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Abstract Bacteria such as Escherichia coli move about in a series of runs and tum-

bles: while a run state (straight motion) entails all the flagellar motors spinning in

counterclockwise mode, a tumble is caused by a shift in the state of one or more

motors to clockwise spinning mode. In the presence of an attractant gradient in the

environment, runs in the favourable direction are extended, and this results in a net

drift of the organism in the direction of the gradient. The underlying signal trans-

duction mechanism produces directed motion through a bi-lobed response function

which relates the clockwise bias of the flagellar motor to temporal changes in the at-

tractant concentration. The two lobes (positive and negative) of the response function

are separated by a time interval of ∼ 1s, such that the bacterium effectively compares

the concentration at two different positions in space and responds accordingly. We

present here a novel path-integral method which allows us to address this problem

in the most general way possible, including multi-step CW-CCW transitions, direc-

tional persistence and power-law waiting time distributions. The method allows us to

calculate quantities such as the effective diffusion coefficient and drift velocity, in a

power series expansion in the attractant gradient. Explicit results in the lowest order

in the expansion are presented for specific models, which, wherever applicable, agree

with the known results. New results for gamma-distributed run interval distributions

are also presented.
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1 Introduction

The run and tumble motion of the bacterium Escherichia coli (E. coli) is well-known,

and is characterised by a series of straight runs, interspersed with shorter tumbles,

during which the organism reorients itself. In the absence of a chemoattractant (and

when the concentration of chemoattractant is uniform), the motion is globally un-

biased in space. When an attractant gradient is present, the bacterium extends its

runs in the favourable direction. As a result, a net drift develops in the direction of

the gradient, which enables the organism to move towards the source. The resulting

chemotaxis in bacterium is, therefore, fundamentally different from similar phenom-

ena in unicellular eukaryotes like amoeba and neutrophils, in which moving cells

reorient themselves in the favourable direction by sensing concentration difference

across their body[1]. For a review of the experimental literature and a summary of

the modelling approaches, we refer the reader to [2].

In the simplest kinematic description of the run and tumble motion, it is assumed

that, in the absence of chemoattractants, tumbling is a first order process characterised

by a single rate R specifying the switch from counter-clockwise (CCW) to clockwise

(CW) rotation of a single flagellar motor, which initiates the tumbling process. In a

static organism, it is observed that a stimulus in the form of a time-dependent change

in attractant concentration δc(t) introduces a corresponding change in the clockwise

bias, which may be expressed mathematically through a linear response relation of

the form

δR(t) =−R

∫ t

0
χ(t − t ′)δc(t ′)dt ′ (1)

where χ(t) is a linear response function. Experiments[1] have shown that at least

for some attractants, the area enclosed by the response function is near-zero[3], which

implies that the organism adapts perfectly to a step-like increase of stimulus. In this

case, the response function has a two-lobe structure, with a positive lobe appearing

almost immediately after the stimulus is applied, and a negative lobe appearing later,

with the centres of the lobes being separated by nearly a second. These properties led

de Gennes [4] to suggest the approximate form

χ(t)≃ κ [δ (t)−δ (t −∆)] (2)

where ∆ is the time delay between the centres of the positive and negative lobes and

κ is an empirical parameter which depends on the details of the underlying biochem-

ical network. The response function has also been computed explicitly [5,6] using

variants of the Barkai-Leibler model[7] for the receptor methylation-demethylation

processes, originally introduced to explain the perfect adaptation property of E. coli,

and the robustness of the network output to cell-to-cell variations in enzyme concen-

trations.

Using a combination of heuristic arguments and rigorous calculations, de Gennes

[4] derived the following expression for the drift velocity of a bacterium in two di-

mensions, in a concentration gradient ∇c = ααα:
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vd ∼ Dααα

∫ ∞

0
χ(t)e−Rtdt (3)

Here D = v2/2R is the diffusion coefficient for the unbiased run and tumble walk, v

being the run speed. Later, other authors have also derived expressions identical to

Eq.3. Melissa and Gopalakrishnan [5] followed an approach similar to de Gennes [4]

(discussed in detail in the next section) to compute the drift velocity, but derived the

response function directly from a simplified version of the Barkai-Liebler model[7]

for receptor methylation and demethylation. Celani and Vergassola [8] obtained the

response function from a general Fokker-Planck equation for the run and tumble mo-

tion, with a finite number of abstract internal variables included, thus ensuring that

the function has the required bilobe form. The latter paper also generalised the re-

sult in [4] to arbitrary spatial dimensions and also included directional persistence

between successive runs.

The motivations behind this paper are as follows. The original derivation of Eq.3

by de Gennes [4] includes a simplifying step, which although justifiable a posteriori,

can be avoided, we feel. Specifically, instead of computing the mean displacement

due to a gradient as a single average over possible trajectories, de Gennes computes

first the mean displacement due to the gradient over a single run event, and multiplies

it with the mean number of runs over a certain time interval to find the asymptotic

drift velocity. As a result, the generality of the result, i.e., Eq.3, is not apparent, which

has also led to suggestions that the result applies only under the condition ∆ ≪ R−1

(although it was also noted that numerical simulations indicate otherwise) [9]. It is

also generally assumed that the run intervals are exponentially distributed and are typ-

ically longer than tumbles. However, experimental observations[10,11] indicate that

time intervals corresponding to clockwise and counterclockwise modes of rotation of

a single motor are, in general, gamma-distributed, the details of which depend on the

mean clockwise bias of the motor. It has also been suggested that tumbles correspond

to rigid body (Brownian) rotations of the bacterium in space [12].

The contents of this paper, therefore, were borne out of our attempts to develop a

mathematically rigorous formulation of the run and tumble motion and chemotaxis in

bacteria such as E.coli, which could potentially include non-exponentially distributed

run (and tumble) intervals, directional correlations between successive runs and fi-

nite tumble intervals. The path-integral formalism for run and tumble motion and

chemotaxis in bacteria presented here offers the following advantages. An individual

trajectory is specified using the set of run and tumble intervals, and angles specify-

ing the directions of runs. The probability distributions of run and tumble intervals

are specified using two cumulative (survival) probability functions, while directional

persistence is introduced through a conditional probability density connecting the di-

rection of the present run with that of the previous one. A probability functional for a

trajectory is constructed using all these quantities, using which any desired statistical

average can be computed systematically. The formalism works well as, and has the

structure of, a systematic perturbation theory in which the imposed attractant gradient

α is the small parameter. We show that, as special cases of interest, many standard

results can be reproduced using our approach, including (a) Eq.3 , (b) super and sub-

diffusive motion when run intervals are power-law distributed and (c) modification
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of the effective diffusion coefficient by correlation between directions of successive

runs. We also present our new results for bacterial drift velocity when run intervals

are gamma-distributed, as indicated by recent experimental data [11].

A note on the historical origins of the formalism: different variants of the tech-

nique have been used earlier, in the study of ion channel dynamics [13,14], reaction-

diffusion processes in cells [15] as well as search and capture of chromosomes by

microtubules [16]. Here, we develop and expand it further to study the run and tum-

ble motion in bacteria. Although only results obtained to the lowest (non-trivial) or-

der in α are presented here, we stress that, in principle, the computation could be

extended to any higher power of the same. Furthermore, all the calculations are pre-

sented here for spatial dimension d = 2; however, generalisations to d = 1 and d = 3

are straightforward.

2 The general path-integral functional for run and tumble motion

Let us consider a bacterium executing run and tumble motion in two dimensions.

Denote by f (T ), the cumulative probability of run intervals while g(τ) shall be the

same for tumbles, so that f (0) = g(0) = 1 by definition. The probability distributions

of the run and tumble interval durations, respectively, are − ḟ and −ġ.

A time interval [0 : t] could fall into one of the two following categories: (a) N

completed runs, N completed tumbles, and one incomplete run (N ≥ 0), or (b) N

completed runs, N − 1 completed tumbles, and one incomplete tumble (N ≥ 1). Let

Ti denote the time intervals corresponding to runs, and τi denote the same for tum-

bles. During a tumble, the bacterium undergoes reorientation such that its direction

of motion changes. Let Gτ(θ |θ0) denote the probability distribution of the final angle

θ , given initial angle θ0 and time of tumble τ . Let θi be the angle specifying the run

with duration Ti. We choose the convention that the bacterium always starts in a run

state at t = 0, and the duration of the first run is T1, while that of the first tumble is τ1.

Then, the probability functionals describing paths corresponding to situation (a) and

(b) are, respectively,

Φ
(a)
N (T,τττ,θθθ ; t)= f (TN+1)δ

(

TN+1 +
N

∑
i=1

(Ti + τi)− t

)

ψ(θ1)
N

∏
i=1

ḟ (Ti)ġ(τi)Gτi
(θi+1|θi)

(4)

and

Φ
(b)
N (T,τττ,θθθ ; t)=−g(τN) ḟ (TN)δ

(

N

∑
i=1

(Ti + τi)− t

)

ψ(θ1)
N−1

∏
i=1

ḟ (Ti)ġ(τi)Gτi
(θi+1|θi),

(5)

where ψ(θ1) = (2π)−1 is the probability distribution of the initial angle θ1. The func-

tionals are normalized as follows:

∞

∑
N=0

∫

a
Φ

(a)
N (T,τττ,θθθ ; t)DTDτDθ +

∞

∑
N=1

∫

b
Φ

(b)
N (T,τττ,θθθ ; t)DTDτDθ = 1, (6)
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where

∫

a
...DTDτDθ ≡

∫ T

0
...dT1

∫ 2π

0
dθ1

∫ T−T1

0
dτ1

∫ T−T1−τ1

0
dT2

∫ 2π

0
dθ2.....×

∫ t−∑
N
i=1 Ti−∑

N−1
j=1 τ j

0
dτN

∫ t−∑
N
i=1 Ti−∑

N
j=1 τ j

0
dTN+1

∫ 2π

0
dθN+1

and

∫

b
...DTDτDθ ≡

∫ T

0
...dT1

∫ 2π

0
dθ1

∫ T−T1

0
dτ1

∫ T−T1−τ1

0
dT2

∫ 2π

0
dθ2.....×

∫ t−∑
N−1
i=1 Ti−∑

N−1
j=1 τ j

0
dTN

∫ 2π

0
dθN

∫ t−∑
N
i=1 Ti−∑

N−1
j=1 τ j

0
dτN

are time-ordered integrals. Using the above functionals, the mean of any dynamical

quantity which depends explicitly on the variables {T,τττ,θθθ} may be calculated. Let

a(t) be such a quantity (e.g., the net displacement), whose value for a given trajectory

may be denoted AN(T,τττ,θθθ)[17]. Then, the ensemble average of a is given by

a(t) = 〈AN(T,τττ,θθθ)〉= 〈AN(T,τττ,θθθ)〉a + 〈AN(T,τττ,θθθ)〉b, (7)

where

〈AN(T,τττ,θθθ)〉a =
∞

∑
N=0

∫

a
AN(T,τττ,θθθ)Φ

(a)
N (T,τττ,θθθ ; t)DTDτDθ

〈AN(T,τττ,θθθ)〉b =
∞

∑
N=1

∫

b
AN(T,τττ,θθθ)Φ

(b)
N (T,τττ,θθθ ; t)DTDτDθ (8)

Furthermore, the probability distribution for the variable a may be expressed as

P(a, t) = 〈δ (a−AN(T,τττ,θθθ))〉. (9)

In the following subsection, we will discuss a simplified version of the general

model introduced here, which will be used for mathematical calculations.

2.1 The “minimal” model: Instantaneous tumbles, no directional correlations

In this simplified model, which shall serve as a “reference” model for us, (i) the

tumble durations are assumed to be negligibly small in comparison with run dura-

tions ( i.e., τi → 0 everywhere), and (ii) directional correlations between successive

runs are ignored. Condition (i) requires that we choose the tumble time distribu-

tion to be −ġ(τ) = δ (τ). This implies that g(τ) = 0 for τ 6= 0 while g(0) = 1. It

is then clear that in this case, events corresponding to class (b) in Eq.7 and Eq.8

do not contribute in the averaging, and may be ignored. Condition (ii) implies that

Gτi
(θi+1|θi) = (2π)−1∀i ∈ [1,N] in Eq. 4. As a result, the probability functional in

Eq.4 reduces to (the superscript “m” denoting “minimal” from now on)
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Φ
(m)
N (T,θθθ ; t) =

1

(2π)N+1
f (TN+1)δ

(

TN+1 +
N

∑
i=1

Ti − t

)

N

∏
i=1

(−1)N ḟ (Ti). (10)

We will first show explicitly that the functional in Eq.10 is normalised as in Eq.6.

Define formally the “normalisation integral” N (t) = ∑
∞
N=0

∫

Φ
(m)
N (T,θθθ ; t)DTDθ .

To evaluate the r.h.s, we use Eq.14 (after putting A ≡ 1), to find

N (t)≡
∞

∑
N=0

∫

Φ
(m)
N (T,θθθ ; t)DTDθ =

1

(2π)N+1

∞

∑
N=0

∫

dω1...dωN+1

N

∏
i=1

iωiF(ωi)e
−i∑

N
i=1 ωiTiF(ωN+1)e

−iωN+1(t−∑
N
i=1 Ti) (11)

where F(ω) is the Fourier transform of f (T ), as defined in the previous section.

Next, we Laplace-transform Eq.11, and use the convolution theorem mentioned in

Sect. 2 to find

Ls[N ] =
1

(2π)N+1

∫

dωF(ω)

s+ iω

∞

∑
N=0

[

∫

dωiωF(ω)

s+ iω

]N

(12)

After completing the elementary geometric sum, and noting that
∫ ∞
−∞ dωF(ω)≡

f (0) = 1 by definition, it follows that Ls[N ] = s−1, and hence N (t) = 1 as required.

The average of any dynamical quantity a ≡ AN(T,θθθ) associated with the motion

may be evaluated as a(t) = 〈AN(T,θθθ)〉m, where

〈AN(T,θθθ)〉m =
∞

∑
N=0

∫

DTDθΦ
(m)
N (T,θθθ ; t)AN(T,θθθ) (13)

When f (T ) is non-exponential, it is convenient to express Eq.13 using its Fourier

transform F(ω), defined by the relation 2πF(ω) =
∫ ∞
−∞ f (T )eiωT dT (with the under-

standing that f (T ) = 0 for T < 0). The result is

〈AN(T,θθθ)〉m =
∞

∑
N=0

1

(2π)N

∫

a
AN(T,θθθ)DTDθ

∫

a
Dωe−iωN+1tF(ωN+1)×

N

∏
i=1

iωiF(ωi)e
−i(ωi−ωN+1)Ti (14)

where
∫

...Dω ≡
∫

...∏N+1
i=1 dωi.

2.2 Special cases of the minimal model

In this subsection, we introduce a few special cases of the functional in Eq.10, as well

as a few extensions.
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(a) Exponentially distributed run intervals (exponential model) :

A particularly simple special case of the minimal model is that of exponentially

distributed run durations, where − ḟ (T ) = Re−RT H(T ) and −ġ(τ) = δ (τ), where

H(T ) is the Heaviside step-function: H(T ) =1 for T ≥ 0 and 0 otherwise . This

implies f (T ) = e−RT H(T ) and the corresponding probability functional is

Φ
(e)
N (T,θθθ ; t) =

1

(2π)N+1
e−RTN+1 δ

(

TN+1 +
N

∑
i=1

Ti − t

)

RNe−R∑
N
i=1 Ti (15)

In the above expression, the superscript “e” denotes “exponential”.

(b) Power-law distributed run intervals - Lévy flights :

Earlier experimental observations by Korobkova et al.[18] had suggested that the

cumulative probability of CCW interval durations of a single flagellar motor shows

power-law decay for nearly two decades in time. Partly motivated by this observation,

we study a model with f (T ) = (1+ γT )−β with γ > 0 and β > 0.

2.3 Extensions of the minimal model

(c) Exponential model with directional correlations between successive runs :

The run and tumble motion of E. coli observed in experiments is characterized

by directional persistence, i.e., the directions of two consecutive runs are positively

correlated. For the sake of simplicity, we assume here that the correlation exists only

between two consecutive runs. The probability functional for this case is a straight-

forward generalisation of Eq.15:

Φ
(e,p)
N (T,θθθ ; t) = e−RTN+1δ

(

TN+1 +
N

∑
i=1

Ti − t

)

RNe−R∑
N
i=1 Ti ψ(θ1)

N

∏
j=1

G(θ j+1|θ j),

(16)

where the additional superscript “p” represents persistence/antipersistence in run

directions, and ψ(θ1) = (2π)−1 as mentioned earlier (since the initial run direction is

chosen randomly). To bring in directional correlations between successive runs, we

choose

G(θ j+1|θ j) =
1

2π

(

1+ J cos(θ j+1 −θ j)

)

∀ j ∈ [1,N] (17)

In the above expression, J is a phenomenological parameter to be chosen such that

|J|< 1 to ensure positivity of G(θ j+1|θ j). Further, J > 0 implies persistence and J < 0

implies anti-persistence of motion. It is also easily verified that 〈cos(θ j+1 − θ j)〉 =
J/2, so that the parameter J may be fixed using the value of the average in the l.h.s,

as observed in experiments.
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(d) Exponential model with chemotaxis :

In E. coli, chemotaxis is achieved by making the tumble rate a function of the

previous positions of the bacterium. For a general path and time-dependent tumble

rate R(t)≡ R(t;T,θθθ), Eq.10 may be generalised as

Φ
(e,c)
N (T,θθθ ; t) =

1

(2π)N+1
e
−
∫ t
tN

R(T )dT
N

∏
i=1

R(ti)e
−
∫ ti+1
ti

R(T )dT
(18)

where ti = ∑
i
j=1 Tj for 1 ≤ i ≤ N. In the minimal model with exponentially dis-

tributed run intervals, the dependence of tumbling rate on attractant concentration

may be expressed through the linear response relation

R(T ) = R

[

1−
∫ T

0
χ(T −T ′)c[r(T ′)]dT ′

]

(19)

which follows directly from Eq.1. Here, R is the tumble rate in the absence of

attractant and r(t) is the position of the bacterium at time t. In the case of a uni-

form attractant gradient such that ∇c(r) = ααα , we have c(r) = ααα · r. Without loss of

generality, we choose ααα = α x̂xx, such that

R(T ) = R

[

1−α

∫ T

0
χ(T −T ′)x(T ′)dT ′

]

(20)

Eq.2, when substituted in Eq.20, leads to the following “path-dependent” tumble

rate:

R(T ) = R [1−κα(x(T )− x(T −∆))] (21)

Eq.21, when used in Eq.18 leads to the following expansion of the probability

functional, in the limit of weak gradient:

Φ
(e,c)
N (T,θθθ ; t) =

1

(2π)N+1
RNe−Rt

[

1+α

(

κR

∫ t

t−∆
x(T )dT −

κ
N

∑
j=1

[x(t j)− x(t j −∆)]+O(α)

)]

, (22)

where the second superscript, “c” indicates “chemotaxis”. In the following sec-

tion, we present our important results for each of these models. The calculations use

the following “theorem” extensively, which is a straightforward generalisation of the

standard convolution theorem in Laplace transforms.

Theorem: Given a function f (t)=
∫ t

0 dT1h1(T1)
∫ t−T1

0 dT2h2(T2).....
∫ t−∑

N−1
i=1 Ti

0 dTNhN(TN),
its Laplace transform is Ls[ f ] = s−1 ∏

N
i=1 Ls[hi]. For the (rather elementary) proof,

we refer the reader to [14].
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3 Results

3.1 Mean-square displacement in the minimal model: general results

The mean square displacement (MSD) in the minimal model is given by 〈r2〉 =
〈RN(T,θθθ) ·RN(T,θθθ)〉m, where

RN(T,θθθ) = v
N+1

∑
i=1

Tiei (23)

is the displacement vector for a certain path, with ei = icosθi + jsinθi being

unit vectors specifying directions of individual runs. After using Eq.13, the follow-

ing general expression for the Laplace transform of the MSD is arrived at, after a

straightforward computation using the convolution theorem:

Ls[〈r
2〉] =

2v2

s2

I2(s;F)

I1(s;F)
(24)

where the integrals are defined as

I1(s;F) =
∫

dωF(ω)

s+ iω
; I2(s;F) =

∫

dωiωF(ω)

(s+ iω)3
. (25)

(It is also useful to note that I2(s;F) = I′′3 (s;F)/2, where I3(s;F) = 1− sI1(s;F)
and the prime denotes differentiation with respect to s). As a special case, it follows

that, if lims→0+ I2/I1 is non-zero and finite, 〈r2〉 ∼ 4Dt, with the diffusion coefficient

D being given by the general expression

D =
v2

2
lim

s→0+

I2(s;F)

I1(s;F)
(26)

3.2 Mean-square displacement for specific models

(a) Exponential model :

The diffusion coefficient can be easily found using the expression in Eq.26. Here,

2πF(ω) = (R− iω)−1, which leads to the diffusion coefficient

De = v2/2R (27)

for the exponential model. In Sect. 5.1, we also show explicitly that the proba-

bility distribution of the displacement in the long-time, large distance limit, for this

model, is Gaussian.
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(b) Power-law distributed run intervals :

The details of the calculations are presented in Sect.5.2. A summary of the results

are given below.

〈r2〉 ∝ t2 0 < β ≤ 1

〈r2〉 ∝ t3−β 1 < β ≤ 2

〈r2〉 ∝ t β > 2 (28)

Thus, the motion is ballistic for β ≤ 1, super-diffusive when 1 < β < 2 and diffu-

sive when β ≥ 2. The above results agree with the predictions made in [19], derived

using heuristic scaling arguments ( a slightly different model is presented in [20],

where both run and tumble intervals are assumed to be power-law distributed).

(c) Model with directional correlations between runs :

After carrying out the required calculations (see Sect. 5.3 for details) we find

〈r2〉 ∼ 4DJt, where

DJ =
v2

2R(1− J/2)
(29)

is the diffusion coefficient for the run and tumble walk, when directional persis-

tence is present. The expression in Eq.29 agrees with the more general expression of

Celani and Vergassola [8], derived by a different method for arbitrary spatial dimen-

sion d.

3.3 Chemotaxis in E. coli: mean displacement and drift velocity

We now use the functional in Eq.22 to compute the mean displacement of the bac-

terium in the long-time limit, and thereby derive an expression for the drift velocity

to the lowest order in α . It is easily seen that, in the evaluation of 〈x(t)〉, the leading

term (O(α0)) does not contribute in the long-time limit, and the leading non-zero

term can be written as the sum of two terms: 〈x(t)〉= x1(t)+ x2(t) with

x1(t) = ακR

∫ t

t−∆
〈x(t ′)x(t)〉edt ′ (30)

x2(t) = −ακ
N

∑
j=1

[〈x(t)x(t j)〉m −〈x(t)x(t j −∆)〉e] (31)

where the averages need to be carried out using the functional in Eq.15. The

first average is particularly simple; this is because for the unbiased run and tumble

walk, we expect 〈x(t)x(t ′)〉 ∼ 2Det
′ for t ′ ≤ t in the large t-limit, similar to Brownian
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diffusion[17], with the diffusion coefficient De being given by Eq.27. Substituting

this result in Eq.30 leads to the asymptotic result x1(t)∼ v1t, with

v1 = ακv2∆ (32)

The computation of x2(t) is more involved, and the details are to be found in the

following subsection.

3.4 Calculation of x2(t) in Eq.31

Let us start with Eq. 31, and express the r.h.s in the form

x(t j)− x(t j −∆) =
j

∑
i=1

P
j

i cosθi, (33)

where

P
j

i = v

(

∆ −
j

∑
q=i+1

Tq

)[

H

(

∆ −
j

∑
q=i+1

Tq

)

−H

(

∆ −
j

∑
m=i

Tm

)]

+vTiH

(

∆ −
j

∑
m=i

Tm

)

; 1 ≤ i ≤ j−1 (34)

while

Pi
i = v∆H(Ti −∆)+ vTiH(∆ −Ti), (35)

where the Heaviside step-function H(t) has been defined earlier, before Eq.15.

Next, we define the integrals

Im =−vακ

∫

1

(2π)N+1
Dθ

∫

DT

(

N

∑
j=1

[x(t j)− x(t j −∆)]

)

Tm cosθm (36)

such that

x2(t) =
∞

∑
N=0

RNe−Rt

[

N+1

∑
m=1

Im

]

. (37)

The angular integrations in Eq.36 are easily done using Eq. 33-35. The result is

Im =
N

∑
r=m

Ir
m, (38)

where

Ir
m =−

vακ

2

∫

DT Pr
mTm (39)
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The time ordered integral in Eq.39 can be done using the theorem in Sect. 2, af-

ter expressing the Heaviside functions in Eq.34 using the integral representation

2πH(∆ − t) =
∫ ∆

0 dy
∫ ∞
−∞ dψeiψ(y−t). Thus, it follows that

Ls[I
r
m] =

1

2π

∆

sN+m−r+2

∫ ∆

0
dy

∫ ∞

−∞
eiψydψ(s+ iψ)m−r

−
1

2π

(r−m)

sN+m−r+2

∫ ∆

0
dy

∫ ∞

−∞
eiψydψ(s+ iψ)m−r−1

−
1

2π

∆

sN+m−r

∫ ∆

0
dy

∫ ∞

−∞
eiψydψ(s+ iψ)m−r−2

+
1

2π

(r−m+2)

sN+m−r

∫ ∆

0
dy

∫ ∞

−∞
eiψydψ(s+ iψ)m−r−3 (40)

The integrals in the above expression are straightforward; for any n ≥ 0, we have
1

2π

∫ ∆
0 dy

∫ ∞
−∞ dψeiψy(s+ iψ)−n =

∫ ∆
0 yn−1e−sydy, hence

Ls[IN−h] =
h+1

∑
j=1

β j(s), (41)

where, after the rescaling sy ≡ φ ,

β j(s) =
∆

sN+2

∫ ∆s

0
e−φ φ j−2dφ −

( j−1)

sN+3

∫ ∆s

0
e−φ φ j−1dφ

−
∆

sN+2

∫ ∆s

0
e−φ φ jdφ +

( j+1)

sN+3

∫ ∆s

0
e−φ φ j+1dφ 2 ≤ j ≤ N (42)

while

β1(s) =
∆

sN+2
−

∆

sN+2

∫ ∆s

0
e−φ φdφ +

2

sN+3

∫ ∆s

0
e−φ φ 2dφ (43)

Using Eq.41 in Eq.37, it follows that

Ls[x2(t)] =
∞

∑
N=0

RN

[

N

∑
j=1

(N − j+1)β j(s+R)

]

(44)

The sum in the r.h.s of the above equation, after some algebra, is found to be

N

∑
j=1

(N − j+1)β j(s) =
N∆

sN+2
(2− e−∆s)−

N

sN+3

∫ ∆s

0
e−φ φdφ . (45)

After substituting Eq.45 into Eq.44 and completing the sum, we find that, in the

limit s → 0,

Ls[x2(t)]∼
κv2α

2Rs2
(1− e−∆R −2∆R) (46)

which directly leads to the asymptotic result x2(t)∼ v2t, where
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v2 =
κv2α

2R

(

1− e−∆R −2∆R
)

. (47)

Adding Eq.32 and Eq.47 leads to the complete result 〈x(t)〉 ∼ vdt, where the drift

velocity vd = v1 + v2 is given by

vd =
κv2α

2R

(

1− e−∆R
)

(48)

in agreement with de Gennes [4], and is a special case of the more general ex-

pression in Eq.3, when the response function is approximated as in Eq.2. This fol-

lows from the following argument. To derive Eq.3 from Eq.48, note that, according

to Eq. 48, a response function χ(t) = δ (t − ∆) would result in a drift “velocity”

vd = Deαe−R∆ . Now, we may express δ (t −∆) = (2π)−1
∫ ∞
−∞ eiω(t−∆)dω . Since any

arbitrary response function may be expressed as χ(t) =
∫ ∞
−∞ χ̃(ω)eiωtdω , it follows

that the general expression for drift velocity should be vd = 2πDeαχ̃(−iR), in agree-

ment with Eq.3 (note that χ(t) = 0 for t < 0).

In Sect. 5.4, we show how the result in Eq.48 is generalised for arbitrarily dis-

tributed run intervals.

3.5 An application: Drift velocity and diffusion coefficient for gamma-distributed

run durations

Recent experimental observations[10,11] have shown that durations of CW and CCW

intervals in a single flagellar motor switch are best described by gamma distributions,

which indicate the the presence of multiple hidden Markov steps within a motor,

even when decoupled from its singalling network [10]. For the sake of illustrating

the utility of our formalism, let us consider gamma-distributed runs and estimate the

drift velocity of the bacterium. Let ξn(t) be the probability distribution of run intervals

(assume tumbles to be instantaneous), which we take to have the form

ξn(t) =
Rn

Γ (n)
tn−1e−RtH(t)

= (−1)n−1 Rn−1

Γ (n)

dn−1

dRn−1

(

ξ1(t)
)

(49)

where ξ1(t) =Re−RtH(t), n≥ 1 is the number of hidden steps in a single CW ↔CCW

switch. The corresponding cumulative probability is given by fn(t) =
∫ t

0 ξn(T )dT ,

whose Fourier transform, from Eq.49, is given by

Fn(ω) = F̂
n
RF1(ω) (50)

for n > 1, where

F̂
n
R = (−1)n−1 Rn−1

Γ (n)

dn−1

dRn−1
(51)
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is a linear differential operator, Γ (n) = (n−1)! being the standard gamma func-

tion. From the linearity of the relation in Eq.50, it follows that if the integrals in Eq.25

are replaced with I
(n)
1/2

(s;Fn) = F̂ n
R I1/2(s;F1), the l.h.s. of the equation becomes the

new diffusion coefficient, to be denoted D(n), which gives

v
(n)
1 ∼ 2ακR∆D(n) (52)

as the generalisation of Eq. 32. It may be shown easily that

I
(n)
1 (0;F) = 1/R ; I

(n)
2 = n/R2, (53)

and hence D(n) = nD(1), where D(1) = De, the latter as given in Eq.27. Next, we use

the more general expression for v2 in Eq.91 (Sect. 5.4), and use Eq.50, leading to

v
(n)
2 ∼

Rκαv2

2I
(n)
1 (0;F)

F̂
n
R

[

(1−2∆R− e−∆R)/R3
]

. (54)

which is the required generalisation of Eq. 47 for arbitrary n.

The net drift velocity v
(n)
d is given by the sum of the expressions in Eq.52 and

Eq.54. In Fig. 1, the scaled drift velocity v
(n)
d /καv2 computed using Eq.52 and Eq.54

is plotted as a function of the Poisson rate R (a) and time delay ∆ (b), for various inte-

gers n. We find that the drift velocity is an increasing function of n, but the qualitative

nature of the variation with R or ∆ remains the same for all n.

4 Summary and conclusions

In this paper, we have presented a path-integral method to compute various dynamical

quantities of interest in run and tumble motion of bacteria, with or without chemo-

taxis. Similar to a few early papers[5,8,9], our study is also motivated by the pio-

neering work of de Gennes [4]. We show that de Gennes’ elegant result for the drift

velocity in a weak linear gradient can be reproduced as the first term in a systematic

perturbative expansion in powers of the attractant gradient, by computing the mean

displacement over a single trajectory (rather than a single run), and then averaging

over all trajectories. The formalism also naturally includes directional correlations be-

tween runs; here, we predict that, for unbiased motion, positive correlation between

directions of successive runs increases the effective diffusion coefficient, while neg-

ative correlation reduces it. Most importantly, in its general form, the method can

handle non-exponentially distributed run and tumble durations (likely relevant for

E.coli, as indicated by experimental data). Although this may not be directly relevant

for bacterial run and tumble motion, we have also shown that the formalism predicts

correctly the occurrence of ballistic, super-diffusive and diffusive behaviour of the

mean square displacement when the run intervals are algebraically distributed.

As an illustration of the utility of our formalism, we have computed the drift

velocity and diffusion coefficient of chemotaxing bacteria when the run interval du-

rations are gamma-distributed (the tumbles treated as instantaneous events). Such

gamma distributions arise naturally when there are hidden steps in the run-tumble
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Fig. 1: The scaled drift velocity v
(n)
d /καv2 for gamma-distributed run-lengths and

instantaneous tumbles as a function of (a) the Poisson rate R (in s−1) and (b) the

time delay ∆ between the positive and negative lobes of the response function. In (a),

∆ = 1.0s and in (b), R = 0.5 s−1.

transition; the total number of such steps may be denoted by n. For n > 1, the dis-

tribution has a maximum, which becomes sharper with increase in n. We find that

the drift velocity is a monotonically increasing function of n, and a decreasing func-

tion of the tumble rate for all n. This investigation was motivated by some recent

experiments, where the distributions of clockwise and counter-clockwise intervals of

a single flagellar motor in an immobilized bacterium were measured as a function of

the mean clockwise bias of the motor. It was found that both intervals are, in gen-

eral, gamma-distributed, but the number of hidden steps in each transition (CW→
CCW and vice-versa) depends continuously on the bias[10,11]. Although the CCW

and CW spinning states of a single motor may not directly correspond to run and

tumble events of a bacterium, it is likely that the latter also displays similar statistical

behaviour. We hope that a future experiment may explore the statistics of run and

tumble durations in more detail. Likewise, the model we used here assumes that run



16 C. S. Renadheer et al.

durations are modulated by an attractant gradient, but not tumbles. This is consistent

with the prevailing picture of chemotaxis in E. coli, but if a future experiment were

to indicate otherwise, the formalism is equipped to handle it as well.

Even though we have not been able to extend the computation of drift velocity (or

diffusion coefficient) to higher orders in ∇c so far because of computational complex-

ity, this should certainly be possible and would be one of our goals for the immediate

future. In the present paper, we have also limited our attention to simple mean quanti-

ties describing the cell’s motion, like drift velocity and diffusion coefficient, but many

others, e.g., probability distribution of the number of tumble events, with and without

chemotaxis, can be calculated, in principle. Other quantities of general interest, which

could be computed from our model, include the correlation between successive run

(and tumble) durations in a chemotaxing cell.

Acknowledgements M.G would like to thank R. Adhikari for helpful discussions in the early stages of

this work.
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5 Appendix

5.1 Probability distribution of displacement in the exponential model

Here, we calculate the probability distribution of the displacement vector r of the

bacterium after time t. Note that for a given trajectory with N tumbles in all, the

displacement vector is given by the expression in Eq.23. The probability distribution

P(r, t) is evaluated using the functional in Eq.15; P(r, t) = 〈δ (2)(r−RN(T,θθθ))〉e,

whose Fourier transform P(k, t) = (2π)−1
∫

P(r, t)eik·r turns out to be
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P(k, t) =
∞

∑
N=0

1

(2π)N+2
RNe−At

∫ 2π

0
dθ1...dθN+1

∫ t

0
dT1eiα1T1

∫ t−T1

0
dT2eiα2T2 ....

∫ t−∑
N−1
j=1 Tj

0
dTNeiαN TN (55)

where A = R+ ivk · eN+1 and α j = vk · (eN+1 − e j). After using the generalised con-

volution theorem in Sect. 2, we find the Laplace-transformed distribution P(k,s) =
∫ ∞

0 P(k, t)e−stdt:

P̃(k,s) =
∞

∑
N=0

1

(2π)N+2
RN

[

∫ 2π

0

dθ

s+R+ ivk · e(θ)

]N+1

(56)

where e(θ) = cosθ i+ sinθ j are unit vectors. After carrying out the straightfor-

ward angular integration, we find

P̃(k,s) =
1

2π

(

1
√

(s+R)2 + v2k2 −R

)

, (57)

where k = |k|. For small k, one can expand the denominator in powers of k2. After

carrying out the s → t inverse Laplace transform of the resulting expression, we find

P̃(k, t)∼
1

2π
exp

(

−v2k2t

2R

)

. (vk/R → 0) (58)

The inverse Fourier transform (k −→ r) of Eq.58 yields the large distance asymp-

totic form

P(r, t)∼
1

4πDet
exp

(

−r2

4Det

)

, (r ≫ v/R) (59)

where r = |r| is the net displacement and the diffusion coefficient De is given in

Eq.27.

5.2 Mean square displacement for Lévy-like (algebraic) f (T )

Case I: 0 < β ≤ 1

The Fourier transform of the function f (T ) = (1+ γT )−β is defined as

F(ω) =
1

2π

∫ ∞

0

eiωT

(1+ γT )β
dT (60)

Substituting 1+ γT = x in the above integral, we obtain

F(ω) =
e−iω/γ

2πγ

∫ ∞

1

eiωx/γ

xβ
dx = F ′(ω)−F ′′(ω), (61)
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Re z 

Im z (a) 
Re z 

Im z (b) 

Fig. 2: The contours used for evaluating the integrals in (a) Eq.(63) and (b) Eq.(67).

where

F ′(ω) =
e−iω/γ

2πγ

∫ ∞

0

eiωx/γ

xβ
dx ; F ′′(ω) =

e−iω/γ

2πγ

∫ 1

0

eiωx/γ

xβ
dx (62)

Note that F ′′(ω) does not diverge as ω → 0, while F ′(ω) does (see below); there-

fore in the long-time limit we are interested in, F(ω) ∼ F ′(ω) . Consider now the

complex-valued integral

F (z) =
∮

eiωz

zβ
dz (63)

with the contour of evaluation chosen as in Fig.2(a), where z = x+ iy. In the limit

R → ∞, the integral over the quarter-circle vanishes according to Jordan’s lemma,

and we arrive at

∫ ∞

0

eiωx/γ

xγ
dx+

∫ 0

∞

eiω(iy)/γ

(iy)γ
idy = 0 (64)

where the r.h.s. is zero since F (z) has no pole inside the contour. Therefore

F(ω)∼
e−iω/γ

2πγβ
i1−β ωβ−1Γ (1−β ) (65)

The integral I1(s;F) in Eq.(25) becomes

I1(s;F) =
Γ (1−β )γ−β e

iπ
2 (1−β )

π
IA(s) (66)

where

IA(s) =
∫ ∞

0

e−iω/γ

s+ iω
ωβ−1dω. (67)
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To evaluate the integral, we use the contour in Fig.2(b); along the branch cut, ω
will be replaced by ωei2π , while along the imaginary axis, ω = iy. Applying Cauchy’s

residue theorem again, we find

ei2π(β−1)IA + iβ
∫ 0

−∞
yβ−1 ey/γ

s− y
dy = 0 (68)

Substituting ξ =−y, we find

IA = e−iπβ/2
∫ ∞

0
ξ β−1 e−ξ/γ

s+ξ
dξ (69)

The integral in the r.h.s of Eq.69 can be evaluated by introducing an auxiliary

variable λ through the integral representation 1/(s+ξ ) =
∫ ∞

0 e−λ (s+ξ )dλ . After sub-

stituting in the above equation, we find

∫ ∞

0
ξ β−1 e−ξ/γ

s+ξ
dξ = Γ (β )γβ sβ−1

∫ ∞

0

e−η

(s+ γη)β
dη (70)

where η = λ s. In the limit s → 0, the integral becomes Γ (1− β ). We now substi-

tute the resulting limiting expression for IA(s) in Eq.66 to find that I1(s;F) ∝ sβ−1 as

s → 0. It follows that I2(s;F) ∝ sβ−2 and hence, from Eq.25, we find 〈r2〉 ∝ t2 for

large t. The motion is, therefore, ballistic in this regime.

Case II: 1 < β < 2

For β > 1, the Fourier transform of the survival probability can be expressed as

Fβ (ω) =
1

2πγ(1−β )

∫ ∞

0
eiωtd[(1+ γt)1−β ] (71)

which can be simplified to

Fβ (ω) =
1

2πγ(β −1)

[

1+ iωFβ−1(ω)
]

. (72)

For β < 2, after using the expression given in (65), we get

Fβ (ω) =
1

2πγ(β −1)

[

1+Γ (2−β )eiπ(3−β )/2e−iω/γ(ω/γ)β−1
]

(73)

For this case, one can write I1(s;F) = I
(1)
1 + I

(2)
1 , which are defined as follows:

I
(1)
1 =

∫ ∞

−∞

dω

2πγ(β −1)(s+ iω)
=

−i

2πγ(β −1)
≡ A1

I
(2)
1 =

Γ (2−β )eiπ(3−β )/2

2πγβ (β −1)

∫ ∞

−∞

e−iω/γ ωβ−1

s+ iω
dω = A2sβ−1 (74)
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where A1 and A2 are constants. Therefore I1(s;F) = A1+A2sβ−1 and I2 ∝ sβ−2. From

Eq.25, it follows that Ls[〈r
2〉] ∝ s4−β , and hence 〈r2〉 ∝ t3−β . Thus, the run and tum-

ble motion is super-diffusive in this regime.

Case III: β ≥ 2

Here, we apply the recursion relation in Eq.72 one more time to find that I1(s;F)=
B1+B2s+B3sβ−1, where B1,B2,B3 are non-zero constants. It then follows that in the

long time limit, 〈r2〉 ∝ t, i.e., the motion is purely diffusive in this regime.

5.3 Mean square displacement in unbiased motion with directional persistence

The Fourier-Laplace transform of the probability distribution P(r, t) of the position r

at time t is given by the following generalisation of Eq.56:

P̃(k,s) =
∞

∑
N=0

RN

∫

Dθ
ψ(θ1)

s+R+ ivk · e1

N+1

∏
j=1

G(θ j+1|θ j)

s+R+ ivk · e j

, (75)

where, the unit vectors e j have been defined following Eq.23. Let us now define

a set of N integrals,

I1(θN) =
∫ 2π

0

dθN+1G(θN+1 | θN)

s+R+ ivk · eN+1

I2(θN−1) =
∫ 2π

0

dθNG(θN | θN−1)I1(θN)

s+R+ ivk · eN

...

IN(θ1) =
∫ 2π

0

dθ2G(θ2 | θ1)IN−1(θ2)

s+R+ ivk · e2
.

(76)

After substituting Eq.17 in Eq.76, it turns out that, for general n, the integral In

can be expressed as

In =Cn +Dn cos(θN−n+1), (77)

where

[

Cn

Dn

]

=

[

(s+R)A1 −ivkA2

−ivkJA2 (s+R)JA2

]n−1 [
C1

D1

]

; ∀n ≥ 2 (78)

and k ≡ |k|. The constants A1 and A2 in the above equation are given by

A1 =
1

2π

∫ 2π

0

dθ

(s+R)2 + v2k2 cos2 θ
=

1

(s+R)
√

(s+R)2 + v2k2

A2 =
1

2π

∫ 2π

0

cos2 θdθ

(s+R)2 + v2k2 cos2 θ
=

1

v2k2

[

1−
s+R

√

(s+R)2 + v2k2

]

. (79)
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where C1 = (s + R)A1 and D1 = −ivkJA2. The r.h.s of Eq.78 is evaluated using

Cayley-Hamilton theorem, which uses the following eigenvalues of the 2×2 matrix

in Eq.78:

λ1 =
(s+R)(A1 + JA2)+

√

(s+R)2(A1 + JA2)2 −4J[(s+R)2A1A2 + v2k2A2
2]

2

λ2 =
(s+R)(A1 + JA2)−

√

(s+R)2(A1 + JA2)2 −4J[(s+R)2A1A2 + v2k2A2
2]

2
(80)

The final exact result, after some simplifications, is

P̃(k,s) =
1

2π

(

1
√

(s+R)2 + v2k2 −R

)

−
JRv2k2A2

2

2π

[

(s+R)2A2
1 − J

(

2v2k2A2
2 +(s+R)2A1A2

)](

√

(s+R)2 + v2k2 −R

)2
(81)

which, as expected, reduces to Eq.57 when J = 0. The Laplace transform of the

mean square displacement 〈r2〉= 〈x2〉+ 〈y2〉 is given by

Ls[〈r
2〉] = 2π

{

∂ 2P̃(k,s)

∂ (−ikx)2

∣

∣

∣

∣

k=0

+
∂ 2P̃(k,s)

∂ (−iky)2

∣

∣

∣

∣

k=0

}

, (82)

which we use in Eq.81 to find that Ls[〈r
2〉] ∼ 4DJ/s2 as s → 0, or, equivalently,

〈r2〉 ∼ 4DJt as t → ∞, with the diffusion coefficient DJ given in Eq.29.

5.4 Diffusion coefficient and drift velocity for general f (T )

In this section, we present the calculation of drift velocity under chemotaxis, for

arbitrary run interval distribution f (T ), but assuming that the unbiased motion is dif-

fusive in the long-time limit. Let us start from Eq.10: the attractant gradient modifies

the survival probability in the run state, which we express in the general form

f (Ti;T,θθθ) = f (0)(Ti)

{

1−
∫ ti

ti−1

δR(t;T,θθθ)dt + .....

}

(83)

where

δR(t;T,θθθ) =−αR

∫ t

0
χ(t − t ′)x(t ′)dt ′ (84)

is the perturbation due to the gradient and R is a baseline switch rate. From Eq.83,

we find

ḟ (Ti;T,θθθ) = ḟ (0)(Ti)−δ fi(T,θθθ) (85)
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where the dot denotes differentiation with respect to the first variable, and

δ fi(T,θθθ) = ḟ (0)(Ti)
∫ ti

ti−1

δR(t;T,θθθ)dt + f (0)(Ti)δR(ti;T,θθθ) (86)

After using Eq.83 and Eq.86, the probability functional in Eq.10 may be expanded

in the form

Φ
(m,c)
N (T,θθθ ; t) =

1

(2π)N+1
f (0)(TN+1)δ

(

TN+1 +
N

∑
i=1

Ti − t

)

N

∏
i=1

(−1)N ḟ (0)(Ti)

[

1−

∫ t

0
δR(t ′;T,θθθ)dt ′−

N

∑
i=1

δR(ti;T,θθθ)
f (0)(Ti)

ḟ (0)(Ti)
+ ..........

]

,(87)

which replaces Eq.22, for general f (T ). The mean position 〈x(t)〉 = x1(t) + x2(t)
again, with slightly modified expressions:

x1(t) = ακR

∫ t

t−∆
〈x(t ′)x(t)〉dt ′

x2(t) = −ακR
N

∑
j=1

〈

x(t)[x(t j)− x(t j −∆)]
f (0)(Tj)

ḟ (0)(Tj)

〉

(88)

where the averages are to be computed using the distribution function in Eq.10. Note

that for f (T ) = e−RT H(T ), the expressions in Eq.88 reduce to those in Eq.30 and

Eq.31. We again use the standard result 〈x(t)x(t ′)〉 ∼ 2Dt ′ (for t ′ ≤ t) in the long time

limit to find x1(t)∼ v1t where

v1 = 2κRαD∆ (89)

with D given by Eq.26. The Laplace transform of x2(t) turns out to be

Ls[x2] =−
κRαv2

2

∞

∑
N=0

∫

Dω
N

∑
i=1

(N − i+1)βi(s+ iωi)F(ωi)∏
j 6=i

iω jF(ω j), (90)

which is a generalisation of Eq.44 in Sect. 5.4. The explicit expressions for the

integrals βi(s) are given in Eq.42 and Eq.43. After completing the summation, we

find that x2(t)∼ v2t for large t, where

v2 =−
Rκαv2

2I1(0;F)

∫

dωF(ω)

{

−
2∆

ω2
+

1− e−iω∆

iω3

}

(91)

It may be easily verified that, for the exponential model with F(ω) = [2π(R−
iω)]−1 (and the substitution R → R), the r.h.s of Eq.91 reduces to that of Eq.47, as

expected. The net drift velocity is given by the sum of the expressions in Eq.89 and

Eq.91:

vd =
Rκαv2

2I1(0;F)

∫

dωF(ω)
(e−iω∆ −1)

iω3
(92)

which generalises Eq.48 for arbitrary f (T ).
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