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Abstract

A unified framework for fourth-order semilinear problems with trilinear nonlinear-
ity and general sources allows for quasi-best approximation with lowest-order finite
element methods. This paper establishes the stability and a priori error control in the
piecewise energy and weaker Sobolev norms under minimal hypotheses. Applications
include the stream function vorticity formulation of the incompressible 2D Navier-
Stokes equations and the von Kdrmdn equations with Morley, discontinuous Galerkin,
CO interior penalty, and weakly over-penalized symmetric interior penalty schemes.
The proposed new discretizations consider quasi-optimal smoothers for the source
term and smoother-type modifications inside the nonlinear terms.
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1 Introduction

The abstract framework for fourth-order semilinear elliptic problems with trilinear
nonlinearity in this paper allows a source term F € H ~>(S2) in a bounded polygonal
Lipschitz domain 2. It simultaneously applies to the Morley finite element method
(FEM) [8, 15], the discontinuous Galerkin (dG) FEM [18], the C° interior penalty
(CYIP) method [3], and the weakly over-penalized symmetric interior penalty (WOP-
SIP) scheme [1] for the approximation of a regular solution to a fourth-order semilinear
problem with the biharmonic operator as the leading term. In comparison to [8], this
article includes dG/C°TP/WOPSIP schemes and more general source terms that allow
single forces. It thereby continues [11] for the linear biharmonic equation to semilin-
ear problems and, for the first time, establishes quasi-best approximation results for a
discretisation by the Morley/dG/C°IP schemes with smoother-type modifications in
the nonlinearities.

A general source term F € H~2(£2) cannot be immediately evaluated at a possibly
discontinuous test function v, € V), ¢ Hg(Q) for the nonconforming FEMs of this
paper. The post-processing procedure in [3] enables a new C°IP method for right-hand
sides in H ~2(£2). The articles [25-27] employ a map Q, referred to as a smoother, that
transforms a nonsmooth function yj to a smooth version Qyj,. The discrete schemes
are modified by replacing F with F o Q and the quasi-best approximation follows for
Morley and C°IP schemes for linear problems in the energy norm. The quasi-optimal
smoother O = JIy in [11] for dG schemes is based on a (generalised) Morley
interpolation operator /p; and a companion operator J from [12, 19].

In addition to the smoother Q in the right-hand side, this article introduces operators
R, § € {id, Im, J Im} in the trilinear form I'py (Ruy, Ruyp, Svy) that lead to nine new
discretizations for each of the four discretization schemes (Morley/dG/C O1IP/W OPSIP)
in two applications. Here R, S = id means no smoother, /yf is averaging in the Mor-
ley finite element space, while J Iy is the quasi-optimal smoother. The simultaneous
analysis applies to the stream function vorticity formulation of the 2D Navier-Stokes
equations [6, 13, 14] and von Kdrmén equations [16, 23] defined on a bounded polyg-
onal Lipschitz domain €2 in the plane. For § = JIy and all R € {id, Iy, J Im}, the
Morley/dG/C°IP schemes allow for the quasi-best approximation

- X = “~qo i - X .
lu —unllz < Cqo min [u —xpllz (1.1)
xpeXy

Duality arguments lead to optimal convergence rates in weaker Sobolev norm estimates
for the discrete schemes with specific choices of R in the trilinear form summarised
in Table 1. The comparison results suggest that, amongst the lowest-order methods
for fourth-order semilinear problems with trilinear nonlinearity, the attractive Morley
FEM is the simplest discretization scheme with optimal error estimates in (piecewise)
energy and weaker Sobolev norms.

For FF € H™"(2) with2 —o < r < 2 (with the index of elliptic regularity oreg > 0
and o:=min{oreg, 1} > 0 ) and for the biharmonic, the 2D Navier-Stokes, and the
von Karméan equations with homogeneous Dirichlet boundary conditions, it is known
that the exact solution belongs to Hg (Q) N H*™ ().
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Table 1 Summary for Navier-Stokes and von Kdrmén eqn from Sects. 8 and 9 with F € H ™" (Q) for
2—0 <r,s <2and R, S € {id, I, J I} arbitrary unless otherwise specified

Method Results

Quasi-best for S = J Iy llu —upllgs (1)

Morley dG/COTP (1.1 O (pmin(4=2r.4=r s},
Oh30) for R = id,

0 (hmin{4—2r,4—r—s

WOPSIP Perturbed }
max ) for R € {Ip, J Im}

Theorem 8.11.a & 9.4.a

Organisation. The remaining parts are organised as follows. Section 2 discusses an
abstract discrete inf-sup condition for linearised problems. Section 3 introduces the
main results (A)-(C) of this article. Section 4 discusses the quadratic convergence of
Newton’s scheme and the unique existence of a local discrete solution u, that approx-
imates a regular root u € HOZ(Q) fordata F € H~2(). Section 5 presents an abstract
a priori error control in the piecewise energy norm with a quasi-best approximation
for S = J I in (1.1). Section 6 discusses the goal-oriented error control and derives
an a priori error estimate in weaker Sobolev norms. There are at least two reasons
for this abstract framework enfolded in Sects. 2—6. First it minimizes the repetition
of mathematical arguments in two important applications and four popular discrete
schemes. Second, it provides a platform for further generalizations to more general
smooth semilinear problems as it derives all the necessities for the leading terms in the
Taylor expansion of a smooth semilinearity. Section 7 presents preliminiaries, triangu-
lations, discrete spaces, the conforming companion, discrete norms and some auxiliary
results on Iy and J. Sections 8 and 9 apply the abstract results to the stream func-
tion vorticity formulation of the 2D Navier-Stokes and the von Karman equations for
the Morley/dG/C°TP/WOPSIP approximations. They contain comparison results and
convergence rates displayed in Table 1.

2 Stability

This section establishes an abstract discrete inf-sup condition under the assumptions
(2.1)—~(2.3), (2.5), (2.8) and (H1)-(H3) stated below. This is a key step and has conse-
quences for second-order elliptic problems (as in [8, Section 2]) and in this paper for
the well-posedness of the discretization. In comparison to [8] that merely addresses
nonconforming FEM, the proof of the stability in this section applies to all the discrete
schemes. Let X (resp. ?) be a real Banach space with norm || e || (resp. || o [|3)
and suppose X and X, (resp. Y and Yj) are two complete linear subspaces of X
(resp. Y) with inherited norms || e [ x:=(]| e |3)|x and || oA||Xh:=(|| o ||)7)|;££ (resp.
e lly:=(ll e l7)ly and || ® [ly,:=(Il ® I3)ly,); X + X S X and Y + Y, C Y.

Table 2 summarizes the bounded bilinear forms and associated operators with
norms. Let the linear operators A € L(X;Y*) and A + B € L(X; Y™) be associ-
ated to the bilinear forms a and a + b and suppose A and A 4+ B are invertible so that
the inf-sup conditions
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Table 2 Bilinear forms, operators, and norms

Bilinear form Domain Associated operator Operator norm

iy Tx? - _

ai=apw | x X xY ﬁfig{;f;)e - IAL=IAllLx:ye)
.y

ap Xp x Yy 22; L:()a(:(xih ).) ey B

5 Xx7 = 1B11:=1515 7

b iz By X%y ORI 1Bll=Ibl v

0O<oa:= inf sup a(x,y)and0 < B:= inf sup (@a+b)(x,y) (2.1)

Xe Y X€E =%
bele=t 5151 b=t 5152
hold. Assume that the linear operator A, : X;, — Y, ;f is invertible and

0 <oy <ap:= inf sup ap(xp, yn) 2.2)
xpeXpy yheY),
Ixnllx, =1y, |1y, =1

holds for some universa/l\ constant . L/e\t the linear operators P € L(Xp; X), Q €
L(Yp;Y), R € L(Xp; X), S € L(Yy;Y) and the constants Ap, Aqg, AR, As > 0
satisfy

(1 = P)xpllg < Apllx — x|l forall xj, € X, and x € X, (2.3)
(1= Qyully < Aqlly — yully forally, € Yyandy €Y, (2.4)
(1 = R)xpllg < Arllx —xpllg forallx, € X andx € X, 2.5)
(1 = S)ynlly = Aslly — yully forally, € Ypandy € Y. (2.6)

Suppose the operator Ix, € L(X; Xy), the constants Ay, 82, §3 > 0, the above
bilinear forms a, ay, b, and the linear operator A from Table 2 satisfy, for all x, €
Xn, yn €Yp, x € X,andy € Y, that

(H1) ap(xn, yn) — a(Pxp, Qyn) < Atllxn — Pxaligllynlly,,
(H2) 6:= sup ||(1 — Ix,) A~ (B(Rxp, ®)|y)llz,

xpeXpy
llxnllx, =1
(H3) 33:= sup [|b(Rxp, (Q —S) ')”Y,j‘-
xp€Xp
llxnllx, =1

In applications, we establish that §, and §3 are sufﬁci}e\ntly small. Given «, 8, ap, Ap,
A1, AR, 82, 83 from above and the norms ||A|| and ||b|| from Table 2, define

B

ﬂz:Apﬁ F AN (1 + Ap (1 +a DI+ AR)))

2.7)
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Bo:=anB — 82(1 Q* All(1 4+ Ap) + ap + A1 Ap) — 83 (2.8)

with the adjoint Q* of Q. In all applications of this article, 1/«, 1/8, 1/ay, Ap,
AqQ, AR, As, A1, and ||Q*A|| are bounded from above by generic constants, while
87 and &3 are controlled in terms of the maximal mesh-size hpmax of an underlying
triangulation and tend to zero as hpma,x — 0. Hence, Bo > 0 is positive for sufficiently
fine triangulations and even bounded away from zero, 8y = 1. (Here By = 1 means
Bo = C for some positive generic constant C.) This enables the following discrete
inf-sup condition.

Theorem 2.1 (discrete inf-sup condition) Under the aforementioned notation, (2.1)-
(2.3), (2.5), (2.8) and (H1)—(H3) imply the stability condition

Bp:= inf sup  (an (x. yn) + b(Rxn. Syn)) = Po. -
xpeXp yheyh
Ixnlloe, =113y 1y, =1

Before the proof of Theorem 2.1 completes this section, some remarks on the particular
choices of R and § are in order to motivate the general description.

Example 2.2 (quasi-optimal smoother J I) This paper follows [11] in the definition
of the quasi-optimal smoother P = Q = J Iy in the applications with X =Y =
V = HOZ(Q) for the biharmonic operator A and the linearisation B of the trilinear
form. Then (2.3)—(2.4) follow in Sect. 7.3 below; cf. Definition 7.2 (resp. Lemma 7.4)
for the definition of the Morley interpolation Iy (resp. the companion operator J).

Example 2.3 (no smootherin nonlinearity) The natural choice in the setting of Example
2.2 reads R = id = S [8]. Then AR = 0 = Ag in (2.5)—(2.6) and a priori error
estimates will be available for the respective discrete energy norms. However, only
a few optimal convergence results shall follow for the error in the piecewise weaker
Sobolev norms, e.g., for the Morley scheme for the Navier-Stokes (Theorem 8.5.c)
and for the von Karméan equations (Theorem 9.3.b).

Example 2.4 (smoother in nonlinearity) The choices R = P and S = Q lead to
AR = Apand Ag = Aq in (2.5)—(2.6), while §3 = 0 in (H3). This allows for optimal
a priori error estimates in the piecewise energy and in weaker Sobolev norms and this
is more than an academic exercise for a richer picture on the respective convergence
properties; cf. [10] for exact convergence rates for the Morley FEM. This is important
for the analysis of quasi-orthogonality in the proof of optimal convergence rates of
adaptive mesh-refining algorithms in [9].

Example 2.5 (simpler smoother in nonlinearity) The realisationof R = S = P = J Iy
in the setting of Example 2.2 may lead to cumbersome implementations in the nonlinear
terms and so the much cheaper choice R = S = Iy shall also be discussed in the
applications below.

Remark 2.6 (on (H1)) The paper [11] adopts [25]-[27] and extends those results to
the dG scheme as a preliminary work on linear problems for this paper. The resulting
abstract condition (H1) therein is a key property to analyze the linear terms simulta-
neously.
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Remark 2.7 (comparison with [8]) The set of hypotheses for the discrete inf-sup con-
dition in this article differs from those in [8]. This paper allows smoothers in the
nonlinear terms and also applies to dG/C°TP/WOPSIP schemes.

Remark 2.8 (consequences of (2.3)—(2.6)) The estimates in (2.3)—(2.6) give rise to a
typical estimate utilised throughout the analysis in this paper. For instance, (2.3) (resp.
(2.5)) and a triangle inequality show, for all x € X and xj; € X}, that

lx — Pxpllx < (1+ Ap)llx — xpllg(resp. |x — Rxpllg<(1 + AR)|lx — xnllg)-
(2.10)

The analog (2.4) (resp. (2.6)) leads, forall y € Y and y;, € Y}, to

ly = Qyrlly = (1 + AQlly — yullg(resp. |y — Synlly < (1 + Ay — yullp)-
2.11)

Proof of Theorem 2.1. The proof of Theorem 2.1 departs as in [8, Theorem 2.1] for
nonconforming schemes for any given x;, € X, with |lx;||x, = 1. Define

x:=Pxy, :=A"' (Bx), £:=A" (b(Rx;,. ®)|y) € X, and &,:=Ix, £ € X,
The definitions of £ € X and &, € X}, lead in (H2) to
1€ —&nllg < é2. (2.12)
The second inf-sup condition in (2.1) and An = Bx € Y* result in
Blixllx = lAx + Bx|ly= = [[A(x + m)lly+ < [IAllllx + nllx
with the operator norm of A in the last step. This and triangle inequalities imply
B/1AD Ixllx = llx +nllx < llx —xpllg + llxn + &l + 11§ —nllx.  (2.13)

The above definitions ofé and n guarantee a(¢§ — —1,8) = b(Rxh —x,0)|y € Y*.
This, (2.1), and the norm ||b|| of the bilinear form b show

alls = nllx < 5 = Ry, &)y < [1B11llx = Reallg < 1B+ AR)lIx — x4l
with (2.10) in the last step. Note that the definition x = Pxj and (2.3) imply

Ix —xnllx < Apllxn + &l (2.14)
The combination of (2.13)—(2.14) results in

xllx < llxa + Ellg(1+ Ap(1 4+~ [BI(1+ AR)DIIAI/B. (2.15)

@ Springer



Unified a priori analysis of four second-order...

A triangle inequality, (2.14)—(2.15), and the definition of Ein (2.7) lead to
L= llxallx, < lx —xallg + llxllx < B 'llxa + &5
This in the first inequality below and a triangle inequality plus (2.12) show
B<llxn+&lg < lxn + &nllx, + 15 — &llg < v +&lix, +62. (2.16)
The condition (2.2) implies for x;, + &, € X, and for any € > 0, the existence of some

¢n € Yy suchthat ||¢ylly, < 1+€andoyllx,+E&llx, = an(xn +E&n, ¢n). Elementary
algebra shows

apllxn +Enllx, = an(xn, on)+anEn, ¢n)—a(Pép, Qdp)+a(PE, — &, Ody)
+a(&, Qon) (2.17)

and motivates the control of the terms below.
Hypothesis (H1) and (2.3) imply

an(En, ¢n) — a(P&p, Qdn) < MApllE —&nliglidnlly, = ArApsa(l +6€) (2.18)

with (2.12) and ||¢ply, < 1+ € in the last step above. The boundedness of Q*A €
L(X; Y, 1dnlly, < 1+€, (2.10),and (2.12) for | — P&, llx < (1+Ap)IIE—&nllg <

(1 + Ap)d; reveal
a(P&, — &, Q¢n) < |Q*Al(1 4+ Ap)da(1 +€). (2.19)

The definition of & shows that a(&, Q¢p) = E(Rxh, Qd¢p). This, ||pnlly, < 1+¢€,and
(H3) imply

a(&, Q¢n) < b(Rxy, Spp) + 83(1 + ). (2.20)
The combination of (2.17)- (2.20) reads

anllxn + Enllx, < an(xn, ¢n) + b(Rxn, Sen) + ((IO*AlI(1 + Ap)
+ A1Ap)S: +83)(1 + €). (2.21)

This, (2.16), and |¢nlly, < 1 + € imply ahB\ < (lan(xp, ®) + B(Rxh, So)||y; +
(JJO*AII(1 + Ap) + A1 Ap)éy + 83)(1 + €) + apd>. This and (2.8) demonstrate

anB < (lan(xn, )+ b(Rxy, So)|lys + anB — o) (1 + €)—eand.
At this point, we may choose € Y\ 0 and obtain

Bo < llan(xn, @) + b(Rxy, Se)ly:.
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Since x;, € X, is arbitrary with ||x; || x, = 1, this proves the discrete inf-sup condition
(2.9). (In this section Y, is a closed subspace of the Banach space Y and not necessarily
reflexive. In the sections below, Y}, is finite-dimensional and the above arguments apply
immediately to € = 0.) O

3 Main results

This section introduces the continuous and discrete nonlinear problems, associated
notations, and states the main results of this article in (A)-(C) below. The paper has
two parts written in abstract results of Sects. 2, 4—6 and their applications in Sects. 8-9.
In the first part, the hypotheses (H1)-(H3) in the setting of Sect. 2 and the hypothesis
(H4) stated below guarantee the existence and uniqueness of an approximate solution
for the discrete problem, feasibility of an iterated Newton scheme, and an a priori
energy norm estimate in (A)-(B). An additional hypothesis (I-ﬁ) enables a priori error
estimates in weaker Sobolev norms stated in (C). The second part in Sects. 8-9 verifies
the abstract results for the 2D Navier-Stokes equations in the stream function vorticity
formulation and for the von Kdrman equations.

Adopt the notation on the Banach spaces X and Y (with X, X and Y, f/\) of the
previous section and suppose that the quadratic function N : X — Y* is

N(x):=Ax +T'(x,x,e) — F(e) forallx € X 3.1
with a bounded linear operator A € L(X; Y*), a bounded trilinear form I" : X x X x

Y - R, and a linear form F SRS *. Suppose there exists a bounded trilinear form
T:XxXxY— Rwith[ = F|X><X><y, Iy, = F|Xh><Xh><Yh and let

IT:=ITlg.g.p:= sup sup sup TFE7) < oc.
j x EcX JeY
IFIZ=1 &) s=1 LISlp=1

The linearisation of T at # € X defines the bilinear form b : X x ¥ — R,
D(e, 8):=L(u, e, )+ T (o, u,e). (3.2)
The boundedness of T'(e, e, ®) applies to (3.2) and provides ||b]| < 2[|T||[|ulx.
Definition 3.1 (regular root) A function u € X is a regular root to (3.1), if u solves
Nu;y)=a(u,y)+T(u,u,y)— F(y) =0 forallyeY 3.3)

and the Frechét derivative DN (1) =: (a + b)(e, o) defines an 1somorphlsm A+
B and in particular satisfies the mf—sup condition (2.1) for b: b| xxy and b from
3.2). O

Abbreviate (a + b)(x, y):=a(x, y) + b(x, y) etc. Several discrete problems in this
article are defined for different choices of R and S with (2.5)—(2.6) to approximate the
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regular root u to N. In the applications of Sects. 8-9, R, S € {id, Iy, J I} lead to
eight new discrete nonlinearities. Let X and Y, be finite-dimensional spaces and let

Npy (xp):=ay,(xp,, ) + T'(Rxy, Rxy,, Se) — F(Qe) € Y} (3.4)

The discrete problem seeks a root u;, € Xj to Nj; in other words it seeks uj; € Xj
that satisfies

Ni(un; yn):=anun, yn) + U(Rup, Rup, Syn) — F(Qyp) = 0 forall y, € ¥y,
(3.5)

The local discrete solution u; € X, depends on R and S (suppressed in the notation).
Suppose

(H4) 3x; € Xy, such that 84:=|lu — xu ]|z < Bo/2(1 + AR)ITIIRIIISI,

so that, in particular,
Bi:=Po — 2(1 + AR)IT[IR[[1S]184 > 0. (3.6)

The non-negative parameters A, 82, 83, 84, B, and ||Z|| depend on the regular root u
to N (suppressed in the notation).

The hypotheses (H1)-(H4) with sufficiently small 8;, 83, §4 imply the results stated
in (A)-(B) below for parameters €1, €2,8, p, Cqo > 0 and 0 < « < 1, such that
(A)-(B) hold for any underlying triangulation 7" with maximum mesh-size /g < §
in the applications of this article.

(A) local existence of a discrete solution. There exists a unique discrete solution u;, €
Xp to Np(up) = 01in (3.5) with |lu — uy || < €;. For any initial iterate v;, € X,
with |lup — vl x, < p, the Newton scheme converges quadratically to uy,.

(B) a priori error control in energy norm. The continuous (resp. discrete) solution

u € X (resp. up € Xp) with lu —up|lg < €2:=min {61, mﬂ} satisfies

e —unllg < Cqo min [lu — xpllg + 7" (1 =)~ T, . (S — Q)o) |y
xpeXpy

with a lower bound S; of B, defined in (3.6). The quasi-best approximation result
(1.1) holds for § = Q.

(C) apriori error control in weaker Sobolev norms. In addition to (H1)—(H4), suppose
the existence of A5 > O such that, forall x, € X;,, y, € Y, x € X,andy €Y,

(H1) a), (e, yn) — a(Pxp, Oyn) < Asllx — xaliglly — yallp.

For any G € X*, if z € Y solves the dual linearised problem a(e, z) + b(e, z) =
G (e) in X*, then any zj € Y, satisfies

lu —unlix, < or(lullx. lunlix)z = znliyllu —unllz

2
+ wr(llznlly) e — unll%
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+ llup — Punllx, + T, u, (S — Q)zn)
+ T(Rup, Rup, Qzi) — T (Puy,, Puy, Qzn)

with appropriate weights defined in (6.2) below. Here Xj is a Hilbert space with
X+ X, C Xs.

The abstract results (A)-(C) are established in Theorems 4.1, 5.1, and 6.2. A sum-
mary of their consequences in the applications in Sects. 8-9 for a triangulation with
sufficiently small maximal mesh-size hpmax is displayed in Table 1.

4 Existence and uniqueness of discrete solution

This section applies the Newton-Kantorovich convergence theorem to establish (A).
Letu € X be aregularrootto N. Let (2.3), (2./§), and (H1)-(H4) hold with parameters
Ap, AR, A1, 62, 83, 84 > 0. Define L:=2||F||||R||2||S||, m:=L/p1, and

o:=pB7" (A1 Ap + Q" AlI(1 + Ap) + (1 + AR)IRIISH1xax,
+ 1INl OIT )8 + llxallx, 83/2). 4.1

In this section (and in Sect. 5 below), Q € L(Yy; Y) (resp. S € L(Yy; ?)) is bounded,
but (2.4) (resp. (2.6)) is not employed.

Theorem 4.1 (existence and uniqueness of a discrete solution) (i) If egm < 1/2, then
there exists a root up, € Xy, of N with |lu — upllg < €1:=84 + (1 — 4/1 — 2egm) /m.
(ii) If eom < 1/2, then given any vy, € Xj, with |lup — vpllx, < p:=1 +
m) /m > 0, the Newton scheme with initial iterate vy converges quadrati-
cally to the root uy, to Ny, in (i).

(iii) If eym < 1/2, then there exists at most one root uy to Ny with |lu — upllx < €.

The proof of Theorem 4.1 applies the well-known Newton-Kantorovich conver-
gence theorem found, e.g., in [21, Subsection 5.5] for X = ¥ = R” and in [28,
Subsection 5.2] for Banach spaces. The notation is adapted to the present situation.

Theorem 4.2 (Kantorovich (1948)) Assume the Frechét derivative D Ny (xp,) of Ny, at
some x, € X, satisfies

IDNK G M lzqrrix, < 1/B1 and | DNyGo) ™ NaGallx, < €. (42)

Suppose that D Ny, is Lipschitz continuous with Lipschitz constant L and that 2egL <
B1. Then there exists a root u, € B(x1,r_) of Ny in the closed ball around the first
iterate x1:=xj, — DNp,(xp) " Ny, (x3) of radius r—:=(1 — /T — 2eom)/m — €o and
this is the only root of Ny, in B(xp, p) with p:=(1 + /1 — 2¢egm)/m. If 2egL < By,
then the Newton scheme with initial iterate xj, leads to a sequence in B(xy, p) that
converges R-quadratically to uy,. O
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Proof of Theorem 4.1. Step 1 establishes (4.2). The bounded trilinear form T leads
to the Frechét derivative DNy (x;) € L(Xp; Y;‘) of Nj, from (3.4) evaluated at any
xp € Xy, forall &, € X, np, € Yy, with

DNy (i &n, ni) = an(Eny 1) + T(Rxp, RER, Snp) + T(RER, Rxy, Syn). (4.3)

For any x}l, x}zl, &, € Xy, and iy, € Yy, (4.3) implies the global Lipschitz continuity of
DN, with Lipschitz constant L:=2|T|[|| R||2|| S|, and so

IDNy(xp; &ny 1) — DNp (75 Eny )| < Llx) — x2 1, 188 1 x, 108 1y, -

Recall x;, from (H4) with 84 = |lu — x| 3. For thisAxh € Xp, (2.10) leads to |ju —
Rxpllg < (1 4+ ARr)d4. This and the boundedness of I"(e, e, o) show

T'(u — Rxp, Rép, Snp) + T(RER, u — Ry, Snp)
< 284(1 + AR ITIIRIISIIER I x, 411y, -

The discrete inf-sup condition in Theorem 2.1, elementary algebra, and the above
displayed estimate establish a positive inf-sup constant

0 < B1=Bo—2(1+ ARITIIRIISISs < inf sup  DNp(xp; &ns i)
&n€Xn nneYy
1€R 113, =1 11y, =1

(4.4)

for the discrete bilinear form (4.3). The inf-sup constant 8; > 0 in (4.4) is known
to be (an upper bound of the) reciprocal of the operator norm of DNy, (x;) and that
provides the first estimate in (4.2). It also leads to

IDNyCen) ™" NG, < B TN Gen) - (4.5)

To establish the second inequality in (4.2), for any y, € Y;, with ||y,lly, = 1, set
y:=Qyp € Y. Since N (u; y) = 0, (3.3)-(3.4) reveal

Nip(xns yn) = No(Geps yu) — N(us y) = ap(xp, yn) —a(u, y)
+ T(Rxp, Rxp, Syn) — D(u, u, y). (4.6)

The combination of (H1) and (2.3) results in

ap(xp, yn) —a(, Qyp) = ap(xp, yn) — a(Pxp, Qyp) —a(w — Pxp, Qyp)
< AApllu —xpllg + 1Q*Allllu — Pxplix

with the operator norm || Q*A|| of 0*A in L(X; Y)’) in the last step. Utilize (2.10) and
(H4) to establish |ju — Pxp|lx < (1 + Ap)da. This and the previous estimates imply

ap(xp, yn) —au, Qyn) < (A1Ap + |Q*A|(1 4+ Ap))ds.
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Elementary algebra and the boundedness of f(o, e, 0), (2.5), and (H3)-(H4) show

2(T(Rxp, Rxp, Syn) — T(u, u, y))
= T(Rxj, — u, Rxp, Syn) + T (Rxp, Rxy, — u, Syy)
+f‘(u, Rxp —u,y)+ F(Rxh —u,u,y) —E(Rxh, (Q—Syn)
< 264(1+ AR) (IRIISIxnllx, + QI ullx) ITI + 83llxallx,-

A combination of the two above displayed estimates in (4.6) reveals

|Nn(ens yI=(A1Ap + | QFAII(1 + Ap)

-~ 1
A4+ AR)URIS Tl 1, + 1 QIO TT 04 + Sllxn llx, 83

This implies || Ny (xp) ||y; < Breo with €9 > 0 from (4.1). The latter bound leads in
(4.5) to the second condition in (4.2).

Step 2 establishes the assertion (i) and (ii). Since egm < 1/2,r_, p > 0 is well-
defined, 2¢pL < B1, and hence Theorem 4.2 applies.

We digress to discuss the degenerate case g = 0 where (4.1) implies §4 = 0. An
immediate consequence is that (H4) results in u = x;, € Xj. The proof of Step 1
remains valid and Ny (x;) = 0 (since €9 = 0) provides that x, = u is the discrete
solution uj,. Observe that in this particular case, the Newton iterates form the constant
sequence # = x; = x| = xp = --- and Theorem 4.2 holds for the trivial choice
r—=0.

Suppose €g > 0. For egm < 1/2, Theorem 4.2 shows the existence of a root uy, to
Nj, in B(xy, r—) that is the only root in B(xy, p). This, [lx; — xxllx, < €o, with €
from (4.1), for the Newton correction x; — xj, in the second inequality of (4.2), and
triangle inequalities result in

lu —upllg < llu—xpllg + lIx1 — xnllx, + llx1 — unllx,

<81+ (1 —+/1—=2eom)/m = €. .7

This proves the existence of a discrete solution u;, in X, N B(u, €1) as asserted in (7).
Theorem 4.2 implies (i7).

Step 3 establishes the assertion (iii). Recall from Theorem 4.2 that the limit uj; €
B(x1,r_) in (i)-(i7) is the only discrete solution in B(xp, p). Suppose there exists a
second solution i, € X N B(u, €1) to Ny (uy) = 0. Since uy, is unique in B(x, p),
1y, lies outside B(xj, p). This and a triangle inequality show

1 ~ ~
— = (VI =2em)/m = p < llxp —unllg = llu = unllz +llu = xnliz

1
<€ +04 <2 < —
m
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with 2me; < 1 in the last step. This contradiction concludes the proof of (iii). O

Remark 4.3 (error estimate) Recall 84 from (H4) and €p from (4.1). An algebraic
manipulation in (4.7) reveals, for egm < 1/2, that

260

14+ /1 —2¢ym

In the applications of Sects. 8-9, this leads to the energy norm estimate.

lu —unlly <64+ < 84 + 2¢p.

Remark 4.4 (estimate on €1) In the applications, (4.1) leads to €y < 83 + 4. This, the
definition of € in Theorem 4.1, (4.7), and Remark 4.3 provide €] < 83 + 4.

5 A priori error control

This section is devoted to a quasi-best approximation up to perturbations (B). Recall
that the bounded bilinear form a : X x ¥ — R satisfies (2.1), the trilinear form
I': X x X xY — Risbounded, and F € Y*. The assumptions on the discretization
with a;, : X, x Y, — R with non-trivial finite-dimensional spaces X, and Y}, of
the same dimension dim(X;) = dim(Y}) € N are encoded in the stability and quasi-
optimality. The stability of a; and (2.2) mean g > 0 and the quasi- optlmahty assumes
P e L(Xp; X) with (2.3), R € L(Xp; X) with (2.5), S € L(Yp; Y) and Q €
L(Yp; Y) (in this section, (2.4) and (2.6) are not employed). Recall 81 and €; from
(3.6) and Theorem 4.1.

Theorem 5.1 (a priori error control) Let u € X be a regular root to (3.3),
let up € Xy solve (3.5), and suppose (H1), (2.2)-(2.3), (2.5), llu — uplly =<

i kB
€ :=1min {E], mﬁ}, and 0 < k < 1. Then

lu — upllg < Cgo min u—xllg + 87" (1 =) T, u, (S — @)o)ly;
xpeXpy
holds for Cqo = Cpofy (1= )7 (B1 + 2(1 + AR)ISIIT [llullx) with Cly:=
ay (A1 AP + [ Q*All(1 + Ap)).

The theorem establishes a quasi-best approximation result (1.1) for § = Q. The proof
utilizes a quasi-best approximation result from [11] for linear problems.

Lemma 5.2 (quasi-best approximation for linear problem [11]) Ifu* € X and G(e) =
a(u*,e) € Y*, uy € X, and ay(uy, ) = G(Qe) € Y}, then (2.2)-(2.3) and (H1)
imply

(Q0) |u* —ujllg < Cpo inf |lu™ — xull5- (5.1)
q
xpeXy
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Proof This isindicatedin [11, Theorem 5.4.a] for Hilbert spaces and we give the proof
for completeness. For any x; € X}, the inf-sup condition (2.2) leads for ej,:=x, — u}i €
X, to some ||yy|ly, < 1 such that

aollenllx, < an(xn, yn) — an(uy, yp).
Since ay (u};, yn) = G(Qyp) = a(u*, Qyy), this implies

aollenllx, < an(xn, yn) —a(Pxp, Qyn) +a(Pxp — u™, Qyn)
< Atllxp — Pxpllg + 1Q*Allllu™ — Pxpllx

step. Recall (2.3) and ||u* — Px|lx < (1 4+ Ap)|lu™ — xp|l5 from (2.10) to deduce

with (H1), the operator norm || Q*A|| of Q*A = a(e, Qe), and |y ||y, < 1inthe last

aollenllx, < (A1Ap+ (1 + Ap)|Q*ADu™ — xpll5.

This and a triangle inequality |u* — u}llx < llenllx, + llu™ — x;| % conclude the

proof. O

Proof of Theorem 5.1. Given aregularrootu € X to(3.3), G(e):=F(e)—I'(u, u, ®) €
Y* is an appropriate right-hand side in the problem a(u, e) = G(e) with a discrete
solution u; € Xy to ay(uy,e) = G(Qe) in ¥;. Lemma 5.2 implies (5.1) with u*
substituted by u, namely

|lu — uZHf( < C</]o inf |Ju —xpll5%. 5.2)
xpeXpy

Given the discrete solution u, € X, to (3.5) and the approximation u; € Xj from
above, let e, :=uz —uyp, € Xp. The stability of the discrete problem from Theorem 2.1
leads to the existence of some y, € Y, with norm |[y,lly, < 1/8, for B > Bo
from (2.9) and

lenllx, = an(en, yn) + b(Rep, Syn)
= ap(epn, yn) + T(u, Rey, Syn) + T'(Rep, u, Syn)

with (3.2) in the last step. The definition of u}, G, and (3.5) show

an(uy, yn) = F(Qyn) — T'(u, u, Qyn)
= ah(uhv }’h) + F(Rlzlh, Ruhv Syh) - F(M1 u, th)

The combination of the two previous displayed identities and elementary algebra show
that

llenllx, = T (Rup, Rup, Syn) — T(u, u, Sy) + T (u, Rep, Syn)
+ T (Ren, u, Syn) + T(u, u, (S — Q)yn)
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= T(u — Rup, u — Ruy, Syn) + T (u, Ru} — u, Syn)
+ T (Ruj — u, u, Syp) + T, u, (S — Q)yn)

< (ISHIT e — Rupl% + 2llullx ISIITllu — Rujllg
+ T u, (S = Q)0 v, )/ B

with the boundedness of F(o, e, e) and [lylly, < 1/By in the last step. This, |lu —

Rupllg < (14+AR)lu—upllg (resp. |lu — Rupllg < (14+Ar)llu—ujyllg) from (2.10),
B1 < Bn, and a triangle inequality show

Billu —unllg < (B + 20+ AR)ISIIT I ulg) lu—u)lig+IT @, u, (S — Q)o)|lys
+ 1+ AR ISIIT Il — s %

Recall the assumption on ||u — uy ||y < €> to absorb the last term and obtain

” oo B2+ A1) Il e — g + 1T w, (S — @)e)ly

u—uplly < — .
X B1 —e2(1+ AR)?[ISIIT |

This, the definition of €3, and (5.2) conclude the proof. O
Remark 5.3 (estimate on €;) The assumption of Theorem 5.1 and Remark 4.4 reveal
€ < €] < 83 + 34 for the applications of Sects. 8, 9.

6 Goal-oriented error control

This section proves an a priori error estimate in weaker Sobolev norms based on a

duality argument. Suppose Y is reflexive throughout this section so that, given any
G € X*, there exists a unique solution z € Y to the dual linearised problem

a(e,z) +b(e, z) = G(e)in X*. (6.1)
Recall\N from (3.1), A and B from Table 2 with (3.2), P, Q, R, and S with (2.3)-(2.6),
and (H1) from Sect. 3. Since u € X is a regular root, the derivative A+ B € L(X; Y™*)
of N evaluated at u is a bijection and so is its dual operator A* + B* € L(Y; X*).
Theorem 6.1 (goal-oriented error control) Let u € X be a regular root to (3.3) and let

up € Xy, (resp. z € Y) solve (3.5) (resp. (6.1)). Suppose (I-ﬁ) and (2.3)—(2.6). Then,
any G € X* and any z, € Yy, satisfy

G — Pup) < o1(lullx. [lunllx)llu — unligliz = zally + @2(lznlly)lu — unl%
+ T, u, (S — Q)zn) + T(Rup, Rup, Qzn) — T'(Pup, Puy, Qzp)
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with the weights

o1(luxll. lunllx,) = (1 + Ap)(1 + AQ(IA]l + 2IT[[lullx) + As + (1 + AR)(As + Aq)
< ITNRunlig + lullx).  @2(lzally,) =TI+ Ap)*[ Qzally.
6.2)

Proof Since z € Y solves (6.1), elementary algebra with (3.3), (3.5), and any z;, € Y},
lead to

G — Pup) = (a +b)(u — Pup,z) = (a +b)(u — Pup, 7 — Qzp)
+ b(u — Pup, Qzn) + (an(un, zn) — a(Puy, Qzp))
+ T(Rup, Rup, Szi) — T (u, u, Qzp). (6.3)

The first term (a + b)(u — Puyp, z — Qzj) on the right-hand side of (6.3) is bounded
by

(IAF+ 20T wllx)llw — Puplixllz — Qznlly
= (Al + 21T el x) (A + Ap) (A + AQ)llu — unllgllz — zally

with (2.10)—(2.11) in the last step. The hypothesis (Iﬁ) controls the third term on the
right-hand side of (6.3), namely

ap(up, zp) —a(Puyp, Qzp) < Asllu —uplizllz — znlly-

Elementary algebra with (3.2) shows that the remaining terms F(Ru n, Rup, Szp) —
I'(u,u, Qzp) + b(u — Puy, Qzp) on the right-hand side of (6.3) can be re-written as

T'(Rup, Rup, (S — Q)zn) + U(Ruy, Ruy, Qz1)
—I'(Pup, Pup, Qzp) +I'(wu — Pup, u — Puyp, Qzp). (6.4)

Elementary algebra with the first term on the right-hand side of (6.4) reveals

f(Ruh, Ruy, (S — Q)zp) = f(Ruh —u, Ruy, (S — Q)zp) -l—f‘(u, Rup —u, (S — Q)zp)
+T @, u, (S — Q)zn).

The boundedness of f‘(o, e,0),(2.4),(2.6), and (2.10) show

T(Rup — u, Ruy, (S — 0)z) = T'(Ruy, — u, Ruy,, (S — Dzp)
+ T(Rup — u, Rup, (I — Q)z)
< (As + AQITI( + AR) [ Ruy [ g llu
—upllgllz = znllp-
T(u, Rup —u, (S — Q)zn) < (As + AQITI(L + Ap)lullx e — unligliz = zill5-
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The boundedness of I'(e, e, ) and (2.10) lead to
T(u — Pup,u — Puy, Qzp) < |ITII(1 4 Ap)*[lu — un|311Qzally.

A combination of the above estimates of the terms in (6.3) concludes the proof. O

An abstract a priori estimate for error control in weaker Sobolev norms concludes this
section.

Theorem 6.2 (a priori error estimate in weaker Sobolev norms) Let X be a Hilbert
space with X + X, C Xs. Under the assumptions of Theorem 6.1, any z;, € Y, satisfies

lu — unllx, < or(lux|l, lunllx) e —unlzlz — zlly
+ wa(lzally) e — unll% + llun — Punllx,
+ T, u, (S — Q)zn) + T'(Rup, Rup, Qzn) — T'(Pup, Pup, Qzp).

Proof Givenu — Puj € X C Xj, a corollary of the Hahn-Banach extension theorem
leads to some G € X C X* with norm [|G|/xs < 1 in X7 and G(u — Puy) =
lu — Pupllx, [4]. This, a triangle inequality, and Theorem 6.1 conclude the proof. O

7 Auxiliary results for applications
7.1 General notation

Standard notation of Lebesgue and Sobolev spaces, their norms, and L? scalar products
applies throughout the paper such as the abbreviation || e || for || e ||,2(q). For real s,
H*(2) denotes the Sobolev space endowed with the Sobolev-Slobodeckii semi-norm
(resp. norm) | e |gs(q) (resp. || o || gs(e) ) [20]; H*(K):=H"*(int(K)) abbreviates the
Sobolev space with respect to the interior int(K) # @ of a triangle K. The closure of
D(R2) in H*(2) is denoted by Hg (R2) and H* (L) is the dual of Hg (2). The semi-
norm and norm in W*7(2), 1 < p < oo, are denoted by | e |ys.p(q) and || ® [[ws.» ().
The Hilbert space V::Hoz(Q) is endowed with the energy norm || e [|:=| e |2 (q)-
The product space H*(2) x H*(2) (resp. LP(2) x LP(L2)) is denoted by H*(2)
(resp. LP(2))and V =: V x V. The energy norm in the product space H>(2) is also
denoted by || e || and is ([l¢1 17 + llg2l1?)/? for all ® = (@1, ¢2) € H?(2). The norm
on W*7(Q) is denoted by || e [lws.r(q). Given any function v € L?(w), define the
integral mean fw vdx:=1/|w| f » Vdx; where || denotes the area of w. The notation
A < B (resp. A 2, B) abbreviates A < CB (resp. A > C B) for some positive generic
constant C, which depends exclusively on €2 and the shape regularity of a triangulation
T; A~ B abbreviates A < B < A.

Triangulation. Let 7 denote a shape regular triangulation of the polygonal Lipschitz
domain 2 with boundary 9€2 into compact triangles and T(5) be a set of uniformly
shape-regular triangulations 7° with maximal mesh-size smaller than or equal to é > 0.
Given 7 € T, define the piecewise constant mesh function 27 (x) = hg = diam(K)
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for all x € K € 7, and set hyax:=maxge7 hg. The set of all interior ver-
tices (resp. boundary vertices) of the triangulation 7 is denoted by V(£2) (resp.
V(0R)) and V:=V(2) U V(9L2). Let £(2) (resp. £(9€2)) denote the set of all inte-
rior edges (resp. boundary edges) in 7. Define a piecewise constant edge-function
on £:=E£(Q) U E@R) by hglg = hg = diam(E) for any E € . For a positive
integer m, define the Hilbert (resp. Banach) space H"(T) = [[x.7 H™(K) (resp.
W"P(T) = [[ger W™P(K)). The triple norm || e [|:=| e | g (q) is the energy norm
and || o [lpw:=]| ® | = (7):=l| Dlg”w e || is its piecewise version with the piecewise partial

derivatives Dy, of orderm € N.For1 < s < 2, the piecewise Sobolev space H* (T)is

the product space ]_[TeT H*(T) defined as {vpw € L2(Q):VT €T, vpwlr € HY(T)}
and is equipped with the Euclid norm of those contributions || e || gs(7) forall T € 7.
Fors = 14+ v with0 < v < 1, the 2D Sobolev-Slobodeckii norm [20] of f € H*(Q2)

reads | f 117 ) =131 gy + |/ 7o) and

172

108 £ (x) — 3 F(»)I?
s = d d
|f|H () |§=:1 /Q/Q |x — Y|2+2U xday

The piecewise version of the energy norm in H 2(T)reads || e lpw:=l®|g2(¢7):=ll Dgwo
|| with the piecewise Hessian DIZ,W. The curl of a scalar function v is defined by

Curl v = (— dv/dy, —av/ax)T and its piecewise version is denoted by Curlpy,. The
seminorm (resp. norm) in W7 (7T) is denoted by | & |ym.p(7) (resp. || ® |lwm.p(T)).
Define the jump [¢] :=¢|k, —¢|k_ and the average (go)E:=% (<,0|K+ + <P|K,) across
the interior edge E of ¢ € H'(7) of the adjacent triangles Ky and K_. Extend the
definition of the jump and the average to an edge on boundary by [¢]g :=¢|r and
(p)E:=p|g for E € £(0R2). For any vector function, the jump and the average are
understood component-wise. Let IT; denote the L?(2) orthogonal projection onto the

piecewise polynomials Py (7):= {v ceLl?>(Q):VKeT, Vg € Pk(K)} of degree at

most k € Np. (The notation || e [l,w, Ik, and V}, below hides the dependence on
TeT)

7.2 Finite element function spaces and discrete norms

This section introduces the discrete spaces and norms for the Morley/dG/C°IP/WOPSIP
schemes. The Morley finite element space [15] reads

vM 18 continuous at the vertices and its normal
derivatives vg - Dpyw M are continuous at

M(7):={ vm € P>(7)| the midpoints of interior edges, vy vanishes
at the vertices of 92 and vg - Dpwim

vanishes at the midpoints of boundary edges
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The semi-scalar product apy is defined by the piecewise Hessian Dpw, for all
Vpw, Wpw € H?(T) as

apw (Vpw, wPW):z/ D;vaw : Dgwwpw dx. (7.1)
Q

The bilinear form apy (e, @) induces a piecewise H 2 seminorm || llpw = apw(e, 0)!/2
that is a norm on V + M(7) [10]. The piecewise Hilbert space H 2(T) is endowed
with a norm || e ||;, [7] defined by

lvpw l7:=lvpw I3y, + Jjn (pw)? for all vy, € H(T),

]h(va) —Z Z hE |[vPW]E(Z)| +Z

Ee€ zeV(E) Ee&

2
][ [0upw/dvE], ds|  (7.2)

with the jumps [va]E (2) = YwleE (@) for z € V(9Q); the edge-patch
w(E):=int(K; U K_) of the interior edge £ = 0K+ N dK_ € E(Q) is the
interior of the union K4 U K_ of the neighboring triangles K4 and K_, and

[0vpw/0vE], = va > | for E € £(<Q) at the boundary with jump partner zero
owing to the homogeneous boundary conditions.

For all vpw, wpw € H 2(’T) and parameters o1, oo > 0 (that will be chosen suffi-
ciently large but fixed in applications), define c4g (e, @) and the mesh dependent dG
norm || e |lqG by

¢dG (Vpw, Wpw):= Z / [UPW]E [wPW]E ds

E 68
o
+ Y = / [9vpw/dvE] ; [Bwpw/8vE], ds,
EecE he Je
lvpwl3G:=lvpw Iy, + caG Wpw: vpw)- (7.3)
The discrete space for the C°IP scheme is S(Z)(T ):=P(T)N HO1 (R2). The restriction
of || e |lgG to HO1 (£2) with a stabilisation parameter orp > 0 defines the norm for the

CYTP scheme below,

CIP(Upw, wpw): GIP/ [vaw/avE] [awpw/BvE] ds,

2.
”va”[P-Zm Upw "lpw + CIP(UPW7 Upw)- (7.4)

For all vpy, wpw € H 2(T), the WOPSIP norm || e ||p is defined by

cppw. wpw):= D D kg ([vpw] @) ([wpw] ; @)

Ee€& zeV(E)
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+> hg2][E [9vpw/dvE] ds][E [dwpw/dvE] ds, (1.5)

Ee&

lvpw 3= lvpwllZy, + P Wpw, vpw)- (7.6)

The discrete space for dG/WOPSIP schemes is P>(7). The discrete norms | e [|pw,
|le|lac and || e||1p are all equivalent to ||e ||, on V + V), for V;, € {M(7T), P(7), Sg(T)}.
In comparison to jj (e), the jump contribution in || e ||p involves smaller negative powers
of the mesh-size and so jh(va)2 < cp(Vpw, Vpw) (With g < diam(Q2) < 1); but there
is no equivalence of || e ||, with || e |[pin V + P>(7).

Lemma 7.1 (Equivalence of norms [/1, Remark 9.2]) It holds || e ||, = || e [lpw on
VAM), lelln = [ollaS || @ lpon V+ Po(T), and ||| ~ ||e |l on V +S3(T).

7.3 Interpolation and companion operators

The classical Morley interpolation operator Iy is generalized from HOZ(Q) to the
piecewise H? functions by averaging in [11].

Definition 7.2 (Morley interpolation [11, Definition 3.5]) Given any vy € H 2(T),
define Ivjupw:=vm € M(T) by the degrees of freedom as follows. For any interior
vertex z € V(7)) with the set of attached triangles 7 (z) of cardinality |7 (z)| € N and
for any interior edge E € £(2) with a mean value operator (e) g set

5 .
m@=IT@I" Y (vpulx)(@) and ]i;TII\EAdsI=]€;< Bl;pE > ds.

KeT (2)

The remaining degrees of freedom at vertices and edges on the boundary are set zero
owing to the homogeneous boundary conditions.

Lemma 7.3 (interpolation error estimates [/ 1, Lemma 3.2, Theorem 4.3]) Any vpy €
H?(T) and its Morley interpolation Imvpw € M(T) satisfy

(a) Zi:o |h¥_2(va - IMva)lH’"(T) S (1 — HO)DE,WUPW” + jh(va),snva”h;

(b) Yo Ih2E 2 (Wpw — IMUpw) | (1) & Minyemi(T) |Vpw —wlln A Minyy emc7)
Zi:o |h¥_2(va — wM) | gm(Ty:

(c) the integral mean property of the Hessian, D]%WIM =ToyD?in V;

(d) llv—Ivvllpw S A2l geq) forall v e HY(Q) with2 <t < 3.

max

Let HCT (7) denote the Hsieh-Clough-Tocher finite element space [15, Chapter 6].

Lemma 7.4 (right-inverse [10, 11, 19]) There exists a linear map J : M(T) —
(HCT(T)+ Ps(7T))N HOZ(Q) such that any vy € M(7T) and any vy € P>(7T) satisfy
(a)—(h).

(a) Jom(z)=vm(z) forany z € V;

(b) VUIom)(2) =TI Y kerry(Vomlg) () for z € V(Q);
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(¢) fz3dJvm/dveds = f5 dvm/dveds forany E € E;

(d) vm — Jom L Po(T) in L*();

(e) Yom—o IH72 D0 (oM — Jowp IS minyey llom — vllpws

() vz — JIwvall ey S hpk mingey llva — vllp holds for 0 <t < 2;

(g) 251:0 ||h¥_3DS1W((1 — )l + Z,znzo ||h’;—_2Dglw((1 — J)Iyvo) || S minyey
lv—wv2llp;

(h) lv2 — J hvvalyr2/a-n¢7) S hl-tmingey [|v — vallp holds for 0 <t < 1.

Proof of (a)-(f). This is included in [10, 19], [11, Lemma 3.7, Theorem 4.5]. m|

Proof of (g). The inequality Zi:o ||h’;_3Dg1w((1 — )|l < [lv — va|lp follows
as in the proof of Lemma 10.2 in [11]. Lemma 7.4.e and a triangle inequality show

2
-2
> 2D (1 = DIvvall S vz = vllpw < w2 = v2llpw + llv2 = vllpw-
m=0

Since || mv2 — v2llpw < hmaxllhz! (Iv2 = v2)llpw < fmaxllv — valp from the first
part of (g) with m = 2, the above displayed estimate, and || e ||,w < || ® ||p conclude
the proof of (g). O

Proof of (h). An inverse;\estimate [17, Lemma 12.1], [2,ALemma 4.5.3], [15, Theorem
3.2.6] on each triangle 7 in the HCT subtriangulation 7 of 7 in each component of
&:=Vpw(v2 — J Imv2) reads ||g||L2/(1—1>(f) = Cinvh%[”g”LZ(?)- Consequently,

(1-1)/2 1/2

_ — 2/(1—t —
Cintlgll iy < | 2 107" gl7as" <[ X inzel. g,
for o

with || e [|,2/a-n < || e ||;2 in the sequence space RN (¢ is decreasing in p > 1) in
the last step. With the shape regularity hs ~ h7, this reads

lv2 = J Imvalyr2a-07y S Thy (2 = JIvv) |y 1) (7.7)
Since Iv(v2 — JImv2) = 0 by Lemma 7.4, Lemma 7.3.a provides

|h (v2 = Thav) | g1 7y < higk b7 (V2 = T Iv2) g1 (1) S hiasllva — J Iva .

(7.8)

Since jn(JImvz) = 0 = jn(v), the definition of jj(e) shows j,(vy — JIMv2) =
Jn(va — v). This, the definition of || e ||; in (7.2), and Lemma 7.4.f imply

vz = JIvvzlln S lv = valln. (7.9)
The combination of (7.7)—(7.9) implies the assertion. O
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Remark 7.5 (orthogonality of J) Since J is a right-inverse of Iy, i.e., IvJ = id
in M(7) [11, (3.9)], the integral mean property of the Hessian from Lemma 7.3.c
reveals apw (v2, (1 — J)vm) = apw(v2, (1 — Iy)Jvm) = O for any vy € P»(7) and
vm € M(7).

Lemma 7.6 (an intermediate bound) For 1 < p < oo, any (va,v) € Py(7) x V
satisfies v + v2lwipcry S v+ v2llh

Proof The triangle inequality |v + valyipiry < v + JIMv2lyip) + V2 —
JIMv2|W1,p(T) and the Sobolev embedding HOZ(Q) — Wol’p(SZ) in 2D lead to

[v+J Ivvzlwip ) Sllv+J hvvall < llv+v2llpw+llvz = T Imvzllpw < v + v2lla

with || @ [l,w < || ® ||, and Lemma 7.4.f in the last step. The inequality vy —
Jhvvalwip ey < |21 /P v, — J vvalyi.co 7y leads to some K € 7 with v —
J Imvalyieo 7y = [v2—J IMV2lyy1.00 (k- The inverse estimate [va — J Invz | wio ) S
h}1|v2 — JImv2| g1 (k) and Lemma 7.4.f reveal [vy — J Imvz |00 (1) < v+ v2lla.
The combination of the above inequalities concludes the proof. O

Lemma 7.7 (quasi-optimal smoother R) Any R € {id, Iy, J Im} and V=V+ Vi
with

M(T) for the Morley scheme (resp. || o |lpw),
P>(T) for the dG scheme (resp. || ® |laG),
Sg(T) for the C°IP scheme (resp. || o |l1p),
P>(T) for the WOPSIP scheme (resp. || o ||p)

Vi(resp. || o [I5):=

satisfy
(1= Rvplly < Arllv — vl for all (vp, v) € Vp X V.

The constant AR exclusively depends on the shape regularity of T.
Proof for R = id. This holds with Ar = 0. O

Proof for R = L. Since ||(1 — Ho)DnghH =O0forv, € V}, € P,(7),Lemma7.3.a
leads to || (1 — InD)vp llpw < Jjn(vp). This, the definition of || e ||, and j; (Ipmvp) = 0 =
Jjn(v) show

I = I vallpw < NA =D vrlln S jn(r) = jn( —vp) <llv = valla S v — vallyp

with Lemma 7.1 in the last step. Theorem 4.1 of [11] provides [[(1 — Iv)vxlly S
(1 = Inp)vpln for the dG/COTP norm || e l;>. The combination proves the assertion
for Morley/dG/C 1P,

For WOPSIP, the definition of || e ||p in (7.6), [[(1 — Iv)vallpw S llv — vilp from
the displayed inequality above, and cp(v, v) = cp(v, v;) = 0 reveal

11— In)valle < (L — D)k llpw + cpur, vi) 7% < lv — wplp. o
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Proof for R = J 1. Triangle inequalities and || o ||y = || ® [|pw in V show

1A= JhDvrlly < v —wlly +llv = JImvnllpw < 2llv —vplly + 1A = J D) vrllpw-

Lemma 7.4.f and Lemma 7.1 conclude the proof for R = J . O

The transfer from M(7) into V}, [11] is modeled by some linear map 7, : M(7) —
V), that is bounded in the sense that there exists some constant A, > 0 such that
lom — Invmlln < Apllum — vllpw holds for all vy € M(7) and all v € V. A precise
definition of I, = Ic Iy concludes this section.

Definition 7.8 (transfer operator [11, (8.4)]) For v\ € M(7), let Ic : M(7) —
S5(7) be defined by

vmz) atz €V,
(Icvm)(2) = { (vm)E(z) at z = mid(E) for E € £(R),
0 at z = mid(E) for E € £(0L2)

followed by Lagrange interpolation in P>(K) forall K € 7.

Remark 7.9 (approximation) A triangle inequality with Iyjv, Lemma 7.1, and |jvp —
Icomlln S llv — vmllpw for any v € V and vy € M(7) from [11, (5.11)] show
lv—Icivmvllr S llv — Imllpw- In particular, given any v € V and given any positive
€ > 0, there exists § > 0 such that for any triangulation 7 € T(§) with discrete space
Vi, we have |[v — v|lj7 < € for some v, € Vj. (The proof utilizes the density of
smooth functions in V, the preceding estimates, and Lemma 7.3.)

8 Application to Navier-Stokes equations

This section verifies the hypotheses (H1)—(H4) and (I/I\l) and establishes (A)-(C) for
the 2D Navier-Stokes equations in the stream function vorticity formulation. Sections
8.1 and 8.2 describe the problem and four quadratic discretizations. The a priori error
control for the Morley/dG/CPIP (resp. WOPSIP) schemes follows in Sects. 8.3-8.6
(resp. Sect. 8.7) .

8.1 Stream function vorticity formulation of Navier-Stokes equations

The stream function vorticity formulation of the incompressible 2D Navier—Stokes
equations in a bounded polygonal Lipschitz domain @ C R? seeks u € Hg(Q) =:
V = X =Y such that

B NNCL D PN W
Au+8x(( Au)ay> 3y<( Au)8x>_F (8.1)

for a given right-hand side F € V*. The biharmonic operator A? is defined by

A2¢:=rxxx + Pyyyy + 2¢xxyy. The analysis of extreme viscosities lies beyond the
scope of this article, and the viscosity in (8.1) is set one.
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For all ¢, x, ¥ € V, define the bilinear and trilinear forms a (e, e) and I'(e, e, @)
by

ax 0 ax 0
a(d”X)::/D2¢5D2deandr(¢,x,lﬂ)2 / A _X_]/f__X_l’/f dx
Q dy dx  dx 0y
8.2)
The weak formulation that corresponds to (8.1) seeks u € V such that
a(u,v) +T'(u,u,v) = F(v) forallveV. (8.3)

8.2 Four quadratic discretizations

This subsection presents four lowest-order discretizations, namely, the Morley/dG/C O1p/
WOPSIP schemes for (8.3). Define the discrete bilinear forms

ap:=dpw +by+cp: (Vi + M(T)) X (Vi + M(T)) — R,

w1th apw from (7.1) and by, c, in Table 3 for the four discretizations. Let
F(o o,0):=I"y (e, e, 0) be the piecewise trilinear form defined for all ¢, x, ¥ €
H*(T) by

dx oy dx oy

KeT

For all the four discretizations of Table 3, recall E(o, o):=Ipw(u, e 0)+Ipy(e,u,e):
(V+P(T)x(V+P(T)) — Rfrom(3.2). Given R, S € {id, Im, J Im}, the discrete
schemes for (8.3) seek a solution u; € Vj, to

Ny (up; vp):=ap(up, vp) + Cpw(Rup, Rup, Svy) — F(JIyvy,) = 0 for all v, € V.
(8.5)

8.3 Main results

This subsection states the results on the a priori control for the discrete schemes of
Sect. 8.2. Lemma 7.1 shows that || e || A || e ||, for the Morley/dG/C°IP schemes. The
WOPSIP scheme is discussed in Sect. 8.7. Unless stated otherwise, R € {id, Iy, J Im}
is arbitrary.

Theorem 8.1 (a priori energy norm error control) Given a regular root u € V =
Hg(Q) 10 (8.3) with F € H2(Q) and 0 < t < 1, there exist €, 8 > 0 such that, for
any T € T(8), the unique discrete solution up € Vy to (8.5) with |lu — uy||, < € for
the Morley/dG/CCIP schemes satisfies

@ Springer



Unified a priori analysis of four second-order...
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0for S = J1y,
=t for § =id or Iy.

max

lu —upllpy S min [lu — valln + (8.6)
vpeVy

If F € H7"(R2) for some r < 2, then (8.6) holds with t = 0.

Remark 8.2 (quasi best-approximation) The best approximation result (1.1) holds for
S=0=J.

A comparison result follows asin [11, Theorem 9.1] and the proof is therefore omitted.

Theorem 8.3 (comparison for R € {id, Iy, J Im}and S = Q = J I\) The regular root
u €V to (8.3) and for hmax sufficiently small, the respective local discrete solution
UM, 4G, urp € Vj to (8.5) for the Morley/dG/COIP schemes with S = J I\ satisfy

~ ~ ~ 2
lu —umlin = llu —uqclln = lu — uwplln = [|(1 = Ilo) D ull 12(q)-
A summary of the a priori error control in Theorem 8.5 below is

Nl — wnllgs 7y S M — wnlln (hay 4w — unlln) + Cphlyy (8.7)
with a, b, Cp, as described in Table 4.

Remark 8.4 (Tuble 1 vs 4) Note that the parameter ¢+ > 0 appears in Table 4 and not in
Table 1. For r = 2, (8.7) solely asserts [lu — up || gs(7) Sl — up, ||ﬁ < 1 even though
a and b depend on ¢.

Recall the index of elliptic regularity oyee and o :=min{oyeg, 1} > 0 from Section 1.

Theorem 8.5 (a priori error control in weaker Sobolev norms) Given a regular root
ueViw(@83)withF e H2(Q),2—0c <s <2 and 0 < t < 1, there exist
€,8 > 0 such that, for any T € T(8), the unique discrete solution u, € Vj, to (8.5)
with lu — up ||y < € satisfies (a)—(e).

(a) For the Morley/dG/C°IP schemes with R:=J Iy,

0 for S = J Iy,
3175 for S = id or Iy.

max

ot =l ey S e = nlln (Wl + Nl = wnla ) + {

(b) For the Morley/dG/CCIP schemes with R:=Iy and (c) for the Morley scheme with
R =id,
ot =l ey S e =l (P2 flu = wnlln)

0for S = J 1y,
3175 for S = id or Iy.

max
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Table4 Summary of error control in (8.7) from Theorem 8.5

r K R S a b Cyp
Morley dG/C'TP  Morley/dG/ COTP
r<2 2—0<s5s<2 id, Im, JIm Inv, J I JImv 2—s — 0
id, It 3—5 1
r=2 l<s<2 id, Im, JIm Iv, JIm JIv 2—s - 0
id, Iyt 4—2s 1
s=o0=1 JIv JIv 1 - 0
id, Iyt 2—1t 1
id, Iyt Iv JIv 1—1t — 0
id, Iy 2—1t 1

(d) For o < 1, whence 1 < s < 2, for the Morley/dG/COIP schemes with R €
{Im, J Im} and for the Morley scheme with R = id,

_ 0for S = J1y,
u—uplgsery S llu—u (h2 S+ llu—u )—I—
l wllascy Sl lln (Minax + | hlln B2 for § = id or Iy,

max
(e)If F € H7"(R2) for some r < 2, then (a)-(c) hold with t = 0.

Remark 8.6 (constant dependency) The constants hidden in the notation < of The-
orem 8.1 (resp. 8.5) exclusively depend on the exact solution u# (resp. u and z) to
(8.3) (resp. (8.3) and (6.1)), shape regularity of 7, ¢ (resp. s, t), and on respective
stabilisation parameters o1, 02, op ~ 1.

Remark 8.7 (scaling for WOPSIP) The semi-scalar product cj (e, @) in the WOPSIP
scheme is an analog to the one in j;, from (7.2) with different powers of the mesh-size.
It is a consequence of the different scaling of the norms that (H1) and (I-ﬁ) do not
hold for the WOPSIP scheme.

8.4 Preliminaries

This section investigates the piecewise trilinear form I'yy (e, o, ) from (8.4) and its
boundedness with a global parameter 0 < ¢ < 1 that may be small. Recall the energy
norm |[| e ||, and the discrete norms ||  [|pw, || ® |l4, and || e ||p from Sect. 7.2. The
constants hidden in the notation < in Lemma 8.8 below exclusively depend on the
shape regularity of 7 and on 7.

Lemma 8.8 (boundedness of the trilinear form) Any v € V and any $, xs {5 eV +
Py(T), satisfy

(@Tpw (@, 1> ¥) S NP lpwll KNIV 15 and
O Tpw (@, X V) S N llpw I Na 19 1l 141 (2y-
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Proof A general Holder inequality reveals
Tow (@, 2. V) < N 20 llpw| X lwr2e )| W lwt2ra-0 7 (8.8)

(owing to /2 + (1 — t)/2 = 1/2 and |pr$| < ‘/§|D[2)w$| a.e.). Lemma 7.6
provides |5(\|W1.2/x(7') < Ixlln and |$|W1.2/(1—t)(7') < ||1://\||h. The combination with
(8.8) concludes the proof of (a). For ¢ € V (replacing 1//;), the Sobolev embedding
H'(Q) — L*1-D(Q) [4, Corollary 9.15] provides

Wlwiza-ny = W lwiao-n@) S 11+ @)
The combination with (8.8) concludes the proof of (b). O

Lemma 8.9 (approximation properties) For allt > 0, there exists a constant C(t) > 0
suchthatany ¢, x € VOH*T(Q), ¢, % € V+P>(T), and (v, va, vm) € V x Po(T) x
M(T) satisfy

(@) Tpw(@. X (1 = Thwvy) < CORLGNpwlIXIallv — valla.

(®) Tpw(@. 1. (1 = JIw)v2) < COhmax I Bllpw 1 12412y 10 = v21ls

(¢) Tpw((1 = Dyvm. . %) < CORLY — vmllpw 1@l 1 X 11-

(d) Tpw((1 = Nom, ¢, x) < C(0)hmax|lv — UM|||pw||¢||H2+’(Q)”X”H”’(Q)'

Proof of (a). Lemma 7.6 and 7.4.h establish |X|W1,2/f(7—)
J vz lwr2a-0 1) < h}n_a,’(llv — v2|ln. The combination with (8.8) concludes the
proof of (a). O
Proof of (b). A generalised Holder inequality and the embedding H H(Q) —
W12°(Q) [4, Corollary 9.15] provide

< Xl and (1 —

~

Tpw(®. X (1 = TI)v2) < V20 llpw | X lwi.oe (|1 = T w2l 17
S Mo llpw X Wl 240 () | (1 = T D2 | 1 ()

Lemma 7.4.f controls the last factor and concludes the proof of (b). O
Proof of (c). Lemma 7.3.c implies fQ Apw(vm — Jom) o Dpwep - TTpCurlpy x dx = 0
and so

Tpw((1 = Jvm, @, %) = /Q Apw (1 =)o) ((1 = o) Dpyp) - Curlpy X dx

+ /SZ Apw (1 = J)vm) 1_IODprE' (a- HO)Curlpwj(\) dx.
(8.9)

A generalised Holder inequality shows

/Qpr((l — J)om)((1 = To) Dy p) - Curlpy ¥ dx
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= ||hTpr(1 - J)UM||L2/(1—t)(Q)||h'}1(1 - HO)DpwanLZ(Q)|5(\|W1~2/f(’]')-
(8.10)

) Abbreviate aT:=h2T_t |A(um — Jum) || Loo(T) for a triangle T € 7 with area |T'| <
hz to establish
T

7 Apw (1 = Domll p2ra-n gy < ( Z ai/(lit))(l_t)/z <( Z a%)lﬂ
TeT TeT

with the monotone decreasing ¢ norm for 2 < 2/(1 — t) in the last step. An inverse
estimate (with respect to the HCT refinement T of T) as in the proof of Lemma 7.4.h
provides | A((1—Dvw) ooy < v2llom—Jomllwzooi) S hytllom — Jomll g2(7y-
Hence ar < hy ' lom — Jom| 27y and

A7 Apw (1 — Domll L2000y S |||h “(om — Jom)llpw < g llom — Jomllpw-

A piecewise Poincaré inequality with Payne-Weinberger constant ir /7 [24] reads

w7 (1 = T) Dpwdll 12y < 1D llpw-

Recall |x|y1.2/ T S < ||x|lx from the proof of (a). The combination of the previous
estimates of the three terms in (8.10) proves the asserted estimate for the first integral
in the right-hand side of f (8.9). The analysis for the second term is rather analogue
(1nterchange the role of ¢ and ¥). Notlce that (c) follows even in the form I'py ((1 —

Dom, d. 1) < CORLY = vmllpw D llpw I X1 + 1D 116 K lpw)- o
Proof of (d). Substitute ¢ = ¢, x = ¥ in (8.9) (with ¢, x € V N H*(Q)) and

employ a different generalised Holder inequality for the first term to infer
/ Apw((1 = Nvm) ((1 — o) D) - Curly dx
Q
< [[Apw(1l — J)UM||L2(Q)||(1 - HO)D¢||L2(Q)|X|W1~00(Q)-

The remaining arguments of the proof of (c¢) simplify to [|Apw(1 — J)UM||L2(Q) <

V2= Dy omllpws 71 (1= TT0) Dl 12(g) < hamax i@l and [x 1oy S Il g2 g
(by embedding H 2H(Q) > Wh(Q) for t > 0). The resulting estimate

/ Apw((1 = Dom)((1 = o) D) - Curly dx < hmax l(1 — DomllpwllA Nl x I 2+ )
Q

and Lemma 7.4.e lead to the assertion for one term in the right-hand side of (8.9).
The analysis of the other term is analog. Notice that (d) follows even in the form

FPow((I = Dom, ¢, x) = COhmaxllv — vmllpw NN x Il 2+ (@) + 101 2+ ) X ID-
m
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8.5 Proof of Theorem 8.1

The conditions in Theorem 5.1 are verified to establish the energy norm estimates.
The hypotheses (2.3)—(2.6) follow from Lemma 7.7. Hypothesis (H1) is verified for
Morley/dG/CP°IP in the norm || e ||, in [11, Lemma 6.6] and this norm is equivalent
to || @ llpw.l e [lag, and || e [ip by Lemma 7.1.

Recall a(e, o) and I'(e, e, ) from (8.2), ['(e, 8, 8) = 'y (e, e, @) from (8.4),
and b(e, ) from (3.2) for the regular root u € H&(Q). For 6, € Vj, with ||0,]ln =
1, Lemma 8.8.b, and || @ [l,w < |l e || provide bh(R6j, ®) € H™'"1(Q) for R €
{id, Im, J Iv}. There exists a unique £ = £(0,) € V N H31(Q) such that a&,¢) =
E(RO;,,d:) for all ¢ € V and [|§]lp3-+(q) S ||E(R0h,o)||H_1_z(Q) < 1. The last
inequality follows from Lemma 8.8.b and the boundedness of R € {id, Iy, J I} from
Lemma 7.7. Since I, = id (resp. I, = Ic) for Morley/dG (resp. CYTP), Lemma 7.1
(resp. Remark 7.9) and Lemma 7.3.d establish (H2) with 6, = sup{||§ — InImé&|ls :
On € Vi 10nlln = 1} S hlgt.

Since 3 = 0 for Q = § = J1y it remains S = id and S = Iy in the sequel to
establish (H3). Given 6y, and y;, in Vj, = Xj; = Y, of norm one, define vy:=Sy;, €
P>(7T) and observe Qy, = JIyy, = JIvvo (by S = id, Iy). Hence with the
definition of B(o, o) from (3.2), Lemma 8.9.a shows

[b(ROK, (S — Q)yi)| = [b(ROy, va — J Iyva)| < 2C (O Nl ROl vl
8.11)

The boundedness of R and Iy and the equivalence of norms show || R6y |5 ||valln < 1
and s0 83 < hit.

Consequently, for the three schemes under question and for a sufficiently small
mesh-size hpyax, (2.9) holds with 85, > o = 1.

For u € Hoz(Q) and € > 0, Remark 7.9 establishes (H4) with 84 < € for all the
three schemes. The existence and uniqueness of a discrete solution u;, then follows
from Theorem 4.1.

For the Morley/dG/COIP schemes with F € H2($2), Lemma 8.9.a with v = 0 for

S=idresp. S =1Im, || o |ln =~ || ® ||y, on V},, and the boundedness of /y; show

Ofor S = Q = J v,
hi=t for S =id or Iy.

max

IT (. u, (S = Q)o)llys <

The energy norm error control then follows from Theorem 5.1.

For F € H™"(2) with r < 2, the energy norm error estimate (8.6) with r = 0
can be established by replacing Lemma 8.9.a in the above analysis for » = 2 by
Lemma 8.9.b. O

8.6 Proof of Theorem 8.5

This subsection establishes the a priori control in weaker Sobolev norms for the
Morley/dG/COIP schemes of Sect. 8.2. Given2 — o < s < 2,and G € H*(Q2) with
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|Gl g-s(q) = 1, the solution z to the dual problem (6.1) belongs to V N H*™5(Q) by
elliptic regularity. This and Lemma 7.3.d provide

Iz = Iazllpw < Wizl i) S Pl Gl () = hi. (8.12)

The assumptions in Theorem 6.2 with X;:=H?*(7) and zj,:=1j, Imz are verified to
establish Theorem 8.5.a-e. The control of the linear terms in Theorem 6.2 is identical
for the parts (a)-(e) and this is discussed first. The proof starts with a triangle inequality

lu —upllgs Ty < lu — Pupllps Ty + 1Pun — unll g (1) (8.13)

in the norm H*(7) = [[;o7 H*(T). The Sobolev-Slobodeckii semi-norm over €2
involves double integrals over €2 x €2 and so is larger than or equal to the sum of the
contributions over T x T for al.l 'Fhe triangles T € 7,i.e., ) yo7|® [hsry < 1@ |HX(.Q)
for any 1 < s < 2. The definition of || e || gs(¢7) for 1 < s < 2, Lemma 7.4.f with
t = 1and P = J I establish

| Pun —unllgsT) < 1Pup — Mh”Hl(T) + [Vpw(Pup — Mh)|11sfl(7’)
S hmaxllu — uplln + 1 Vpw(Pun — up)lgs—1 (1) (8.14)
The formal equivalence of the Sobolev-Slobodeckii norm and the norm by interpo-

lation of Sobolev spaces provides for g:=V,w (Puj — up), 0:=s — l and K € T
that

gloxy = CCKL Ol 2l 1815 (8.15)

The point is that a scaling argument reveals C (K, 6) = C(6) =~ 1 is independent of
K € 7 [10]. The Young’s inequality (ab <al/p+bi/qfora,b>0,1/p+1/qg=

_ 12000-1) 2(1-0) 20(1-0) N
1) leads (for a = hy Igll >, - b = g lg |H,(K), p = 1/(1—=0), and
g=1/0)to
2(1-0 20(0—1 2(1-0),.20(1—-6
Yo el 18l = 2 bk lel e B el k)
KeT KeT
< 17’832 + W7 &l 7 (8.16)

Since P = JIv and g = Vy (Puj, — uy), the estimates (7.8)—(7.9) with r = 6 show
h> < h1=9u — uy||;. This and Lemma 7.4.f for t = 2 provide
T g Lz(Q) p

max
17" €17 2y + 1A 815 7y S P It — I (8.17)

The combination of (8.15)—(8.17) reveals |Vpw (Pup —up)| gs—1(7y S hﬁlai [l —unlln
and, with (8.14),

IPup — unllgs 1y S Pagsllu — up . (8.18)

max
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This leads to the assertion for one term on the right-hand side of (8.13). To estimate
the second term, |[u — Puy|| gs s (7) = G(u — Pup), we verify the assumptions in
Theorem 6.1. The hypothesis (Hl) for the Morley/dG/C°IP schemes is derived in [11,

Lemma 6.6] for an equivalent norm (by Lemma 7.1) and Lemma 7.7 for R = J 1.
The conditions (2.3)—(2.6) also follow from Lemma 7.7 as stated in the proof of
Theorem 8.1. Hence, Theorem 6.1 applies and provides

lu — Pupllpscy = G — Pup) S lu —uplln(llz — zalln
+ llu —uplln) + Tpw (@, u, (S — Q)zp)
+ Tpw(Rup, Rup, Qzp) — U'(Pup, Pup, Qzp). (8.19)

Since || o [lag = || ® [lpw in V + M(7) (by Lemma 7.1), (8.12) establishes

Iz — znlln < h28 (8.20)

for the Morley/dG schemes with I, = id. Remark 7.9 and (8.12) establish (8.20) for
the COIP scheme. The combination of (8.19)—(8.20) reads

lu = Pupllgsery S i — wnlln iy + e — unlln) + Tpw (1, (S = Q)zn)
+ FpW(Ruh7 Ruh7 th) - F(Pl/lh, Puhv th) (821)

The combination of (8.13), (8.18), and (8.21) verifies, for each of the Morley/dG/COIP
schemes, that

lu — unll sy S M — upllnhzgs + llu — wnlln) + Tpw(u, u, (S — Q)zn)
+ Dpw(Rup, Rup, Qzp) — U'(Puy, Pup, Qzp). (8.22)

Proof of Theorem 8.5.a. The difference I'py(Rup, Rup, Qzp) — U'(Puy, Puy, Qzp)
vanishes for P = R = J v in each of the three schemes. The terms Iy (u, u, (S —
Q)zp,) in (8.22) are estimated below for S € {id, Iy, JIm} and F € H~2(2). Note
that Qzj,:=Jz = J vz, holds for the Morley scheme. For § = id and each of the
three discretizations, Lemma 8.9.a with v, = z;, provides

Cow(u, u, (1 — JI)zn) S hhatllull®lz — zulln S kgl

with (8.20) in the last step. For § = Iy, Lemma 8.9.a with v, = Imzj, and || e ||
|| ® |5 reveal

Cpw (e, u, (1 — J)Ivzp) < hiabllullllz — Ivznlln.

A triangle inequality and Lemma 7.7 for R = Iy provide ||z — Imznlln < (1 +
AR)lz—znlln S hﬁqa; with (8.20) in the last step. Altogether, we obtain I'py (u, u, (1—
D) Ivzn) < h37!75. The aforementioned estimates and (8.22) conclude the proof. O

~ 'max
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Proof of Theorem 8.5.b. All the terms except the last two in (8.22) are already estimated
in the proof of (a). For P = Q = J I and R = I, elementary algebra reveals

Cpw(Rup, Rup, Qzp) — U(Pup, Pup, Qzp)
= I'pw((R — P)uy, Ruy, Qz) + Upw(Pup, (R — Pup, Qzp)
= Ppw (1 = D) Ivun, I, I hazi) + Upw (S Iy, (1 — J) I, J Iazn)-
(8.23)

The bound || e [|pw < || ® ||, a triangle inequality, and Lemma 7.7 for R = Iy result
in

Nl — Ivunllpw < llu —uplln + lup — Ivuplly = 1+ ARl —uplln - (8.24)
as in Remark 2.8. This and Lemma 7.4.e prove
N = D Ivunllpw < e — Imunllpw S llu — wplln- (8.25)
A triangle inequality and (8.24)—(8.25) imply
Nl — T Imunllpw < llu — Ivunllpw + 1L = D vunllpw < llw — uplln. (8.26)
As in Remark 2.8, analogous arguments plus (8.20) provide

lz — vzallpw < (1 + ARz — zalln and llz — J Ivzallpw S 1z = zalln S Ao
(8.27)

Lemma 8.9.c and the equivalence || o ||, =~ || ® ||pw in V 4+ M(7) (by Lemma 7.1)
control the first term on the right-hand side of (8.23), namely

Tpw((1 = J) hviun, Ivten, I Iazn) S Bl — I llpw Il vt lipw 1 Tz -
The first factor is bounded in (8.24). Since the dual solution z € V N H*~5(Q) is

bounded in V' = H(Q) (even in H*™*(Q)), (8.27) reveals ||/ vz ll S 1. Since
I IMuhmpw 5 1 as well, we infer

Tpw (1 = J) Ittty Ittt I Iizi) < BAtllu — w1 (8.28)

max

The anti-symmetry of ', (e, o, ) with respect to the second and third variables allows
the application of Lemma 8.9.a to the second term on the right-hand side of (8.23),
namely

ow (It (1= J) It T Iazn) S a1 e e — Dt llpw Il Ivazal

1—1
S hmax”u - I/lh”h
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The last step employed (8.24) and the boundedness || J Invtup || + |/ Imzn | < 1 as well.
The combination of the previously displayed estimate with (8.28) and (8.23) leads to
Cpw(IMun, Imup, JIvzp) — U Ivqug, J Ivqup, I Ivzn) Shit e — upllp. (8.29)

The estimates of I'py (u, u, (S — Q)z;) from the above proof of Theorem 8.5.a, (8.29),
and (8.22) conclude the proof.

Proof of Theorem 8.5.c. Since u;, = uy = Ivium, and P = Q = J, for the Mor-
ley FEM, the difference I'pw (um, um, J Imzn) — I'(Jum, Jum, J Ivmzp) is controlled
by (8.29). This, (8.22), and the estimates from the above proof of Theorem 8.5.a
conclude the proof. O

Proof of Theorem 8.5.d. The choice t:=s — 1 > 0 in the estimates in (a)-(c) concludes
the proof. O

Proof of Theorem 8.5.e. For F € H ™" (2) with r < 2, the lower-order error estimates
can be established with + = 0 by the substitution of the respective assertions of
Lemma 8.9.a,c by Lemma 8.9.b,d. O

Remark 8.10 (weaker Sobolev norm estimates with R = id) For the dG/C°IP schemes,
(8.23) involves in particular 'y ((1 — J InDup, up, J Imz;,) and improved estimates
are unknown.

8.7 WOPSIP scheme

Recall aj, (e, ®) = apy (e, @) + Cp(e,0), P = Q = JIy and ¢; (e, o) from Table 3,
apw/(e, ) from (7.1), and let u;, = up in this subsection. The norm || e |p from (7.6)
for the WOPSIP scheme is not equivalent to || e ||; from (7.2) and hence (H1) and
(Iﬁ) do not follow. This does not prevent rather analog a priori error estimates.

Theorem 8.11 (a priori WOPSIP) Given a regular root u € V to (8.3) with F €
H’z(Q), 2—0 <s <2 and0 <t < 1, there exist €,8 > 0 such that, for any
T € T(6), the unique discrete solution up € Vj, to (8.5) with |u — up|lp < € for the
WOPSIP scheme satisfies (a)—(e).

@l —uplle S llu — hvaullpw + o7 Imullpw

n 0 forS = Jy,
=t for S = id or Iy.

max

Moreover, ifu € VN H* " (Q)with F € H(Q) for2 —o <r,s <2, then

D) llu — unllgs Ty S Ml — upllp(hags + llu — upllp)

0 withS=Jlu, .
+ { W35 for S = id or Iy 07 B=7 v
Ol —upll sy S Nl — up llp (ARSI 4 — g, 1)
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+{ 0 JorS=Jhw, for R:=1;.

h3-1=5 for § = id or Iy

max
(d) For o < 1, whence 1 < s < 2, and the WOPSIP scheme with R € {Iv, J Im},

Ofor S =JI\,
u—uplgser < lu—u (hzs—i- u—u )—i—
I sy S allp (Aax + |l nllp W2 for S = id or Iy,

max

(e)If F € H™" () for some r < 2, then (a)-(c) hold with t = 0.
The subsequent lemma extends (H1) in the analysis of the WOPSIP scheme.

Lemma 8.12 (variant of (H1)) There exists a constant Aw > 0 such that any v € V
and vy € Py(7T) satisfy

an (v, v2) — a(v, Qu2) < Aw (I(1 = ) vllpw + AT Ivvllpw) lv2]p-

Proof Note that c;(Imv, v2) = 0 forv € V and vy € P>(7) from Table 3 and the
definition of M(T). Utilize this in aj, (e, ®) = apw (e, ®) + C;, (e, o) to infer

ap(Iyv, v2) — a(v, Qvz) = apw((Im — Dv, v2) + apw(v, (1 = Q)v2).  (8.30)

Lemma 7.3.c implies
apw((l — v, vp) = 0.

Since apw ((1 — Iv)v, (1 — Im)v2) = 0 = apw (Imv, (1 — J)Imv2) from Lemma 7.3.c
and Remark 7.5,

apw (v, (1 — Q)v2) = apw (v, (1 = I)v2) + apw (v, (1 — J)Iyv2)
= apw(Imv, (1 = Iv)v2) + apw((1 = Im)v, (1 = J)Imv2)
< llhg Ivllpwliaz' (1 = Ip)v2llpw + (L = )vllpwll (1 = J) vz llpw-

Since Lemma 7.4.g provides 17" (1 = lv)vallpw + 11 = ) vz llpw < 12, this
proves

apw (v, (1 = Q)v2) S (lhr Imvllpw + (1 = Iv)vllpw) llv2[lp- (8.31)
The combination of (8.30)—(8.31) concludes the proof. O

Proof of (H2)-(H4) for the WOPSIP scheme. For a regular root u € V to (8.3) and
any On € Po(T) with ||6]lp = 1,Lemma 8.8.b, || e ||pw < || ® ||p, and Lemma 7.1 lead
to b(ROh, o) € H™!'71(Q) for R € {id, In, J Inm}. Therefore, there ex1sts a unique
£ =E(0y) € VN HT(Q) with &l 3—1(q) S 1 such that a(§, ¢) = b(RQh,gb) for
allg € V. Since I, =idand || e |[p = || ® [lpw in V +M(7) from (7.6), Lemma 7.3.d

leads to (H2) with 8, = sup{|§ — Iy Ivi&llp : O € Po(T), [1hllp = 1} < Al

~ ""max*
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The proof of (H3) starts as in (8.11) and concludes 83 < h}n’a,’( from | e |y S|l e]p
by Lemma 7.1.
The hypothesis (H4) with 64 = |lu — x;||p < € follows from Remark 7.9. O

Proof of discrete inf-sup condition. The proof of By 2 1 in (2.9) follows also for the
WOPSIP scheme the above lines until (2.17) with §:=A_l (Z(Rxh, e)|y) € X.Recall
that (2.2) leads to x;, +&;, € P»(7) and then to some ¢y, € P»(7) with ||¢p|lp = 1 and
apllxn + Enllp = an(xp + &, ¢p); this time € = 0 can be neglected. An alternative
split reads

apllxp +&pllp = an(xn, dn) + anEp, on) — a(€, Opn) +a(€, Ogn).  (8.32)

Lemma 8.12, &, = Iv&, and [|(1 — Iv)&llpw S 625 h1= from (H2) provide

max

ap&n, dn) —a&, Qdn) < 82 + lhr Ivé llpw- (8.33)

The arguments in (2.20) lead to a(§, Q¢p) < E(Rxh, Sén) + §3. The combination of
this with (8.32)—(8.33) provides

Ik + Enllp < an(xn, dn) + b(Rxn, Shp) + 82 + 83 + a7 IvE llpw- (8.34)

Replace (2.21) by (8.34) and apply the arguments thereafter to establish the stability
condition (2.9) with Bo:=apB — (Aw + ap)é2 — 83 — Awllh7IMmEllpw for some
Aw 5 1. O

Proof of existence and uniqueness of the discrete solution. The analysis follows the proof
of Theorem 4.1 verbatim until (4.6). Instead of (H1), Lemma 8.12 and x;, = Ipmu
in (H4) control the first two terms on the right-hand side of (4.6), namely

ap(xp, yn) —a(u, Qyn) = Aw (84 + llhr Ivullpw)-

The remaining steps follow those of the proof of Theorem 4.1 with (4.1) replaced by

o= (Aw + (1 + AR IR IS vtellpw + 1QIH 12111 T )84
+ AwllhT Ivtllpw + Il pw s /2).

O
Proof of Theorem 8.11.a. Recall from Lemma 5.2 that u* € X and G(e) = a(u*, ) €

Y*,uy € Xpanday(uj, ) = G(Qe) € Y, Inthe proof of Lemma 5.2, set x;:=Iyvju*
so that Lemma 8.12 implies

aollenllp <an(xn, yn) —a@™, Qyn) < Aw(lu™ — Iviu™ |l pw
+ a7 hvue™ lpw).
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Therefore, u™ and uj; in Lemma 5.2 satisfy |[u™ —uj|lp < C{lolllu* — Ivu™ lpw + ao_l
Aw g Ivite*llpw for Cly = 1+ o5 Aw.

The hypotheses (2.3)—(2.6) follow from Lemma 7.7; (H2)-(H4) are already verified.
The error estimate in Lemma 5.2 applies to Theorem 5.1 with xj, = Iyu and || e ||p =
l ® llpw in V' + M(T) and establishes

e = unlle S Nl — Iaellpw + N Ivatellpw + 1T e, 2, (S — Q)e)lly;

For u € V, the last displayed estimate, Lemma 8.9.a with v = 0 for S = id (resp.
with vy € M(7) for S = Iy), Lemma 7.1, and the boundedness of Iy; conclude the
proof. O

Proof of Theorem 8.11.b. A triangle inequality leads to

lu —upllgscry < llu — Pupllgsery + | Pup — upllgs T

with G(u— Puy) = |lu— Puy || s 7)owing to a corollary of the Hahn-Banach theorem
as in the proof of Theorem 6.2 in the last step. Since z € Y solves (6.1), elementary
algebra with (3.3)—(3.5) and z;,:=1Imz € Y}, lead to an alternative identity in place of
(6.3), namely

G(u — Pup) = (a +b)(u — Pup, z) = a(u, z — Qzp) + apw(up — Pup, 2)
+b(w — Pup,z— Qzp) +b(u — Puy, Qzp)
+ Tpw(Rup, Rup, Szp) — T (u, u, Qzp) (8.36)

with aj, (up, zp) = apw(up, z) from Lemma 7.3.c in the last step. Since apy (Imu, Z —
Qzp) = 0 from Lemma 7.3.c and Remark 7.5,

a(u,z— Qzp) = apw(u — Ivu, z — Qzp) = (1 + AQ)llu — Imullpwllz — 2 llpw

with boundedness of apy (e, @) and (2.11) in the last step. A triangle inequality shows
that

Nl = Ivullpw =< llu — wnllpw + Nun — Ivuenllpw + 1@ — up)llpw < llu — unllp
(8.37)

with || @ lpw < [l e llp, [(1 — Im)upllp < Arllu — up|lp from Lemma 7.7, and

v — up)llpw < llu — upllpw in the last step. Arguments analogous to (8.31) and

Lemma 7.4.g with v = u lead to

apw(up — Pup, 2) S (lh hvzllpw + (1 = Iv)zllpw) llu — ullp. (8.38)

The combination of (8.36)—(8.38) and the estimates for the remaining terms in the
right-hand side of (8.36) from the last part (after (6.4)) of the proof of Theorem 6.1
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result in

G — Pup) S llu—unllp(lz — zullpw + Wz znllpw
+ llu —unllp) + Tpw(u, u, (S — Q)zn)
+ Cpw(Rup, Rup, Qzpn) — U'(Pup, Pup, Qzn)- (3.39)

Since z;, = vz, Lemma 7.3.d provides ||z — zxllpw S h2-s and ||h7z) llow < Amax-
Lemma 7.4f and || e ||, < || e |lp (by Lemma 7.1) establish || Pup — upllgs(1) S

hrzn’a; |u — up||p. The combination of those estimates with (8.35) and (8.39) reveals

lu —upll sy Sl — unllp (bt + e — upllp) + Tpw (e, u, (S — Q)zp)
+ Upw(Run, Rup, Qzn) — U'(Pup, Pup, Qzn).

The last three terms in the above inequality can be estimated as in the proof of Theo-
rem 8.5.a with || @ ||, < || e ||p (by Lemma 7.1) and this concludes the proof. |

Proof of Theorem 8.11.c. The arguments in (b) and Theorem 8.5.b establish (¢). O
Proof of Theorem 8.11.d. The choice :=s — 1 in (b)-(c) concludes the proof. O

Proof of Theorem 8.11.e. For F € H~"(2) with r < 2, the a priori error estimates
can be established with ¢+ = 0 by a substitution of the assertions in Lemma 8.9.a,c by
Lemma 8.9.b,d.

9 Application to von Karman equations

This section verifies (H1)-(H4) and (ffl), and establishes (A)-(C) for the von Karman

equations. Sects. 9.1 and 9.2 present the problem and four discretizations; the a priori
error control for the Morley/dG/C°IP/WOPSIP schemes follows in Sect. 9.3-9.6.

9.1 Von Karman equations

The von Kdrman equations in a polygonal domain  C R? seek (u, v) € HOZ(Q) X
Hg(Q) =V x V =: V such that

1
A%u = [u,v] + f and A%:—E[u,u] in Q. ©.1)
The von Kédrman bracket [e, o] above is defined by [17, x 1:=0xx Xyy+1yy Xxx —20xy Xxy

for all n, x € V. The weak formulation of (9.1) seeks u, v € V that satisfy for all
(01, 92) €V

a(,pr) +y@,v,91) +yQ@,u,¢1) = f(p) and a(v, p2) — y (U, u, ¢2) =0
9.2)
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1

with y(n, x, ¢):= — 3 / [n, x]pdx forall n, x, ¢ € V and a(e, e) from (8.2).
Q

For all E = (&1, &), ® = (61, 62), and ® = (@1, ¢2) € V, define the forms

A©®, @) :=a(b, ¢1) + a6, ¢2),
I'(E, 0, ) :=y¢1,02,01) +y(&, 01, 01) — y(&1, 01, ¢2), and F(P):=f(p1).

Then the vectorised formulation of (9.2) seeks ¥ = (u, v) € V such that
NW;, ®)=AN, D)+ TV, ¥, D) — F(®) =0 foralld e V. 9.3)

The trilinear form I'(e, e, @) inherits symmetry in the first two variables from
y (e, o, ). The following boundedness and ellipticity properties hold [5, 16, 22]

A@©, @) < |O]lI®], IO]* < A(®, ©), and T'(E, ®, ®) S IE[IONIP].

9.2 Four quadratic discretizations

This subsection presents the Morley/dG/C°TP/WOPSIP schemes for (9.3). The spaces
and operators employed in the analysis of the von Kdrman equations given in Table
5 are vectorised versions (denoted in boldface) of those presented in Table 3, e.g.,
Iy = Iy x Iv. Recall apy (o, ) from (7.1) and define the bilinear form a, : (Vi +
M(7)) x (Vi + M(7)) — Rby

ap(®, ®) 1= apy (61, ¢1) + b1, 1) + €1 (61, 1)
+ apw (02, ©2) + by (62, 2) + 1 (02, @2).

The definitions of by, and ¢, for the Morley/dG/C OIP/WOPSIP schemes from Table 3
are omitted in Table 5 for brevity. For all n, x,¢ € H Z(T), let Ypw (e, @, ) be the
piecewise trilinear form defined by

1
Yow(, X, @)i=— 7 E [7, x1p dx
K
KeT

and, for all E = (£, &), ® = (01, 62), ® = (g1, ¢2) € H*(T), let

F(E, ®» (D):ZFpW(E’ ®1 (D)::ypw(élv 927 (Pl) + pr(gz, 911 (pl) - J/pw(él, 017 (PZ)
9.4)

For all the schemes and a regular root W € V to (9.3), let E(o, 0):=2I"pw(¥, o, @) in

(3.2).For R, S € {id, Ivi, J Iy}, the discrete scheme seeks aroot Wj,:=(uy, vy) € Vy,
to

Nh(\llh; <I>h)::ah (\I—’h, (Dh) + pr(R\I—’h, R\I/h, S@h) — F(JIMq)h) =0 for a11<I>h € Vh‘
9.5)
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Table 5 Spaces, operators, and norms in Sect. 9

Scheme Morley dG cOrp WOPSIP
Xp=Y, =V, M(T) Py(T) S3(T) Py(T)
X=Y=V=V+V, V +M(T) V+ Py(T) v+ S3(7) V+ Py(T)
lollg I'e llpw Il ellag Il o llp [ elp
P=0 J Iy JInv JIm

In id id Ic id
IXh:IVhZIhIM Iy It IcIy Iy

9.3 Main results

The main results on a priori error control in energy and weaker Sobolev norms for the
Morley/dG/C°TP/ WOPSIP schemes of Sect. 9.2 are stated in this and verified in the
subsequent subsections. Unless stated otherwise, R € {id, I'vi, J I} is arbitrary.

Theorem 9.1 (A priori energy norm error control) Given a regular root ¥ € V to
(9.3) with F € H2(Q), there exist €,8 > 0 such that, forany T € T(S), the unique
discrete solution VY, € Vj, to (9.5) with |V — Y|, < € for the Morley/dG/COIP
schemes satisfies

0for S = J1w,

U — Uyl < min |V — W), +
Il nln S w,ev, I nlln hmax for S = id or .

The a priori estimates in Table 1 hold for von Kdrman equations component-wise for
FeH(Q),2—0 <r<2and¥ € VNH*"(Q).

Remark 9.2 (Comparison) Suppose W € V is a regular root to (9.3) with F € H™2(2)
and S = JI'v. If hnmax is sufficiently small, then the respective local discrete solutions
WM, Yag, Yip € V), to (9.5) for the Morley/dG/C OIP schemes satisfy

W — Wnills ~ W — Waglls ~ 1@ — Wiplly ~ (1 = T)D* W] 2. O

Theorem 9.3 (a priori error control in weaker norms) Given a regular root V €
VNH*(Q) to (9.3) with F € H™(Q) for2 —o <r,s <2, there existe,§ > 0
such that, for any T € T(8), the unique discrete solution V;, € Vj, to (9.5) with
¥ — Wyl < € satisfies

0for S = JIwm,
h3=3 for § = id or I'y

max

I — Wyl () S I — Wyl (Aas + 19 — Wy ll) + {

(a) for the Morley/dG/C°IP schemes and R = {JIw, Im) and (b) for the Morley
scheme and R = id.
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Theorem 9.4 (a priori WOPSIP) Given a regular root ¥ € V to (9.3) with F €
H’Z(Q), there exist €, 8 > 0 such that, for any T € T(8), the unique discrete solution
Wy, € Vy to (9.5) with |V — Wy |lp < € for the WOPSIP scheme satisfies

0for S = JIw,
a)||¥v — ¥ S — IyY + [|h7 I +
@]l nlp S MY lpw + A7 IVl pw {hmaxforSzid or Int.

Moreover, if F e H"(Q) for2 —o <r,s <2and R € {J Iy, I}, then

0for S = JIwm,
35 for S = id or Iy.

max

O — Wl (1) S 1Y — Wpllp (Aigs + 1Y — Wpllp) + {

9.4 Preliminaries

Two lemmas on the trilinear form ",y (e, o, ®) from (9.4) are crucial for the a priori
error control.

Lemma 9.5 (boundedness) For any 0 < t < 1 there exists a constant C(t) > 0 such

that any ®, % € V+ P>(T), E € V+M(T), and E € V satisfy

(@)Tpw(®, X, &

) SN @lpwlI K llpwll Ellpw and
()T (D, X, E) <

C(l)|||6|||pw|||7|||pw||5||H1+r(9).
Proofof (a). The definition of ypw(e, e, ¢), Holder inequalities, and || o || 1)

Il ® llpw in V + M(7) from [8, Lemma 4.7] establish, for ¢, x € V + P»(7),
€ V +M(7), that

3
3

-~

Yow (@, X2 §) = Nllpw X NpwlI& o) S Npllpw X Mpw & llpw-

Proofof (b). For ¢, ¥ € V + P»(T) and £ € V, the definition of ypy(e, e, e),
Holder inequalities, and the continuous Sobolev embedding H'!*(Q) — L*>(Q)
[4, Corollary 9.15] for ¢ > 0 show

Yow (@, X, ) < I@llpwll Xllpw 1€ o2y < |||$|||pw|||?|||pw||$||H1+r(gz)-
This and (9.4) conclude the proof. O

Lemma 9.6 (approximation) Anyx € V+P,(7), ®,v € V,and (v2, vm) € P2(7T)x
M(7) satisfy

(a) Tpw(®, X, (1 = JIv)V2) < hmax 1PN X MpwllV — V215,
(b) Tpw((1 = D)vm, V2, @) S hmaxlV — YMllpwllv2llpw I DI
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Proofof(a). For ¢ € V,x € V + P,(7) and v, € P,(7T), the definition of
Ypw(e, @, @), Holder inequalities, and an inverse estimate a7 ||(1 — J Im)vall oo (T) <
||(1 — JIM)v2||L2(T) lead to

Yow (@, X, (1 = T Ivp)v2) <l@ll X Npwll (1 — T Iv)v2 [l o)
N A I";ﬂ”pw”l’l'}l(l — JIv)vall.

This, Lemma 7.4.f, and the definition of I'py (e, e, @) conclude the proof of (a).

Proofof (b). For ¢ € V, vy € P»(7), and vyy € M(7), an introduction of ITy¢ and
Ypw((1 = J)vm, v2, [Togp) = 0 from Lemma 7.3.c and Remark 7.5 provide

Yow((I = Som, v2, @) = ypw (1 = J)vm, v2, ¢ — o). (9.6)

Holder inequalities and the estimate ||¢p — o[l L) S Amaxll@ll [15, Theorem
3.1.5] provide

Yow((1 = Dom, v2, ¢ — o) Shmax (1 = DHomllpw llv2llpwll¢ll
Shmaxllv — vmllpw llv2llpw 1@l

with [|(1 = Domllpw S llv — vmllpw from Lemma 7.4.¢ in the last step. Recall (9.4)
and (9.6) to conclude the proof of (). O

9.5 Proof of Theorem 9.1

The conditions in Theorem 5.1 are verified to establish the energy norm estimates. The
hypotheses (2.3)—(2.6) follow from Lemma 7.7 (component-wise). The paper [11] has
verified hypothesis (H1) for Morley/dG/C OIP in the norm || e ||;, that is equivalent to
Il '® llpw, Il ® llag, and || e |lip by Lemma 7.1.

For any 6, € V;, with [|04]ly, = 1, Lemma 9.5.b with || e [[,w < || ® [|; implies
b(Roh, o) € H!7(Q) for R € {id, Iv, J Ivi}. Therefore, there exists a unique
x € VN H>™(Q) with X I3 (@) < 1 such that A(yx, ®) = b(Roh, @) for all
® e V. Hence, for Morley/dG schemes (resp. C°IP scheme), the boundedness of R
(from Lemma 7.7), Lemma 7.1 (resp. Remark 7.9), and Lemma 7.3.d provide (H2)
with 8 < hlot.

The proof of (H3) starts as in Sect. 8.5 and adopts Lemma 9.6.a (in place of
Lemma 8.9.a) to establish (8.11) with 7 = 0 and the slightly sharper version 83 < hmax.

Since §3 = 0 for S = Q = JI\, it remains S = id and = Iy in the sequel to
establish (H3). Given y; and 0, € V;, of norm one, define vo:=Sy, € P»(7) and
observe Qy;, = JImy, = JImv2 (by S = id, Iv). Hence with the definition of
Z;(o, o), Lemma 9.6.a shows

B(ROK. (S — Q)yy)| = [B(ROK. va — TInv2)| S Pnax eI RO Npw 1 ¥2 -

The boundedness of R and Iy and the equivalence of norms show || RO [lpw [v2lln < 1
and hence 83 < hmax.
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As in the application for Navier-Stokes equations, Remark 7.9 leads to hypothesis
(H4) with §4 < €. The existence and uniqueness of a discrete solution W, then follows
from Theorem 4.1.

Note that for v, € M(7), Qvy, = JImvy,. For Morley/dG/COIP, Lemma 9.6.a with
v =0 for § = id; and Lemma 9.6.a with v; € M(7) and v = 0 for § = I'y; show

0 for S = J1y,

’1—: lIJ, llj, S_ e <
IT( (S—Qe)lv: < Bmax for S = id or Iy

The energy norm error control then follows from Theorem 5.1. O

9.6 Proof of Theorem 9.3

Given2 —o0 < s < 2and G € H(Q) with [|Gllg-sq) = 1, the solution z € V
to the dual problem (6.1) belongs to V. N H*~5(2) by elliptic regularity. This and
Lemma 7.3.d verify

2— 2—s
llz = Imzllpw < Pmax 12 lHe-s (@) S Pimax- 9.7

Proof of Theorem 9.3.a. for R = JIy. The assumptions in Theorem 6.2 with
X:=H?*(7) are verified to establish the lower-order estimates. Hypothesis (I—ﬁ) for
Morley/dG/COIP schemes is verified in [11, Lemma 6.6] for an equivalent norm
(with Lemma 7.1) and Lemma 7.7 for R = J Iy (applied component-wise to vec-
tor functions). The conditions (2.3)—(2.6) follow from Lemma 7.7. In Theorem 6.2,
setzp, = I Iz with I, = id for Morley/dG resp. I, = I for CYTP. Notice that 9.7
implies

Iz — zalln < higs 9.8)

for Morley/dG with || e [l4q ~ || ® llpw in V + M(7). Remark 7.9 and (9.7) provide
(9.8) for COIP. For Morley/dG/C°IP, Lemma 7.4.f implies ||¥, — P, las () S
s W — Wiy

The difference I'pw (R, Ry, Qzp) — T'(PWY,, Py, th) vanishes for R =
J Iy = P (for all schemes). It remains to control the term I'(W, W, (S — Q)z;) for
S e {id, Iy, JIM}

For § = Q = JIm, I'pw (¥, ¥, (S — Q)z;) = 0. For § = id, Lemma 9.6.a and
(9.8) establish

Tow (¥, W, (1 = JIN)z1) < hnax ¥ 12112 — zlln S s

For S = I'y;, Lemma 9.6.a applies to v, = I'vizj. A triangle inequality and Lemma 7.7
reveal ||z — Imzulln Sz — znlln S hrzn_a;i with (9.8) in the last step. Hence,

Tow (¥, W, (Ivt — JI)2n) < hmax IV P11z = 20l S P

]
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Proof of Theorem 9.3.a. for R = Iy;. Elementary algebra and the symmetry of
[pw (e, @, @) with respect to the first and second argument recast the last two terms on
the right-hand side of Theorem 6.2 as

Cow(IMWn, ImYn, JIvmzn) — Tpw(J IMYn, JIMVYh, JImzn)
=20 ((1 — DIy, Iy, JInmzy)
= Tpw((1 = DNIMmYn, (1 = DIMmYh, JImzn). 9.9

The arguments in (8.24)—(8.26) for (¥, W;,) replacing (u, uy,) and (9.8) reveal

I — InWhllpw S W — Wyl and Nz — J Ivzallpw < hipas-
This and Lemma 9.6.b for the first term in (9.9) (resp. Lemma 9.5.a and 7.4 .e for the
second) show

pr((l — DIy, Iy, JIvzp) ,S hmax [V — W |5
Ppw((1 = DIy, (1 = DI®h, JInzn) S I = DI IR, S 19 — W ;.

This leads in (9.9) to

CowIMYh, IMYh, JIvzp) — Dpw(JIMYh, JIMYy, JImzy)
S — Wy llp (hmax + 1Y — Wglln). (9.10)

The remaining terms are controlled as in the above case R = JIy. This concludes
the proof. O

Proof of Theorem 9.3.b. Since V), = I\yyW\,and P = Q = J for the Morley FEM, the
last two terms of Theorem 6.2 read I'pw (WM, WM, J IMzp) =T (J WM, JWM, JImzn)
and are controlled in (9.10). This, Theorem 6.2, and the above estimates from the proof
for R = J Iy in (a) conclude the proof. O

Proof of Theorem 9.4. The proofs at the abstract level in Sects. 2-6 follow as further
explained for the Navier Stokes equations. A straightforward adoption of the arguments
provided in the proofs of Theorem 9.1 and 9.3.a lead to (H2)-(H4) and the a priori
error control. O
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