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COMPLETE INTEGRABILITY OF THE PARAHORIC HITCHIN SYSTEM

DAVID BARAGLIA, MASOUD KAMGARPOUR, AND ROHITH VARMA

Abstract. Let G be a parahoric group scheme over a complex projective curve X of genus greater
than one. Let BunG denote the moduli stack of G-torsors on X. We prove several results concerning
the Hitchin map on T

∗BunG . We first show that the parahoric analogue of the global nilpotent cone
is isotropic and use this to prove that BunG is “very good” in the sense of Beilinson-Drinfeld.
We then prove that the parahoric Hitchin map is a Poisson map whose generic fibres are abelian
varieties. Together, these results imply that the parahoric Hitchin map is a completely integrable
system.
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1. Introduction

The Hitchin system [Hit87a, Hit87b] lies at the crossroad of geometry, Lie theory, and mathe-
matical physics. It has found remarkable applications to non-abelian Hodge theory [Sim92,Sim94]
and the Langlands program [BD97,Ngô10]. The goal of this paper is to prove the Hitchin map
continues to have many of its crucial properties if G is replaced by a Bruhat-Tits parahoric group

scheme.
In this paper, we work with parahoric group schemes whose generic fibres are simple and simply

connected; thus, we do not treat parahoric group schemes whose generic fibres are not split. More-
over, we restrict to characteristic zero. The reason is we rely on [BS15] and [BGPMiR15] which
assume these restrictions. We expect, however, that most of the results of this paper hold under
less rigid assumptions.

1.1. Parahoric group schemes. Let X be a smooth projective curve over C. For each x ∈ X,
we let Ox denote the algebra of functions on the completed formal neighbourhood of a point and
Kx denote the fraction field. If we choose a uniformiser t, then Ox ≃ C[[t]] and Kx ≃ C((t)).

Let G be a simple simply connected algebraic group over C. An integral model for G is a smooth
connected affine group scheme over X whose generic fibre is isomorphic to G. If G is an integral
model, then for all but finitely many x ∈ X, called points of bad reduction or ramification points,
one has an isomorphism G(Ox) ≃ G(Ox).

Among all integral models, a special role is played by parahoric group schemes. These are integral
models G such that at the points of bad reduction, G(O) is a parahoric subgroup of G(K). To give

2010 Mathematics Subject Classification. 17B67, 17B69, 22E50, 20G25.
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the reader an idea about parahoric subgroups of the loop group G(K), we compare them with their
cousins, namely, parabolic subgroups of G. For details, cf. [Kum02].

(a) Recall that parabolic subgroups are exactly those subgroups P ⊂ G such thatG/P is proper.
Similarly, parahoric subgroups are exactly those subgroups of the loop group P ⊂ G(K)
such that the quotient G(K)/P is ind-proper.

(b) Given a subset of simple roots of G, the group generated by the corresponding root sub-
groups, together with the root subgroups corresponding to all negative simple roots and the
maximal torus, is a parabolic subgroup of G. This establishes a bijection between subsets of
simple roots and conjugacy classes of parabolics. A similar procedure provides a bijection
between proper subsets of affine simple roots and conjugacy classes of parahorics in G(K).

Among parahoric subgroups, the most familiar ones are those constructed from parabolics in
the following manner. Consider the canonical evaluation map ev : G(O) → G defined by t 7→ 0.
Given a parabolic P ⊂ G, we have that ev−1(P ) is a parahoric subgroup of G(K). We refer to
these as parahorics of parabolic type. Equivalently, this is when the subset of affine simple root
corresponding to the parahoric is really a subset of the usual (= non-affine) simple roots.

Given parahoric subgroups P1, · · · ,Pl ⊂ G(K) and finitely many points x1, · · · , xl on the curve
X, there exists integral models G over X with bad reduction exactly at the xi’s satisfying G(Oxi

) ≃
Pi. This is a consequence of the work of Bruhat and Tits [BT84, BT72]; see also [Yu02, BS15].
Throughout this paper we assume that we only have one point x ∈ X of bad reduction. This is
done in order to keep our notation simple. As we shall see, none of our proofs depend on this
assumption, so the result generalises easily to the case of finitely many points.

1.2. Parahoric Hitchin system. Henceforth, we assume that genus of X is greater than one.
Let G be a parahoric group scheme over X and let Ω = ΩX denote the canonical bundle. Given
a G-bundle E , one may construct an adjoint bundle ad(E) of E , which is a vector bundle with a
Lie algebra structure on its sheaf of sections. The co-adjoint bundle ad∗(E) is the vector bundle
dual to ad(E). A G-Higgs bundle is a pair (E , φ) consisting of a G-bundle together with an element
φ ∈ Γ(X, ad∗(E) ⊗ Ω). Let MG denote the moduli stack of G-Higgs bundles. Using Serre duality,
one can show that

MG ≃ T ∗BunG ,

where T ∗ should be interpreted as in [BD97, §1].
Now we discuss the Hitchin map. Let Q1, · · · , Qℓ denote algebraically independent homogenous

generators of the invariant ring C[g]G and let di denote the degree ofQi. Using local trivializations of
the G-bundle E , one can locally identify φ with a section of g∗⊗Ω(x), or via the Killing form, a local
section of g⊗Ω(x). Since changes of local trivialization act on φ via the adjoint action, we may apply
the invariant polynomial Qi to φ to obtain a well-defined global section Qi(φ) ∈ Γ(X,Ωdi(di.x)).
In this way we may define the Hitchin map on T ∗BunG as follows:

(1) (E , φ) 7→ (Q1, Q2, · · · , Qℓ)(φ) ∈
⊕
i

Γ(X,Ωdi(di.x)).

This map takes values in
⊕

i Γ(X,Ω
di(di.x)). However, contrary to the usual Hitchin map, this

map is not surjective. Let AG denote the closure of its image. This is an affine subvariety of⊕
i Γ(X,Ω

di(di.x)).
1

Definition 1. The parahoric Hitchin map is the map

hG : T ∗BunG → AG .

defined by (1).

1Determining the precise description of AG is a delicate problem, which we treat elsewhere [BK17].
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Let N ilpG = h−1
G

(0) denote the parahoric global nilpotent cone. Our first main result is that
N ilpG is isotropic in T ∗BunG. To prove this, we adapt arguments of Ginzburg to the parahoric
setting. A key technical tool we use is the description of parahoric torsors via ramified covers
[BS15].

Next, we show that BunG is very good in the sense of Beilinson and Drinfeld. In particular,
this implies that dim(T ∗BunG) = 2dim(BunG). Our proof is a generalisation of the argument of
Beilinson and Drinfeld (who worked with G = G×X) to the parahoric case. The property of being
very good means that BunG is in a sense not too far from being a Deligne-Mumford stack. The
upshot of this is that one can naively apply various notions of symplectic geometry to T ∗BunG
without having to work in the setting of derived geometry. For instance, this allows us to adapt an
argument of Bottacin to prove that hG is a Poisson map. Here the image of hG is equipped with
the trivial Poisson structure, so to say that hG is Poisson is equivalent to saying that the pullbacks
of functions on the base are Poisson commuting.

The fact that the global nilpotent cone is isotropic together with the natural contracting C∗

action present implies that every fibre of hG has dimension at most dim(BunG). On the other hand,
the fact that hG is Poisson implies that every fibre is co-isotropic. Thus, we have a Lagrangian
fibration. We prove that this Lagrangian fibration is a completely integrable system, by showing
that generic fibres of hG are abelian varieties. A crucial step here is establishing that the Hitchin
map on the moduli of polystable parahoric Higgs bundles is proper. We do this by appealing to
the parahoric non-abelian Hodge theory established in [BGPMiR15]. It should also be possible to
establish properness by proving semistable reduction for parahoric Higgs bundles. We leave this as
an interesting topic for future work.

1.3. What was known before? Let G be a parahoric group scheme on X. If G has no point
of bad reduction (i.e., G ≃ G × X), then we are reduced to the system considered by Hitchin.
Next, if the parahoric group scheme is parabolic of Borel type, then the above results are treated
in [Fal93, §V]. In type A, complete integrability of the parabolic Hitchin map was established by
Scheinost and Schottenloher [SS95], but in the setting of semistable moduli spaces as opposed to
moduli stacks.

Let us mention that strongly parabolic Higgs bundles have a variant called weakly parabolic
Higgs bundles. These are pairs (E , φ) consisting of G-bundle E with parabolic reduction at a point
x and an endomorphism φ ∈ Γ(E ×G g ⊗ Ω(x)) whose residue lies in p. (By comparison, in the
strongly parabolic case considered in this article, the residue lies in the nilpotent radical n.) If G is
of type A, then Logares and Martens [LM10] have proved that the Hitchin map on the semistable
moduli space of weakly parabolic Higgs bundles defines a generalised completely integrable system,
see also [Mar94,Bot95]. Note that this implies that generic symplectic leaves are integrable systems.
However, this does not imply that any particular symplectic leaf is an integrable system. Thus,
one can not deduce integrability of moduli spaces of strongly parabolic Higgs bundles from these
results, which in any case have only been proven for parabolics of type A.

1.4. Acknowledgements. The idea of considering the Hitchin map for BunG is due to Xinwen
Zhu. We thank him for sharing his insights with us. We would also like to thank Dima Arinkin,
David Ben-Zvi, Tsao-Hsien Chen, Sergei Gukov, Arun Ram and Zhiwei Yun for helpful discussions.
DB and MK were supported by the Australian Research Council DECRA Fellowships and RV was
supported by a post-doctoral fellowship at TIFR, Mumbai.

2. Parahoric Higgs bundles

2.1. Basic Lie theory. Let G be a simple, simply-connected complex algebraic group of rank
ℓ. Fix a maximal torus T ⊂ G and let t ⊂ g be the corresponding Lie algebras. Let X(T ) =
Hom(T,Gm) be the character group, Y (T ) = Hom(Gm, T ) the group of 1-parameter subgroups
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of T and denote by ( , ) : Y (T ) × X(T ) → Z the canonical pairing. Let R ⊂ X(T ) be the root
system associated to G and fix a choice of positive roots R+ ⊂ R. The choice of positive roots
R+ determines a Borel subgroup B ⊂ G with unipotent radical U . Associated to each root r ∈ R,
we have a root space gr ⊂ g, a root homomorphism ur : Ga → G and a corresponding subgroup
Ur ⊂ G, called the root group corresponding to r.

Let α1, . . . , αℓ be the simple roots and αmax the highest root. We let U denote the rational Weyl
alcove

U := {θ ∈ Y (T )⊗Q | (θ, αmax) ≤ 1, (θ, αi) ≥ 0, ∀ positive roots αi}

and let Uo denote the points θ ∈ U which satisfy (θ, αmax) < 1.

2.1.1. Parahoric subgroups. Let O = C[[t]] be the local ring of formal power series in t and K = C((t))
the fraction field of O. For any θ ∈ U and root r ∈ R, consider the integer

mr(θ) = −⌊(θ, r)⌋.

The subgroup

(2) Pθ = 〈T (O), {zmr(θ)Ur(O)}r∈R〉 ⊂ G(K)

is a parahoric subgroup in the sense of Bruhat-Tits. Note that Pθ and the constructions that follow
depend only on the choice of θ through the facet Ω of the affine apartment Y∗(T ) ⊗ R on which θ
lies, but to keep the notation simple we will avoid any further mention of facets.2

2.1.2. Parahoric group schemes. From Bruhat-Tits theory, we get a smooth affine group scheme
Gθ over Spec(O), which satisfies:

(i) Gθ ×Spec(O) Spec(K) ∼= G× Spec(K).
(ii) Gθ(O) = Pθ.

2.1.3. Parahorics of parabolic type. If θ ∈ Uo then θ also determines a parabolic subgroup Pθ ⊂ G
which is generated by T and the root groups Ur for which mr(θ) = 0. Moreover, the parahoric Pθ

and the parabolic Pθ are related by
Pθ = ev−1(Pθ),

where ev : G(O) → G is the evaluation map sending t to zero. We refer to the case θ ∈ Uo as the
parabolic case and we call Pθ a parahoric subgroup of parabolic type.

2.1.4. Parahoric lie algebras. Associated to θ ∈ U we also have the corresponding parahoric subal-
gebra pθ ⊂ g(K), which may be defined as:

(3) pθ = t(O)⊕
⊕
r∈R

tmr(θ)gr(O).

Let κ be the Killing form on g. We define the dual p⊥θ as

p
⊥
θ = {u ∈ g(K) | κ(u, v) ∈ O ∀v ∈ pθ}.

We have a natural isomorphism
Ψ : p⊥θ → HomO(pθ,O)

which sends u ∈ p
⊥
θ to the homomorphism v 7→ κ(u, v). This isomorphism identifies p⊥θ with the

dual of pθ as O-modules. From (3) we see that:

p
⊥
θ = t(O)⊕

⊕
r∈R

t−mr(θ)g−r(O).

Elements of p⊥θ should be interpreted as local parahoric Higgs fields.

2Thus, we are really considering weighted parahorics in the sense of [Boa11]. The weight does not play a role in
defining the moduli stack of parahoric torsors, but is essential for defining stability.
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2.2. Parahoric torsors. Fix a marked point x ∈ X and a parahoric subgroup Pθ ⊂ G(K) asso-
ciated to some θ ∈ U. Recall that Ox denotes the completed local ring at x. Let Dx = Spec(Ox)
be the completed formal neighbourhood of x. By a parahoric Bruhat-Tits group scheme on X, we
mean a group scheme GX,x,θ over X such that:

(i) GX,x,θ|X−x
∼= G× (X − x).

(ii) GX,x,θ|Dx
∼= Gθ.

Such a group scheme exists for any (X,x, θ) [BS15]. To simplify notation we will omit the subscripts
X,x, θ and write G = GX,x,θ. We will also refer to G simply as a parahoric group scheme on X.
Denote by BunG the stack of G-torsors on X. We note here that the group scheme G is not uniquely
determined by the data (X,x, θ), but it follows from [BS15] that the corresponding stacks BunG
are all equivalent once (X,x, θ) are fixed.

In [Hei10], it is shown that BunG is a smooth algebraic stack locally of finite type. One can show
that the dimension of BunG is given by [BS15]:

dim(BunG) = (g − 1) dim(G) + #{r ∈ R+ | 〈θ, r〉 6= 0, 1}.

In the parabolic case, i.e. when θ ∈ Uo, torsors for G correspond to the more familiar notion of
(quasi-)parabolic bundles. We recall the definition [LS97]:

Definition 2. Let P ⊂ G be a parabolic subgroup of G. A quasi-parabolic G-bundle on X with

parabolic structure of type P at x is a pair (E , EP
x ), where E is a principal G-bundle on X and

EP
x is a P -reduction of E at x; i.e. an element of Ex ×G (G/P ). A parabolic G-bundle on X is a

quasi-parabolic bundle (E , EP
x ) together with a choice of θ ∈ Uo such that P = Pθ. One refers to θ

as the weights of the parabolic bundle at x.

2.3. Parahoric Higgs bundles. Associated to a parahoric group scheme G = GX,x,θ, we have a
bundle of Lie algebras Lie(G) → X over X. This is a vector bundle equipped with a Lie bracket
on its sheaf of sections. Away from x it is just given by the trivial bundle (X − x) × g, while in a
formal neighbourhood Dx = Spec(Ox) of x, it may be identified with the Lie algebra pθ = Lie(Pθ),
as given by Equation 3.

Suppose that E → X is a parahoric G-torsor. We define the adjoint bundle of E by

ad(E) = E ×G Lie(G),

where G acts on Lie(G) by the adjoint action. It follows that ad(E) is a vector bundle over X and
is equipped with a Lie bracket on its sheaf of sections. We let ad∗(E) denote the dual bundle.

Definition 3. Let E ∈ BunG be a parahoric torsor. A parahoric Higgs field is a section φ ∈
Γ(X, ad(E)∗ ⊗Ω). A parahoric Higgs bundle is a pair (E , φ) consisting of a parahoric torsor E and

a parahoric Higgs field φ.

More generally, to define the stack MG of parahoric Higgs bundles, let S be an arbitrary scheme
over C and define

MG(S) = {(E , φ) | E ∈ BunG(S), φ ∈ Γ(X × S, ad(E)∗ ⊗ Ω1
X×S/S)},

with the obvious notion of isomorphism between objects. We recall that BunG is a smooth equidi-
mensional algebraic stack. From standard deformation theory, we deduce an isomorphism of stacks

MG
∼= T ∗BunG.

Thus, MG is a symplectic stack; in particular, we may speak of the Poisson bracket and of isotropic
substacks. Note that in the setting of stacks, care has to be taken to study the above notions; see
[BD97, §1] for details.
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In the parabolic case, where θ ∈ Uo the notion of parahoric Higgs bundles reduces to the more
familiar notion of (quasi-)parabolic Higgs bundles, as we now recall. Note that some authors call
such Higgs bundles strongly parabolic.

Definition 4. Let (E , EP
x ) be a parabolic bundle. Let p = Lie(P ) be the Lie algebra of the parabolic

subgroup P ⊂ G and n ⊂ p the nilpotent radical of p. A parabolic Higgs field is a section φ ∈
Γ(X, E ×G g∗ ⊗ Ω(x)) such that Resx(φ) ∈ n. A quasi-parabolic Higgs bundle is a triple (E , EP

x , φ)
consisting of a parabolic bundle (E , EP

x ) and a parabolic Higgs field φ. A parabolic Higgs bundle is

a quasi-parabolic Higgs bundle (E , EP
x , φ) together with a choice of weight θ ∈ Uo for which P = Pθ.

2.4. Relation to equivariant bundles. In this section we remark on the relation between para-
horic torsors and parahoric Higgs bundles to equivariant torsors and equivariant Higgs bundles on
a Galois cover of X.

Suppose that p : Y → X is a Galois cover with Galois group Γ such that p has ramification
over the marked point x ∈ X and nowhere else. Let y ∈ Y be one of the points lying over x and
let Γy ⊆ Γ be the stabiliser, which is cyclic of order n say. Let g ∈ Γy be a generator. Following
[BS15], we define a (Γ, G)-bundle on Y to be a principal G-bundle E → Y with G acting on the
right, equipped with a lift of Γ to an action on E commuting with the G-action. In other words,
E is a Γ-equivariant principal G-bundle.

Given a local trivialization of E around y, we can identify the fibre Ey with G such that the right
action is given by group multiplication on the right. Then Γy acts on Ey

∼= G commuting with the
right G-action. This implies that there is a homomorphism ρy : Γy → G such that the action of
γ ∈ Γy on Ey

∼= G is left multiplication by ρy(γ). Since Γy = 〈g〉 is a cyclic group of order n, the
homomorphism ρy : Γy → G corresponds to choosing an element h ∈ G whose order divides n, so
that ρy(g) = h. If we choose a different local trivialization of E, then ρy and hence h ∈ G change
by conjugation. Thus associated to the (Γ, G)-bundle E is a well defined conjugacy class C ⊂ G of
finite order and we say that E has type C. If τ ∈ C is any representative of the conjugacy class C,
we will also say that E has type τ . Note that for any given representative τ ∈ C, we may choose
our local trivialization of E such that ρy(g) = τ .

Recall that each element θ ∈ U of the rational Weyl alcove corresponds to a conjugacy class
Cθ ⊂ G of finite order via the exponential map. Let τ ∈ Cθ be a representative of this conjugacy
class. We let BunτY (Γ, G) denote the stack of Γ-equivariant principal G-bundles on Y of type τ .
According to Balaji-Seshadri [BS15, Theorem 5.3.1], this stack is equivalent to BunGX,x,θ

, where
GX,x,θ is a parahoric group scheme on X. We will often find it useful to work with equivariant
bundles on Y in place of parahoric bundles on X. We note that from the equivariant bundle point
of view there is clearly no difficulty in allowing G to be any connected reductive group. This will be
important for us in the proof of Theorem 7. However, when G is non-simply connected the relation
between equivariant bundles and parahoric bundles requires more care, see [BS15, §8.1.13].

If E → Y is an equivariant bundle of type τ , an equivariant Higgs field on E is defined to be
a Γ-equivariant section of ad∗(E) ⊗ ΩY . We may then speak of equivariant Higgs bundles of type
τ . One sees that the stack of all such Higgs bundles is precisely T ∗BunτY (Γ, G). The equivalence
BunGX,x,θ

∼= BunτY (Γ, G) gives an equivalence T ∗BunGX,x,θ
∼= T ∗BunτY (Γ, G). In other words, we

obtain an equivalence between parahoric Higgs bundles on X for the group scheme GX,x,θ and
equivariant Higgs bundles on Y of type τ . We note that the covering p : Y → X and the group Γ
depend on the choice of θ ∈ U, but are not uniquely determined by θ.

2.5. Parahoric Hitchin map. Recall that Ox
∼= C[[t]] denotes the completed local ring of x and

Dx = Spec(Ox). Suppose that (E , φ) is a parahoric Higgs bundle for G = GX,x,θ. Away from x,
we may identify E with a principal G-bundle and ad(E)|X−x is the usual adjoint bundle of E|X−x.
Moreover, the Killing form on g gives an isomorphism ad∗(E)|X−x

∼= ad(E)|X−x. Therefore, away
from x, φ is a 1-form valued section of the adjoint bundle. On the other hand, φ|Dx may be identified
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with an element of p⊥θ ⊗ Ω1
Dx

. Since we are assuming θ ∈ U, it is easy to see that mr(θ) ≤ 1 for

all roots r ∈ R and hence p
⊥
θ ⊂ t−1g(Ox). It follows that at all points of X, φ may locally be

identified with a section of g⊗Ω1
X(x), i.e. φ is locally a g-valued 1-form with at most a first order

pole at x. A change in local trivialization of E acts on φ via the adjoint action, and hence if Qi is
an invariant polynomial on g of degree di, we may apply Qi to φ to obtain a well-defined section
Qi(φ) ∈ Γ(X,Ωdi(di.x)). As explained in the introduction, this defines a map

(E , φ) 7→ (Q1, Q2, · · · , Qℓ)(φ) ∈
⊕
i

Γ(X,Ωdi(di.x))

whereQ1, Q2, · · · , Qℓ are algebraically independent homogeneous generators for the ring of invariant
polynomials on g. This gives a map ĥG : MG →

⊕
i Γ(X,Ω

di(di.x)). We let AG denote the closure

of the image of the map ĥG . Therefore AG is an affine subvariety of
⊕

i Γ(X,Ω
di(di.x)). The map

ĥG factors through AG →
⊕

i Γ(X,Ω
di(di.x)) and thus defines a map

hG : MG → AG .

As per Definition 1, we call hG the parahoric Hitchin map.

3. Global nilpotent cone and the very good property

We continue to use the notation of the previous section. Thus, G = GX,x,θ is a parahoric group
scheme over X with one ramification point x such that G(Ox) is a parahoric subgroup of type θ.

3.1. Global nilpotent cone. Recall that for any scheme S over C, we have

MG(S) = {(E , s) | E ∈ BunG(S), φ ∈ Γ(X × S, ad(E)∗ ⊗ Ω1
X×S/S)}.

Since G |(X−x)
∼= G × (X − x), we have, via the isomorphism g ∼= g∗ induced by the killing form,

ad(E)∗ ⊗ Ω1
X×S/S |(X−x)×S

∼= ad(E) ⊗ Ω1
X×S/S |(X−x)×S . Thus for any point y ∈ (X − x) × S, we

have
φ(y) ∈ g⊗ k(y).

Definition 5. We say φ |(X−x)×S is nilpotent if

∀y ∈ (X − x)× S, φ(y) ∈ g⊗ k(y) is nilpotent.

The global nilpotent cone is the substack N ilpG of MG, given by

N ilpG(S) = {(E , φ) ∈ MG | φ |(X−x)×S is nilpotent}.

Equivalently, N ilpG = h−1
G

(0).

We have the following key result:

Theorem 6. N ilpG is an isotropic substack of MG.

Proof. We use the Balaji-Seshadri description of parahoric torsors as equivariant bundles (§2.4),
and adapt the proof of [Gin01] to this setting. Thus, we will restrict ourselves to explaining the
necessary modifications involved. Let E be a G = GX,x,θ-torsor on X and let φ ∈ Γ(X, ad(E)∗⊗ΩX)
be nilpotent. Let B ⊂ G be the Borel subgroup scheme, defined as the flat closure of (X − x)×B
in G, for a Borel subgroup B ⊂ G. From Heinloth [Hei10, Lemma 23], we have that the natural
morphism f : BunB → BunG is surjective.

Now we can find a finite Galois cover p : Y → X, with Galois group Γ, such that the stack
of Γ-equivariant principal G-bundles on Y of a fixed local type determined by θ, is equivalent to
the stack of G torsors on X [BS15, Theorem 5.3.1]. As explained in [BS15], if we choose one such
equivariant bundle F on Y , we have an isomorphism of group schemes on X:

RΓ
Y/X(Ad(F)) ∼= G,

7



where Ad(F) denotes the adjoint bundle of groups associated to F andRΓ
Y/X() denotes the invariant

direct image functor. The equivalence of the categories between equivariant bundles on Y of fixed
local type and G-torsors is obtained by

F
′

7→ RΓ
Y/X(F

′

∧G Fop),

where for any right G-torsors E,F on Y , E ∧G F op denotes the contracted product [BS15]:

E ∧G F op :=
E ×Y F

(xg, y) ∼ (x, yg−1)
.

Next, we have a Γ-equivariant B reduction FB of F , such that RΓ
Y/X(Ad(FB)) ∼= B. Let E

′

be the

equivariant bundle on Y , which corresponds to E under the equivalence mentioned above. Then
we have an equivariant section φ̃ of ad(E

′

) ⊗ ΩY , which descends to φ. As in [Gin01], there exists

an equivariant B reduction of E
′

over the generic point of Y , for which φ̃ is a section of n
E
′ ⊗ ΩY ,

where n denotes the nilradical of the Borel subalgebra and n
E
′ denotes the corresponding bundle

of Lie algebras determined by the B reduction of E
′

. Since G/B is projective, we can extend this

B reduction E
′

B of E
′

to the whole of Y . Thus we have a B reduction EB of E given by

EB = RΓ
Y/X(E

′

B ∧G Fop
B )

such that over the generic point, φ ∈ nEB ⊗ ΩX . As in [Gin01], this implies that f∗(φ) = 0 ∈
Γ(X, ad(EB)

∗ ⊗ΩX) as it vanishes on the generic point. Following the notations of [Gin01, Lemma
3], for N1 = BunB and N2 = BunG, we have N ilpG = pr2(Yf ). The rest of the proof can be done
exactly as in the proof of [Gin01, Lemma 5]. �

3.2. Parahoric torsors form a very good stack. Recall [BD97, §1], that a smooth equidimen-
sional algebraic stack Y is said to be good if dim(T ∗Y) = 2dim(Y) and is said to be very good

if

codim{y ∈ Y | dim(Gy) = d} > d for all d > 0,

where Gy denotes the automorphism group of y. Equivalently Y is very good if T ∗Y0 is dense in
T ∗Y, where Y0 is the largest Deligne-Mumford substack of Y. Note that very good implies good.
Using the fact that N ilpG is isotropic, we prove:

Theorem 7. The stack BunG is very good.

Proof. As mentioned in §2.4, it is more convenient to work with equivariant principal bundles of
type τ on a Galois cover p : Y → X, as opposed to parahoric bundles on X. We will allow G to be a
connected semisimple group throughout this proof. We will prove that BunτY (Γ, G) is very good by
adapting the argument used by Beilinson-Drinfeld [BD97, §2.10.5] in the non-equivariant setting.
The main difference is that we need to be more careful in estimating the dimensions of various
spaces involved in the proof. We also need the fact that the nilpotent cone in T ∗BunτY (Γ, G) is
isotropic for any semisimple G, which was proved in the previous subsection.

We must show that BunτY (Γ, G) satisfies:

codim{E ∈ BunτY (Γ, G) | dim(H0
Γ(Y, ad(E)) = d} > d for all d > 0,

Where H0
Γ(Y, ad(E)) denotes the space of Γ-equivariant sections of ad(E). This is equivalent to

showing that

(4) dim(A(G) \ A0(G)) < dim(BunτY (Γ, G)),

where A(G) is the stack of pairs (E, s), E ∈ BunτY (Γ, G), s ∈ H0
Γ(Y, ad(E)) and A0(G) ⊆ A(G) is

the closed substack of pairs with s = 0.
8



Let c = Spec(C[g]G) be the affine space whose coordinate ring is the ring of invariant polynomials
on g. Recall that

c = g//G = t/W,

where W is the Weyl group. The morphism g → c induces a map H0
Γ(Y, ad(E)) → Mor(Y, c) = c,

in other words, we apply invariant polynomials to s ∈ H0
Γ(Y, ad(E)). This gives a natural map

f : A(G) → c.
For h ∈ t, let h ∈ c be the image of h under t → c and set Ah(G) = f−1(h). Set Gh = {g ∈

G | Adgh = h} and gh = Lie(Gh) = {a ∈ g | [a, h] = 0}. Note that h ∈ t is semisimple and so Gh

is reductive. In fact Gh is the Levi of a parabolic subgroup of G. Denote by zh the center of gh.
Since h ∈ zh and there are a finite number of subalgebras of g of the form zh as h varies over t, (4)
follows from the inequality dim(Ah(G) \A

0(G)) < dim(BunτY (Γ, G))− dim(zh). So it is enough to
show that

(5) dim(Ah(G)) < dim(BunτY (Γ, G)) − dim(zh) for h 6= 0

(6) dim(A0(G) \ A
0(G)) < dim(BunτY (Γ, G)).

Consider (E, s) ∈ Ah(G). Then s ∈ H0
Γ(Y, ad(E)) and s maps to h ∈ c. Let us write s = ss + sn,

where ss is semisimple, sn is nilpotent and [ss, sn] = 0. With respect to a local trivialisation of E
around y, we may identify ss(y) with an element of g. We may choose the trivialization so that the
generator of the stabilizer group Γy acts as left multiplication by τ . By Γ-equivariance of s, we have
that Adτ (ss(y)) = ss(y). Choosing a different trivialisation will change τ and ss(y) by conjugation.
Next we note that since ss(y) maps to h ∈ C ∼= t/W , we can choose a local trivialisation in
which ss(y) = h. Replacing τ by a conjugate of τ if necessary, we obtain a trivialization in which
ss(y) = h and the generator of Γy acts as left multiplication by τ . In this trivialisation the equation

Adτ (ss(y)) = ss(y) becomes Adτ (h) = h, so τ ∈ Gh. Denote by Zh the center of Gh. Note
that different trivializations in which ss(y) = h differ by elements of Gh. Thus τ is determined
up to conjugation in Gh. Therefore, the conjugacy class of τ in Gh and also in Gh/Zh is well-
defined independent of our choice of local trivialization. Thus it makes sense to speak of the stacks
BunτY (Γ, G

h), BunτY (Γ, G
h/Zh) and also of Ah(G

h), A0(G
h), A0(G

h/Zh). We will now argue that

(5) follows from (6) with G replaced by Gh/Zh.
Next we observe that since h ∈ zh, there is an obvious isomorphism A0(G

h) ∼= Ah(G
h) and a

further isomorphism Ah(G
h) ∼= Ah(G). The latter follows from the fact that if (E, s) ∈ Ah(G),

then ss, the semisimple part of s defines a reduction of structure group to Gh.
Observe that there is a natural morphism ϕ : A0(G

h) → A0(G
h/Zh). A non-empty fibre of ϕ is

isomorphic to BuneY (Γ, Z
h) ∼= BunX(Zh), where e denotes the identity element of Zh. So

dim(Ah(G)) ≤ dim(BunX(Zh)) + dim(A0(G
h/Zh)).

Let us define e(θ) and e(θ, h) by:

e(θ) = #{r ∈ R+ | 〈θ, r〉 6= 0, 1},

e(θ, h) = #{r ∈ R+ | 〈θ, r〉 6= 0, 1 and 〈h, r〉 = 0}

Then one can show [BS15] that:

dim(BunτY (Γ, G)) = (g − 1) dim(G) + e(θ),

dim(BunτY (Γ, G
h/Zh)) = (g − 1) dim(Gh/Zh) + e(θ, h).
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Now since dim(BunX(Zh)) = (g − 1) dim(zh) and (6) implies that dim(A0(G
h/Zh)) < (g −

1) dim(gh/zh) + e(θ, h), we get:

dim(Ah(G)) ≤ (g − 1) dim(zh) + (g − 1) dim(gh/zh) + e(θ, h)

= (g − 1) dim(G) − (g − 1) dim(g/gh) + e(θ, h)

≤ (g − 1) dim(G) + e(θ)− (g − 1) dim(g/gh)

= dim(BunτY (Γ, G)) − (g − 1) dim(g/gh).

But dim(g/gh) ≥ 2 dim(zh) > dim(zh), if h 6= 0. This shows (5).

To prove (6) we will show that if V ⊆ A0(G) is a locally closed reduced irreducible substack,
then dim(V ) ≤ dim(BunτY (Γ, G)) and dim(V ) = dim(BunτY (Γ, G)) if and only if V ⊆ A0(G).
Given such a V , let A0(G)V denote the irreducible component of A0(G) containing V . Let
N ilp denote the nilpotent cone in BunτY (Γ, G). We have shown that N ilp is isotropic, hence
dim(N ilp) ≤ dim(BunτY (Γ, G)).

For ξ ∈ H0
Γ(Y,ΩY ) ∼= H0(X,ΩX) consider the morphism mξ : A0(G)V → N ilp defined by

(E, s) 7→ (E, sξ). The morphisms mξ define m : A0(G)V × H0(X,Ω) → N ilp. The image of
m is contained in some locally closed reduced irreducible substack Z ⊆ N ilp. If ξ 6= 0 then
mξ induces an embedding V → Zξ, where Zξ is the closed substack of Z consisting of pairs
(E,φ) such that the restriction of φ to the subspace Dξ = {y ∈ Y | ξ(y) = 0} is zero. So
dim(V ) ≤ dim(Zξ) ≤ dim(Z) ≤ dim(N ilp) ≤ dim(BunτY (Γ, G)). If dim(V ) = dim(BunτY (Γ, G)),
then Zξ = Z for all non-zero ξ ∈ H0(X,ΩX). This means that φ = 0 for all (E,φ) ∈ Z and
therefore s = 0 for all (E, s) ∈ V , i.e. V ⊆ A0(G). �

4. Poisson commutativity and Lagrangian fibration

We continue using the notation of the previous section. Thus, G is a parahoric group scheme
and hG : MG → AG,X,x is the parahoric Hitchin map.

4.1. Poisson commutativity. Note that h∗G is a map

h∗G : C[AG ] → Γ(MG ,O).

Theorem 8. The image of the pullback h∗G consists of Poisson commuting functions.

Our proof is analytic as we will make use of Dolbeault cohomology. One can alternatively give a
purely algebraic proof by replacing instances of Dolbeault cohomology with Čech cohomology. This
would lead to a proof along the same lines as given by Bottacin for parabolics of type A [Bot95].
However, we found the analytic approach to be more straightforward.

Proof. Let (E , φ) be a parahoric Higgs bundle. Thus φ ∈ H0(X, ad(E)∗ ⊗ Ω). If α is a section of
ad(E) and β is a section of ad(E)∗, then [α, β] is a section of ad(E)∗. We therefore have the following
two-term complex:

ad(E)
[φ, . ]

// ad(E)∗ ⊗ Ω.

Borrowing notation from [Bot95], we denote this complex by [φ, . ].
For any parahoric Higgs bundle (E , φ), we have thatH0(X, [φ, . ]) is the Lie algebra of infinitesimal

automorphisms of (E , φ). Observe that the dual complexHom([φ, . ],C) tensored by Ω is canonically
isomorphic to [φ, . ]. Thus, by the extension of Serre duality to hypercohomology, we see that
Hj(X, [φ, . ]) ∼= H2−j(X, [φ, . ])∗. Therefore H0(X, [φ, . ]) = 0 implies that H2(X, [φ, . ]) = 0 as well.
Thus if H0(X, [φ, . ]) = 0, then around (E , φ), the moduli stack is smooth, Deligne-Mumford and
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H1(X, [φ, . ]) is the tangent space at (E , φ). Moreover, Serre duality gives a symplectic pairing on
H1(X, [φ, . ]), which coincides with the canonical symplectic form ω on the moduli stack of Higgs
bundles.

In Dolbeault cohomology an element of H1(X, [φ, . ]) is represented by a pair (α, β), where
α ∈ Ω0,1(X, ad(E)) and β ∈ Ω0,0(X, ad(E)∗ ⊗ Ω) satisfying:

∂Eβ = [φ, α],

where ∂E denotes the ∂-operator on ad(E)∗. Moreover, the symplectic form ω on the moduli space
of Higgs bundles is given by:

(7) ω((α1, β1), (α2, β2)) =

∫
X
κ(α1, β2)− κ(α2, β1),

where κ denotes the Killing form. This is clear since the above formula is simply the Dolbeault
realisation of Serre duality.

Now let Bun0G be the substack of parahoric torsors E with H0(X, ad(E)) = 0, i.e. Bun0G is the

largest Deligne-Mumford substack of BunG. As BunG is very good, we have that T ∗Bun0G is dense
in T ∗BunG. Thus, to show Poisson commutativity of functions in the image of h∗G , it is enough

to show such functions Poisson commute on T ∗Bun0G. We therefore restrict attention to parahoric

Higgs bundles (E , φ) with H0(X, ad(E)) = 0. This also implies that H0(X, [φ, . ]) = 0.
Let ρ be an invariant polynomial on g of degree dρ. Then for any parahoric Higgs bundle (E , φ)

we can regard ρ(φ) as a holomorphic section of Ωdρ(dρx). Let µ ∈ H1(X,Ω1−dρ(−dρx)). By Serre
duality we can pair ρ(φ) with µ to get a complex number

fρ,µ(E , φ) = 〈ρ(φ), µ〉 =

∫
X
ρ(φ)µ ∈ C.

This defines a regular function fρ,µ on the Hitchin base and such functions generate the ring of all
regular functions on the base. Thus we just need to show that any two such functions fρ,µ, fρ′,µ′

Poisson commute.
To prove Poisson commutativity, we work out the Hamiltonian vector field Xρ,µ associated to

fρ,µ. By definition this is the vector field whose value at (E , φ) satisfies

(8) dfρ,µ(E , φ)(Y ) = ω(Xρ,µ(E , φ), Y )

for all tangent vectors Y at (E , φ). Suppose we represent Y in Dolbeault cohomology as (αY , βY )
and Xρ,µ(E , φ) as (α, β). Differentiating

∫
X fρ,µ(φ)µ in the Y -direction gives

dfρ,µ(E , φ)(Y ) =

∫
X
dρρ(φ, . . . , φ, βY )µ.

From (7), we also have:

ω(Xρ,µ(E , φ), Y ) =

∫
X
κ(α, βY )− κ(αY , β).

Comparing these expressions, we see that Equation (8) will be satisfied if we choose β = 0 and let
α be defined by:

κ(α, ) = dρρ(φ, φ, . . . , φ, )µ.

In order for this to be a representative in Dolbeault cohomology, we need to check that (α, β)
chosen in this way is a cocycle, i.e. [φ, α] = 0. For all sections y of ad(E), we have:

κ([φ, α], y) = −κ(α, [φ, y])

= −dρρ(φ, φ, . . . , φ, [φ, y])µ

= 0,
11



where in the last line we use ad-invariance of ρ. Hence [φ, α] = 0, as required.
We have shown that the Hamiltonian vector field Xρ,µ of fρ,µ evaluated at the point (E , φ) may

be represented by a Dolbeault cocycle of the form (αρ,µ, 0). Similarly if we have another such
function fρ′,µ′ then its Hamiltonian vector field Xρ′,µ′ evaluated at (E , φ) may be represented in the
form (αρ′,µ′ , 0). From the definition of the Poisson bracket we have:

{fρ,µ, fρ′,µ′}(E , φ) = ω(Xρ,µ(E , φ),Xρ′,µ′(E , φ))

=

∫
X
κ(αρ,µ, 0) − κ(αρ′,µ′ , 0)

= 0.

This proves Poisson commutativity of the functions {fρ,µ}ρ,µ and hence any two functions in the
image of the pullback h∗G will Poisson commute. �

Remark 9. The only fact about parahoric group schemes used in the above proof is that BunG
is very good. In other words, Poisson commutativity property of the Hitchin map holds for any
integral model G such that BunG is very good.

4.2. Lagrangian fibration. In this subsection, we prove that the parahoric Hitchin map

hG : T ∗BunG → AG

defines a Lagrangian fibration. More precisely, we have:

Theorem 10. (i) Any irreducible component of any fibre of hG has dimension dim(BunG). In

particular, N ilpG is a Lagrangian substack of MG.

(ii) The image AG is irreducible and has dimension dim(BunG).

Proof. Our proof is largely modelled on [Gin01, Proposition 1]. First we show thatAG is irreducible.
Indeed, since we know that BunG is very good and connected we deduce that MG = T ∗BunG is
irreducible [BD97, §1]. It follows that the image of hG is an irreducible topological space and hence
its closure, which is AG , is also irreducible.

Since BunG is good, we have dim(MG) = dim(T ∗BunG) = 2dim(BunG). It follows that each
irreducible component of any fibre of hG has dimension greater than or equal to 2 dim(BunG) −
dim(AG). In particular, if N is an irreducible component of N ilpG , then:

dim(N ) ≥ 2 dim(BunG)− dim(AG).

On the other hand, since N ilpG is isotropic, we have

dim(N ) ≤ dim(BunG).

Note that N ilpG is Lagrangian if and only if the above is an equality for each irreducible component
N of N ilpG .

Next, let F be a generic non-singular fibre of hG . Because the Hitchin map is a Poisson map, we
have that F is a coisotropic substack of T ∗BunG and it follows that every irreducible component
of F has dimension at least dim(BunG). Using the natural C∗-action on T ∗BunG, we can put the
fibre F into a family parametrised by A1, so that the central fibre is N ilpG and all other fibres are
isomorphic to F . One deduces from this that dim(F ) ≤ dim(N ilpG). Combining these dimension
estimates, we have

dim(BunG) ≤ dim(F ) ≤ dim(N ilpG) ≤ dim(BunG).

We must have equality throughout and hence dim(F ) = dim(N ilpG) = dim(BunG). Since the
generic fibres of hG have dimension dim(BunG) and MG is irreducible, we deduce that AG has
dimension dim(T ∗BunG) − dim(BunG) = dim(BunG), which proves (ii). Repeating the argu-
ment using the C∗-action shows that every fibre of hG has dimension at most dim(N ilpG) =
dim(BunG). On the other hand, any irreducible component of any fibre of hG has dimension
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at least dim(T ∗BunG)−dim(AG) = dim(BunG). Hence any irreducible component of any fibre has
dimension equal to dim(BunG), proving (i). �

Corollary 11. (i) If AG is smooth, then the Hitchin map is flat and surjective as a map to

AG.

(ii) More generally, let Areg
G

denote the smooth subscheme of AG. Then hG : h−1
G

(Areg
G

) → Areg
G

is flat.

Proof. The very good property implies that T ∗BunG is a local complete intersection, therefore
Cohen-Macauley. By the previous theorem, fibres of the the hitchin map hG have the same dimen-
sion. As the base is regular, we can use miracle flatness to conclude that hG is flat.

As hG is flat we deduce that the image of hG is an open subset of AG. Let us denote the vector
space

⊕
i Γ(X,Ω

di(di.x)) by W and let 0 ∈ W denote the origin. Note that AG ⊂ W is a closed,
C∗-invariant subvariety and 0 ∈ AG. The image of h is open in AG, hence has the form U ∩ AG ,
where U is an open subset of W containing 0. It follows that C∗U = W. Clearly we also have
C∗AG = AG and hence it follows that C∗(U ∩ AG) = (C∗U) ∩ AG = W ∩ AG = AG . However the
image of h is clearly C∗-invariant, so we get U ∩AG = C∗(U ∩AG) = AG, proving surjectivity. Part
(ii) similarly follows by miracle flatness. �

Remark 12. The image of the parahoric Hitchin map is smooth (in fact, an affine space) for many
parahorics. However, for certain parahorics in type D, this image can be singular; see [BK17] for
details.

5. Properness and complete integrability

Our goal in this section is to show that generic fibres of the parahoric Hitchin map are abelian
varieties. For this, we need to show that the Hitchin map is proper over some open subset in the
base AG. In fact, we will show that the Hitchin map on the moduli space of polystable parahoric
Higgs bundles is proper.

5.1. Properness of the Hitchin map. Let MG denote the moduli stack of G-Higgs bundles on
X. The notions of stability and polystability and the corresponding coarse moduli spaces were
defined for parahoric bundles in [BS15] and extended to parahoric Higgs bundles in [BGPMiR15].
We denote by Ms

G (resp. Mps
G
) the open substack of stable (resp. polystable) G-Higgs bundles.

Denote by M s
G (resp. Mps

G
) the underlying coarse moduli spaces of stable (resp. polystable) G-

Higgs bundles on X. The Hitchin map hG : MG → AG restricted to Mps
G

factors through the map

Mps
G

→Mps
G

and thus defines a map hG :Mps
G

→ AG .
In this subsection, we prove that:

Theorem 13. The parahoric Hitchin map hG : Mps
G

→ AG on the moduli space of polystable

parahoric G-Higgs bundles is a proper map.

Proof. Let Cθ ⊂ G be the conjugacy class corresponding to θ and let m be the order of Cθ. We
regard X as an orbifold, where the point x ∈ X has order m and there are no other orbifold points
(of course, this can be extended to the case of multiple marked points).

Let π = πorb1 (X) be the orbifold fundamental group. A presentation of π is given by generators

α1, . . . , αg, β1, . . . , βg, γ,

and relations

[α1, β1] . . . [αg, βg]γ = 1, γm = 1.

In this presentation, γ corresponds to a loop around the orbifold point x. Let Hom(π,G) denote
the space of homomorphisms ρ : π → G. This is an affine algebraic variety and the group G acts
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by conjugation. Let Rep(π,G) = Hom(π,G)//G be the affine GIT quotient. Let RepC(π,G) ⊂
Rep(π,G) be the closed subvariety of representations ρ : π → G such that ρ(γ) ∈ C.

In [BGPMiR15], the non-abelian Hodge correspondence is extended to the case of parahoric Higgs
bundles. In particular, as a special case of [BGPMiR15, Theorem 7.8], we obtain a homeomorphism

Mps
G

∼= RepC(π,G),

where Mps
G

is the moduli space of polystable parahoric G-Higgs bundles on X.
Choose an integer n such that G is a closed subgroup of GL(n,C). The inclusion j : G →

GL(n,C) induces a map Rep(π,G) → Rep(π,GL(n,C)). By [Sim94, Corollary 9.16], this map
is finite, hence it is also a proper map. Let C′ ⊂ GL(n,C) be the conjugacy class in GL(n,C)
containing j(C). Then we obtain a commutative diagram

RepC(π,G) //

j

��

Rep(π,G)

j

��

RepC′(π,GL(n,C)) // Rep(π,GL(n,C))

In this diagram the horizontal maps are closed immersions and the second vertical map is proper,
hence the map j : RepC(π,G) → RepC′(π,GL(n,C)) is also proper. The conjugacy class C′ has finite
order and therefore is of the following form: there are rational numbers 0 ≤ α1 ≤ α2 ≤ · · · ≤ αn < 1
such that g ∈ C′ if and only if g is conjugate to diag(exp(2πiα1), exp(2πiα2), . . . , exp(2πiαn)). We
may view α = (α1, α2, . . . , αn) as a set of parabolic weights.

By a second application of the non-abelian Hodge correspondence, we have a homeomorphism

RepC′(π,GL(n,C)) ∼=Mps
0 (X,x, α,GL(n,C))

where Mps
0 (X,x, α,GL(n,C)) denotes the moduli space of strongly parabolic GL(n,C)-Higgs bun-

dles of parabolic degree 0 and one marked point x with parabolic weights α.
As the non-abelian Hodge correspondence commutes with the group homomorphism j : G →

GL(n,C), it is easy to see that we have a commutative diagram of the form

Mps
G

hG

��

∼= RepC(π,G)
j

// RepC′(π,GL(n,C)) ∼= Mps
0 (X,x, α,GL(n,C))

��⊕
i Γ(X,Ω

di(di.x))
j

//
⊕n

i=1 Γ(X,Ω
i(i.x))

where the vertical maps are Hitchin maps. We have seen that the upper horizontal map is
proper. The lower vertical map is clearly a closed immersion. Therefore to show that the Hitchin
map hG : Mps

G
→

⊕
i Γ(X,Ω

di(di.x)) is proper, it is enough to show that the Hitchin map

Mps
0 (X,x, α,GL(n,C)) →

⊕n
i=1 Γ(X,Ω

i(i.x)) is proper. However it is well known that the Hitchin
map for parabolic GL(n,C)-Higgs bundles is proper [Yok93], and so the proof is complete. �

Remark 14. Alternatively, to see that the Hitchin mapMps
0 (X,x, α,GL(n,C)) →

⊕n
i=1 Γ(X,Ω

i(i.x))
is proper, we may identify Mps

0 (X,x, α,GL(n,C)) with a moduli space of semistable orbifold
GL(n,C)-Higgs bundles on X. Then by [Var15], there exists an elliptic surface S → X over
X such that semistable orbifold Higgs bundles on X can be pulled back to give semistable Higgs
bundles on S in the usual sense. One sees that this gives rise to a commutative diagram of Hitchin
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maps

Mps
0 (X,x, α,GL(n,C)) //

��

Mps(S,GL(n,C))

��⊕n
i=1 Γ(X,Ω

i(i.x)) //
⊕n

i=1 Γ(S, Sym
i(T ∗S))

where the horizontal arrows are closed immersions. Therefore properness ofMps
0 (X,x, α,GL(n,C)) →⊕n

i=1 Γ(X,Ω
i(i.x)) follows from properness of the ordinary Hitchin map Mps(S,GL(n,C)) →⊕n

i=1 Γ(S, Sym
i(T ∗S)) on the surface S, which is well known [Sim94, Theorem 6.11].

5.2. Complete integrability.

Lemma 15. Let (E,φ) be a polystable Γ-equivariant G-Higgs bundle on Y . Under the non-abelian

Hodge correspondence, (E,φ) corresponds to a reductive representation ρ : πorb1 (X) → G of the

orbifold fundamental group. Let AutΓ(E,φ) be the group of automorphisms of (E,φ) commut-

ing with the action of Γ and let Aut(ρ) = {g ∈ G | gρg−1 = ρ}. Then we have an inclusion

AutΓ(E,φ) ⊆ Aut(ρ).

Proof. Let V be any representation of G and set VE = E×G V . Then φ induces a bundle endomor-
phism φE : VE → VE ⊗ Ω1

Y . Polystability of (E,φ) implies polystability of (VE , φE). Thus there
exists a hermitian metric h( , ) on VE (taken to be conjugate linear in the second variable) such
that (VE , φE) satisfies the Hitchin equations

FA + [φE , φ
∗
E ] = 0,

where FA is the curvature of the Chern connection ∇A = ∂A+∂ on VE induced by h. Now suppose
s is a holomorphic section of VE such that φE(s) = 0. We claim that ∂As = φ∗Es = 0. To see this
consider the following:

0 = i

∫
Y
h(FAs+ [φE , φ

∗
E ]s, s)

= i

∫
Y
h((∂A∂As, s) + i

∫
Y
h(φEφ

∗
Es, s)

= i

∫
Y
h(∂As, ∂As)− i

∫
Y
h(φ∗Es, φ

∗
Es)

= ||∂As||
2 + ||φ∗Es||

2.

Thus ∂As = φ∗Es = 0, as claimed. Under the non-abelian Hodge correspondence, (E,φ) corresponds
to a flat G-connection ∇. The flat connection ∇ acts as the flat connection on VE given by
∇ = ∇A + φE + φ∗E . Therefore ∇s = 0 and so s is covariantly constant. To prove the lemma,
consider the case where V = Hom(g, g) and s : ad(E) → ad(E) is an automorphism s ∈ AutΓ(E,φ).
The fact that s is an automorphism of (E,φ) means that φE(s) = [φ, s] = 0. By the above argument,
s is an automorphism of ∇ which moreover commutes with Γ, i.e. s ∈ Aut(ρ). �

Lemma 16. Let Z(G) ⊂ G be the center of G. The open substack of MG consisting of pairs (E , φ)
whose automorphism group is Z(G) is non-empty.

Proof. Let p : Y → X be a Galois covering of X with Galois group Γ. Recall that we can identify
G-Higgs bundles on X with Γ-equivariant G-Higgs bundles on Y of type τ and this is an equivalence
of stacks. Therefore it is enough to show that there exists a Γ-equivariant G-Higgs bundle on Y of
type τ whose automorphism group (as a Γ-equivariant Higgs bundle) is Z(G). By the non-abelian
Hodge correspondence, polystable Γ-equivariant G-Higgs bundles of type τ correspond to reductive
representations of the orbifold fundamental group of X for which the holonomy of a loop around x
takes values in the conjugacy class containing τ . It is easy to see there exists such representations
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ρ whose image is Zariski dense in G. Such a representation has automorphism group Z(G). By
Lemma 15, the Γ-equivariant Higgs bundle (E,φ) on Y corresponding to ρ will have automorphism
group contained in Z(G). However, every element of Z(G) clearly acts as a Γ-equivariant Higgs
bundle automorphism of (E,φ), hence AutΓ(E,φ) = Z(G). �

Theorem 17. Let hG : T ∗BunG → AG denote the parahoric Hitchin map. Then the generic fibres

of hG are Z(G)-gerbes over a disjoint union of abelian varieties. More precisely, there exists a

non-empty Zariski open set U ⊂ AG such that the morphism h−1
G

(U) → U is proper and smooth

and each fibre is a Z(G)-gerbe over a disjoint union of abelian varieties.

Proof. Clearly there exists a non-empty smooth Zariski open set U ⊂ AG such that the morphism
h−1
G

(U) → U is smooth. By Corollary 11 (ii), the restriction of hG to h−1
G

(U) is flat and in particular

an open map. Restricting U if necessary, we can assume that hG : h−1
G

(U) → U is surjective. Since
hG |h−1

G
(U) is open, we can further restrict U so that U ⊆ hG(M

s
G). Note that Ms

G is a non-empty

open subset. To see this, note that it is known that there exists stable G-bundles [BS15]. If E is a
stable G-bundle, then (E , 0) is a stable G-Higgs bundle, so Ms

G is non-empty.
Next, let W ⊆ MG be the open substack of pairs (E , φ) whose automorphism group is Z(G),

which is non-empty by Lemma 16. Therefore, we may assume that U is chosen with U ⊆ hG(W).
With our assumptions on U we have that every fibre of h−1

G
(U) contains a stable Higgs bundle

and also contains a Higgs bundle with automorphism group Z(G). We will give an argument using
Hamiltonian flows to show that in fact every Higgs bundle in h−1

G
(U) is stable and has automorphism

group Z(G). To carry out this argument we identify parahoric G-Higgs bundles with Γ-equivariant
G-Higgs bundles on Y of type τ .

Let (E,φ) be a Γ-equivariant G-Higgs bundle. Thus φ ∈ H0(Y, ad(E) ⊗ ΩY )
Γ. Since we are

working with Γ-equivariant Higgs bundles, one finds that the tangent space at smooth points is
given as follows. Consider the 2-term complex

ad(E)
[φ, . ]

// ad(E) ⊗ ΩY .

Let us denote this complex by [φ, . ]. We have that Γ acts on this complex and the tangent space to
(E,φ) may be identified with H1(Y, [φ, . ])Γ. Let ρ be an invariant polynomial on g of degree dρ and

let µ ∈ H1(Y,Ω1−dρ(−dρx))
Γ. Since Γ is a finite group, by averaging over Γ, we may represent µ

by a Γ-invariant section of Ω0,1(Y,Ω1−dρ(−dρx)). Define a function fρ,µ as in the proof of Theorem
8. In other words, we use Serre duality to pair ρ(φ) with µ to get a complex number

fρ,µ(E , φ) = 〈ρ(φ), µ〉 =

∫
Y
ρ(φ)µ ∈ C.

Let Xρ,µ be the Hamiltonian vector field associated to fρ,µ. By essentially the same calculation as
given in the proof of Theorem 8, we find that Xρ,µ evaluated at the point (E,φ) may be represented
in Dolbeault cohomology by a cocycle of the form (αρ,µ(φ), 0), where αρ,µ(φ) is defined by:

κ(αρ,µ(φ), ) = dρρ(φ, φ, . . . , φ, )µ.

Moreover, since µ was chosen to be Γ-invariant, αρ,µ is also Γ-invariant. For t ∈ R, let (Et, φt) be

the Γ-equivariant Higgs bundle obtained by flowing (E,φ) along Xρ,µ for time t and let ∂Et be the

∂-operator on ad(E) defining the holomorphic bundle Et. Since Xρ,µ(Et, φt) = (αρ,µ(φt), 0), we see
that ∂tφt = 0, or φt = φ is constant. Thus αρ,µ(φt) = αρ,µ(φ) is t-independent and it follows that

(∂Et, φt) = (∂E + tαρ,µ(φ), φ).

Since αρ,µ(φ) is Γ-invariant, we see that the Γ-action on E acts by automorphisms of (∂Et , φt) for

any t. In this way, the (∂Et , φt) become Γ-equivariant Higgs bundles on Y . Now suppose that
16



ψ : E → E is a C∞ principal bundle isomorphism that preserves φ. Then as ψ preserves the Killing
form κ and the invariant polynomial ρ, we find that ψ preserves αρ,µ(φ). Therefore ψ preserves ∂E
if and only if it preserves ∂Et for any given t ∈ R. In particular this means that the automorphism
group of (Et, φt) is independent of t. Suppose we had chosen (E,φ) with automorphism group
Z(G). Then for each t, the automorphism group of (Et, φt) is also Z(G). In a similar manner we
see that for each t, (Et, φt) is stable if and only if (E,φ) is stable.

Observe that the Hamiltonian flows above are complete, i.e., the flows exist for all time t. This
implies that each connected component of each fibre of h−1

G
(U) → U has universal cover given

by Cn, such that the Hamiltonian flows are given by translations. In particular, it follows that
any two points in the same connected component of a fibre of h−1

G
(U) → U are connected by a

series of Hamiltonian flows along vector fields of the form Xρj ,µj
. Thus any two Higgs bundles in

the same connected component of a fibre have the same automorphism group. This shows that
W∩h−1

G
(U) is non-empty and is open and closed in the analytic topology. But h−1

G
(U) is connected

since it is a Zariski open subset of T ∗BunG, which is irreducible as BunG is very good. Therefore
W ∩ h−1

G
(U) = h−1

G
(U) and so every Higgs bundle in h−1

G
(U) has automorphism group Z(G), as

claimed. A similar argument shows that Ms
G ∩h

−1
G

(U) = h−1
G

(U), so every Higgs bundle in h−1
G

(U)
is stable.

The underlying space ofMs
G can be identified with the coarse moduli spaceM s

G of stable parahoric

Higgs bundles. The above results show that h−1
G

(U) is a Z(G)-gerbe over its underlying coarse
moduli space, which is an open subset in M s

G . Next we use that the Hitchin map on the coarse
moduli space of semistable parahoric Higgs bundles is proper to see that the restriction hG :
h−1
G

(U) → U is proper.

Let F be the underlying space of a connected component of a fibre of h−1
G

(U) → U . Then F is
compact, since h is proper. The Hamiltonian vector fields X1, . . . ,Xm associated to the coordinates
h1, . . . , hm of the Hitchin map give a global frame of commuting holomorphic vector fields on F .
Since F is compact in the analytic topology, then the existence of such vector fields implies that F
is biholomorphic to a complex torus. Moreover we have that T ∗BunG, AG and hG are all algebraic,
hence F is itself algebraic. It is well known that a complex torus which is algebraic is an abelian
variety, so we conclude that F is an abelian variety. �

Remark 18. We have shown that each connected component of a generic fibre of the Hitchin map is
a Z(G)-gerbe over an abelian variety. It is natural to conjecture that this is a trivial gerbe, so that
each connected component is the product of an abelian variety with the classifying stack of Z(G).
Indeed, this is the case in the usual setting [DP12] and is a requirement for Langlands duality of
Hitchin systems for Langlands dual groups. Triviality in type A can be seen using the spectral
data description of fibres of the Hitchin system [SS95]. Showing triviality of the gerbe along the
fibres for more general parahorics presumably requires the development of a theory of “parahoric
cameral data”. We leave this as an interesting topic for future work.
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