set of radiosonde profiles launched during the ex-

periment and is shown in Fig. 5. The retrieved profiles are

compared with those from NOAA reanalysis data. The re-

analysis profiles have water vapor and temperature samples

at varying pressure levels. Therefore, these profiles are made

uniform by interpolation so as to have samples at every 100 m

interval from ground to 8 km above ground level.

4.1 Water vapor profiles

Water vapor profiles estimated using the Bayesian optimal

estimation and NN method are shown in Fig. 6, along with

the reanalysis data from NOAA. It can be observed that

Bayesian optimal estimation performs better than the NN in

estimating water vapor profile on all the days considered.

The Bayesian optimal estimation is able to detect the vari-

ation in the profiles, which are smoothed by the NOAA data

because of the coarse vertical resolution. The retrieved pro-

file in Fig. 6a shows that both the Bayesian and NN zenith

estimated water vapor profiles have similar performance on

7 August 2011 when the errors are in the range of 1.5–

2.5 g m−3 from ground to 3 km above ground level. However,

for 16 August 2011 the Bayesian and NN zenith retrieval er-

rors are in the ranges of 0–1.5 and 0–3 g m−3, respectively, as

shown in Fig. 6b. The Bayesian retrieved profiles show sig-

nificantly improved performance on 25 and 26 August 2011

and have errors less than 1.5 g m−3 in the lowest 2 km of the

troposphere, which is better than the error associated with the

NN zenith estimated profiles. It can also be observed from

Fig. 6 that at the altitude range of 3–7 km, Bayesian opti-

mal estimation method has an error less than 0.8 g m−3 for

all cases except for 25 August 2011. Thus the NN zenith re-

trieval has a slight negative bias in the lowest 2 km of the

troposphere.

In addition to the higher accuracy, Bayesian optimal es-

timation has been able to detect the gradient in the lowest

4 km of troposphere on 7, 16 and 25 August 2016, which is

not observed in the reanalysis data. This detection of gra-

dients in the water vapor density profiles is significant be-

cause water vapor is highly variable in the lowest 3 to 4 km

of the troposphere, which greatly affects the evolution of

the weather changes. The statistical analysis for profiles re-

trieved by Bayesian optimal estimation and NN is discussed

in Sect. 4.3.
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Figure 6. Time series analysis data of water vapor retrieved profiles.

4.2 Temperature profiles

Temperature profiles were estimated using both the estima-

tion methods (Bayesian and NN methods) and have been

shown in Fig. 7. The Bayesian method outperforms the NN

estimated profile on all the days considered here. For alti-

tudes below 3 km, the Bayesian optimal estimation has an

error range of 0–1.5 K, and for altitudes above 4 km the

Bayesian method error is less than 3 K for most of the cases

considered in Fig. 7. The NN estimated profile consistently

shows a negative bias when compared with the reanalysis

data at all altitudes. However, the negative bias is more sig-

nificant at 3 km and above where the NN error is higher than

6 K.

It can be noted that some of the fine changes and gradients

in the temperature profile in the altitude range of 0–3 km are

sensed by the Bayesian estimated temperature profile. The

ability to sense gradients and temporal changes in the tem-

perature profile are because of the background covariance

matrix, which has been computed using a data set compiled

over 1 month during the measurement time. This data set is

correlated to the radiometer measurements because the ra-

diosondes data have been taken over the time period of the ra-
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Figure 7. Time series analysis data of temperature retrieved pro-

files.

diometer measurements. The statistical analysis for Bayesian

optimal estimation and NN zenith is discussed in Sect. 4.3.

4.3 Error analysis

To analyze the performance of both the retrieval techniques,

the retrieval errors are calculated as the difference between

the estimated (using either the NN or the Bayesian optimal

estimation) and the reanalysis profiles. The range of errors

associated with the water vapor profiles estimated using NN

and Bayesian optimal methods are shown in Fig. 8a and b,

respectively. Figure 8a shows that the errors for NN estima-

tion in the lowest 2 km of the troposphere are in the range

of −4.5 to 4 g m−3 and as the altitude increases the error

range decreases and reduces to −2 to 2 g m−3 at 4 km above

ground level. However, the range of errors associated with

the Bayesian optimal estimation are −1 to 1 g m−3 at all al-

titudes for most of the cases as shown in Fig. 8b. Thus, the

error associated with the Bayesian optimal estimation is sig-

nificantly less than that of the NN algorithm particularly for

water vapor profile retrieval. It can also be observed that the

errors in most of the cases are less than zero for both the

retrieval methods. This is because of the estimated profile

being less than the reanalysis profile in most of the cases

(thus the negative bias). In addition to that, it can be observed
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Figure 8. Error associated with water vapor density profile retrieved

by (a) neural network and (b) Bayesian optimal estimation.

that some of the retrieved profiles in Fig. 8b showed higher

than usual absolute errors, i.e., 2 g m−3 and above. This is

because the water vapor profile retrieval accuracy is signif-

icantly affected by the a priori profile as shown by Sahoo

et al. (2015). If the atmospheric conditions during the a pri-

ori profile measurement (radiosonde launch) are very differ-

ent from the conditions during the radiometer measurements

then the actual profile will be different from the a priori. This

will result in errors which are higher than when the a priori

and estimated profiles are similar or the weather conditions

for the two times are not very different. This difference in

weather conditions is due to a weather phenomenon or a rain

event.

The range of errors associated with the temperature pro-

files are shown in Fig. 9a and b for both the NN and Bayesian

optimal techniques, respectively. The error associated with

the neural network profile is in the range of −3 to 5 K in the

lowest 1 km of the troposphere and then the range changes to

−4 to −8 K at 4 km above ground level. It is clear that the

NN zenith retrieval underestimates the value of the tempera-

ture profile. The error associated with the Bayesian optimal

estimated profile is shown in Fig. 9b and is in the range of

−1 to 0 K except in the case of a few profiles. As in the case

of water vapor profile, the errors associated with tempera-

ture profiles by Bayesian optimal estimation are significantly

less than NN estimated profiles. The Bayesian optimally esti-

mated retrievals using radiometer observations compare well

with the reanalysis data because of the retrieval being con-

strained by a-priori and surface measurements provided by

the radiometer.

Another analysis was performed to determine the sensitiv-

ity of retrieved profile to changes in elements of observation

error covariance matrix in the Bayesian optimal estimation.

Water vapor and temperature profiles already retrieved for

various days as shown in Figs. 6 and 7 have been reanalyze

after increasing the diagonal element of the observation er-

ror covariance matrix by 0.25 K2. The retrieved profiles for

water vapor and temperature for both the observation error

covariance matrices are shown in Fig. 10. It can be observed
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Figure 9. Error associated with temperature profiles retrieved by

(a) neural network and (b) Bayesian optimal estimation.

that the retrieved water vapor profile for the modified covari-

ance matrix has higher error than the profile retrieved using

the covariance matrix shown in Fig. 3. The increase in er-

ror for the retrieved water vapor profile is in the range of 0.3

to 1.9 g m−3 (0 to 8 km altitude). Similarly, the increase of

0.25 K2 in the diagonal elements of the temperature observa-

tion covariance matrix shown in Fig. 3 results in an increase

of the temperature profile error by 0.2 to 0.5 K (0 to 8 km alti-

tude) as shown in Fig. 10. Thus, the observation error covari-

ance matrix has a significant impact on the retrieved profile

quality and accuracy.

Additional analysis was performed to determine the de-

viation of the retrieved profiles from the NOAA reanalysis

profile. Root mean square (RMS) errors are calculated for

both the Bayesian and NN methods. RMS errors are calcu-

lated by comparing radiometer retrieved humidity and tem-

perature profiles (retrieved using both Bayesian optimal es-

timation and NN method) with the reanalysis data (which is

used as truth in this case).

Figure 11a shows the RMS error associated with Bayesian

optimal and NN estimated water vapor profile. Bayesian re-

trieval error varies from 0.2 to 0.4 g m−3 in the lowest 4 km

of the troposphere and is less than 0.2 g m−3 above 5 km alti-

tude. In contrast, RMS error for NN retrieved profile is in the

range of 1–2.5 g m−3 in the lowest 2 km of troposphere and is

less than 1 g m−3 above 4 km. Thus, the RMS error for water

vapor profile retrieved using Bayesian optimal estimation is

less than NN.

Figure 11b shows the RMS error for Bayesian optimal and

NN estimated temperature profiles. The RMS error associ-

ated with the Bayesian optimal estimated profile is less than

0.6 K at any altitude from 0 to 8 km above ground level. How-

ever, the NN zenith retrieval error range is 1–2 K for lowest

2 km and then increases consistently above 2 km. The max-

imum error is approximately 7.5 K at 8 km above ground

level. Thus, the Bayesian retrieval algorithm performs sig-

nificantly better than NN zenith for estimating temperature

profile.

It is observed that the RMS error for NN estimated water

vapor density profile has a decreasing behavior with altitude

whereas the temperature profile RMS error has an increasing

behavior with height. This is due to bias being introduced in

the algorithm. NN algorithm used to retrieve the water va-

por and temperature profiles has been trained using a data

set taken from areas which have similar weather conditions

as the radiometer observation site. However, two sites at the

same altitude and longitude may have significantly different

weather depending on the general conformation of the moun-

tains in the area, the marine currents as well as the advection

processes. This training of the algorithm is causing the re-

trieval bias for both the water vapor and temperature profiles.

However, at high altitudes the range of water vapor density

values which are possible are limited and close to zero (ob-

viously the climatological mean) due to which the errors re-

duce as altitude increases as shown in Fig. 11a. This is not

the case for temperature profiles, which can have really low

values at high altitudes. If the training data have really low

values of temperature at high altitudes for a set of brightness

temperatures then the retrieved profile will also be low in

comparison to the actual profile or the reanalysis data in this

case. Thus as the altitude increases, the temperature profile

error increases too.

5 Conclusion and discussion

This paper comprehensively describes the Bayesian optimal

estimation and the improvements applied to the technique

to estimate humidity and temperature profiles with increased

accuracy. The Bayesian technique is an optimal combination

of ground-based microwave radiometer observations and the

related background information as well as the a-priori infor-

mation. Hence, the background data set is one of the impor-

tant parameters in improving accuracy and in increasing the

ability to detect temporal changes and gradients. Therefore,

the effect of using a small background data set has been stud-

ied in this paper. To that effect the Bayesian optimal estima-

tion has been applied to the radiometer measurements per-

formed for the month of August 2011 to retrieve water vapor

density and temperature profiles while considering a data set

taken for a period of 1 month. The retrieved profiles show

that gradients can be detected along with temporal changes.

These retrieved profiles have been compared with those from

the NN method and also with the NOAA reanalysis data,

which is considered as truth in this case. The results show

that Bayesian optimal estimation using a small background

information data set (50 profiles taken over a period of 1

month) has better performance than the NN method (which

requires a large background data set taken over 4–5 years as

training data), particularly when a large background data set

is not available to train the NN method. This improved accu-

racy can be achieved because the profiles in the background

data set are temporally and spatially correlated with the mea-
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Figure 10. Retrieved profile sensitivity to observation error covariance matrix. (a) Water vapor profile. (b) Temperature profile.
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Figure 11. RMS error analysis for (a) water vapor profiles and (b)

temperature profiles.

surements performed by the radiometer. Thus, the most per-

sistent profile is retrieved and the Bayesian optimal estima-

tion achieves the improved retrieval performances through-

out the altitude of interest.

Water vapor profiles retrieved using the Bayesian optimal

estimation technique (Fig. 6) compares well with the reanal-

ysis data for 16 August 2011 and 26 August 2011 with differ-

ences less than 1.5 g m−3 for the whole profile and for other

days the difference is lower than the error observed for NN

from ground to 3 km altitude. For most of the days the abso-

lute errors are less than 2 g m−3. In addition to that retrieved

profiles are able to detect the gradients in the water vapor

profile which are otherwise smoothed by the reanalysis data.

The RMS error analysis for Bayesian estimation shows that

the RMS errors are less than 0.8 g m−3 from ground to 8 km

altitude, which in turn is less than the errors observed for NN.

Thus, the water vapor profile can be retrieved using Bayesian

optimal estimation with an accuracy of better than 1.5 g m−3

for most of the cases. Temperature profiles retrieved using

Bayesian optimal estimation have errors of less than 3 K in

the lowest 5 km of troposphere when compared with the re-

analysis data while the NN profiles usually have a difference

of 3 K or more for the whole profile. However, on most of the

days temperature profiles can be retrieved with an accuracy

of better than 1.5 K while detecting the gradients. This has

been again proved in the RMS error analysis in Fig. 11. The

RMS error shows that Bayesian method has error less than

0.7 K while the NN has error higher than 2 K and increases

as the altitude increases.

Along with other analyses, one has been performed to de-

termine the sensitivity of retrieved profile accuracy to change

in observation error covariance matrix. It has been observed

that water vapor profile retrieved error increases by almost

1–2 g m−3 with an increase of 0.25 K2 of the diagonal ele-

ments of the matrix. However, an increase of 0.25 K2 of the

diagonal elements of the temperature error covariance matrix

results in an increase of error less than 0.8 K.

By analyzing the errors it can be concluded that water va-

por and temperature profiles can be retrieved with improved

accuracy using Bayesian optimal estimation. Along with the

accuracy, the water vapor and temperature gradients and tem-

poral changes can also be detected. When a large background

data set is not available the Bayesian optimal estimation per-

forms way better than the NN retrieval technique in terms of

accuracy.
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6 Data availability

The radiometer brightness temperature data is property of In-

dian Institute of Tropical Meteorology (IITM), Pune which

is an autonomous organization under the Ministry of Earth

Sciences, India. The data is not publicly available but can

be availed by collaborating with IITM as well as sending

a request to Dr. G. Pandithurai at pandit@tropmet.res.in.

The Bayesian optimal estimated water vapor and tempera-

ture profiles data can be provided by the authors to the user

based on the request. The NOAA reanalysis data is on NOAA

website and can be easily accessed by the user.

Acknowledgement. Authors would like to thank Earth System

Research Laboratory, National Oceanic and Atmospheric Admin-

istration (NOAA), for providing such an useful reanalysis data set,

which helped in analyzing the error associated with the estimated

profiles. We would also like to thank Xavier Bosch-Lluis for his

important contributions and suggestions.

Edited by: F. Soldovieri

Reviewed by: three anonymous referees

References

Ali, M. M.: Cyclone, in: Remote Sensing Applications, edited by:

Roy, P. S., Dwivedi, R. S., and Vijayan, D.: National Remote

Sensing Centre, Hyderabad, India, 11, 273–282, 2009.

Cimini, D., Hewison, T. J., Martin, L., Güldner, J., and Marzano,

F. S.: Temperature and humidity profile retrievals from ground

based microwave radiometers during TUC, Meteor. Z., 15, 45–

56, 2006.

Feltz, W. F., Howell, H. B., Knuteson, R. O., Woolf, H. M., and

Revercomb, H. E.: Near continuous profiling of temperature,

moisture, and atmospheric stability using the Atmospheric Emit-

ted Radiance Interferometer (AERI), J. Appl. Meteorol., 42,

584–597, 2003.

Goldsmith, J. E. M., Blair, F. H., Bisson, S. E., and Turner, D.

D.: Turn-key Raman lidar for profiling atmospheric water vapor,

clouds, and aerosols, Appl. Opt., 37, 4979–4990, 1998.

Hewison, T. J.: 1D-VAR retrieval of temperature and humidity pro-

files from a ground-based microwave radiometer, IEEE Trans.

Geosci. Remote Sens., 45, 2163–2168, 2007.

Iturbide-Sanchez, F., Reising, S. C., and Padmanabhan, S.: A minia-

turized spectrometer radiometer based on MMIC technology for

tropospheric water vapor profiling, IEEE Trans. Geosci. Remote

Sens., 44, 2181–2193, 2007.

Leena, P. P., Dani, K. K., Nath, A. Sanap, S. D., Pandithurai, G., and

Kumar, V. A.: Validation of ground-based microwave radiometer

data and its application in verifying atmospheric stability over

Mahbubnagar during 2011 monsoon and post-monsoon seasons,

Int. J. Remote Sens., 36, 2920–2933, 2015.

Liebe, H. J., Hufford, G. A., and Cotton, M. G.: Propagation mod-

eling of moist air and suspended water/ice particles at frequen-

cies below 1000 GHz, AGARD 52nd Specialists’ Meeting of the

Electromagnetic Wave Propagation Panel, Chapter 3, 1993,

Liljegren, J. C.: Microwave Radiometer Profiler Handbook,

https://www.arm.gov/publications/tech_reports/handbooks/

mwrp_handbook.pdf (last access: 8 August 2016), Microwave

Radiometer Profiler Handbook, 2002.

Marzano, F. S., Cimini, D., Memmo, A., Montopoli, M., Rossi, T.,

De Sanctis, M., Lucente, M., Mortari, D., and Di Michele, S.:

Flower Constellation of Millimeter-Wave radiometers for Tro-

pospheric monitoring at pseudogeostationary scale, IEEE Trans.

Geosci. Remote Sens., 47, 3107–3122, 2009.

Needs, N. R.: Observing Weather and Climate from the Ground

Up: A Nationwide Network of Networks. National Academies,

Washington, DC, 2009.

National Research Council Committee on Developing Mesoscale

Meteorological Observational Capabilities to Meet Multiple Na-

tional Needs, Observing Weather and Climate from the Ground

Up: A Nationwide Network of Networks, National Academies,

Washington, DC, 2009.

Radiometrics corporation.: Profiler Operator’s Manual, Boulder,

CO, 2008.

Rao, T. N., Sunilkumar, K., and Jayaraman, A.: Validation of

humidity profiles obtained from SAPHIR, on-board Megha-

Tropiques, Special Section: Megha-Tropiques, Curr. Sci. India,

104, 1635–1642, 2013.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The-

ory and Practice, World Scientific, 2000.

Rosenkranz, P. W.: Absorption of Microwaves by Atmospheric

Gases, Atmospheric remote sensing by microwave radiometry,

Wiley-Interscience Publication, 37–90, 1993.

Rosenkranz, P. W.: Water Vapor Microwave Continuum Absorp-

tion: A Comparison Of Measurements And Models, Radio Sci.,

33, 919–928, 1998.

Rosenkranz, P. W.: Retrieval of temperature and miosture pro-

files from AMSU-A and AMSU-B measurements, IEEE Trans.

Geosci. Remote Sens., 39, 2429–2435, 2001.

Sahoo, S., Bosch-Lluis, X., Reising, S. C., and Vivekanandan, J.:

Radiometric Information Content for Water Vapor and Temper-

ature Profiling in Clear Skies between 10 and 200 GHz, IEEE

J. Sel. Topics Appl. Earth Observ. Remote Sens., 8, 859–871,

2015a.

Sahoo, S., Bosch-Lluis, X., Reising, S. C., and Vivekanandan, J.:

Optimization of Background Information and Layer Thickness

for Improved Accuracy of Water-Vapor Profile Retrieval from

Ground-Based Microwave Radiometer Measurements at K-band,

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 8, 4284–

4295, 2015b.

Scheve, T. M. and Swift, C. T.: Profiling atmospheric water vapor

with a K-band spectral radiometer, IEEE Trans. Geosci. Remote

Sens., 37, 1719–1729, 1999.

Solheim, F. S., Godwin, J. R., Westwater, E. R., Han, Y., Keihm, S.

J., Marsh, K., and Ware, R.: Radiometric profiling of tempera-

ture, water vapor, and cloud liquid water using various inversion

methods, Radio Sci., 33, 393–404, 1998.

Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M.,

and Nehrir, A. R.: Field-deployable diode-laser based differential

absorption lidar (DIAL) for profiling water vapor, Atmos. Meas.

Tech., 8, 1073–1087, doi:10.5194/amt-8-1073-2015, 2015.

Susskind, J., Blaisdell, J. M., Iredell, L., and Keita, F.: Improved

temperature sounding and quality control methodology using

AIRS/AMSU data: The AIRS Science Team Version 5 Retrieval

www.geosci-instrum-method-data-syst.net/6/15/2017/ Geosci. Instrum. Method. Data Syst., 6, 15–26, 2017



26 S. Panda et al.: Time series analysis of ground-based microwave measurements

Algorithm, IEEE Trans. Geosci. Remote Sens., 49, 883–907,

2011.

Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in

column-integrated atmospheric water vapor, Clim. Dynam., 24,

741–758, 2005.

Wang, J. and Zhang, L.: Systematic errors in global radiosonde per-

ceptible water data from comparisons with ground-based GPS

measurements, J. Clim., 21, 2218–2238, 2008.

Westwater, E. R.: Ground-based microwave remote sensing of me-

teorological variables, Atmospheric Remote Sensing by Mi-

crowave Radiometry, 145–214, 1993.

Geosci. Instrum. Method. Data Syst., 6, 15–26, 2017 www.geosci-instrum-method-data-syst.net/6/15/2017/


	Abstract
	Introduction
	Instruments deployment
	Theoretical background
	Remote sensing of water vapor and temperature profile
	Retrieval techniques
	Bayesian optimal estimation
	Impact of background data set on retrieval

	Neural network estimation

	Retrieval of atmospheric profiles
	Water vapor profiles
	Temperature profiles
	Error analysis

	Conclusion and discussion
	Data availability
	Acknowledgement
	References

