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Universal finite-time thermodynamics of many-body quantum machines from Kibble-Zurek scaling
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We demonstrate the existence of universal features in the finite-time thermodynamics of quantum machines
by considering a many-body quantum Otto cycle in which the working medium is driven across quantum critical
points during the unitary strokes. Specifically, we consider a quantum engine powered by dissipative energizing
and relaxing baths. We show that under very generic conditions, the output work is governed by the Kibble-Zurek
mechanism; i.e., it exhibits a universal power-law scaling with the driving speed through the critical points. We
also optimize the finite-time thermodynamics as a function of the driving speed. The maximum power and the
corresponding efficiency take a universal form, and are reached for an optimal speed that is governed by the
critical exponents. We exemplify our results by considering a transverse-field Ising spin chain as the working
medium. For this model, we also show how the efficiency and power vary as the engine becomes critical.
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I. INTRODUCTION

Advances in quantum science and technology have made
possible the laboratory implementation of minimal quantum
devices such as heat engines and refrigerators using a variety
of platforms that include trapped ions [1–3], nitrogen vacancy
centers [4], and nuclear magnetic resonance experiments [5].
Quantum engines (QE) transform heat and possibly other re-
sources into some kind of useful work [6]. Their study paves
the way for identification of quantum effects in their perfor-
mance. In particular, one may wonder whether there exist
scenarios exhibiting a quantum advantage with no classical
counterpart [4,7,8].

To a large extent, the study of quantum engines has
been restricted to single-particle systems [9]. Such devices
already display nontrivial features when their operation in-
volves quantum synchronization [10], nonthermal coherent
and squeezed reservoirs [11–14], quantum measurements
[15–17] and quantum metrology [18,19], the presence of
quantum coherence over sustained many cycles [20], or the
small action limit, when different cycles become thermody-
namically equivalent [21].
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Quantum thermal machines with many-body working
mediums (WMs) may allow us to harness many-body effects,
such as entanglement and other quantum correlations for op-
eration with enhanced power and efficiency [7]. Shortcuts to
adiabaticity have been shown to enhance the performance of
many-body quantum thermal machines [22]. Quantum statis-
tics can boost the performance of Szilard engines [23,24].
Similarly, the performance of quantum Otto cycles in both
the adiabatic [25] and finite-time operation [7] can exhibit
an enhancement due to bosonic quantum statistics, while a
detrimental one has been predicted in the fermionic case.
Other many-particle effects that can be harnessed for the en-
gineering of QE include super-radiance [26] and many-body
localization [27], while novel configurations become feasi-
ble, e.g., by using spin networks [28]. Many-particle QE are
also required for scalability and the possibility of suppressing
quantum friction during their finite-time operation [29–33],
which has been explored in the laboratory with trapped Fermi
gases [34,35].

Quantum criticality may offer new avenues to boost the
performance of heat engines, as a result of the diverging
length and timescales close to a phase transition [36]. The
enhancement of microscopic fluctuations to approach Carnot
efficiency in finite time was proposed in Ref. [37]. Further,
the scaling theory of second-order phase transitions has been
used to show that the ratio between the output power and
the deviation of the efficiency from the Carnot limit can be
optimized at criticality [38]. In adiabatic interaction-driven
heat engines, quantum criticality has also shown to optimize
the output power [39].

In this work, we introduce a quantum Otto cycle with a
working medium that exhibits a quantum phase transition. In
particular, we consider the family of free-fermionic models
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that include paradigmatic instances of critical spin systems
such as the quantum Ising and XY chains, as well as higher
dimensional models. As a result, our setting is of direct rele-
vance to current efforts for building many-particle QEs, with,
e.g., trapped ions. We explore how signatures of universality
in the critical dynamics of the working medium carry over the
finite-time thermodynamics of the heat engine.

Remarkably, we show that the scaling of the work output of
such QEs with the driving time follows a universal power law
resulting from the Kibble-Zurek mechanism. This result paves
the way for the field of universal finite-time thermodynamics
describing quantum machines driven through quantum critical
points, which is the focus of our paper.

In Sec. II, we introduce the model of a many body Otto
cycle using a free-fermionic WM. We discuss Kibble-Zurek
scaling and its connection to the output work and power of
quantum Otto cycles in Sec. III A, while Sec. III B intro-
duces an efficiency bound depending on dynamical critical
exponent. We focus on the particular example of a transverse
Ising spin chain WM in Sec. IV, which is further divided into
two subsections depending upon the different phases the WM
explores during unitary strokes. We also provide analytical
expressions for the energies exchanged in each stroke and
compare them with numerics. Finally, we conclude in Sec. V.

II. MANY-BODY OTTO CYCLE

The use of spins as WM opens a wide range of oppor-
tunities recognized earlier [40,41]. Recent experiments have
implemented single-spin quantum heat engine [3,5] and test
fluctuation theorems in single strokes [42,43]. WM composed
of interacting spins such as multiferroics have been proposed
[44,45], and it has been shown that WMs with coopera-
tive effects boost engine properties [46]. Quantum critical
spin systems in quantum thermodynamics have also been
considered under adiabatic performance [47,48], shortcuts to
adiabaticity [49], and the limit of sudden driving [50,51]. Such
settings preclude the study of signatures of universality asso-
ciated with the quantum critical dynamics in the finite-time
protocols, which is our focus.

We consider an Otto cycle with a many-body WM, de-
scribed by the Hamiltonian

H =
∑

k

�
†
k H̃k�k,

H̃k = (λ + ak )σ z + bkσ
+ + b∗

kσ
−, (1)

with σ+ = (σ x + iσ y)/2, σ− = (σ x − iσ y)/2, and σ x, σ y,
σ z being the usual Pauli matrices. Here H̃k is a 2 × 2 ma-
trix in a basis given by �

†
k = (c†

1k, c†
2k ), where c jk, c†

jk ( j =
1, 2) are fermionic operators for the kth momentum mode.
Such a Hamiltonian includes widely studied models, such
as the transverse-field Ising and XY chains [52–56], and
the two-dimensional Kitaev model [57–59], through suitable
choices of λ, ak , and bk . This Hamiltonian exhibits a quan-
tum critical point (QCP) at λ = λc, when the energy gap
� = 2

√
(λc + ak )2 + |bk|2 between the ground state and first

excited state vanishes for the critical mode k = kc. The density
matrix of such a system can be written in a basis consisting
of |0, 0〉, |11k, 0〉, |0, 12k〉, |11k, 12k〉, where the first index

corresponds to the presence (1) or absence (0) of c1k fermion.
Similarly, the second index corresponds to c2k fermions. It
is to be noted that the unitary dynamics generated by the
Hamiltonian H̃k mixes |11k, 0〉 and |0, 12k〉 only. As we shall
see later, the nonunitary dynamics allows mixing along the
other two basis too [60,61]. We denote the full 4 × 4 Hamil-
tonian matrix by Hk .

Before dwelling on the dynamics in Fourier space, let us
briefly discuss its real space counterpart. One of the prominent
instances within the family of Hamiltonians in Eq. (1) is that
of the Ising and the XY models in a transverse field (we
assume a ring geometry) which takes the real-space form

H = −
∑

i

Mi
(
c†

i ci+1 − cic
†
i+1

) + Ni
(
c†

i c†
i+1 − cici+1

)

+ Ri
(
c†

i ci − cic
†
i

)
. (2)

Here i denotes the site index, ci, c†
i are Fermionic annihilation

and creation operators, respectively, and Mi, Ni, Ri are scalars
[53]. Such a Hamiltonian can be generated, for example, using
a WM consisting of interacting fermions in an optical lattice
setup [62]. If Mi, Ni, and Ri are site independent, one can
perform Fourier transform of the Hamiltonian to express it in
the form of Eq. (1). We shall discuss more on this Hamiltonian
in Sec. IV.

The quantum Otto cycle alternates between unitary and
nonunitary strokes. We now describe below the four general
stages of the Otto cycle in details (see Fig. 1):

(1) Stroke 1 (A → B): The WM is subjected to a constant
Hamiltonian [Eq. (1)] with λ = λ1, while being coupled to
a dissipative energizing bath BE for a time τE as shown in
Fig. 1(a), thus resulting in nonunitary dynamics. We assume
τE to be large enough so that the WM reaches the steady state.

In general, the dissipative dynamics undergone by the den-
sity matrix ρ(t ) is given by

dρ

dt
= −i[H, ρ] + D[ρ] (3)

with h̄ set to unity, and D[ρ] is the nonunitary part of the
dynamics generated due to the interaction of the system with
the bath. The exact form of D[ρ] depends upon the nature of
the bath and its interaction with the system. Here we consider
baths with unique steady states. This can be achieved, for
example, by coupling the WM to a thermal bath at a finite
temperature.

Alternatively, one can consider Markovian baths coupled
locally to the Fermionic modes shown in Eq. (2), with D[ρ]
given by

D[ρ] =
∑

i

κ̃i

(
LiρL†

i − 1

2
{ρ, L†

i Li}
)

. (4)

Here κ̃i is related to system-bath coupling strength for the
site i, and Li are local Lindblad operators that describe the
interaction of the Fermion at site i with the bath. For Li =
ci [see Eq. (2)] and site independent κ̃i, it can be shown
that the Fourier transform of D[ρ] does not mix different
modes, so that we arrive at mode-dependent noninteracting
local baths in the free-fermionic representation in momentum
space. The existence of noninteracting fermionic modes im-
plies the state ρ(t ) of the many-body WM can be written as
ρ(t ) = ⊗

k ρk (t ), with the time evolution of ρk (t ) given by the
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FIG. 1. Schematic diagram of a many-body quantum Otto cycle:
(a) Schematic diagram of a quantum Otto cycle with a many-body
system as the working medium. We get a net output work in the
heat engine regime (shown by the glowing light bulb). (b) In the
equivalent momentum space, the interacting many-body QE can be
represented by independent quantum thermal machines correspond-
ing to the different decoupled Fermionic k modes, each acting as a
heat engine (shown by glowing light bulbs), as a refrigerator (shown
by the snowflake), or even as a heat distributor (not shown here).

differential equation [60,61]

dρk

dt
= −i[Hk, ρk] + Dk[ρk],

Dk[ρk] = κE
1

(
c1kρkc†

1k − 1

2
{c†

1kc1k, ρk}
)

+ κE
2

(
c†

1kρkc1k − 1

2
{c1kc†

1k, ρk}
)

+ κE
3

(
c2kρkc†

2k − 1

2
{c†

2kc2k, ρk}
)

+ κE
4

(
c†

2kρkc2k − 1

2
{c2kc†

2k, ρk}
)

. (5)

Here κE
j ( j = 1, 2, 3, 4) are positive constants related to

the energizing bath, which depend on the coupling strength
between the WM and the bath. The energy exchanged in this
stroke is denoted as Qin.

(2) Stroke 2 (B → C): The system is decoupled from the
bath at B and λ is varied linearly in time as t/τ1 from λ1 (at B)

to λ2 (at C) in a time interval τ1, such that the WM undergoes
a unitary dynamics described by

dρk

dt
= −i[Hk, ρk]. (6)

We consider λ1 > λ2 in this paper. Work is done on or by the
system in this stroke.

(3) Stroke 3 (C → D): The WM is now coupled to a re-
laxing bath BR at C of Fig. 1(a), for a time duration τR, at a
constant λ = λ2. The evolution equation will be similar to that
given in Eq. (5) with appropriate couplings κR

1 . . . κR
4 related

to BR. Quantum critical dynamics are more pronounced for
systems close to their ground states. Consequently, universal
scaling behavior is to be expected by considering a relaxing
bath which takes the WM to its ground state in this stroke. In
principle, we can tune the relaxing bath coupling parameters
such that it either takes the system to its ground state or to
some steady state corresponding to the bath parameters.

We denote the energy exchanged in this stroke with Qout.
(4) Stroke 4 (D → A): The system is decoupled from BR

and λ2 (at D) is varied back to λ1 (at A) linearly in a time
interval τ2 as t/τ2. Once again, work is done on or by the
system in this stroke.

One can operate the QE in a steady-state cycle, by repeat-
ing the above described cycle. It is to be noted that depending
upon the values of λ1 and λ2, we may or may not cross the
critical point. We consider both of these possibilities in this
paper.

At the end of any stroke, the energy of the system is
calculated using

E = Tr(Hρ) =
∑

k

Tr(Hkρk ). (7)

We choose the parameters κE
1 , . . . , κE

4 , κR
1 , . . . , κR

4 , λ1, and
λ2 such that energy Qin is absorbed when coupled to BE

in stroke 1, while a smaller amount Qout is released when
coupled to BR in stroke 3, such that the setup operates as a
heat engine, with a net output work W = −(Qin + Qout ). We
assume the following sign convention for the energy flows:
Qin, Qout,W are positive (negative) if the WM energy in-
creases (decreases). For the Otto cycle to operate as a heat
engine, we need Qin > 0, Qout < 0,W < 0. On the other
hand, Qin < 0, Qout > 0, W > 0 correspond to a refrigera-
tor, and Qout < 0, W > 0 denotes a heat distributor [63]. We
characterize the performance of the heat engine in terms of its
efficiency η

η = Qin + Qout

Qin
= − W

Qin
(8)

as well as the power output P

P = −Qin + Qout

τtotal
, (9)

where τtotal = τE + τR + τ1 + τ2 is the total cycle time. For a
WM that can be described in terms of noninteracting momen-
tum modes as shown in Eq. (1), it follows that

Qin =
∑

k

Qin(k); Qout =
∑

k

Qout (k), (10)
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where Qin(k), Qout (k) denote the energy flows corresponding
to the kth mode. We note that even if the complete setup
acts as a QE, the individual fermionic modes may act as QE,
refrigerator, or heat distributor, depending on the details of the
operation and WM; see Fig. 1(b).

III. UNIVERSAL THERMODYNAMICS

A. Universal Kibble-Zurek scaling in output work

Two of the strokes of the Otto cycle perform unitary dy-
namics during which a quantum critical point may be crossed
depending upon λ1 and λ2. The universal dynamics in terms
of excitations produced due to diverging relaxation time at
the critical point is a well-studied subject [64–67] and can be
explained through the adiabatic-impulse approximation [68].
Consider a system which is initially prepared in the ground
state of a time-dependent Hamiltonian such that it crosses the
critical point linearly as t/τ . The amount of density of defects
(excitations) with respect to the ground state corresponding to
the Hamiltonian at final time follows a universal power law
with the rate of variation 1/τ . The exponent of the power
law is dependent on the equilibrium critical exponents of the
quantum critical point crossed. This power-law relation is
known as Kibble-Zurek scaling and is given by [69,70]

nex ∼ τ− νd
νz+1 , (11)

where nex denotes the density of excitations, d is the dimen-
sionality of the system, and ν, z are the correlation length
and dynamical critical exponents, respectively. The density of
excitations nex in turn gives rise to the excitation energy Eex,
i.e., the energy of the system above the instantaneous ground
state, which can also be expected to scale with the rate of
quench 1/τ [60,69,71]. Signatures of Kibble-Zurek mecha-
nism have also been verified experimentally in transverse-field
Ising model, using trapped ions [72] and a quantum annealer
[73].

These universal signatures may govern quantum Otto en-
gines under the following very generic conditions:

(1) The relaxing bath BR takes the WM close to its ground
state. This is one of the important conditions in order to arrive
at the scaling derived below.

(2) The WM is driven at a finite rate across a quantum
critical point (or points) during the unitary stroke D → A; i.e.,
τ2 is finite.

(3) The energizing bath BE takes the WM to a unique
steady state with high entropy.

The first condition of the relaxing bath BR taking the WM
close to its ground state can be realized for example by con-
sidering BR to be a cold thermal bath at temperature Tc much
smaller than the energy scale EWM associated with the WM,
where EWM ∼ L−z for L � |λ − λc|−ν and EWM ∼ |λ − λc|νz

for L � |λ − λc|−ν [36]. Similarly, one can realize the last
condition of the WM being in a high-entropy state at B by
considering a thermal energizing bath BE with temperature
Th � EWM, such that the corresponding steady state of the
WM is close to a maximum entropy state, which in general is
the unique state with all the energy levels equally populated.
Therefore, for the practical scenario of a WM with finite L,
and therefore finite EWM, finite values of Tc and Th would

suffice, as long as the above conditions are met. The unitary
stroke B → C cannot change the entropy of the WM; i.e., all
the energy levels need to be equally populated at C as well, in
order to preserve the entropy. Consequently, the states of the
WM at C and B remain approximately equal, for any value
of τ1. We note that the states of the WM at C and B can also
be approximated to be equal if the WM is quenched rapidly
across the quantum critical point during the unitary stroke B
→ C, i.e., τ1 → 0, for any form of BE or of the state of the
WM at B. This is needed in order to write an expression for
work done which is only related to the excitations in the stroke
D to A as discussed below.

The work done is given by

W = −(Qin + Qout ),

Qin = EB − EA = EB − EG
A − Eex,A,

Qout = EG
D − EC, (12)

where EA, EB, and EC are the energies of the WM at A, B,
and C, respectively; EG

A and EG
D are the ground-state energies

of the WM at A and D, respectively; while Eex,A denotes the
excitation energy of the WM at A. The implementation of the
engine ensures that EG

A , EB, EC, and EG
D are independent of τ2,

while the Kibble-Zurek mechanism manifests itself through
the presence of Eex,A in the output work:

W − W∞ = Eex,A. (13)

Here W∞ = −(EB − EG
A + EG

D − EC) is the work output in the
limit τ2 → ∞, which depends only on λ1, λ2, and the steady
state of the bath BE. Remarkably, as seen above [Eq. (13)],
the output work shows the same scaling with τ2 as the excess
energy, up to an additive constant. For a quench that ends at
the critical point, one arrives at a universal scaling relation
[74,75]

Eex,A ∼ τ
− ν(d+z)

νz+1
2 (14)

or W − W∞ ∼ τ
− ν(d+z)

νz+1
2 . (15)

By contrast, for quenches across the critical point, the excess
energy is not universal in general. Yet, for systems and quench
protocols in which the excess energy is proportional to the
density of defects, such as the examples we consider below,
the scaling (15) is modified as

W − W∞ ∼ τ
− νd

νz+1
2 . (16)

The above results, (13), (15), and (16), are the highlights
of our paper. They establish a connection between Kibble-
Zurek mechanism, which has been traditionally studied in the
context of cosmology [76–78] and quantum phase transitions
in closed quantum systems [56,64,65], and the quantum ther-
modynamics of QE.

Universal scaling relations in systems driven through
quantum critical points have been widely studied in closed
quantum systems [55,56,64–66]. However, whether such scal-
ing forms hold in the presence of dissipation is a delicate
question with no unique answer [73,79–82]. Signatures of
quantum phase transitions arise due to vanishing energy gaps
close to criticality. Naturally, thermal fluctuations can be ex-
pected to destroy or significantly affect these signatures at any
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nonzero temperature [36]. This effect can be even more pro-
nounced in quantum machines that generally involve multiple
unitary and nonunitary strokes. In this context, one can fol-
low the design presented here to engineer quantum machines
powered by dissipative baths and that exhibit a performance
governed by the universal Kibble-Zurek scaling, in spite of
the presence of the multiple unitary and nonunitary strokes.
This possibility is remarkable as signatures of quantum criti-
cal dynamics are generally suppressed in quantum machines
not fulfilling the above constraints encoded in the design; for
example, if the relaxing bath does not take the system close
to its ground state or if the steady-state of energizing bath
depends on the state of the WM at A.

One can easily extend these results to QEs involving
nonlinear quenches across quantum critical points, follow-
ing the results reported in Ref. [83]. The importance of the
Kibble-Zurek power-law scalings in the operation of quantum
machines stems from the identification of universal signatures
in the finite-time thermodynamics of critical QE, as well as
the optimization of their performance, to which we now turn
our discussion.

To this end, we note that in the limit of τtotal ≈ τ2 �
τ1, τE, τR, one can use (15) and (16) to derive a scaling relation
for the output power P

P = W
τ2

≈ W∞
τ2

+ Rτ
− νd+xνz+1

νz+1
2 , (17)

where R is the proportionality constant. Here x = 1 corre-
sponds to crossing the critical point and x = 2 is when λ1 is
set to its critical value. The optimal quench rate τ−1

2 = τ−1
opt de-

livering the maximum power can be found from the condition
∂P
∂τ2

|τopt
= 0, which yields

τopt =
[

R(νd + xνz + 1)

|W∞|(νz + 1)

](νz+1)/[νd+(x−1)νz]

, (18)

with the corresponding efficiency η̂ at maximum power being

η̂ = − W∞ + Eex,A(τopt )

EB − EG
A − Eex,A(τopt )

. (19)

The presence of Eex in W as well as in Qin renders the
corresponding efficiency η independent of τ2, for large τ2 as
shown clearly in Sec. IV.

Furthermore, one can use (15)–(19) to design optimally
performing many-body quantum machines operated close to
criticality, by judiciously choosing WMs with appropriate
critical exponents and dimensionality. For example, as one
can see from (16), other factors remain constant; enhancement
of output work would require choosing a WM with large
dimension d .

The net output work W might involve Kibble-Zurek scal-
ing arising due to the passage from B to C as well, for
example, if the WM remains close to its ground state at B
and τ1 is finite. In addition, the universal scalings in Eqs. (15)
and (16) would be modified in the case of sudden quenches
[74] or in presence of disorder [71].

We shall later exemplify the results (15) and (16) with the
transverse Ising model as a working medium which has a well-
studied quantum critical point.

B. Efficiency bound

One can arrive at a maximum efficiency bound ηmax of the
QE by defining a maximum possible temperature Tmax and a
minimum possible temperature Tmin. We design the QE such
that the maximum (minimum) possible energy gap �max =
{�(λ1, k)}max (�min = {�(λ2, k)}min) between two consecu-
tive energy levels is realized at λ1 (λ2), where the maximum
(minimum) is taken over all the k modes and energy gaps. For
sufficiently large λ1 [i.e., (λ1 − λc)νz � kz ∀ k], �(λ1, k) is
independent of k and is a function of λ1 alone. In analogy with
a thermal bath, we define Tmax through the following relation
[84]:

exp [−�max/Tmax] = κE
1 /κE

2 ,

Tmax := �max

ln κE
2

κE
1

. (20)

Similarly, one can define an analogous minimum possible
temperature through the relation

Tmin := �min

ln κR
2

κR
1

. (21)

Here we have assumed κ1/κ2 = κ4/κ3 for both the energizing
as well as the relaxing bath.

The net efficiency of the spin-chain QE is given by

η =
∑

k (Qin(k) + Qout (k))∑
k Qin(k)

=
∑

k η(k)Qin(k)∑
k Qin(k)

, (22)

where η(k) is the efficiency corresponding to the kth mode.
Therefore, defining ηmax = {η(k)}max, we get

η � ηmax

∑
k Qin(k)∑
k Qin(k)

= ηmax. (23)

For dissipative baths acting as thermal baths with mode-
dependent temperatures, the second law demands that each
η(k) should abide by the Carnot bound of maximum ef-
ficiency, with the temperatures of the hot and cold baths
depending on the mode k. Consequently, one can arrive at ηmax

through Tmax and Tmin defined above:

ηmax = 1 − Tmin

Tmax
= 1 − �min

�max

ln (κE
2 /κE

1 )

ln (κR
2 /κR

1 )
. (24)

The minimum possible nonzero energy gap �min between
two consecutive energy levels arise at the QCP (i.e., λ2 = λc),
when it assumes the value

�min = (2π/L)z, (25)

for a WM with length L [36]. Consequently, for a QE operat-
ing between a λ1 and λ2 = λc, we get

Tmin = (2π/L)z

ln κR
2

κR
1

(26)

and

ηmax = 1 − (2π/L)z

�max

ln (κE
2 /κE

1 )

ln (κR
2 /κR

1 )
. (27)
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As can be seen from Eq. (27), ηmax increases with increasing
system size L, thus showing a possible advantage offered by
many-body quantum engines over few-body ones.

Interestingly, as discussed above, ηmax is maximum for
an Otto cycle operating between a λ1 and the QCP λ2 = λc.
However, we note that ηmax in general does not provide a tight
bound. The equality in Eq. (23) can be expected to hold only
in the limit of a WM with mode-independent energy gaps.
Furthermore, as shown in the example of Ising spin chain in
the presence of a transverse field WM below, contrary to the
behavior of ηmax, the actual efficiency of the QE, even though
bounded by Eq. (24), may peak slightly away from the QCP.

We note that the effective temperatures defined in Eqs. (20)
and (21), and consequently also the efficiency bound (27),
depend crucially on the condition that the annihilation and
creation operators c jk, c†

jk cause transitions between adja-
cent energy levels for the j = 1, 2 fermions, such that the
dissipative baths act as thermal baths with mode-dependent
temperatures for each mode k.

IV. A TRANSVERSE ISING SPIN CHAIN
WORKING MEDIUM

We now exemplify the universality of critical QEs with
the transverse Ising spin chain as the WM, and determine the
efficiency and power close to as well as away from criticality.
The Hamiltonian of transverse Ising model (TIM) in spin
space can be written as

H = −
L∑

i=1

(Jσ x
i σ x

i+1 + hσ z
i ), (28)

where σα
i denotes the Pauli matrix in the direction α, acting

at the site i, and L is the total number of sites or length
of the system. Without any loss of generality, we set J to
unity. The Hamiltonian (28), when written in terms of Jordan
Wigner fermions ci followed by its Fourier transform ck , can
be rewritten as

H =
∑
k>0

�
†
k H̃k�k, with

H̃k = 2[h + cos(k)]σz + 2 sin(k)σ+ + 2 sin(k)σ−, (29)

where �
†
k = (c†

k , c−k ). Clearly, λ in Eq. (1) corresponds to
the transverse field h, ak = 2 cos k and bk = 2 sin k. The QCP
where the gap � between the ground state and first excited
state vanishes for this Hamiltonian is given by h = ±1 with
the critical mode kc = π and 0, respectively [52–54]. There
is a quantum phase transition from a paramagnetic phase for
h > 1 to a ferromagnetic phase for h < 1 [36].

Comparing Eqs. (1) and (29), we find that c1k = ck and
c2k = c†

−k . As before, the four bases correspond to |0, 0〉,
|1k, 0〉, |0, 1−k〉, and |1k, 1−k〉. The full 4 × 4 Hamiltonian
matrix Hk is given by

Hk =

⎡
⎢⎣

2(h + cos k) 0 0 2 sin k
0 0 0 0
0 0 0 0

2 sin k 0 0 −2(h + cos k)

⎤
⎥⎦ (30)

such that the unitary dynamics only mixes |0, 0〉 and |k,−k〉
but the nonunitary dynamics mixes the state into all four
bases. To write the evolution equation of the 4 × 4 density
matrix when connected to a bath, which is similar to Eq. (5),
let us choose the interaction and the form of the Lindblad
equation as follows:

dρk

dt
= −i[Hk, ρk] +

[
μ

(
ckρkc†

k − 1

2
{c†

kck, ρk}
)

+ μ′
(

c†
kρkck − 1

2
{ckc†

k , ρk}
)]

+
[
μ

(
c−kρkc†

−k − 1

2
{c†

−kc−k, ρk}
)

+ μ′
(

c†
−kρkc−k − 1

2
{c−kc†

−k, ρk}
)]

. (31)

Equation (31) resembles that of a multilevel system cou-
pled with a thermal bath, albeit with a mode-dependent
temperature [84]. However, the dissipative baths are not
thermal, since they are coupled locally to the WM in the
momentum space. In the following, we denote μ′s related to
energizing bath BE with subscript E and that of relaxing bath
BR with subscript R.

The QE with TIM as the WM undergoes an Otto cycle,
with λ1 (λ2) replaced by h1 (h2). In stroke 2, let h(t ) is
changed linearly from h1 to h2 with time t as h(t ) = h1 +
(h2 − h1)t/τ1 with 0 < t < τ1, where τ1 is related to the speed
with which h is varied. In the reverse direction during the
stroke 4, h is varied as h2 + (h1 − h2)(t − τR − τ1)/τ2 for
τR + τ1 < t < τR + τ1 + τ2. One can use the state ρk and the
Hamiltonian Hk at the end of each stroke and for each k
to calculate the efficiency and the power using Eqs. (8) and
(9), respectively. Depending upon the values of h1 and h2,
the QE explores different regions of the WM phase diagram.

For example, with h1, h2 > 1, the WM is driven through the
paramagnetic phase only, without crossing any of the critical
points. When h1 � 1 and −1 < h2 < 1, the WM crosses one
critical point and explores the paramagnetic and ferromag-
netic phases. On the other hand, for h1 � 1 and h2 � −1,
the unitary strokes traverse the two critical points, separating
paramagnetic-ferromagnetic-paramagnetic boundaries.

We thus consider (see Fig. 2) (i) para-para QE when the
WM crosses two critical points, (ii) para-ferro QE with one
critical point crossed, (iii) critical-ferro QE, and (iv) general-
ized QE, and we start the discussion with the engine of the
first type. Each of these engines bring out different features as
we detail next.

A. Para-para QE

A para-para QE can be realized with h1 � 1 and h2 � −1.
The work done in a para-para QE admits a closed form ex-
pression, which can directly be connected to Kibble-Zurek
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FIG. 2. Schematic diagram showing the different classes of QEs
considered below: (a) para-para QE, where the unitary strokes are
between h1 � 1 and h2 � −1, (b) para-ferro QE with the unitary
strokes between h1 � 1 and 0 < h2 < 1, and (c) critical-ferro QE,
where the unitary strokes are between h1 → 1 and h2 = 0. The
regimes of operations are shown by the yellow highlights. The quan-
tum critical points at h = ±J = ±1 separate the paramagnetic phases
(|h| > 1) from Ferromagnetic phase (|h| < 1).

scaling. In order to explore the Kibble-Zurek scaling in heat
engines, it is important that one of the unitary dynamics start
from the ground state of the Hamiltonian. We choose the
parameters of the relaxing bath such that it takes the system
closest to its ground state. The unitary dynamics from D to
A will then show the Kibble-Zurek scaling. For this, we fix
μR = 1 and μ′

R = 0, since it is the μ term which brings the
system to the ground state for negative field values. We choose
energizing bath BE parameters as μE < 1 and μ′

E = 1. Also,
we choose h1 � 1 and h2 � −1 so that both the critical points
h = ±1 are crossed. The ground state for both the field values
is paramagnetic where c− particles are also the quasiparticles.
This will help in getting closed analytical expressions for
Qin, Qout and work done, and finally their dependence on
criticality.

1. Analytical calculations

Our analytical expressions for the various energy values
below are obtained for h1 � 1, h2 � −1, and |h1| � |h2|. We

further consider a high-entropy steady state at B or τ1 small,
or both, so that one can write the density matrix at C. We first
note that the bases |0, 0〉, |1k, 0〉, |0, 1−k〉, |1k, 1−k〉 are also
the eigenbases of the Hamiltonian for large |h|; see Eq. (30).
To calculate energies EB, EC, ED, and EA, at B, C, D, and A
respectively, using Eq. (7), we need to write the density matrix
at each of these points. One can see that at B, when the system
has reached its steady state after connecting to the energizing
bath BE with μ = μE and μ′ = μ′

E, the density matrix takes
the form

ρB
k =

⎡
⎢⎢⎣

PB
4 0 0 0
0 PB

3 0 0
0 0 PB

2 0
0 0 0 PB

1

⎤
⎥⎥⎦, (32)

where PB
1 , PB

2 , PB
3 , PB

4 are the populations in the energy levels
E1, E2, E3, and E4 of the Hamiltonian with E1 < E2 = E3 <

E4 for h1 � 1. Clearly, the order reverses for h � −1. The
symbol B in superscript represents point B of the cycle. We
shall use the symbol D for quantities related to point D for
similar reasons. These probabilities can be obtained using the
steady-state condition of the master equation, which gives

PB
2

PB
1

= PB
3

PB
1

= PB
4

PB
2

= PB
4

PB
3

= μE, (33)

where μ′
E = 1 as discussed before. Also, from the normaliza-

tion condition, we have

PB
1 + PB

2 + PB
3 + PB

4 = 1. (34)

From (33) and (34), we get the populations in the energy levels
when connected to the BE as

PB
1 = 1

(1 + μE)2
,

PB
2 = PB

3 = μE

(1 + μE)2
,

PB
4 = μ2

E

(1 + μE)2
. (35)

Using these expressions, we can write the steady-state density
matrix of the system at B in terms of μE. It is to be noted
that the density matrix is independent of k in these limits. As
mentioned before, we choose an energizing bath which results
in a high-entropy state at B, or small τ1, or both so that ρC =
ρB. As shown in Appendix, the energy at B (EB), and C (EC)
can now be written as

EB = Lh1
μE − 1

μE + 1
,

EC = Lh2
μE − 1

μE + 1
. (36)

Since the decay bath takes the system very close to the ground
state ED = −L|h2| for h2 � −1, we write EA as EG

A + Eex,A,
where EG

A is the ground-state energy corresponding to the
Hamiltonian at A and is equal to −Lh1. Eex,A is the ex-
cess energy, which will show the Kibble-Zurek scaling. The
work done W by the system is −(Qin + Qout ), which can be

043247-7



REVATHY B. S et al. PHYSICAL REVIEW RESEARCH 2, 043247 (2020)

FIG. 3. Work output showing universal Kibble-Zurek scaling in
para-para QE. The points are the numerical values and red solid line
corresponds to τ

−1/2
2 . For transverse Ising model, d = ν = z = 1.

(a) Variation of η with τ2. (b) Variation of power with τ2. The green
dashed line corresponds to 1/τ2 scaling, points represent numerical
data, and the solid line is the analytical expression. The parame-
ters used are L = 100, h1 = 70, h2 = −5, τ1 = 0.01, μ′

E = 1, μE =
0.995, μ′

R = 0, μR = 1, with W∞ = −6481.205.

simplified using the above discussion and written as

Eex,A = W + 2L

1 + μE
(μEh1 − |h2|)

∝ τ
− νd

νz+1
2 = τ

− 1
2

2 , (37)

since nex ∝ Eex,A in the paramagnetic phase, and ν = z = 1
for transverse Ising model. We verify this scaling in Fig. 3,
which establishes the relation (13) between the work done
in a QE and the universal critical exponents of the quantum
critical point crossed. For numerical calculations, the initial
density matrix is evolved as per Eq. (31) when connected
to bath, whereas in the unitary stroke it is simply given by
(6). The energies at A, B, C, D are calculated to obtain Qin,
Qout, and the work done. This work done, up to an additive
constant, shows the universal scaling as shown in Eq. (16) and
is plotted in Fig. 3. We also show the efficiency of the engine
as a function of τ2 in the inset of Fig. 3 which approaches a
constant value for large τ2.

To further characterize the performance, we consider the
power as a function of τ2 in Fig. 3(b). As discussed in
Sec. III A, both analytical and numerical curves show a peak at
τ2 = τopt. The difference between the numerical data and the
analytical result is mainly because the Kibble-Zurek scaling,
which also appears in the expression for power, is valid only
for large τ2, whereas the peak occurs at smaller values. The
analytical and numerical values of efficiency at maximum
power, η̂, respectively given by 0.81 and 0.83, are thus in good
agreement. The figure, being a log-log plot, captures the 1/τ2

behavior of power for large τ2, which can be explained using
Eq. (17).

FIG. 4. Work output showing universal Kibble-Zurek scaling in
para-ferro QE. The points are the numerical values and red solid
line corresponds to τ

−1/2
2 . (a) Variation of η with τ2. (b) Variation

of P with τ2. The green dashed line corresponds to 1/τ2 scaling,
points represent numerical data, and the solid line is the analytical
expression. The parameters used are L = 100, h1 = 10, h2 = 0, τ1 =
0.01, μ′

E = 1, μE = 0.995, with W∞ = −899.995.

B. Para-ferro QE

We realize para-ferro QE by considering h1 � 1 and 0 <

h2 < 1, such that only the paramagnetic-ferromagnetic critical
point is crossed during the unitary strokes. We consider an
energizing bath of the form shown in Eq. (31) and a relaxing
bath BR, which takes the system close to its ground state.
Similar to the previous case of para-para QE, the work done
W , up to some constant additive factor, will show Kibble-
Zurek scaling, as long as the conditions given in Sec. III A
are satisfied. This is presented in Fig. 4.

In order to understand the connection between excitations
and engine parameters, we plot below |W | as a function of
h2 in Fig. 5. We observe a decrease in power and work done
as the critical point is approached, which can be attributed
to the excitations produced near the critical point, tantamount
to quantum friction. On the other hand, in the absence of
nonadiabatic excitations expected for slow quenches τ2 → ∞
and shortcuts to adiabaticity [22], driving the quantum engine
across a quantum critical point can boost the total work output.

C. Critical-ferro QE

As described in Sec. III A, we now present the numerical
results when h1 is set close to its critical value of unity. During
the stroke from D to A, the transverse field is linearly varied
from h2 = 0 to a value close to its critical value of unity. As
discussed in Refs. [74,75], the scaling of excess energy gets
modified. Putting ν = 1, z = 1, and d = 1 in Eq. (15), we
get τ−1

2 as shown in Fig. 6, provided all the conditions of
Sec. III A are satisfied.

D. Generalized QE

Here we present the most general QE without any restric-
tions on the relaxing bath, i.e., without necessarily taking the
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FIG. 5. Work done as a function of h2 for different τ2 values
along with W∞, as defined in the main text. W improves as τ2

increases, or when adiabaticity is increased. The parameters used are
L = 100, h1 = 70, τ1 = 0.01, μ′

E = 1, and μE = 0.995.

WM to its ground state. In principle, generalized QE can take
any bath parameters and h1, h2, provided it works as an engine,
but as we explain below, the analytical expressions are eval-
uated under certain conditions. We focus on elucidating how
the engine parameters change as h2 is varied across the critical
point for fixed h1 and other parameter values. With h1 � 1
and h2 > 0, we choose the energizing bath BE parameters to
be μ′

E = 1 and μE < 1 and the relaxing bath BR parameters
to be μ′

R = 1 and μR < μE. This set of parameters related to
the relaxing bath will take the system to some steady state
which is not the ground state at D. One can obtain analytical
expressions along the same lines as in the para-para section,

FIG. 6. Work output showing modified Kibble-Zurek scaling
when h1 is close to the critical point. The points are the numer-
ical values and red solid line corresponds to τ−1

2 . (a) Variation
of η with τ2. (b) Variation of P with τ2 where points repre-
sent numerical data and solid line is the analytical expression.
Also drawn is the green dashed line showing 1/τ2 scaling. The
parameters used are L = 100, h1 = 0.99, h2 = 0.0, τ1 = 0.01, μ′

E =
1, μE = 0.995, with W∞ = −26.532.

FIG. 7. Variation of |P| as a function of h2 for fixed h1,
μE, and μR but for different τ2 values. The points correspond
to numerical values and solid lines to analytical. Inset: Varia-
tion of η and ηmax (black dotted line) as a function of h2. ηmax

is calculated using Eq. (24) with ν = z = 1 for transverse Ising
model. The maximum value of ηmax is always less than unity as
also confirmed by the dash-dotted line corresponding to η = 1.
The other parameters are L = 100, h1 = 70, τ1 = 0.1, μ′

E = 1, μE =
0.995, μ′

R = 1, and μR = 0.95.

also presented in the Appendix but with the conditions that
ρB = ρC and ρD = ρA. This is true as long as the critical point
is not crossed or h2 > 1. The deviation between numerics
and analytics start appearing when h2 approaches the critical
point.

We shall focus on the behavior of the QE power output P
for different values of h2. The final expressions in the limit of
large h1 and h2 are

η = 1 − h2

h1
, (38)

P = −L(h1 − h2)

τtotal

(
μE − 1

μE + 1
− μR − 1

μR + 1

)
. (39)

In Fig. 7, we present the behavior of power P as a function
of h2 for fixed h1, μE, μR τ1, and different τ2 values. Clearly,
there is a better agreement between numerical and analytical
values of P for larger h2. Deviations between the two are more
pronounced as the critical point is approached, as excitations
generated with the crossing of the critical point are not in-
cluded in the analytical calculations (38). The power P shows
a sharp fall for a QE driven across the phase transition. This
behavior can also be attributed to the excitations produced in
the WM close to criticality, which in turn results in dimin-
ishing Qin and thus reduces the output power. We note that
|0, 0〉, |1k, 0〉, |0, 1−k〉, |1k, 1−k〉 stop being eigenbases of the
WM for small h2.

In the inset of Fig. 7, we present the behavior of efficiency
as a function of h2 for different τ2 values. As in the previ-
ous case, there is a good match between the analytical and
numerical calculations when away from the QCP, in the para-
magnetic phase. On the other hand, analytical calculations of
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Sec. IV A 1 fail to explain the numerical results obtained close
to the QCP and in the ordered ferromagnetic phase. As is
expected from Eq. (38), the efficiency is independent of τ2

when the operation is confined inside the paramagnetic phase,
for large h1, h2. However, for a QE driven across a phase
transition (h1 > 1, h2 < 1), as shown in Fig. 7 (inset), the
results can be expected to depend nontrivially on τ2, owing
to the dependence of the nonadiabatic excitations on the rate
of driving τ−1

2 across the QCP [56,64,65].

V. CONCLUSION

We have studied the effect of quantum criticality in quan-
tum thermodynamics, by considering a many-body quantum
machine operating close to a phase transition. As a WM
for the Otto cycle studied here, we have considered inter-
acting Fermions coupled to local dissipative baths, which in
the Fourier-transformed space, can be treated as noninter-
acting Fermions coupled to local noninteracting Fermionic
dissipative baths. This property makes the setup analytically
solvable in many regimes. Earlier studies on dynamics of
closed many-body systems driven across a quantum critical
point have shown the existence of universal finite-time scal-
ing with the driving speed of different observables, including
defect density [64–66] and its fluctuations [73,85,86], and
fidelity susceptibility [74,87], among other examples. Such
finite time scaling can be justified from the diverging length
and timescales close to a quantum critical point. In this work,
we have shown the existence of such universality in quantum
thermodynamics close to phase transitions, in the form of
Kibble-Zurek scaling [64,65] in the work output, and the oper-
ation of quantum engines close to criticality. Furthermore, we
have derived a maximum efficiency bound ηmax, which scales
with the dynamical critical exponent close to quantum criti-
cality and increases with increasing system size, thus showing
the advantage of developing many-body quantum engines.

We have demonstrated these generic results using the
model of Ising spin chain in the presence of a transverse
field. Our analytical and numerical results show that the work
output inherits a Kibble-Zurek scaling form, up to an additive
constant, for a quantum engine driven across quantum criti-
cal points (h1 � 1, h2 � −1 or h1 � 1, −1 < h2 < 1). By
contrast, for a quantum engine confined to the paramagnetic
phase, the power attains a maxima close to the QCP (h1 � 1,
h2 > 1), rapidly decreasing once the WM approaches the QCP
(h1 � 1, h2 → 1+), diminishing close to zero when the effi-
ciency is maximum. The loss of power in this case can be
attributed to the generation of excitations close to quantum
criticality.

While we have mainly focused on fermionic baths, our
results can be expected to be valid for other kind of baths,
as long as the conditions stated in Sec. III A are satisfied. We
note that in this case the relaxing bath would be a thermal
bath at absolute zero temperature, such that the WM reaches
close to its ground state at the end of the nonunitary stroke C
to D. Consequently, the efficiency of the quantum heat engine
would be bounded by the Carnot limit of maximum efficiency,
which in this case reduces to the trivial result η � 1. In
addition, by considering thermal instead of fermionic baths,

our setting can be readily adapted to the characterization of
quantum refrigerators.

The class of quantum machines studied here provides an
opportunity to scale up quantum devices to the macroscopic
regime, with a complete understanding of their performance.
Experimental implementations can be envisioned in an optical
lattice setup [62]. Our results should also be of relevance to
the scaling of quantum machines using trapped ion chains as
a working medium [1–3] in which a quantum Ising chain can
be emulated [88–90] and in which universal critical dynamics
has been studied [91–93], with experiments reported to date
probing it in the classical regime [94–96]. Nuclear magnetic
resonance experiments and nitrogen vacancy centers offer
alternative platforms in which the quantum engines reported
to date [4,5] can be scaled up, considering quantum critical
spin systems as working substance. Beyond specific imple-
mentations, our results advance the study of universal critical
phenomena in quantum thermodynamics.
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APPENDIX: DYNAMICS OF THE WORKING MEDIUM

1. Para-para QE

The density matrix at B for each k mode takes the form
given in Eq. (32) so that the energy is calculated as EB =∑

k Tr[H (h1, k)ρB]. Therefore, for each k mode,

HρB =

⎡
⎢⎣

2(h1 + cos k) 0 0 2 sin k
0 0 0 0
0 0 0 0

2 sin k 0 0 −2(h1 + cos k)

⎤
⎥⎦

×

⎡
⎢⎢⎣

PB
4 0 0 0
0 PB

3 0 0
0 0 PB

2 0
0 0 0 PB

1

⎤
⎥⎥⎦, (A1)

which gives

Tr[HρB] = 2(h1 + cos k)(PB
4 − PB

1 ) (A2)

= 2(h1 + cos k)

(
μE − 1

μE + 1

)
. (A3)

For a system of size L, there are L/2 positive k modes so that

EB =
∑

k

2(h1 + cos k)

(
μE − 1

μE + 1

)

= Lh1

(
μE − 1

μE + 1

)
. (A4)
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Since the Hamiltonian is changed suddenly (small τ1) from
h1 to h2, the density matrix is not able to evolve resulting to
ρC = ρB and thus energy at C (EC) is

EC =
∑

k

2(h2 + cos k)

(
μE − 1

μE + 1

)

= Lh2

(
μE − 1

μE + 1

)
. (A5)

Since D is in the ground state, we have ED = −L|h2|. We
write energy at A to be EA = EG

A + Eex,A with EG
A = −Lh1.

This gives

Qin = EB − EA (A6)

= 2LμEh1

μE + 1
− Eex,A (A7)

and

Qout = ED − EC

= −2L|h2|
μE + 1

. (A8)

The work done, W = −(Qin + Qout ), is thus

W = −
[

2L

μE + 1
(μEh1 − |h2|) − Eex,A

]
(A9)

or equivalently

W + 2L

μE + 1
(μEh1 − |h2|) ∝ τ

−νd
1+νz

2 . (A10)

2. Generalized QE

Clearly, there is no change in EB so that it is given by
Eq. (A4). For large h2 with h2 < h1, there will not be any
population change in B to C, and hence the density matrix
ρB will be same as ρC so that EC is also given by Eq. (A5).

The energy at D would be different since the relaxing bath
parameters are so chosen that it need not take the system to
the ground state. It can be calculated as follows:

ED =
∑

k

Tr[H (h2, k)ρD] (A11)

=
∑

k

2(h2 + cos k)(PD
4 − PD

1 ) (A12)

=
∑

k

2(h2 + cos k)

(
μR − 1

μR + 1

)
(A13)

= Lh2

(
μR − 1

μR + 1

)
. (A14)

Here, ρD
k would be similar to ρB

k as given in Eq. (32) with μE

replaced by μR. Similar calculations give

EA =
∑

k

Tr[H (h1, k)ρA] (A15)

= Lh1

(
μR − 1

μR + 1

)
. (A16)

Now, the Qin and Qout for each k mode are

Qin(k) = 2(h1 + cos k)
(

μE−1
μE+1 − μR−1

μR+1

)
, (A17)

Qout (k) = −2(h2 + cos k)
(

μE−1
μE+1 − μR−1

μR+1

)
. (A18)

Let
μE − 1

μE + 1
− μR − 1

μR + 1
= α. (A19)

Efficiency of the total system can be calculated using

η =
∑

k Qin(k) + ∑
k Qout (k)∑

k Qin(k)
(A20)

= 2α
∑

k[(h1 + cos k) − (h2 + cos k)]

2α
∑

k (h1 + cos k)
(A21)

=
L
2 (h1 − h2)

L
2 h1 + �k cos k︸ ︷︷ ︸=0

(A22)

= 1 − h2

h1
. (A23)

Power for the total system is defined as

P = net work done by the system

total cycle time
(A24)

= −2α
∑

k[(h1 + cos k) − (h2 + cos k)]

τtotal
(A25)

= −2α( L
2 )(h1 − h2)

τtotal
(A26)

= −L(h1 − h2)
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(
μE − 1
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− μR − 1

μR + 1

)
. (A27)
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gines with shortcuts to adiabaticity, Phys. Rev. E 99, 032108
(2019).

[50] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral,
Emergent Thermodynamics in a Quenched Quantum Many-
Body System, Phys. Rev. Lett. 109, 160601 (2012).

[51] D. Nigro, D. Rossini, and E. Vicari, Scaling properties of work
fluctuations after quenches near quantum transitions, J. Stat.
Mech.: Theory Exp. (2019) 023104.

[52] J. E. Bunder and R. H. McKenzie, Effect of disorder on
quantum phase transitions in anisotropic XY spin chains in a
transverse field, Phys. Rev. B 60, 344 (1999).

[53] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[54] P. Pfeuty, The one-dimensional Ising model with a transverse
field, Ann. Phys. 57, 79 (1970).

[55] J. Dziarmaga, Dynamics of a quantum phase transition and
relaxation to a steady state, Adv. Phys. 59, 1063 (2010).

[56] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F.
Rosenbaum, and D. Sen, Quantum Phase Transitions in Trans-
verse Field Spin Models: From Statistical Physics to Quantum
Information (Cambridge University Press, Cambridge, UK,
2015).

[57] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[58] H.-D. Chen and Z. Nussinov, Exact results of the Kitaev model
on a hexagonal lattice: Spin states, string and brane correlators,
and anyonic excitations, J. Phys. A: Math. Theor. 41, 075001
(2008).

[59] K. Sengupta, D. Sen, and S. Mondal, Exact Results for Quench
Dynamics and Defect Production in a Two-Dimensional Model,
Phys. Rev. Lett. 100, 077204 (2008).

[60] M. Keck, S. Montangero, G. E. Santoro, R. Fazio, and D.
Rossini, Dissipation in adiabatic quantum computers: Lessons
from an exactly solvable model, New J. Phys. 19, 113029
(2017).

[61] S. Bandyopadhyay, S. Laha, U. Bhattacharya, and A. Dutta, Ex-
ploring the possibilities of dynamical quantum phase transitions
in the presence of a Markovian bath, Sci. Rep. 8, 11921 (2018).

[62] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch,

Observation of many-body localization of interacting fermions
in a quasirandom optical lattice, Science 349, 842 (2015).

[63] V. Mukherjee, W. Niedenzu, A. G. Kofman, and G. Kurizki,
Speed and efficiency limits of multilevel incoherent heat en-
gines, Phys. Rev. E 94, 062109(R) (2016).

[64] A. Polkovnikov, Universal adiabatic dynamics in the vicinity of
a quantum critical point, Phys. Rev. B 72, 161201(R) (2005).

[65] W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a Quantum
Phase Transition, Phys. Rev. Lett. 95, 105701 (2005).

[66] V. Mukherjee, U. Divakaran, A. Dutta, and D. Sen, Quenching
dynamics of a quantum xy spin- 1

2 chain in a transverse field,
Phys. Rev. B 76, 174303 (2007).

[67] S. Deffner, Kibble-Zurek scaling of the irreversible entropy
production, Phys. Rev. E 96, 052125 (2017).

[68] B. Damski and W. H. Zurek, Adiabatic-impulse approximation
for avoided level crossings: From phase-transition dynamics
to Landau-Zener evolutions and back again, Phys. Rev. A 73,
063405 (2006).

[69] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[70] A. del Campo and W. H. Zurek, Universality of phase transition
dynamics: Topological defects from symmetry breaking, Int. J.
Mod. Phys. A 29, 1430018 (2014).

[71] T. Caneva, R. Fazio, and G. E. Santoro, Adiabatic quantum
dynamics of a random Ising chain across its quantum critical
point, Phys. Rev. B 76, 144427 (2007).

[72] J.-M. Cui, Y.-F. Huang, Z. Wang, D.-Y. Cao, J. Wang, W.-M.
Lv, L. Luo, A. del Campo, Y.-J. Han, C.-F. Li, and G.-
C. Guo, Experimental trapped-ion quantum simulation of the
Kibble-Zurek dynamics in momentum space, Sci. Rep. 6, 33381
(2016).

[73] Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki, F. J.
Gómez-Ruiz, D. A. Lidar, A. del Campo, S. Suzuki, and H.
Nishimori, Probing the universality of topological defect for-
mation in a quantum annealer: Kibble-Zurek mechanism and
beyond, Phys. Rev. Research 2, 033369 (2020).

[74] C. De Grandi, V. Gritsev, and A. Polkovnikov, Quench dy-
namics near a quantum critical point, Phys. Rev. B 81, 012303
(2010).

[75] Z. Fei, N. Freitas, V. Cavina, H. T. Quan, and M. Esposito, Work
Statistics Across a Quantum Phase Transition, Phys. Rev. Lett.
124, 170603 (2020).

[76] T. W. B. Kibble, Some implications of a cosmological phase
transition, Phys. Rep. 67, 183 (1980).

[77] W. H. Zurek, Cosmological experiments in superfluid helium?
Nature (London) 317, 505 (1985).

[78] W. H. Zurek, Cosmological experiments in condensed matter
systems, Phys. Rep. 276, 177 (1996).

[79] J. A. Hoyos, C. Kotabage, and T. Vojta, Effects of Dissipation
on a Quantum Critical Point with Disorder, Phys. Rev. Lett. 99,
230601 (2007).

[80] D. Patanè, A. Silva, L. Amico, R. Fazio, and G. E. Santoro,
Adiabatic Dynamics in Open Quantum Critical Many-Body
Systems, Phys. Rev. Lett. 101, 175701 (2008).

[81] A. Dutta, A. Rahmani, and A. del Campo, Anti-Kibble-Zurek
Behavior in Crossing the Quantum Critical Point of a Thermally
Isolated System Driven by a Noisy Control Field, Phys. Rev.
Lett. 117, 080402 (2016).

043247-13

https://doi.org/10.1088/1367-2630/aa9cd6
https://doi.org/10.1088/1367-2630/16/6/063018
https://doi.org/10.1103/PhysRevE.94.032116
https://doi.org/10.1088/1367-2630/aaed55
https://doi.org/10.1140/epjp/i2016-16197-0
https://doi.org/10.1103/PhysRevE.96.022143
https://doi.org/10.1103/PhysRevE.99.032108
https://doi.org/10.1103/PhysRevLett.109.160601
https://doi.org/10.1088/1742-5468/ab00e2
https://doi.org/10.1103/PhysRevB.60.344
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1088/1751-8113/41/7/075001
https://doi.org/10.1103/PhysRevLett.100.077204
https://doi.org/10.1088/1367-2630/aa8cef
https://doi.org/10.1038/s41598-018-30377-x
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevE.94.062109
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevB.76.174303
https://doi.org/10.1103/PhysRevE.96.052125
https://doi.org/10.1103/PhysRevA.73.063405
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1142/S0217751X1430018X
https://doi.org/10.1103/PhysRevB.76.144427
https://doi.org/10.1038/srep33381
https://doi.org/10.1103/PhysRevResearch.2.033369
https://doi.org/10.1103/PhysRevB.81.012303
https://doi.org/10.1103/PhysRevLett.124.170603
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1038/317505a0
https://doi.org/10.1016/S0370-1573(96)00009-9
https://doi.org/10.1103/PhysRevLett.99.230601
https://doi.org/10.1103/PhysRevLett.101.175701
https://doi.org/10.1103/PhysRevLett.117.080402


REVATHY B. S et al. PHYSICAL REVIEW RESEARCH 2, 043247 (2020)

[82] P. Wang and R. Fazio, Dissipative phase transitions in
the fully-connected Ising model with p-spin interaction,
arXiv:2008.10045 [cond-mat.quant-gas].

[83] D. Sen, K. Sengupta, and S. Mondal, Defect Production in
Nonlinear Quench Across a Quantum Critical Point, Phys. Rev.
Lett. 101, 016806 (2008).

[84] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, UK, 2002).

[85] A. del Campo, Universal Statistics of Topological Defects
Formed in a Quantum Phase Transition, Phys. Rev. Lett. 121,
200601 (2018).

[86] J.-M. Cui, F. J. Gómez-Ruiz, Y.-F. Huang, C.-F. Li, G.-C. Guo,
and A. del Campo, Experimentally testing quantum critical dy-
namics beyond the Kibble-Zurek mechanism, Commun. Phys.
3, 44 (2020).

[87] V. Mukherjee, A. Polkovnikov, and A. Dutta, Oscillating fi-
delity susceptibility near a quantum multicritical point, Phys.
Rev. B 83, 075118 (2011).

[88] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T.
Schaetz, Simulating a quantum magnet with trapped ions, Nat.
Phys. 4, 757 (2008).

[89] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H.
Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observa-
tion of a many-body dynamical phase transition with a 53-qubit
quantum simulator, Nature (London) 551, 601 (2017).

[90] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
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