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Center of the Goldman Lie algebra

ARPAN KABIRAJ

We show that the center of the Goldman Lie algebra associated to a closed orientable
surface is generated by the class of the trivial loop. For an orientable nonclosed
surface of finite type, the center is generated by closed curves which are either
homotopically trivial or homotopic to boundary components or punctures.

57M50; 57M07, 57M05

1 Introduction

Let F be an oriented surface. Given two free homotopy classes of oriented closed
curves ˛ and ˇ , consider two oriented closed curves x and y representing ˛ and ˇ ,
respectively. Performing a small homotopy if necessary, we can assume that x and y

intersect transversally in double points. Goldman [10] defined the bracket of ˛ and ˇ

as the sum,
Œ˛; ˇ� D

X

p2x\y

�.p/hx �p yi;

where x \ y denotes the set of all intersection points between x and y , �.p/ denotes
the sign of the intersection between x and y at p , .x �p y/ denotes the loop product
of x and y at p , and hzi denotes the free homotopy class of a curve z .

Let C be the set of all free homotopy classes of oriented closed curves in F . This
bracket is extended by linearity to Z.C/, the free module generated by C . Goldman
[10] showed that this bracket is well defined, skew-symmetric and satisfies the Jacobi
identity. Therefore, this is a Lie bracket, and it gives a Lie algebra structure on Z.C/,
which we denote by L.F /. Recall that the center of a Lie algebra L is the set of all
elements x in L such that Œx; y� D 0 for all y in L. The main object of this paper is
to study the center of L.F /.

The structure of the Goldman Lie algebra for surfaces of nonnegative Euler characteristic
is either trivial or well understood; see Chas [3, Lemma 7.6] for the torus case.

Chas and Sullivan conjectured that, for a closed surface F , the center of the Goldman
algebra is generated by the trivial loop. It is natural to conjecture (see Chas [4,
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Open Problem 1], [3, Problem 13.1] and Kawazumi and Kuno [12, Section 8.3])
that, for a surface F with nonempty boundary, the center of L.F / is generated by
the free homotopy classes of oriented closed curves which are either homotopic to a
point, homotopic to a boundary, or homotopic to a puncture. In this paper, we prove
these conjectures.

Main Theorem The center of the Goldman Lie algebra of any closed orientable

surface F is one-dimensional, and is generated by the class of the trivial loop. If F is

an orientable surface of finite type with boundary, then the center of L.F / is generated

by the set of all free homotopy classes of oriented closed curves which are homotopic

to either a point, a boundary component, or a puncture.

Remark 1 The closed case was done by Etingof in [8] using representation theory,
but that proof did not address the case of surfaces with boundary. Our proof of both
cases uses different ideas from hyperbolic geometry.

Goldman discovered this bracket while studying the Weil–Petersson symplectic form on
Teichmüller spaces. Using Wolpert’s [15] result on length and twist flow, he showed that
if the Goldman bracket between two closed curves is zero and one of them has a simple
representative, then their geometric intersection number is zero. The combinatorial
structure of L.F / has also been studied. Using combinatorial topology and group
theory, Chas [3] proved a stronger version of Goldman’s result, namely if one of the
curves has a simple representative, then the number of terms in the Goldman bracket is
the same as their geometric intersection number. Chas and Krongold [6] proved that,
for a compact surface with nonempty boundary, Œx; x3� determines the self-intersection
number of x . Using hyperbolic geometry, Chas and Gadgil [5] proved that there exists
a positive integer m0 such that, for all m � m0 , the geometric intersection number
between x and y is the number of terms in Œxm; y� divided by m. There is a Lie
cobracket defined by Turaev [14] on Z.C/ which is the dual object of the Goldman
bracket. This structure has been studied by Chas and Krongold [7; 2].

Idea of the proof Our proof is based on hyperbolic geometry. Given an oriented
surface of negative Euler characteristic, we fix a hyperbolic metric on it with geodesic
boundary. There are two key ideas behind our proof.

The first idea is from [5]. Given two closed oriented curves x and y intersecting
transversally, we construct lifts of .x �p y/ in the hyperbolic plane H for each in-
tersection point p . By [5, Lemma 7.1], the lifts are quasigeodesics. Hence they are
homotopic to unique geodesics. Therefore, if two terms .x �p y/ and .x �q y/ cancel
each other, then the corresponding geodesics will be the same. By [5, Main Theorem],
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there exists m0 such that if we take a power m � m0 of x , then we can ensure that
if the geodesics are the same, then the quasigeodesics are also the same, and hence
the terms have the same sign. Therefore, there is no cancellation between the terms of
Œxm; y�.

The second key idea is that all lifts of a simple closed geodesic are disjoint. Now, if an
element y D

Pk
iD1yi of L.F / belongs to the center, then we consider a simple closed

curve x which intersects at least one of the curves yi nontrivially. Taking sufficiently
large powers of x we can ensure that the same terms of Œxm; yi � have the same sign.
Then, using that the lifts of x are disjoint, we show that if one term of Œxm; yi � and
another term of Œxm; yj � are the same, then yi and yj are conjugate.

Therefore, if Œx; y� is zero for all closed curves x , then each yi is disjoint from every
simple closed curve, and hence each yi is either homotopic to a point or to a boundary
component or to a puncture.

Organization of the paper Throughout the paper we follow the notation and defini-
tions from [5].

In Section 2, we recall some basic facts about hyperbolic surfaces and closed curves on
hyperbolic surfaces. We also mention a well-known result about hyperbolic elements
of the fundamental group of a hyperbolic surface.

In Section 3, we recall from [5] the algebraic definition of the Goldman bracket between
conjugacy classes of elements. Throughout the paper, we use this as the definition of
Goldman bracket.

In Section 4, we recall from [5] the description of the lifts of the terms of Goldman
bracket. We also state the lemma that these lifts are quasigeodesic and, therefore, in a
neighborhood of a geodesic, following [5].

In Section 5, we show that if we take a sufficiently high power of a simple closed curve,
then there is no cancellation between the terms of the Goldman bracket with any other
closed curve.

In Section 6, we mention a classical theorem and prove the main theorems.
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2 Closed curves on a hyperbolic surface

In this section, we recall some basic facts about hyperbolic surfaces and closed curves
on hyperbolic surfaces. We use the same notation as [5]. References for the results
mentioned in this section are [1; 5; 11; 13].

Let F be an orientable surface of finite type with negative Euler characteristic; ie
F is a surface of genus g with b boundary components and n punctures such that
2�2g�b�n < 0. By [9, Theorem 1.2], we can endow F with a hyperbolic metric. By
a hyperbolic surface we mean an orientable surface with negative Euler characteristic
and with a given hyperbolic metric. Given a hyperbolic surface F , we identify the
fundamental group �1.F / of F with a discrete subgroup of PSL2.R/, the group of
orientation preserving isometries of the upper half plane H . The action of �1.F / on H

is properly discontinuous without fixed points, and the quotient space is isometric to F .
Henceforth, by an isometry of H we mean an orientation preserving isometry, and by
a closed curve we mean an oriented closed curve.

A homotopically nontrivial closed curve in F is called essential if it is not homotopic
to a puncture. A closed curve is called peripheral if it is homotopic to a power of a
simple closed curve bounding a once-punctured disc. By a lift of a closed curve 

to H , we mean the image of a lift R ! H of the map  ı � , where � W R ! S1 is the
usual covering map.

There is a bijective correspondence between the set of all free homotopy classes
of oriented closed curves in F and the set of all conjugacy classes in �1.F / [5,
Theorem 2.3]. Given an oriented closed curve  in F , we denote both its free homotopy
class and the corresponding conjugacy class in �1.F / by h i. Abusing notation, we
sometimes denote the conjugacy class of  by  itself. Given a; g 2 �1.F /, we denote
gag�1 by ag and the translation length of a by �a . If a is hyperbolic, then ag is also
hyperbolic with �ag D �a and Aag D gAa for all g 2 �1.F /, where Aa denotes the
axis of a.

The geometric intersection number between two free homotopy classes of closed curves
x and y , denoted by i.x; y/, is defined to be the minimal number of intersection points
between a representative curve in the class hxi and a representative curve in the class hyi

which intersect transversally in double points.

Every free homotopy class of an essential closed curve contains a unique closed geodesic
whose length is the same as the translation length of any element of the corresponding
conjugacy class. By a slight abuse of notation, we denote the free homotopy classes of
essential closed curves by their geodesic representatives.

The following lemma is a well-known result. See [5, Corollary 6.3] for a proof.
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Lemma 2.1 Let G be a discrete subgroup of PSL2.R/. Given two nonzero positive

numbers L and C , there exists a constant M > 0 such that for every pair of hyperbolic

elements x and y in G with �x � L and �y � L, the set

fx 2 Ax W d.x; Ay/ < C g

is either empty or a geodesic segment of length at most M .

3 Goldman bracket

In this section, we recall from [5] the algebraic definition of the Goldman bracket
between two curves intersecting transversally (not necessarily in double points). For
the equivalence of this definition with the previous one, see [5, Section 3].

Given two hyperbolic transformations x and y whose axes Ax and Ay , respectively,
intersect in a point P , let I.x; y/ denote the segment of Ax of length �x starting
from P in the positive direction of Ax , containing P but not containing xP .

Definition 3.1 Let hxi and hyi be two nontrivial conjugacy classes in �1.F /. Define

Œhxi; hyi� D

(

P

gY 2J .x;y/

�.x; yg/hxygi if both x and y are hyperbolic,

0 if either x or y is parabolic,

where Y is the cyclic subgroup generated by y ,

J.x; y/ D fgY 2 �1.F /=Y W I.x; y/ \ gAy ¤ ∅g;

and �.x; y/ denotes the sign of intersection between the axes of x and y if they
intersect and 0 otherwise.

Remark 2 This definition is independent of the type of the intersection points of
the representative curves. Therefore, we can use the geodesic representatives of the
corresponding conjugacy classes (which intersect transversally but not necessarily in
double points). Henceforth, we use this as the definition of the Goldman bracket.

4 Terms of the Goldman bracket

In this section we recall the description of the lifts of the terms of the Goldman bracket
from [5, Section 7].

Let x and y be two hyperbolic elements in �1.F / whose axes intersect at the point P .
Denote the projections of Ax and Ay in F by x1 and y1 respectively. Let p be the
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x2.P /

Ah

h2.P /

I1
yg

I1
x

I0
yg

x.P / h.P /

I0
x

I�1
yg

.yg/�1.P / P

gAy

Ax

Figure 1: Lift of a term in the Goldman bracket

projection of P in F . By [5, Remark 3.2], there exists a unique g 2 �1.F / such that
gY 2 J.x; y/ and gY corresponds to p . A lift of .x1 �p y1/ is a bi-infinite piecewise
geodesic passing through P , which we denote by  .x; yg/; see Figure 1.

Let h D xyg . If we denote the geodesic arc from P to x.P / by I0
x and the geodesic

segment from x.P / to h.P / by I0
yg , then  .x; yg/ consists of geodesic segments of

the form hk.I0
x/ and hk.I0

yg / occurring alternately.

Remark 3 Denote hk.I0
x/ by Ik

x and hk.I0
yg / by Ik

yg . From the definition, the length
of Ik

x is �x and the length of Ik
yg is �y for all k 2 Z. Hence, by the description of

the axis of the product of two isometries given in [5, Remark 3.4], Ah intersects Ik
x

and Ik
yg in their midpoint for all k 2 Z.

For the definition of quasigeodesic and the proof of the following lemma, see [5,
Section 7, Lemmas 7.1 and 7.2].

Lemma 4.1 Given L > 0, there exist K � 1 and C > 0, depending on �1.F /, such

that if x and y are two hyperbolic elements in �1.F / whose axes are distinct with

�x � L and �y � L, then for any g 2 �1.F / and m 2 N , if Ax and Ayg intersect, then:

(1)  .xm; yg/ is a K–quasigeodesic, and  .xm; yg/ is homotopic to Ah , where

h D xmyg ;

(2)  .xm; yg/ � NC=2.Ah/ and Ah � NC=2. .xm; yg//, where NC .Ah/ denotes

the C neighborhood of Ah .
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5 Noncancellation lemma

Denote the length of a curve x by l.x/. For the proof of the following lemma, see [5,
Lemma 7.3].

Lemma 5.1 Let L; K and C be as in Lemma 4.1. For hyperbolic elements x; y 2

�1.F / with �x � L and �y � L, let m be a positive integer such that m�x > 6KC .

Let S and R be the points in I0
xm at distance 3KC from P and xmP (see Figure 2).

Let s (respectively r ) be the open half-plane bounded by the line perpendicular to Ax

through S (respectively R), containing the point xmP (respectively P ).

Set U D s \ r \ NC .I0
xm/. Then U contains an open segment J of I0

xm such that

NC .I0
xm/nU is disconnected, l.J / � m�x �6KC , U � NC .I0

xm/, xU \NC .Ik
xm/ D∅

for all k ¤ 0 and xU \ NC .Ik
y / D ∅ for all k 2 Z .

The following lemma is the main lemma of this paper. The proof is based on the proof
of [5, Lemma 7.4, Claims 1 and 2] and the idea that lifts of simple closed geodesics
are disjoint.

Lemma 5.2 Let x be a hyperbolic element in �1.F / such that the geodesic represen-

tative in the free homotopy class of x is simple. Let x1 D xh for some h 2 �1.F /.

Suppose y and y1 are two distinct hyperbolic elements in �1.F / whose axes are

distinct and intersect the axes of x and x1 , respectively. Let L be a positive number

such that the translation lengths of x; y and y1 are bounded above by L. Then

there exists m0 such that for any m > m0 , we have  .xm; y/ D  .xm
1

; y1/ whenever

xmy D xm
1

y1 . Moreover, there exists u 2 �1.F / such that x1 D xu and y1 D yu .

I0
y

xm.P /

I0
xm

R
U

J

r

s

S

P
I�1

y

Figure 2: The open segment J as in Lemma 5.2
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Proof Let �0 be the systole, ie the length of a shortest length closed geodesic of F .

Let C , K and M be the constants defined in Lemmas 4.1 and 2.1 and let m > m0 .
Define m0 D K.3M C 10C /=�0 .

Since xmy D xm
1

y1 , we have Axmy D Axm
1

y1
. Let g D xmy D xm

1
y1 . By Lemma 5.1,

(1)  .xm
1 ; y1/ � NC=2.Ag/ � NC . .xm; y//:

Let J and U be as in Lemma 5.1 corresponding to  .xm; y/. Therefore, J � U ,
J � I0

xm �  .xm; y/, and length.J / � m�x � 6KC .

Claim 1 The curve  .xm
1

; y1/ intersects U and does not intersect the part of the

boundary of U contained in the boundary of NC . .xm; y//.

Proof of claim If  .xm
1

; y1/ does not intersect U , by (1),  .xm
1

; y1/ is contained
in NC . .xm; y// n U D NC . .xm; y/ n J /, which is disconnected. Hence by (1),
 .xm

1
; y1/ should intersect both components, which contradicts that  .xm

1
; y1/ is

connected. By Lemma 5.1, xU \ NC .Ik
xm/ D ∅ for all k ¤ 0 and xU \ NC .Ik

y / D ∅

for all k 2 Z . Therefore,  .xm
1

; y1/ does not intersect the part of the boundary of U

contained in the boundary of NC . .xm; y//.

Therefore, any component of U \  .xm
1

; y1/ consists of piecewise geodesic arcs
starting and ending at the sides of U of length 2C .

Claim 2 Let ˇ be a component of  .xm
1

; y1/ \ U . Then ˇ contains a geodesic

segment l of length greater than M.

Proof of claim Case 1 Suppose ˇ contains more than three vertices. Then ˇ

contains I
k
xm

1
for some k 2 Z and length.I

k
xm

1
/ D m�x1

> m0�0 D K.3M C10C / > M .

Case 2 Suppose ˇ contains at most three vertices. Then ˇ consists of at most
three segments. Let � be the longest segment of ˇ and let r D l.�/. By hypothesis,
l.J / � m�x � 6KC > 3KM C 4KC . Using the triangle inequality and the properties
of m and K , we have

.3M C 4C / � K.3M C 4C / < m�x � 6KC � l.J / � 2C C 3r C 2C D 3r C 4C:

Hence r > M which proves Claim 2.

The geodesic segment � is contained in  .xm
1

; y1/ and � � NC .I0
xm/. Therefore,

by Lemma 2.1, � intersects I0
xm in a geodesic segment. Hence I0

xm and  .xm
1

; y1/

intersect in a geodesic segment.
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Claim 3 If  .xm; y/ and  .xm
1

; y1/ intersect in a geodesic segment contained in I0
xm ,

then they are equal, and there exists u 2 �1.F / such that x1 D xu and y1 D yu .

Proof of claim As I0
xm intersects  .xm

1
; y1/ in a geodesic segment, I0

xm intersects
either I

k
xm

1
or Ik

y1
in a geodesic segment.

Now l.I
k
xm

1
/ D m�x1

D m�x D l.I0
xm/ for all k 2 Z, and Ag intersects I0

xm and I
k
xm

1

in their midpoints. So if I0
xm intersects I

k
xm

1
in a geodesic segment, then they are equal.

If I0
xm intersects Ik

y1
in a geodesic segment for some k 2 Z, then by the construc-

tion of  .xm; y/, we see that Ax intersects I
kC1
xm

1
, which lies in a translate of the

geodesic Ax1
and hence in a translate of Ax (as x and x1 are conjugates). As the

geodesic representative in the free homotopy class of x is simple, all translates of Ax

are disjoint. Hence I0
xm cannot intersect Ik

y1
for any k 2 Z.

Since I0
xm can not intersect Ik

y1
in a geodesic segment, I0

xm intersects I
k
xm

1
for some

k 2 Z. Thus I0
xm D I

k
xm

1
. Since I0

y and Ik
y1

are the unique geodesic segments joining
the end point of I0

xm D I
k
xm

1
with the image of the starting point of I0

xm D I
k
xm

1
under g ,

we see that I0
y D Ik

y1
. By the periodic property of the definition of  .xm; y/ and

 .xm
1

; y1/, they are equal. Since gnI0
xm D I

0
xm

1
and gnI0

y D I0
y1

for some n, taking
u D gn , we have x1 D xu and y1 D yu . This proves the claim and thus the lemma.

6 Center of the Goldman Lie algebra

Lemma 6.1 Let F be a hyperbolic surface. Suppose x is an essential simple closed

curve and y is an essential closed curve. If i.x; y/ ¤ 0, then there exists m0 such that

Œxm; y� ¤ 0 for all m > m0 .

Proof Let L D maxf�x; �yg and m0 be as in Lemma 5.2. If m > m0 , then

Œxm; y� D m

�

X

kB2J .xm;y/

�.xm; yk/hxmyki

�

:

Suppose hxmyki D hxmyk1i. Then for some g 2 �1.F /,

xmyk D .xmyk1/g D .xm/g.y/k1g:

By Lemma 5.2, there exists u 2 �1.F / such that x is conjugate to xg and yk is
conjugate to yk1g by the element u. Therefore,

�.xm; yk/ D �..xm/u; .yk/u/ D �.xmg; yk1g/ D �.xm; yk1/:

Hence Œxm; y� ¤ 0.
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The following lemma is a classical result.

Lemma 6.2 Let F be a hyperbolic surface of finite type with geodesic boundary.

Let  be a closed curve whose geometric intersection number with any other nontrivial

simple closed geodesic is zero. Then  is either homotopically trivial or homotopic to

a boundary curve or peripheral.

Theorem 6.3 Let F be a hyperbolic surface of finite type with geodesic boundary.

Let y D
Pn

iD1 ciyi 2 L.F /, where each yi is a geodesic and yi ¤ yj for i ¤ j . If y

belongs to the center of L.F /, then i.x; yi/ D ∅ for every simple closed geodesic x

and for all i 2 f1; 2; : : : ; ng.

Proof We show that, given any simple closed geodesic x , if i.x; yi/ ¤ ∅ for some
i 2 f1; 2; : : : ; ng, then there exists m 2 N such that Œxm; y� ¤ 0.

Let x be a simple closed geodesic which intersects at least one yi . If some yk is
disjoint from x , then the Goldman bracket between x and yk is zero; therefore,
without loss of generality, assume that x intersects yj for all j 2 f1; 2; : : : ; ng. Let
L D maxf�x; �y1

; �y2
; : : : ; �yn

g. Hence by Lemma 5.2, there exists mi for every
i 2 f1; 2; : : : ; ng such that, if m > maxfmig with xm

1
D .xm/h for some h 2 �1.F /,

then  .xm; yi/ D  .xm
1

; yj / whenever xmyi D xm
1

yj . Also there exists g 2 �1.F /

such that x1 D xg and yj D yi
g . Since Œxm;

Pn
iD1 ciyi � D

Pn
iD1 ci Œx

m; yi �, by
Lemma 6.1, it is enough to show that the terms of Œxm; yi � are distinct from the terms
of Œxm; yj � for i ¤ j .

Suppose hxmy
ki

i i D hxmy
kj

j i. Hence there exists h 2 �1.F / such that

xmy
ki

i D .xmy
kj

j /h D .xm/h.yj /kj h:

By Lemma 5.2, y
ki

i and y
kj

j are conjugates of each other in �1.F /. Therefore,
yi and yj are freely homotopic to each other. Hence the geodesic representative
corresponding to yi and yj are the same, which contradicts the assumption.

The Main Theorem follows at once from Lemma 6.2 and Theorem 6.3.
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