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Abstract
Studies of networked phenomena, such as interactions in online social media, often
rely on incomplete data, either because these phenomena are partially observed, or
because the data is too large or expensive to acquire all at once. Analysis of incomplete
data leads to skewed or misleading results. In this paper, we investigate limitations of
learning to complete partially observed networks via node querying. Concretely, we
study the following problem: given (i) a partially observed network, (ii) the ability to
query nodes for their connections (e.g., by accessing an API), and (iii) a budget on the
number of such queries, sequentially learn which nodes to query in order to maximally
increase observability. We call this querying process Network Online Learning and
present a family of algorithms called NOL*. These algorithms learn to choose which
partially observed node to query next based on a parameterized model that is trained
online through a process of exploration and exploitation. Extensive experiments on
both synthetic and real world networks show that (i) it is possible to sequentially learn
to choose which nodes are best to query in a network and (ii) some macroscopic
properties of networks, such as the degree distribution and modular structure, impact
the potential for learning and the optimal amount of random exploration.

Keywords: Partially observed networks, Online learning, Heavy-tailed target
distributions

Introduction
Incomplete datasets are common in the analysis of networks because the phenomena
under study are often partially observed. It has been shown that analysis of incomplete
networks may lead to biased results (Sanz et al. 2012; Ghosh et al. 2013; González-
Bailón et al. 2014; Sampson et al. 2015; Alves et al. 2020). Our work seeks to address
the following problem: Given a partially observed network with no information about
how it was observed and a budget to query the partially observed nodes, can we learn to
sequentially ask optimal queries relative to some objective? In addition to introducing new
methodology, we study when learning is feasible in this problem (see Fig. 1).
We present a family of online learning algorithms, called NOL*, which are based on

online regression and related to reinforcement learning techniques like approximate Q-
learning. NOL* algorithms do not assume any a priori knowledge or estimate of the true
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Fig. 1 We present the conditions under which network online learning is feasible. In particular, there is a
potential for learning a policy to reduce incompleteness of a network only if the network has heterogenous
degree distribution and high modularity. The synthetic graphs in the figure are ER (Erdös-Rényi), BA
(Barabási-Albert), BTER (Block Two-level Erdös-Rényi), and LFR (Lancichinetti-Fortunato- Radicchi)

underlying network structure, overall size, or the sampling method used to collect the
partially observed network.
We describe two algorithms from the NOL* family, both of which learn an interpretable

policy for growing an incomplete network through successive node queries. Interpretabil-
ity of these algorithms is important because we want to be able to reason about when
and why a policy is or is not learnable. The first algorithm, referred to as NOL1, uses
online linear regression as a model for predicting the value of querying available nodes,
then uses those predictions to choose the best node to query next. The second algorithm,
NOL-HTR, uses a heavy-tail regression method to account for heavy-tailed (equivalently
heterogeneous) reward functions. This is necessary because in the case of a heavy-tailed
reward distribution such as node degree, NOL will under-predict the objective for hubs
(which are the “big and rare” instances).
We conduct experiments using NOL* algorithms on graphs generated by synthetic

models, as well as real-world network data.2 We focus on the following objective or
reward function: discover the maximum number of initially unobserved nodes in the
network through successive node querying.

Formal problem definition Given an incomplete network Ĝ0 =
{
V̂0, Ê0

}
, which is a

partial observation of an underlying network G = {V ,E}, sequentially learn a policy that
maximizes the number of nodes u ∈ V̂b,u /∈ V̂0 after b queries of the incomplete network.
Querying the network involves selecting a node and asking an oracle or an API for all the
neighbors of the selected node.

1An earlier version of NOL was presented at the 14th Annual Workshop on Mining and Learning with Graphs, a
non-archival venue, in 2018 (LaRock et al. 2018).
2We use the terms graph and network interchangeably in this paper.
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This problem is a sequential decision-learning task that can be formulated as a Markov
Decision Process (MDP), where the state of the process at any time step is the partially
observed network, the action space is the set of partially observed nodes available for
probing, and the reward is a user-defined function (e.g., the increase in the number of
observed nodes). The goal of anMDP learning algorithm is to learn amapping from states
to actions such that an agent using this mapping will maximize its expected reward. In
our case, the state-action space of the problem can be arbitrarily large given that we make
no assumptions about the underlying network; thus any solution will need to learn to
generalize over states and actions from experience (i.e., answers to successive queries).
Our framework NOL* can be viewed as solving an MDP problem. Its algorithms learn

models to predict the expected reward gained by probing3 a partially observed node. The
current model is then used at each time step to decide the best action (i.e., which node to
query to observe as many new nodes as possible). In this way, NOL* algorithms choose
the action that leads to maximizing the total reward over time within an arbitrary budget
constraint.
NOL* algorithms query nodes in the partially observed network sequentially. That is,

in each iteration the algorithm queries one node, adds all of its neighbors to the observed
network, and updates the pool of partially observed nodes available to be queried in
the next iteration. This makes NOL* algorithms adaptive, since the parameters of the
model change based on recent experience. Initially, all nodes in the network are assumed
to be partially observed, thus NOL* is agnostic to the underlying observation or sam-
pling method. At any iteration, there are three “classes” of nodes: fully observed (probed),
partially observed (unprobed but visible) and unobserved (unprobed and invisible).
In the present work, we assume networks that are undirected, unweighted, and static,

meaning that the data being queried does not change over time (no insertion or deletion
of nodes or edges). However, we note that our approach is flexible enough to be modified
to incorporate features and objective functions that take edge directionality and weight
into account. For example, one could incorporate in and out degree as features in the case
of a directed network, and weighted degree in weighted networks. Our methodology can
also be applied to discover previously unobserved nodes in a bipartite network, as long
as there is a suitable method for querying the data. Finally, our method can be extended
to allow for repeated probing of nodes under any API access model, which is useful when
the network is not static.

Contributions Our contributions are as follows:

• We propose a family of interpretable algorithms, NOL*, for learning to grow
incomplete networks.

• We present two algorithms from the NOL* family: an online regression algorithm,
simply called NOL; and an algorithm that can effectively learn for heavy-tailed
objective functions, called NOL-HTR.

• Our extensive experiments on both synthetic and real network data showcase the
limitations of online learning to improve incomplete networks.

3We use the terms querying and probing interchangeably in this paper.
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In the next section we summarize the literature related to the network discovery prob-
lem. Then, we describe and evaluate NOL* before closing the paper with a discussion of
future directions.

Related work
Incomplete data affects numerous areas of research. It has been shown to be a problem
in social networks, including in public health (Gile 2011; Wejnert and Heckathorn 2008)
and economics (Breza et al. 2017), as well as the mining of large systems such as theWorld
Wide Web (WWW) (Cho et al. 1998; Avrachenkov et al. 2014) or Internet infrastructure
(Vázquez et al. 2002). It is also a problem for understanding gene regulatory networks
(Sanz et al. 2012). It has also been shown that over-simplified models, for example those
that do not incorporate directionality or weight of edges, can lead to anomalies in the
analysis of centrality (Alves et al. 2020).
The problem of network online learning is different from network sampling. In tradi-

tional network sampling, the goal is to gather a representative sample of the underlying
network from which statistical characteristics are then estimated. In our setting, the data
collection is guided by an initial sample graph and a user-defined objective function,
which may or may not be directly related to a notion of statistical representative-
ness of the data. For an excellent survey on network sampling, we refer the reader to
(Ahmed et al. 2013).
One approach to growing incomplete networks is to assume that the graph is being

generated by an underlying network model, then use that model to infer the missing
nodes and links. Examples of this approach are (Hanneke and Xing 2019) and (Peixoto
2018), both of which model and address sampling errors within a Stochastic Block Model
(Wang andWong 1987) framework. Another example is (Kim and Leskovec 2011), which
assumes Kronecker graph models (Leskovec et al. 2010). Finally, we refer the reader to
(Chen et al. 2019) for a recent paper on model selection for mechanistic network models.
Avrachenkov et al. (2014) explore methods for maximally covering a graph by adap-

tive crawling and querying. Their work introduces the Maximum Expected Uncovered
Degree (MEUD) method and shows that for a certain class of random power law net-
works, MEUD reduces to choosing the node with maximum observed degree for each
query (which is equivalent to our high degree heuristic; see Experiments section).
MAXOUTPROBE (Soundarajan et al. 2015) estimates the degree of each observed node

and the average clustering coefficient of the graph; it does not assume knowledge of how
the incomplete network was collected. MAXREACH (Soundarajan et al. 2016) estimates
the degree of each observed node and the per-degree average clustering coefficient. It
assumes that the incomplete network was collected via random node or edge sampling
and that one knows the number of nodes and edges in the fully observed graph.
Multi-armed bandit approaches are well-suited for the problem of growing incomplete

networks because they are designed explicitly to facilitate the exploration vs. exploitation
tradeoff. Soundarajan et al. (2017) present a multi-armed bandit approach to network
completion that trades off densification vs. expansion. Their approach also focuses
on the problem of probing edges rather than nodes. Murai et al. (2018) propose a
multi-armed bandit algorithm for reducing network incompleteness that probabilisti-
cally chooses from an ensemble of classifiers that are trained simultaneously. Madhawa
and Murata (2019) describe a nonparametric multi-armed bandit based on a k-nearest
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neighbor upper-confidence bound algorithm, which will be described in more detail in
Experiments section.
Active Exploration (Pfeiffer III et al. 2014) and Selective Harvesting (Murai et al. 2018)

address variants of the problem definition where the general task is to iteratively search
a partially observed network through node querying. The goal is to maximize the num-
ber of nodes in the expanded network with a particular binary target attribute. In this
paper we address a different problem, where the goal is to maximally grow the network
regardless of particular node attributes.
In the following section, we introduce NOL*, which provides a unified framework for

interpretable and scalable network online learning. It incorporates exploration vs. explo-
ration and does not assume how the incomplete network was originally collected or a
specific model generating the underlying network.

NOL* family of algorithms
Algorithm 1 presents the general NOL* framework. The goal is to sequentially learn to
predict the reward value of partially observed nodes in an incomplete network under
a resource constraint or budget, b, on the number of queries we can ask an oracle or
API, leveraging previous queries as sample data. One node is queried at every time step
t = 0, 1, 2, . . . b. The partially observed network Ĝt =

{
V̂t , Êt

}
⊂ G, with nodes Vt , edges

Et and the list of nodes which have been already probed Pt , are updated by the algorithm
after every query. The incomplete network Ĝt grows after every probe by incorporating
the neighbors of the probed node j, selected from

(
V̂t − Pt

)
. The number of new nodes

added to the observed network by probing j in timestep t is the reward earned in that
timestep, denoted by rt(j).
The goal is to make a prediction about the reward to be earned by querying any partially

observed node j that maximizes reward at time t. In general, given an initial state s0, we
wish to maximize the cumulative reward earned after b queries, given that the starting
point was s0:

cr(b) =
b∑

t=0
rt|s0

In each time step t, we want to maximize the reward rt earned by taking action a from
state st . Therefore we learn to choose an action, which corresponds to choosing a node u
to query, such that

u = argmax
j∈

(
V̂t−Pt

) rt(j)

where rt(j) is the reward earned by querying node j from state st .
Although a more general Temporal Difference Learning (Sutton and Barto 2018) solu-

tion to this problem can be formulated, we did not find an advantage in using discounting
or credit assignment in experiments. We conjecture that this is due to a combination of
the finite resource constraint and the fact that we do not visit the same states multiple
times in our setting, making standard planning tools less effective.
To predict the reward value of every node in Ĝt , a feature vector φt(j) ∈ R

d is main-
tained that represents the knowledge available to the model at time t for node j ∈ Ĝt .
Given features φt(i) for all nodes in Ĝt , NOL* algorithms learn a function Vθ : Rd → R
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with parameter θ to predict the expected reward to be earned by probing the node. Any
available information about a node can be included as a feature, but since learning is to
happen online, features should be feasible for online computation. Further, it is desir-
able for features to be interpretable so that the resulting regression parameters can be
interpreted to help understand the performance of the algorithm in a given dataset (see
Appendix A.2).
Given parameter θt at time t, the predicted number of unobserved nodes attached to

node j ∈ V̂t is estimated as Vθt (j) = θtφt(j) such that Vθt (j) should be close to the
observed reward value of probing the node j at time t. At each step, the expected loss
Et

[
Vθt (j) − rt(j)

]
is minimized, where rt(j) is the true value of the reward function for

node j at time t.
In NOL, θ is updated after each probe through online stochastic gradient descent based

on Strehl and Littman (2007) (see lines 10-13 of Algorithm 1). If the variable of inter-
est is heavy-tailed (e.g., the degree distributions of real networks exhibit this property),
NOL-HTR adopts the generalized median of means approach to regression with heavy
tails found in Hsu and Sabato (2016). These example functions illustrate the flexibility of

Algorithm 1 NOL* Framework
Require: Ĝ0 (initial incomplete network), b (probing budget), ε0 (initial jump rate), k and

λ (for NOL-HTR), α (for NOL).
Ensure: Ĝb (network after b probes), θb (learned parameters).
1: Initialize: θ0 (randomly or heuristically); P0,X,Y = ∅; t = 0; εt = ε0
2: repeat
3: Calculate feature vectors: φt(i), ∀ nodesi ∈ V̂t − Pt
4: Calculate estimated rewards: Vθt (i) = θtφt(i)
5: Explore: With probability εt , choose ut uniformly at random from V̂0 − Pt .
6: Exploit: With probability 1 − εt ,

ut = argmaxi∈V̂t−PtVθt (i)
7: Probe node ut , add to Pt+1 = Pt ∪ ut
8: Update the observed graph: Ĝt+1 =

{
Ĝt ∪ neighbors of ut

}

9: Collect reward: rt(ut) =
∣∣∣V̂t+1

∣∣∣ −
∣∣∣V̂t

∣∣∣
10: if NOL then
11: losst = (

rt − Vθt (ut)
)2

12: ∇θt losst = −2
(
rt − Vθt (ut)

)
φt(ut)

13: θt+1 = θt − α∇θt losst
14: else if NOL-HTR then
15: Append φt(ut) to X and rt to Y
16: θt+1 = HeavyTailRegression(X,Y , k, λ)

17: end if
18: t = t + 1
19: if decay then
20: εt = ε0e

−t
b

21: end if
22: until t==b
23: return θb and Ĝb
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NOL*: the choice of reward function and learning algorithm should correspond to indi-
vidual goals and circumstances. We describe the details of how we learn the parameters
for NOL-HTR in the next section and Algorithm 2.

Algorithm 2 HeavyTailRegression
Require: X (matrix of probed node features), Y (associated reward values), k, and λ

Ensure: θ (updated parameters)
1: Partition data into k uniformly random subsamples S1, . . . Sk of size n

k , where each
Si = Xi ⊂ X,Yi ⊂ Y

2: for each subsample Si do
3: Compute covariance �i of Xi
4: Compute regression parameters ωi ∈ argminωLλ (Xi,Yi)
5: end for
6: for each subsample Si do
7: Computemi = medianj 	=i

〈(
ωi − ωj

)
,
(
�Sj + λId

) (
ωi + ωj

)〉
8: end for
9: Assign θ to be the ωi associated with the minimummi

10: return θ

Parameter estimation for NOL-HTR

Our goal at every time t is to choose a node that maximizes the earned reward. However,
since the reward distribution is based on node degree, and the degree distribution in
many real-world networks is heavy-tailed (e.g. hubs are present), we expect the reward
distribution of an incomplete version of the network to be heavy-tailed as well. In order
to deal with the heavy tailed nature of the target variable, we adapt the methods from
(Hsu and Sabato 2016) for regression in the presence of heavy-tailed distributions. This
process is a generalization of the median of means approach to parameter estimation.
Intuitively, the algorithm splits the previously observed feature vectors and associated
rewards into k subsamples, then computes parameters ω for each subsample. Then, the
algorithm chooses the set of parameters that has the minimum median distance from all
of the other parameters. This procedure provides guarantees and confidence bounds on
the distance of the learned parameters from the true parameters (Hsu and Sabato 2016),
discussed further in Scalability & guarantees section.
Algorithm 2 presents our adopted process. At time t, t − 1 nodes with feature vectors

xi ∈ X have been probed, and their corresponding reward values ri ∈ Y observed. We
select an integer k ≤ t and randomly sample the data into k subsamples Si of size t

k . Then,
the covariance matrix �i and maximum likelihood regression estimate ωi are computed
for each Si. For each i, the Mahalanobis distance between ωi and every other ωj is com-
puted, and the median distance is assigned to mi. Finally, the ωi with the minimum mi
value is assigned to be the next set of parameters, θ .
There are two parameters in Algorithm 2: the number of subsamples k, which corre-

sponds to the confidence parameter δ in Hsu and Sabato (2016), and the regularization
parameter λ. The number of subsamples k should be set such that the size of the subsam-
ples, nk , is larger thanO(d log(d)), meaning each subsample has size at least the number of
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dimensions in the feature vector (Hsu and Sabato 2016). In our experiments, we set k to
be ln (n), where n is the number of previously queried nodes (equivalently the time step
t), which allows k to grow slowly as more data is gathered through the querying process.
We set the regularization parameter λ to 0. However, our feature matrices may be singular
(since some subsamplings can result in feature matrices without full rank), so when com-
puting the regression in Algorithm 2 we use the Moore-Penrose pseudoinverse, which
corresponds to computing the 
2 regularized parameters.

ε-greedy exploration

NOL* algorithms need to learn adaptively over time because the reward distribution may
change as nodes are queried. Choosing a node based on Vθt exploits the current model
by choosing the node with the maximum predicted reward. However, learning in net-
works is difficult precisely because the properties of nodes are diverse, thus it is desirable
to introduce some randomness to the decision process in order to gather a diverse set
of training examples. Therefore, we formulate NOL* algorithms as ε-greedy algorithms,
meaning with probability ε the node to query is chosen uniformly at random from the set
of unprobed nodes.
In order to increase the likelihood that our random samples are informative, we choose

our random nodes from those that were present in the initial network Ĝ0. The rationale
behind this choice is that as a consequence of probing nodes sequentially nodes that have
been in the network for longer have more “complete” information, since they have had
more opportunity to be connected to in the t − 1 probes before time t. That is, if a node
j ∈ Ĝ0 has only a few neighbors after many queries have been made, it could be that j
has very few neighbors, but it could also be that j connects to a neighborhood that the
algorithm has yet to discover. Therefore, to explore the possibility of learning a better
model using different information, NOL* algorithms select the random node from V̂0−Pt
to probe until all nodes in V̂0 are exhausted, when NOL* chooses any unprobed node in
Ĝt at random.
Since NOL* algorithms learn from all or most of the previous samples at every time

step, it is not strictly necessary to continue random exploration through the entire query-
ing process. This is consistent with the literature on ε-greedy algorithms, which often
systematically lower the rate of exploration over time (Kirkpatrick et al. 1983; Cheng et al.
2010). NOL* adds an optional exponential decay to the initial random jump rate ε0, such
that at time t the jump rate is computed as εt = ε0e

−t
b . We have also experimented with

data-driven methods for adaptive-ε-greedy, such as in Tokic (2010), but did not find them
to be advantageous and leave further investigation of their utility in this space for future
work.

Scalability & guarantees

In general, the computational complexity of a NOL* algorithm is the product of (1)
the budget, (2) the feature computation complexity and (3) the learning complexity. In
symbols, O(b × O(features) × O(learning)).
In this section, we briefly discuss the complexity of the learning steps of NOL and

NOL-HTR. We also note that the features used in NOL* algorithms are user defined
and range from trivial to compute (e.g. degree) to computationally expensive (e.g. node
embeddings). Due to this, we omit a detailed analysis of the specific features we use in
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our experiments (described in Experiments section), but note that since the computa-
tions are to happen online, and only nodes whose features may have changed should be
updated, the complexity depends not necessarily on the total number of nodes or edges
in the graph, but on the size of the neighborhood around the queried node for which the
features might have changed.
The complexity of a NOL online regression update depends only on the number of fea-

tures, since the most expensive operation required is multiplication of the feature vector
by a constant factor. Due to this, even with a relatively high-dimensional feature vec-
tor, the complexity of the learning step is trivial. In this case, the scalability of the entire
process will likely hinge on the scalability of the feature value updates.
The procedure to learn parameters for NOL-HTR is more complicated. The data is

first partitioned into k subsamples, the covariance of each subsample is computed and
optimal regression parameters are estimated for each, and finally the median of the k
parameters is computed. The most expensive operation is the regression parameter esti-
mation, which requires computing the Moore-Penrose inverse of the regressor matrix.
This can be computed via Singular Value Decomposition of the matrix, which has com-
plexityO

(
nd2

)
, where n is the number of nodes in the computation and d is the number of

features.
Hsu and Sabato (2016) also derive a bound on the loss and show that our learned param-

eters θ are within an ε of the true parameters if we use Algorithm 2 with the number of
samplesm ≥ O

(
d log

( 1
δ

))
. In our case,m is the number of rows in X. The derived bound

states that with probability (1 − δ) the empirical loss is bounded by

L(θ) ≤
(
1 + O

(
d log

( 1
δ

)

m

))
L∗

where L∗ is the true loss with the optimal parameters and δ = 1
ek . In practice, we avoid

wasted computation by limiting the total number of samples m to 2000, which is always
larger than is necessary for the guarantees given the values of k in our experiments (which
determines delta in our formulation of the algorithm).

Experiments
In this section, we show the utility of applying NOL* algorithms for network comple-
tion in a variety of datasets, including both synthetic and real world networks. We first
describe the data we use to test our method, then explain our experimental methodology
and present results.

Data

We test NOL* algorithms on a range of synthetic graphs, as well as five real world datasets.

Synthetic models

Synthetic network models are useful for generating test data that exhibits interesting
properties often found in real world networks. We are interested in testing the perfor-
mance of our algorithm on datasets that allow us to vary a few macroscopic properties of
networks: the distribution of degrees, the extent of local clustering, the modularity of the
global structure.
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The degree distribution is an important factor in understanding when learning is
possible or helpful. There are two simplified extremes that can characterize degree
distributions in complex networks: homogenous and heterogenous (or heavy tailed) dis-
tributions. The important difference is that in a heterogeneous degree distribution some
nodes accumulate far more connections than the majority of nodes in the network, result-
ing in these nodes becoming topological hubs. In the presence of hubs, the variance of the
degree distribution can become large as the number of nodes in the network N grows,
until it eventually diverges as N → ∞. In contrast, a homogeneous degree distribution
implies that hubs are not present, meaning the nodes are statistically equivalent with
respect to degree. In the homogenous case, the degree of a randomly chosen node will be
a random variable following a distribution with well-defined variance.
A second node characteristic that we conjecture is important for learning is the clus-

tering coefficient. The clustering coefficient (more precisely, local clustering coefficient)
is a measure of the extent to which a node’s neighbors are connected to one another.
Since the clustering coefficient is real-valued, it is often more intuitive to study the aver-
age clustering by degree, which is what we show in Fig. 2. Clustering is related to the local
density of neighborhoods and can serve as a proxy for the amount a neighborhood has
been explored.
Lastly, we are interested in studying the impact of themodularity of a network structure

on algorithm performance, meaning the prevalence of within-community links relative
to out-of-community links in a modularity-maximized partitioning of the nodes into
communities. The extent of modularity in a network structure could be instructive in
balancing exploration and exploitation, since learning to probe in a highly modular struc-
ture is more susceptible to settling on local minima by exploiting in a single community
without discovering cross-community links.
To test the above conjectures on the limitations of learning in complex networks, we

study five synthetic network models.

Fig. 2 The top row from left to right shows the (node) degree distribution, average (node) clustering
coefficient per degree, and frequency of connected component sizes of five real-world networks. The
bottom row shows the same quantities, but for three synthetic graph models: Erdös-Rényi (ER)(Erdös and
Rényi 1959), Barabási-Albert (BA) (Albert and Barabási 2002), and Block Two-Level Erdös-Rényi (BTER)
(Seshadhri et al. 2012). NOL-HTR is able to learn to increase network size on BTER and similar real-world
networks. We find that degree, clustering coefficient, and size of the connected component are all relevant,
as well as interpretable, features for learning
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1 Erdős-Rényi (ER) (Erdös and Rényi 1959)4: In a network sampled from the ER
model (specifically the ensemble GNp), every possible (undirected) link between N
nodes exists with probability p. Networks generated by the ER model have a
homogeneous degree distribution (the exact distribution is Binomial, but it is often
approximated by Poisson). Parameters: N = 10000, p = 0.001.

2 Barabási-Albert (BA) (Albert and Barabási 2002): The BA model generates
networks through a growth and preferential attachment process where each node
entering the network chooses a set of m neighbors to connect to with probability
proportional to their relative degree. This process results in a heterogeneous
degree distribution, which in the infinite limit follows a power law distribution with
exponent 3. Parameters: N = 10000,m = 5,m0 = 5.m0 denotes the size of the
initial connected network. m denotes the number of existing nodes to which a new
node connects.

3 Block Two-level Erdős-Rényi (BTER) (Seshadhri et al. 2012): BTER is a flexible5

model that combines properties of the ER and BA model. It consists of two phases:
(i ) construct a set of disconnected communities made up of dense ER networks,
with the size distribution of the communities following a heavy tailed distribution
(i.e., a small number of large communities and many more small communities) and
(ii ) connect the communities to one another to achieve desired properties, such as
a target value of global clustering coefficient. Parameters: N = 10000, target
maximum clustering coefficient = 0.95, target global clustering coefficient = 0.15,
target average degree 〈k〉 = 10.

4 Lancichinetti-Fortunato-Radicchi (LFR) (Lancichinetti et al. 2008): In the LFR
model, modular structure can be induced by varying the mixing parameter μ,
which controls the extent to which nodes connect internally to a tight community
(higher modularity) or loosely to the entire network (lower modularity), thus
controlling the extent of modular community structure. Parameters: N = 34546,
mixing parametermu ∈ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, degree exponent
γ ∈ 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, community size distribution exponent β = 2,
average degree 〈k〉 = 12, and maximum degree kmax = 850.

5 k -regular networks: In a k-regular network, every node is connected to k other
nodes such that connections are random and every node has the same degree.
Parameters: N = 10000, k = 6.

We note that we have left out analysis of the Watts-Strogatz (WS) model (Watts and
Strogatz 1998), which is a model developed to study the small world property of ran-
dom graphs. InWS, a rewiring parameter controls the trade-off between nodes clustering
into triangles and the average path length between all nodes, a proxy for the small-world
property. We do not study this model because (a) its degree distribution is homogeneous,
following a Poisson distribution, and (b) the model does not result in networks with mod-
ular structure. Therefore, despite many uses in other contexts, the WS model is not well
suited for studying the network completion problem in the present case.

4We omit almost all results on ER graphs from the paper because all methods perform indistinguishably on these graphs.
5There are many other random graph models that provide flexibility similar to the BTER that we could have used to
generate networks for our experiments. We chose BTER out of convenience because it allows us to easily specify target
values for average degree and clustering parameters directly.
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Real-world networks

We evaluate NOL* on real world datasets whose characteristics are summarized in
Table 1. We show the number of nodes (N), number of edges (E), number of triangles
(#�), and the modularity (Q), computed by finding a modularity maximizing partition
with the Leiden algorithm (Traag et al. 2019), a recently proposed improvement on the
well-known Louvain algorithm (Blondel et al. 2008) for finding node partitions with
high modularity. Degree distribution, average clustering by degree and component size
distribution is shown for each network in Fig. 2.

Samplingmethods

NOL* is agnostic to the method of sampling used to collect the initial sample graph,
Ĝ0. For the sake of continuity, all of the initial samples used in this paper were col-
lected via node sampling with induction. In this technique, a set of nodes is chosen
uniformly at random, then a subgraph is induced on the nodes (i.e. all of the links
between them are included in the sample). Our samples are defined in terms of the
proportion of the edges in the underlying network. To generate samples with the tar-
get proportion of edges, we choose a sample of nodes and induce a subgraph on
them; if this subgraph has too many (or too few) edges, we repeat with a larger (or
smaller) subset of nodes until we find an induced graph with an acceptable number
of edges.
In the main text of this paper we present results on samples collected via node sampling

with induction, but we have also verified many of the results using random walk with
jump sampling (Ahmed et al. 2013), which can be found in Appendix A.3.

Features

To accurately predict the number of unobserved neighbors of a partially observed node,
NOL* algorithms require interpretable node features that are relevant across a variety of
very different network structures. These features must be feasible to compute and update
online for our algorithms to be scalable. We use the following features for each node i
visible in the sample network:

• d̂(i): the normalized degree of node i in the sample network, which can be seen as a
measure of the node’s centrality in the sample. The inclusion of this feature assumes
that the degree of a node in the sample is relevant to its total degree.

• ĉc(i): the clustering coefficient of node i in the sample network. This feature captures
the local neighborhood density of a node, particularly the tendency of the node and
its neighbors to form triangles.

Table 1 Basic Characterization of Real Networks

Type N E #� Q

Caida Internet Router 26.5k 53.4k 36k 0.68

Cora Citation 23k 89k 78k 0.80

DBLP Coauthorship 6.7k 17k 21k 0.89

Enron Email Communication 36.7k 184k 72k 0.62

Twitter Social interaction 90k 117k 9.4k 0.87
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• CompSize(i): the normalized size of the connected component in the sample
network to which node i belongs, which can be used to facilitate exploration and
exploitation based on where in the network the node is located.

• pn(i): the fraction of node i ’s neighbors which have already been probed. This feature
indicates the extent to which the neighborhood of node i has been explored by the
algorithm.

• LostReward(i): the number of nodes that first connected to node i by being probed.
Unlike pn(i), LostReward(i) only counts nodes that were not connected to i before
they were probed. This feature mitigates the ordering effects of probing nodes. If
nodes i and j both have the same unobserved neighbors, for instance, probing j first
would normally lower the total reward of node i when i would be probed.
LostReward(i) gives credit to i upon its probing, since it could have brought in as
many new nodes as j.

Baseline methods

We compare the performance of NOL* with 4 heuristic baseline methods and a multi-
armed bandit method. Our heuristic baselines are as follows:

1. High degree: Query the node with maximum observed degree in every step. This
has been shown to optimal in some heavy tailed networks (Avrachenkov et al. 2014).

2. High degree with jump: With probability ε, query a node chosen uniformly at
random from all partially observed nodes. With probability 1 − ε, query the node
with the maximum observed degree. We set ε = 0.3.

3. Random degree: Query a node chosen uniformly at random from all partially
observed nodes.

4. Low degree: Query the node with minimum observed degree in every step. This
method is approximately6 optimal for k-regular networks where every node has
the same degree, since the lowest degree node is always furthest from the uniform
degree k (see Appendix A.1).

We also compare our approach with the nonparametric multi-armed bandit model
proposed in Madhawa and Murata (2019), which we refer to as KNN-UCB (k-nearest-
neighbors upper confidence bound). This method similarly relies on computing a vector
of structural features for each node, including degree, average neighbor degree, median
neighbor degree and average fraction of probed neighbors. Each unprobed node is con-
sidered an arm in a Multi-armed Bandit formulation, and the next arm to pull (node to
probe) is chosen by computing

argmax
i

f̂ (xi) + ασ(xi)

Here, f̂ (xi) is the expected reward of probing node i and σ(xi) is the average distance
to other points in the neighborhood. The expected reward is calculated as a weighted k-
NN regression on nodes within the k-NN radius of node i, defined as the k nodes whose
feature vectors have Euclidean distance less than r from the feature vector of node i. The
term ασ(xi) facilitates exploration by allowing the possibility of nodes without maximum

6Cases where low degree is not optimal, even in networks with uniform degree, can be constructed. Specifically, if the
neighbors of the node with lowest degree are already in the network, querying it will result in reward 0. If in the same
case the neighbors of the node with 2nd lowest degree are almost all outside of the network, reward for querying that
node will be larger.
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expected reward to be probed, assuming α > 0. In our experiments we fixed the value of
k = 20 and α = 2, following the experiments in the original paper.

Experimental setup

Across all networks, our experiments are run over 20 independent initial node samples of
the network. In synthetic networks, the underlying network is a realization of the model
using the parameters described in Synthetic models section.
Our experiments aim to (1) investigate how network properties impact the performance

of NOL-HTR, (2) exhibit the performance tradeoffs between NOL-HTR and NOL, (3)
show that NOL* algorithms outperform the baseline methods in settings where learning
is possible and approximate the heuristic methods elsewhere, (4) analyze the prediction
error of NOL-HTR, and (5) analyze the evolution of the feature weights learned by NOL-
HTR over time.

Performance metrics

After each probe of the network, NOL* earns a reward, defined in this work as the num-
ber of previously unobserved nodes included in the network after a probe. Formally, the
reward at time t is defined as rt = |Vt+1|−|Vt|. We study the performance of eachmethod
by showing the cumulative reward, ĉr(T), where T is a time step between 0, 1, 2, . . . b. For-
mally, ĉr(T) = ∑T

t=1 rt . We also want to quantify the utility of decisions made by NOL*.
For this purpose, we study the prediction error of the model. This quantifies the extent
to which our prediction, Vθt (i) = θtφt(i), differs from the true reward value rt . Thus, we
calculate E(t) = Vθt (i) − rt .

NOL-HTR parameter search

We ran a two dimensional parameter search over values of k (1-16, 32, 64, 128, log10(n),
loge(n), log2(n)) and ε (0, 0.1, 0.2, 0.3, 0.4, and exponential decay versions of each).
We ran this search on all of the networks in Fig. 2, as well as 56 LFR networks
(Lancichinetti et al. 2008) spanning a wide variety of network structures. We varied two
parameters in the LFR networks: μ, which controls modular structure by adjusting the
probability of cross-community links; and γ , which controls the exponent of the degree
distribution of the entire network (Lancichinetti et al. 2008).
Across all of these networks, we did not observe a general trend in which some param-

eter settings performed best consistently across experiments. There was not a single
best choice or regime of parameters through the experiments for any of the networks
we searched on individually, nor was there a standout choice of parameter across the
networks.
However, we have found some evidence to suggest that performance on more modular

structures is improved by more randomization, meaning a non-zero value of ε. We ran
a linear regression using ε as the target variable and global clustering, modularity, and
degree exponent as covariates. Results are presented in Table 2. All three covariates posi-
tively effected ε, with modularity having the strongest effect. This result is consistent with
a network scientific understanding of the querying process: when querying a modular
network structure, the likelihood of finding a local minima within one highly connected
and clustered module is high, meaning that adding more randomness to the algorithm
will increase the likelihood that the algorithm sees examples that allow it to avoid settling
on such a minima.
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Table 2 Coefficients of a linear regression using the output of our NOL-HTR parameter search

Coefficient Standard Error p-value

Intercept -0.2163 0.116 0.066

Global Clustering 0.1361 0.478 0.777

Q 0.3836 0.135 0.006

γ 0.0458 0.034 0.186

The regressor matrix was made up of the following statistics for each network in the search: global clustering, modularity (Q), and
estimated degree exponent (γ ). The response variable was the best performing ε . Results suggest that higher modularity predicts
higher ε , suggesting that networks with modular structure benefit most from exploration

We report results using a set of parameters that performed reasonably well across net-
works. These parameters are ε = 0.3, decaying as εt = 0.3e

−t
b and k = ln(t), where t

represents the number of nodes probed thus far in the experiment.

Results

In this section, we compare the performance of the heuristic baseline methods, the KNN-
UCB baseline approach, NOL, and NOL-HTR. Broadly, we find that NOL-HTR and NOL
perform similarly in terms of average cumulative reward, but that the performance of
NOL-HTR is more consistent, indicated by standard deviations that are tighter around
the mean across experiments.

Cumulative reward We report the average cumulative reward ĉr(T) over a budget of
thousands of probes on 6 networks in Fig. 3. The average and standard deviation of
ĉr(T) are computed over experiments on 20 independent samples. We omit results on
ER networks, noting that because all nodes are statistically equivalent in terms of struc-
tural properties, every probing method performs equivalently and neither learning or
heuristics provide any significant advantage (see Appendix A.1).
In BA networks (Fig. 3a), NOL-HTR performs on par with the High Degree baseline,

which is known to be near optimal in networks with heavy tailed degree distributions
(Avrachenkov et al. 2014). Further, NOL-HTR outperforms NOL by achieving both
higher average reward and smaller standard deviation. NOL-HTR also consistently out-
performs the baseline methods in networks generated by the BTER model (Fig. 3b).
Although NOL-HTR outperforms NOL in both reward and variance towards the begin-
ning of the experiment, after around 25% of the nodes have been probed NOL begins to
outperform NOL-HTR. See Comparing NOL and NOL-HTR section for a discussion of
some potential explanations for this observation. NOL-HTR performed as well as NOL
and the best heuristics in every real world network we experimented on. Comparing
directly with NOL, NOL-HTR is able to achieve similar or better performance, always
with smaller standard deviation, on every network, regardless of the underlying distri-
butions (compare networks in Fig. 2). We note that across experiments, the KNN-UCB
method was unable to match the performance of our model and often underperformed
the baseline methods.7

Use case: twitter social network We present results on a social interaction network
sampled from Twitter in Fig. 4. In this setting, querying a node corresponds to calling the

7We further note that the sample collection techniques used in the experiments in the KNN-UCB paper (Madhawa and
Murata 2019) were defined differently from those we employ here and that all of our experiments ran over larger probing
budgets.



LaRock et al. Applied Network Science            (2020) 5:60 Page 16 of 25

Fig. 3 Cumulative reward, cr(t), averaged over experiments on multiple independent samples of both
synthetic (BA, BTER) and real world networks. In the BA network a, where probing the highest degree node is
optimal, NOL “learns the heuristic”. NOL outperforms the baseline methods in BTER networks b, where the
combination of heavy tailed degree distribution and relatively high clustering and modularity allows for
discrimination. In some real networks (c, d, e), NOL either outperforms or closely tracks the best baseline, while
in a real network with properties similar to a BA model f NOL is outperformed by the high degree baseline

Twitter API to obtain more data about a specific account. This is an example of a natu-
ral use case for NOL-HTR, both because the network must be expanded by repeatedly
accessing an API and because there is evidence that the distribution of social interactions
is heavy-tailed (see e.g. Kossinets and Watts 2006 and Morales et al. 2012).
This Twitter Social Network data set consists of Twitter users connected to one another

with an undirected edge if they mutually retweeted or mentioned each other throughout
the course of a single day in 2009. We focus our experiment on the largest connected
component of this interaction network. While this is only a small fraction of the Twitter
network, the data was collected via the Twitter Firehose, and is therefore complete for
that time span, which allows us to accurately simulate the process of growing a network by
querying Twitter users. Some other characteristics of the dataset are outlined in Table 1
and the distributions of degree and clustering are shown in Fig. 2. Notably in our context,

Fig. 4 Cumulative reward results on a Twitter social network constructed from mutual interactions. The
budget in the experiment was 50k queries. Twitter data is typically collected via repeated API access, so
represents a natural use case for NOL-HTR. Inset: Magnification showing that NOL-HTR and the high degree
baseline methods outperform NOL in the first few thousand probes of the experiment
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Fig. 5 Average cumulative prediction error of NOL-HTR in a BA (left) and BTER (right) synthetic network,
starting at time step t = 50. Smaller initial samples result in larger prediction error, but error stabilizes over
probes regardless of initial sample size

though the maximum degree in this network is not very large (≈ 100), choosing a random
node with degree near the maximum is much less likely than choosing a node with low
degree.
As shown in Fig. 4, NOL outperforms the heuristic baseline methods and NOL-

HTR.8 However, the inset plot shows that, similar to the experiments on other networks,
NOL-HTR outperforms NOL early in the experiment before eventually being over-
taken. We discuss our conjectures about why we observe this trade-off behavior in
Comparing NOL and NOL-HTR section.

Prediction error We analyze the ability of NOL* to learn by showing the measure of pre-
diction error, E(t), defined in Performance metrics section, over time and across different
initial sample sizes.
Cumulative prediction error, E(T), as a function of time is shown in Fig. 5. The error is

averaged over 10 independent samples of the network for initial sample sizes of 1%, 2.5%,
5%, 7.5% and 10% of the complete network (as percent of edges in the network).
We show results in both the BA and BTER models. The predictions of NOL-HTR

are noisy in the beginning of the experiment and the resulting outliers skew the anal-
ysis of cumulative error, therefore we present the error starting from t = 50. In both
cases the prediction error is relatively stable over time, indicated by the slow growth of
the curves. We also observe that the average prediction error is lowest when the initial
sample is largest, and highest when the initial sample is smallest; This is intuitive, since
when the initial sample is large, the model is learning its predictions from more accurate
information, whereas when the initial sample is small, the training information is very
noisy.

Feature weight analysis We qualitatively analyze the feature weights learned by NOL-
HTR over time (see Fig. 8 for visualization). Since the weights were computed on random
subsamplings of the observed data at every time step, they fluctuated considerably
between probes. Still, we found that across most networks (all but Caida and Enron), the
degree of a node was weighted positively and large in magnitude, implying that it is the
most salient feature to predict reward. This is intuitive, since we expect the target variable

8Our attempt to run the KNN-UCB baseline on the Twitter network did not finish in a reasonable amount of time,
therefore we omit it.



LaRock et al. Applied Network Science            (2020) 5:60 Page 18 of 25

to correlate highly with the sample degree. There were no features with consistently highly
negative weights, which would imply a negative predictor of reward. Instead, the other
features typically fluctuated around 0, meaning they were not consistently predictive of
either high or low rewards, but were non-zero so did contribute to the prediction.
The Caida and Enron networks were exceptions to the above general trends, though

NOL-HTR exhibits similar performance on these networks in terms of cumulative
reward. In these experiments, the weight of the degree feature was centered around 0
along with the other features, but with very large fluctuations in both positive and nega-
tive directions. This suggests that the importance assigned to degree depended strongly
on the particular subsampling of the data in an individual time step. It may also have
implications for the impact of degree correlations (i.e. average neighbor degree), since the
fluctuations are consistent with both low and high degree nodes predicting high reward.

Comparing NOL and NOL-HTR

The above analysis illustrates some differences and tradeoffs between NOL and NOL-
HTR: (1) NOL-HTR achieves similar performance to NOL and is more consistent. This
is evidenced by the tighter standard deviations around the average cumulative reward.
(2) NOL-HTR outperforms NOL in the beginning of every experiment. This is consis-
tent with our expectation based on how each of the algorithms work: NOL-HTR is able
to leverage outlier, high reward queries early on because it computes maximum likeli-
hood parameters at every step, while NOL updates its parameters with online gradient
descent using a fixed learning rate, and is therefore not able to adapt as effectively to high
reward nodes. (3) As the number of probes increases, NOL often begins to outperform
NOL-HTR. There are a few possibilities for why this is happening. First, NOL is learn-
ing through gradient descent, so adjusting the learning rate of the algorithm could impact
the amount of examples in the tail it takes to reach highly predictive parameters, explain-
ing the lag. Second, as the number of samples grows, the NOL-HTR parameter setting of
k = ln(n) grows very slowly. This means that more data is being subsampled into the same
number of bins, thus each subsample may become more noisy and the outliers become
less distinguishable. This could be alleviated by increasing the value of k more quickly as
the number of samples grow, or by capping the size of the subsamples, or by choosing the
sample size so that data from the tail is more likely to have an impact on the parameters.

Limitations of learning

We are interested in understanding the limitations of our approach in this setting.
We experiment across a wide variety of network structures using the LFR commu-
nity benchmark (Lancichinetti et al. 2008). We generated 56 LFR networks span-
ning two parameters: μ, which controls modular structure by adjusting the proba-
bility of cross-community links; and γ , which controls the exponent of the degree
distribution of the entire network. Then, we ran the NOL-HTR parameter search
(see NOL-HTR parameter search section) on each network, as well as random and high
degree baseline methods. For each network, we found the set of NOL-HTR parameters
that resulted in the maximum average cumulative reward and computed the percent gain
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in performance using either of the baselines as

c�r = cHTR
r − cbaser

cbaser
× 100

Results are shown in Fig. 6. Compared with high degree probing (left plot), NOL-HTR
is always able to gain in performance in higher modularity networks (Q > 0.6), with
performance gains spanning from 15-30% up to about 130%. When modularity is lower,
including in the BAmodel realization, NOL-HTR approximates high degree across degree
exponents, with the maximum performance loss of less than 3% (−2.54%) compared to
the heuristic.
Comparing with random degree probing (right plot), NOL-HTR is always able to gain

in performance, with minimum performance gain of 5% and maximum of 93%. The max-
imum gains are in networks with the most heterogeneous degree distributions. This
corresponds to the most star-like network structures, meaning most randomly chosen
nodes will have very low degree.
The performance compared to random degree probing in the real networks seem to fit

with performance on LFR networks with similar parameters, allowing for some noise in
either direction.
Comparing with high degree on BTER, Caida, Cora and Enron, performance appears to

be about on par with similar LFR networks, again allowing for some noise. Performance
gain by using NOL-HTR rather than high degree in the DBLP network is substantial, but
smaller than an LFR network with similar properties.
The degree exponent estimate for our Twitter sample is an outlier in this dataset. How-

ever, there is also substantial performance gain, though it might be smaller than what we
would expect given an LFR network with similar properties.

Fig. 6 Results of NOL-HTR parameter search on k and ε show benefits and limitations of learning in this
setting. Experiments over 56 LFR networks generated using different values of parameters γ , the estimated
exponent of the degree distribution (horizontal axis), and μ, the extent of cross-community links, which
governs modularity Q (vertical axis). Color of points indicates percent gain of best performing NOL-HTR
parameters over the high degree (left) or random degree (right) heuristic methods. NOL-HTR consistently
outperforms both heuristics with variation depending on network structure
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Taken together, these results show that the ability of our model to learn in this setting is
tied to the structural properties of the network. In some cases, a low computational cost
heuristic such as high or random degree can perform well, but our experiments show that
there is almost never a disadvantage to using a NOL* algorithm, and that the advantages
can be substantial, up to 130% gains in performance.

Conclusion and future work
We proposed and evaluated algorithms to address the problem of reducing the incom-
pleteness of a partially observed network via successive queries as an online learning
problem. We presented two algorithms in the NOL* family and highlighted NOL-HTR
for learning heavy-tailed reward distributions. We showed that NOL-HTR is able to con-
sistently outperform other methods, especially early-on in the process of querying nodes
when the extreme values are yet to be discovered.We also showed that macroscopic prop-
erties of the underlying network structure, specifically the degree distribution and extent
of modularity, are important factors in understanding when learning will be relatively
easy, difficult, or nearly impossible. Alongside experiments on multiple synthetic and real
world networks, we presented experiments on a Twitter interaction network, a realistic
use case for a network growth algorithm such as NOL-HTR.
The problem of online network discovery remains fruitful for future work. The case

of noisy observations from the query model has yet to be fully addressed. For example,
a query may return only a sample of the neighbors, or a list of potential neighbors that
may include false positives. The specific models we presented here are not sensitive to
this type of noise, but could be addressed in extensions to NOL*. Similarly, an adversarial
version of the problem can be formulated, where an adversary is intentionally poisoning
the queries (via either the query that is sent or the data that is returned) and the model
must include the adversary in order to make appropriate adjustments to decision making.
Such noisy network discovery tasks could be formulated as Partially Observed Markov
Decision Processes (POMDPs), which differ from our MDP formulation by the fact that
the agent is uncertain about its current state (for example, we could model some error on
the feature vectors).

Appendix A:
A.1 Results on ER and regular networks

In Fig. 7, we present cumulative reward results on an ER network (left) and a k-regular
network (right). The result on the ER network shows that every querying strategy per-
forms indistinguishably from the others. This is due to the fact that the degree distribution
of the network is homogeneous, meaning that the expected number of neighbors of each
node is well defined and the same for all nodes. Since the expected number of neighbors
is the same for every node, but the exact number of neighbors for a given node is random,
no querying strategy is able to outperform any other.
In the k-regular network, every node has exactly the same degree, but the particu-

lar neighbors are randomly chosen. Since every node has the same degree, choosing the
lowest degree node is approximately optimal when maximizing the number of newly
observed connections. For the same reason, choosing the highest degree node is usually
far from optimal, since the maximum degree node in the sample will have degree nearly
k, thus the minimum reward. This explains why high degree is the worst performer.
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Fig. 7 Results on ER and regular networks. All methods perform indistinguishably in ER networks because
the degree distribution is homogeneous and there is little clustering or modular structure. Querying the
lowest degree node is approximately optimal in the regular network, since the lowest degree node has the
maximummissing connections

A.2 Feature weight analysis

In Fig. 8, we present analysis of feature weights from a NOL-HTR experiment, show-
ing how the feature weights change as querying continues, averaged over 20 trials. The
purpose is to show that it is possible to analyze the learned feature weights to help under-
stand why NOL* algorithms perform the way they do. We choose NOL-HTR here, but in
principle any parameterized model could be temporally analyzed in a similar fashion.
In the BA example (Fig. 8a), the LostReward feature, which takes order effects of

querying into account (see Experiments section), appears as the most positively weighted
feature. This makes some intuitive sense: hubs accumulate larger values of lost reward
over time, since many nodes brought in by other queries are connected after they even-
tually get queried. This means the hubs are “missing out” on reward and since they are in
fact the best nodes to probe, this is reflected in the weights of the features. This implies
that in a BA network, we expect that the degree and lost reward features will be correlated.
This correlation provides a potential explanation for why degree is, somewhat counterin-
tuitively, one of the least important features when querying a BA network: the degree of

Fig. 8 Feature weights over time averaged over 20 runs of NOL-HTR on a BA and b BTER networks. In the BA
network, the lost reward feature is weighted highly, consistent with many queried nodes connecting to a
hub node before it is queried. In the BTER network, which is made up of Erdos-Renyi graphs with sizes
following a heavy tail, the size of the connected component a node connects to is important for predicting
reward, indicating preference for the largest community. Insights like these can help in both guiding feature
selection and helping understand the structure of a partially observed network
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hub nodes is being accounted for in the lost reward feature, so degree itself does not have
a strong impact.
In the BTER example (Fig. 8b), the normalized size of the connected component that

a node is in is the most highly weighted feature. As a reminder, BTER networks are
generated by constructing many ER networks (“communities”) of different sizes, where
the size of the networks follows a power law distribution, then connecting them to one
another. This means there are a small number of very large and relatively well connected
“communities”, which are the best place to query to bring in new nodes.

A.3 Randomwalk sampling

In Fig. 9 we show results of NOL* algorithms starting from random walk samples. The
sampling works as follows: a node is chosen uniformly at random, then a random walk
from that node proceeds until the desired proportion of edges is discovered, jumping ran-
domly 15% of the time. The resulting performance is similar to what we saw in the node
sampling with induction samples: NOL* algorithms are able to learn to match or out-
perform the heuristic methods in almost every case. However, the performance of NOL
appears to be more consistent on random walk samples, as evidenced by the fact that the
standard deviation around the mean performance tends to be tighter. The performance
of NOL-HTR is approximately the same or even slightly worse (e.g. BTER) on the random
walk samples. The low degree heuristic also appears to perform better on random walk
samples.

A.4 Alternative features

In this section, we show some experiments using node2vec (Grover and Leskovec 2016)
as features, rather than our hand selected features. Since node2vec is significantly more

Fig. 9 Results of running NOL* algorithms on the same networks as Fig. 3, but starting from initial samples
using random walk with jump sampling rather than node sampling with induction. Results are similar to
those presented in the main text. In general, the performance of NOL is more consistent on random walk
samples, while the performance of NOL-HTR is approximately the same or slightly worse (e.g. BTER).
Interestingly, the low degree heuristic also appears to perform better on random walk samples
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Fig. 10 Cumulative reward results using node2vec features. Improvement using the embedding as features
is not straightforward. In the BA and DBLP cases, performance is the same or worse. In the BTER case,
performance improves towards the beginning, but does not decisively outperform the default features in the
end. Only in Cora does it appear that NOL-HTR with node2vec features decisively outperforms all of the other
methods, but NOL with node2vec only outperforms the other methods towards the end of the experiment

computationally expensive, we expect a tradeoff between computation time and per-
formance increases due to more expressive features. However, the results shown in
Fig. 10 present a mixed picture: In some cases, using the embedding features makes no
improvement or can even degrade performance. Only in one case, the Cora network, do
the node2vec features truly outperform the others, and even then only with one of the
learning algorithms (NOL-HTR). These results are inconclusive on the benefit of using
embeddings as features and show that more experimentation and research needs to be
done to understand the tradeoff between complexity of features and improvement in
performance.
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