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Adiabatic dynamics of quasiperiodic transverse Ising model
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We study the non-equilibrium dynamics due to slowly taking a quasiperiodic Hamiltonian across
its quantum critical point. The special quasiperiodic Hamiltonian that we study here has two
different types of critical lines belonging to two different universality classes, one of them being the
well known quantum Ising universality class. In this paper, we verify the Kibble Zurek scaling which
predicts a power law scaling of the density of defects generated as a function of the rate of variation
of the Hamiltonian. The exponent of this power law is related to the equilibrium critical exponents
associated with the critical point crossed. We show that the power-law behavior is indeed obeyed
when the two types of critical lines are crossed, with the exponents that are correctly predicted by
Kibble Zurek scaling.

PACS numbers:

I. INTRODUCTION

Equilibrium phase diagram of systems undergoing
quantum phase transitions (QPT) have been well
studied1–3. Recently, studies on non-equilibrium dynam-
ics of a system which is swept linearly with a speed 1/τ
across a quantum critical point has picked up pace mainly
due to the following two reasons: (i) the surprising con-
nection between the non-equilibrium exponent and equi-
librium exponents4–6,and (ii) the advancement in the ex-
periments related to optical lattices to simulate quan-
tum Hamiltonians with very high degree of control and
accuracy7. A system at zero temperature which is pre-
pared in its ground state initially, when driven across a
quantum critical point by a time dependent Hamiltonian,
gets necessarily excited. This is because the relaxation
time at the critical point diverges, implying that the sys-
tem takes infinite time to respond to the external vari-
ation. Such a situation results to the system not being
able to follow the instantaneous ground state, and hence
gets excited. The density of defects n (or excitations)
thus generated is related to the speed of linear varia-
tion (1/τ) and the equilibrium critical exponents by the

famous Kibble Zurek (KZ) scaling n ∼ τ−
νd

νz+1 , where
d is the dimensionality of the system, ν and z are the
correlation length and time exponents, respectively, as-
sociated with the quantum critical point4–6. The KZ
scaling has been verified in various models and has been
accepted as a universal scaling of the density of defects
generated as a result of linear variation of a parameter of
the Hamiltonian8. This scaling can also be generalized
to a non-linear variation of a parameter9.

Quasiperiodic lattices have also gained attention re-
cently as it can have both extended as well as localized
states even in one dimensions10,11. Till the discovery of
quasiperiodic lattices, it was believed that a disordered
Hamiltonian can not have extended states in one or two
dimensions, but can have only localized states. It is only
in three dimensions or higher that a disordered system
can have extended states as argued by Anderson12. On

the other hand, it is shown that quasiperiodic lattices,
which is intermediate between periodic and disordered
systems can still have extended eigenstates13,14. The
presence of both types of eigenstates lead to an upsurge in
the studies related to quasiperiodic system. Quasiperi-
odic Hamiltonians can also be realized in experiments
using lasers of incommensurate lengths15. Single parti-
cle localization in quasiperiodic lattices has already been
observed experimentally16. One such model which has
gained a lot of attention is a one-dimensional Aubry An-
dre model which is essentially an XX spin chain in pres-
ence of a quasiperiodic transverse field10. The beauty of
this model is that it undergoes a phase transition from
a phase which consists of all extended eigenstates to a
phase with all localized eigenstates at a critical value of
the transverse field. Moreover, this critical point can be
obtained analytically due to its self dual nature when
transformed to momentum space.10,11. Theoretical stud-
ies on non-equilibrium dynamics of Aubry Andre model
due to sudden and slow variation of a parameter of the
Hamiltonian is studied in Ref. 17.

Recently, Chandran and Laumann studied a variant of
Aubry Andre model, which is Ising model in presence of
quasiperiodic transverse field (QPTIM)18. The phase di-
agram of this model is richer and involves possibility of
having a mobility edge, i.e., the system can have both ex-
tended and localized eigen states at a particular value of
Hamiltonian parameters and demonstrate the existence
of dynamically stable long range orders which are oth-
erwise not present in equilibrium. They showed the ex-
istence of localization protected excited states without
disorder. This system also exhibits a new critical line,
the dynamical critical properties of which are interme-
diate between clean Ising critical point and infinite ran-
domness transition point that arises in disordered model.
The non-equilibrium dynamics generated due to sudden
quenches of QPTIM is already discussed in Ref. 19. We
now complete the study of QPTIM by looking at slow
variation of a parameter of the Hamiltonian and verify
KZ scaling.

This paper is divided as follows: After the basic in-
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troduction to the field of KZ scaling and quasiperiodic
Hamiltonian in Section I, we present a brief description
of the Hamiltonian along with the proposed phase dia-
gram in Section II. The non-equilibrium dynamics due to
adiabatic evolution of the QPTIM is studied in Section
III. We conclude the paper with discussions in Section
IV.

II. THE MODEL AND PHASE DIAGRAM

The Hamiltonian of QPTIM18 is given by

H = −1

2

∑

j

Jiσ
x
i σ

x
i+1 + hσz

i ,

Ji = J +AJ cos(Q(i+ 1/2)) (1)

with σα
i being the Pauli matrices at site i, and α corre-

sponding to x, y, or z. We choose Q to be the golden
ratio Q = 2π(

√
5+1)/2, so that the interaction term has

a periodicity which is incommensurate with the lattice.
The zero temperature phase diagram of this model as
obtained by Chandran et.al in J/h−AJ/h plane is pre-
sented in Fig.1. It consists of three phases, namely, para-
magnet (PM), ferromagnet (FM) and quasiperiodically
alternating ferromagnet (QPFM). The excited states of
the model can be either localized, extended or critical de-
pending upon the values of J and AJ . The critically de-
localized phase consists of states having multifractal scal-
ing behavior. These properties of the eigenstates are ob-
tained analytically wherever symmetry permits and nu-
merically otherwise, the details of which we shall briefly
discuss later. The dashed diagonal line in Fig. 1 sepa-
rates two different PM phases based on their low lying
excitations-extended or critical. The thick line originat-
ing from J/h = 1 corresponds to a phase transition be-
longing to the Ising universality class (marked as A in
Fig. 1) with ν = 1 and z = 1. On the other hand,
the second phase boundary separating critical PM and
localized QPFM belongs to a different universality class
(marked B in Fig. 1) with the same correlation length
exponent as quantum Ising critical point i.e., ν = 1, but
with the dynamical exponent z equal to 2. Therefore,
if the adiabatic dynamics involve crossing of the critical
line ”A”, the defect density will follow τ−0.5. On the
other hand, if the critical line ”B” is crossed, the defect
density would give a new exponent with n ∼ τ−0.33. In
this work, we verify Kibble Zurek scaling while crossing
both these different types of critical lines.
For the sake of completeness, we now present a brief

discussion on how the phase diagram of this Hamilto-
nian is obtained in Ref. 18. Owing to the complexity
of the Hamiltonian, the form of the eigenstates and cor-
responding eigen energies is almost impossible to calcu-
late analytically for all parameter values. Therefore, the
properties of the phase diagram has been obtained an-
alytically only under certain limits which possess some
symmetry, other parts of the phase diagram being ob-
tained numerically. Such special limits include AJ = 0,

Localized QPFM

1

J/h

1

2

3

Aj / h

3

2

Critical PM

Extended FM Localized FM

Quasiperiodic

Ising Glass

Extended PM

A

B

FIG. 1: Phase diagram of QPTIM consisting of FM, PM
and QPFM ground states. Depending upon the strength of
the quasiperiodic modulation, the low energy excitations can
exhibit localized, extended or critically delocalized behavior,
also shown in the figure. For more details, see Ref. 18.

J = 0 and J → ∞. We consider the limit of J → ∞
first. It is easy to observe that the ground state of the
model in this limit consists of all spins pointing either
along +x or −x direction. One can then re-write the
Hamiltonian in terms of domain wall dynamics resem-
bling AA model which helps to extend the information
about AA model to this model. Such a correspondence
allows us to conclude that all the states for AJ < h are
extended, whereas they are localized for AJ > h simi-
lar to AA model. This particular limit is shown as the
dashed vertical line in Fig. 1. Lets consider the next
point AJ = 0 and J/h = 1 which is the well studied
critical point of Transverse Ising model (TIM). It is well
known that the transverse Ising Hamiltonian has gap-
less extended excitations at all energies. As seen in Fig.
1, there is a parabolic phase boundary originating from
TIM critical point and extending upto AJ/h = 2. It has
been argued using Harris-Luck criterion and also numer-
ically verified that the weak quasiperiodic modulation is
irrelevant at small AJ . Therefore, this parabolic phase
boundary belongs to the same universality class as that
of AJ = 0, i.e., that of transverse field Ising model. One
expects atleast the low lying excitations along this phase
boundary to be extended. On the other hand, at J = 0
and AJ/h = 2, there exist a triality similar to the AA
duality found in Aubry Andre model. Using this trial-
ity, it can be shown that there is a phase transition from
critically delocalized to localized states at all energies at
AJ/h = 2. All states are localized for AJ ≫ J, h18. It
is to be noted that the localization properties are gener-
ally claimed to be Q and energy dependent, which can be
cross-checked through numerics. For more details, please
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refer to Ref. 18.

III. ADIABATIC DYNAMICS

Let us now discuss the non-equilibrium dynamics gen-
erated as a result of linear time evolution of the transverse
field. It is to be noted that the phase diagram discussed
till now and given in Ref. 18 is in J−AJ plane where the
quasiperiodicity is in AJ with no quasiperiodicity in h.
In this paper, for the ease of numerical calculations, we
have modified the Hamiltonian bringing the quasiperi-
odicity in the transverse field, setting J constant and
AJ = 0. The Hamiltonian that we numerically simulate
has the following form

H = −1

2

∑

i

Jσx
i σ

x
i+1 + hiσ

z
i ,

hi = h+Ah cos(Q(i+ 1/2)) (2)

which is exactly like Eq. 1 with quasiperiodicity in J
shifted to h. It is to be noted that due to the Ising
duality in the model, such a change will result into the
paramagnetic and ferromagnetic phases getting swapped
leaving the dynamical nature of bulk single particle ex-
citations unaltered. Quasiperiodicity in h along with J
is also discussed in Ref. 20 by the same authors as in
Ref. 18. The phase diagram is then in h/J−Ah/J plane
with paramagnet replaced by ferromagnet and QPFM
replaced by quasiperiodic paramagnet. The critical lines
”A” and ”B” will still be present separating the corre-
sponding similar phases. We shall continue to call these
critical lines as ”A” and ”B”, though they are now in a
different plane.
We shall first check the non-equilibrium exponent

when the quantum Ising critical line (marked as A in
Fig. 1) is crossed where the defect density is expected
to decay as τ−1/2. To start with, the system is in its
ground state at t = 0. A parameter of the Hamiltonian
is varied linearly such that the critical point is crossed
during the evolution. Close to the critical point when
the relaxation time is larger than the time scale in which
the Hamiltonian is varied, the system is no longer able
to follow its ground state, and gets excited. Below we
describe two different quenching protocols for crossing
the above described critical lines. As mentioned before,
these protocols are presented in a different plane, i.e., in
h−Ah plane as opposed to Fig. 1, but the new phase di-
agram will have similar features due to the Ising duality.
To cross the quantum Ising critical line, we divide the
evolution into two steps as follows: (i)start deep in the
paramagnet phase with h = 5 and Ah = 0.1 and reduce
h to zero linearly as t/τ which results to crossing of Ising
like critical line. (ii)Next, we reduce Ah to zero with the
same rate. The final Hamiltonian after both the steps
is simply Ising Hamiltonian with zero transverse field .
Had the evolution been a complete adiabatic evolution,
the final state arrived would be all spins parallel to each

other along the Ising direction, and any deviation from
this would correspond to defects, which in this case are
domain walls. It is easy to see that the density of domain
walls can be calculated using the following equation21,22

n =
1

L

L−1∑

i

〈ψf |
1

2
(1− σx

i σ
x
i+1)|ψf 〉. (3)

where |ψf 〉 is the final evolved state. The visual realiza-
tion and ability to write a mathematical expression for
the defects is the main reason for quenching the system
to Ising Hamiltonian. As expected, the numerically ob-
tained density of defects after solving Schrödinger equa-
tion follows n ∼ τ−1/2 behavior characteristic of quan-
tum Ising critical point. This is also shown in Fig. 2.
There are two features of this figure. The better agree-
ment with the expected power-law for larger system sizes
and the faster decay of defect density for larger τ values.
This can be attributed to the finite size effects. The gap is
non-zero for a finite system even at critical point. There-
fore, it is always possible to find some τ value beyond
which the evolution is perfectly adiabatic. In summary,
we need infinite system to get perfect τ−1/2 for all τ val-
ues.
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FIG. 2: Variation of defect density with τ when the critical
line ”A” is crossed. KZ scaling corresponding to quantum
Ising critical exponents predict n ∼ τ−0.5 behavior. As seen
above, the defect density approaches τ−0.5 for larger system
sizes.

Let us now look into the exponent when the ”B” crit-
ical line is crossed. This is a new type of critical line
with a new exponent. For this, the time evolution of the
Hamiltonian is divided into two steps: (i) Setting h to
0.1, we reduce Ah as t/τ from 3 to zero crossing the crit-
ical point. (ii) In the next step, we reduce the value of h
from 0.1 to zero so that at the final time of the evolution,
the Hamiltonian is once again simply Ising Hamiltonian
resulting to same expression for n as given in Eq 3. This
protocol ensures that only one critical point belonging to
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line ”B” is crossed. The critical exponents of the cor-
responding critical point gives a defect density given by
n ∼ τ−1/3, which is also supported by numerics as shown
in Fig. 3. In both the figures, one can clearly see power
law behavior, the exponent of which approaches the the-
oretical value as the system size increases.
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FIG. 3: Variation of defect density with τ when the critical
line ”B” is crossed. The defect density n clearly decays with
a power law with the exponent close to 1/3. The agreement
with the exponent increases as the system size increases.

IV. CONCLUSION

We have studied the non-equilibrium dynamics after
taking the system through two different critical points
belonging to two different universality classes. We find
that the conventional Kibble Zurek scaling is obeyed in
both the cases. This work confirms the equilibrium crit-
ical exponents obtained in Ref. 18 for this new model
along with the KZ scaling. The numerical calculations
clearly show an improvement in the obtained power law
scaling as the system size is increased. A thorough study
of phase diagram with non-zero Ah and AJ has been done
recently in Ref. 20. It would be interesting to explore this
rich phase diagram in connection with non-equilibrium
dynamics also.
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