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Abstract. Irreducible Artin groups of finite type can be parametrized
via their associated Coxeter diagrams into six sporadic examples and
four infinite families, each of which is further parametrized by the nat-
ural numbers. Within each of these four infinite families, we investigate
the relationship between elementary equivalence and isomorphism. For
three out of the four families, we show that two groups in the same
family are equivalent if and only if they are isomorphic; a positive, but
weaker, result is also attained for the fourth family. In particular, we
show that two braid groups are elementarily equivalent if and only if
they are isomorphic. The (∀∃∀)1 fragment suffices to distinguish the
elementary theories of the groups in question.

As a consequence of our work, we prove that there are infinitely many
elementary equivalence classes of irreducible Artin groups of finite type.
We also show that mapping class groups of closed surfaces - a geometric
analogue of braid groups - are elementarily equivalent if and only if they
are isomorphic.

Introduction

Understanding when two non-isomorphic groups have distinct elementary
theories has been a long-standing problem of interest in both group theory
and model theory. In general, this problem is fairly difficult. Much of
the current literature considers families of groups parametrised in a certain
fashion, and attempts to determine to what extent these parameters are
determined by the elementary theories of the groups in question. A partic-
ularly celebrated result, which follows from the work of of Sela [Sel06] and
independently, Kharlampovich-Myasnikov [KM06], is that the elementary
theory of a non-abelian free group is independent of its rank: this resolved a
famous question of Tarski. Some other important classes of groups for which
something is known are listed below (this list is not meant to be exhaustive):

(1) Finitely generated free abelian groups, byW. Szmielew [Sz55] (1955).
(2) Ordered abelian groups, by A. Robinson and E. Zakon [Ro60] (1960),

M. Kargapolov [Ka63] (1963) and Y. Gurevich [Gu63] (1964).
(3) Classical linear groups, by A. Maltsev [Ma61] (1961).

Key words and phrases. Artin groups, braid groups, elementary equivalence, mapping
class groups.
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(4) Linear groups over the integers, by V. Durlev [Du95] (1995).
(5) Some linear and algebraic groups, by E. Bunina and A. Mikhalëv

[BM00] (2000).
(6) Chevalley groups, by E. Bunina [Bu01] (2001).
(7) Right-angled Coxeter groups and graph products of finite abelian

groups, by M. Casals-Ruiz, I. Kazachkov and V. Remeslennikov
[MKR08] (2008).

For a detailed survey of what is known about the elementary theory of
various classes of groups see [BM04] (also see [MKR08]). By studying ex-
amples of groups with different elementary theories, we can gain insight into
the nature of first order statements in group theory.

In this paper, we are primarily concerned with irreducible Artin groups of
finite type: archetypical examples of such groups are braid groups. To every
Coxeter matrix C we can associate two groups: the Artin group GC and the
Coxeter group ḠC . The Artin group GC is said to be of finite type if ḠC

is finite. The Coxeter diagrams corresponding to irreducible Artin groups
of finite type have been completely classified, and can be organized into
four infinite families (indexed by the natural numbers, so An, Bn, Dn and
I2(n)) and six sporadic examples (the reader should note that for very small
n, isomorphism classes of groups in the four infinite families may overlap).
Details will be provided in Section 2.

In this paper, we study elementary equivalence classes within (not be-
tween!)1 these four families. Our main result, Theorem 4.1, is that within
three out of these four families (An, Bn and Dn), elementary equivalence
class determines isomorphism class, and thus the parameter n. For the fam-
ily I2(n) a weaker statement is attained. An immediate consequence of our
work here is that there are infinitely many classes of elementary theories
amongst Artin groups of finite type. Moreover, we show that all the above
results hold true within the (∀∃∀)1 fragment of the elementary theory.

Braid groups are examples of irreducible Artin groups of finite type of
particularly significant interest. The following result follows as a corollary
of Theorem 4.1:

Theorem. Any two braid groups are elementarily equivalent if and only if

they are isomorphic.

We prove the above results by explicitly constructing a class of first-order
sentences {Φn}n∈N to help us distinguish elementary theories; Φn expresses
the notion that every central element has an nth root.

Irreducible Artin groups of finite type can be treated as algebraic gener-
alizations of braid groups. The natural generalization in terms of geometric
group theory would be the mapping class groups, as braid groups occur as
mapping class groups of punctured discs. Mapping class groups of surfaces

1The proofs of Lemma 3.5 and Theorem 4.1, however, are strong enough to distinguish
some groups between these classes.
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with non-empty boundary and punctures along with mapping class groups of
closed surfaces are two of the most significant classes of groups in geometric
group theory. Using a result [FM12, Theorem 7.5] about cyclic subgroups
of such groups, it becomes straightforward to prove the following result:

Proposition. Let Mod(Sg) denote the mapping class group of a closed sur-

face Sg of genus g. Mod(Sg) is elementarily equivalent to Mod(Sh) if and

only if g = h.

This paper is organized along the following lines. Section 1 contains a
preliminary introduction to the first-order theory of groups; we also provide
a short proof of the above proposition on elementary equivalence in the con-
text of mapping class groups of closed surfaces. Section 2 is an overview
of the theory of Artin groups of finite type: we list the basic definitions
and results that will be used over the course of this document. A reader
familiar with the theory of Artin groups may skip reading this section in de-
tail, but we still recommend they take a quick glance in order to familiarise
themselves with the notation used. Section 3.1 and 3.2 contain some key
lemmas about Artin monoids and roots of central elements in irreducible
Artin groups of finite type. Section 4 contains our main results concerning
elementary equivalence in irreducible Artin groups of finite type.

Acknowledgements: All three authors would like to thank the Insti-
tute of Mathematical Sciences, Chennnai and the Chennai Mathematical
Institute for their support and hospitality. The first author is supported by
the Department of Science & Technology (DST): INSPIRE Faculty. The
second author would like to thank Siddhartha Gadgil and Igor Rivin for
(independently) suggesting the question considered here in the context of
braid groups.

1. Logical Preliminaries and Mapping Class Groups

1.1. First Order Logic. This section contains a very brief introduction
to first order logic in the context of group theory. It contains only those
definitions which are pertinent to our work and context. For a broader and
more comprehensive introduction to first-order logic, the reader is referred
to [Hod06].

The first-order language of groups LG is the tuple (·, −1, 1), where ·
refers to the multiplication, −1 is the multiplicative inverse and 1 is the
multiplicative identity.

An atomic formula with variables x1, . . . , xn in LG is a statement of the
form:

x1
ε1 · x2

ε2 · . . . · xn
εn = 1,

where each εi ∈ {±1}. A quantifier free formula in LG is recursively defined
as either an atomic formula, the negation of a quantifier free formula, the
conjunction of finitely many quantifier free formulas, or a disjunction of
finitely many quantifier free formulas.



4 ARPAN KABIRAJ, T. V. H. PRATHAMESH, AND RISHI VYAS

A sentence in LG is a statement of the following form:

Q1x1.Q2x1 . . . Qnxn.
(

Φ(x1, x2, x3, . . . , xn)
)

,

where each Qi ∈ {∃, ∀}, and Φ(x1, x2, . . . , xn) is a quantifier free formula
with variables x1, x2, . . . , xn.

The set of all sentences which are hold in the group G is called the ele-

mentary theory of G. It is denoted by Th(G).
The elementary theory of a finite group determines the group up to iso-

morphism. This is no longer true for infinite groups: for instance, all finitely
generated free groups have the same elementary theory (see [Sel06], [KM06]).

The class of sentences in the first-order language of groups is strong
enough to describe admission of roots of central elements in a group. Con-
sider the following statement:

Φn = ∀x.∃y.∀z.(¬(xz = zx) ∨ (x = yn)).

Φn is true in a group G precisely when every central element admits an nth

root.
One can also describe the existence of a finite cyclic subgroup of order n

in a group by the following sentence:

Ψn = ∃x.((xn = 1) ∧n−1
k=1 (x

k 6= 1)).

A sentence is of the class (∀∃∀)1 if it is of the form ∀x∃y∀z(Ψ(x, y, z)).
This is a well studied class of sentences called the Kahr class (see Chapter
3.1 of [Bor01]).

1.2. Mapping Class Groups. In this subsection, we discuss elementary
equivalence in the context of mapping class groups of closed surfaces: using
a result from the literature, we are able to provide a short proof of the fact
that elementary equivalence determines isomorphism class. The reader may
consider the material here as motivation for our results on Artin groups of
finite type - it is an easy example of how explicit first order sentences can
be used to distinguish elementary equivalence classes.

Let Sg be a closed orientable surface of genus g ≥ 2. The mapping class
group Mod(Sg) of the surface Sg is the group of all homotopy classes of
orientation preserving homeomorphisms of Sg. In this section we show that
if g 6= h, then the elementary theories of Mod(Sg) and Mod(Sh) are not
equivalent; indeed, the (∃)1 fragment of the elementary theory suffices to
distinguish the elementary theories in question.

To prove this result we need the following theorem about finite cyclic
subgroups of mapping class groups. The second part of the theorem follows
from the statement after Theorem 7.5 in [FM12].

Theorem 1.1. [FM12, Theorem 7.5] The order of a finite cyclic subgroup

of the mapping class group Mod(Sg) is at most 4g + 2. Moreover for every

g ≥ 2, there exists an element of order 4g + 2 in the mapping class group

Mod(Sg).
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Proposition 1.2. The elementary theories of Mod(Sg) and Mod(Sh) are

distinct for g 6= h.

Proof. Consider the following first order statement statement:

Ψ4g+2 = ∃x.(
(

x4g+2 = 1
)

∧
(

xk 6= 1 for k ∈ {1, 2, . . . , 4g + 1}
)

).

By Theorem 1.1, the above statement is true in Mod(Sg) but false in
Mod(Sh) for g 6= h. �

2. Artin Groups

We recall the definition and basic algebraic properties of Artin groups of
finite type and Coxeter groups. For detailed exposition and proofs of the
results mentioned here see [BS72] and [Bou02, §1, Chapter IV].

Suppose C = (mi,j) denotes a n× n symmetric matrix with (i, j)th entry
mi,j , where mi,i = 1 and mi,j ∈ {2, 3, . . . ,∞} for i 6= j. Such a matrix is
called a Coxeter matrix.

To every Coxeter matrix C we can associate a labelled graph. If C is
an n × n-matrix its associated graph has n labelled ordered vertices, say
x1, . . . , xn. There is an edge between xi and xj with label mi,j if and only
if mi,j ≥ 3; it is a convention to drop the label if mi,j = 3. Such a labelled
graph is called a Coxeter graph or Coxeter diagram. Coxeter matrices are
in a canonical one-to-one correspondence with Coxeter diagrams. We will
treat these two notions interchangeably in this paper.

Let 〈x, y〉m denote the alternating product of x and y of length m starting
with x (e.g. 〈x, y〉3 = xyx). By convention, 〈x, y〉∞ is the empty product.

Definition 2.1. Let C be a Coxeter matrix with (i, j)th entry mi,j . The
Artin group corresponding to C, GC , is the group presented by the following
presentation:

〈

x1, x2, . . . , xn

∣

∣

∣
〈xi, xj〉

mi,j = 〈xj , xi〉
mj,i , i, j ∈ {1, . . . , n}

〉

.

The presentation used in the definition above is called the standard pre-

sentation of an Artin group GC . We shall from here on assume that unless
stated otherwise, the terms presentation, generators and relations used in
the context of an Artin group refer to the standard presentation and the
associated generators and relations respectively.

Definition 2.2. Let C be a Coxeter matrix with (i, j)th entry mi,j . The
Coxeter group corresponding to C, ḠC , is the group presented by the fol-
lowing presentation:

〈

x1, x2, . . . , xn

∣

∣

∣
(xixj)

mi,j = 1, i, j ∈ {1, . . . , n} and mi,j 6= ∞
〉

.

As in the Artin group case, we call the above presentation the standard
presentation of a Coxeter group. The terms presentation, generators, and
relations used in the context of a Coxeter group will refer to the standard
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ones. It is straightforward to check that a Coxeter group ḠC with gener-
ators x1, x2, . . . , xn is the quotient of the Artin group with the same set of
generators by the relation x2i = 1 for all i ∈ {1, 2, . . . , n}.

The Coxeter diagram C can be recovered from the Coxeter group ḠC

and its standard generators. The vertices of the graph correspond to the
generators, and mi,j can be recovered from the order of xixj in ḠC .

An Artin group GC is said to be of finite type if the Coxeter group ḠC

associated to C is finite. An Artin group GC and the corresponding Coxeter
group ḠC are called irreducible if the associated Coxeter diagram C is con-
nected. Throughout this paper we assume all Artin groups to be irreducible
and of finite type unless otherwise mentioned, though we may mention this
hypothesis explicitly on occasion for the sake of clarity.

Figure 1. Coxeter diagrams corresponding to irreducible
Coxeter groups of finite type. (P.C.-Wikimedia Commons.)

Coxeter classified all irreducible Artin groups of finite type. In this
case the Coxeter diagram is always a tree. There are four infinite fami-
lies An, Bn = Cn, Dn, and I2(n), and six distinct groups E6, E7, E8, F4,
H3, H4 (Figure 1). In this paper, we will restrict our attention to groups
within the four infinite families. We will denote the Artin groups associated
to these families by the same notation i.e. by An, not GAn .

When the diagram C is either clear from the context or irrelevant, we may
suppress it and denote the Artin group by G and the corresponding Coxeter
group by Ḡ. However, we are obliged to remind the reader once more: in this
paper, an Artin group means a group presented by a presentation associated
to one of the diagrams in Figure 1 along with the data of its presentation.

Let G be an irreducible Artin group of finite type with generating set
I = {x1, x2, . . . , xn}. Up to ordering, there is a unique partition of I into two
maximal disjoint subsets J1 and J2 such that the elements in J1 (respectively
J2) commute pairwise in Ḡ. Let

J1 =
∏

xi∈J1

xi, J2 =
∏

xj∈J2

xj and J = J1J2.

For every irreducible Artin group of finite type, there exists a corresponding
natural number called the Coxeter number. In Table 2 below, we list the
Coxeter numbers associated to some Artin groups of finite type; for more
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information about this number see [Bou02, §6, Chapter IV]. Let h be the
Coxeter number of G, and define

(2.1) ∆ :=

{

J
h
2 if h is even,

J
h−1

2 J1 = J2J
h−1

2 if h is odd.

The following theorem follows from [BS72, Lemma 5.8] and the proposi-
tion following it in loc. cit.

Theorem 2.3. For any irreducible Artin group of finite type G with Coxeter

number h we have ∆2 = J h. Furthermore, if ∆ is in the center of G then

∆ = J
h
2 .

Remark 2.4. If ∆ is in the center of an irreducible Artin group of finite type
then h is necessarily even: see Table 2.

Indeed, we can say even more. The center of an irreducible Artin group of
finite type G, Z(G), is cyclic and is generated by either ∆ or ∆2. Moreover,
we know exactly which of these two elements generates the centre in each of
the cases that we care about. We will always refer to this choice of generator
of Z(G) by cG. The following theorem follows from the Corollary at the end
of Section 7 of [BS72].

Theorem 2.5. The center of an irreducible Artin group G of finite type is

infinite cyclic.

(1) For Bn, D2n and I2(2n) the center is generated by ∆.

(2) For An, D2n+1 and I2(2n+ 1) the center is generated by ∆2

In the following table we collect the numerics associated to the irreducible
Artin groups of finite type required for our calculations:

Group Rank
Coxeter
number (h)

Generator
of the
center (cG)

Word
length of cG

Ak k k + 1 ∆2 k2 + k

Bk k 2k ∆ k2

D2k+1 2k + 1 4k ∆2 8k2 + 4k
D2k 2k 4k − 2 ∆ 4k2 − 2k
I2(2k + 1) 2 2k + 1 ∆2 4k + 2
I2(2k) 2 2k ∆ 2k

Table 2.

Remark 2.6. Observe that irrespective of whether n is odd or even, the Cox-
eter numbers corresponding to Dn and I2(n) are 2n− 2 and n respectively.

The following lemma is a straightforward consequence of Theorem 2.3.

Lemma 2.7. Let G be an irreducible Artin group of finite type. Let cG
denotes the generator of the center of G. There is a word containing all the

generators of G which is equal to cG in G. Furthermore,
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(1) cAn admits an (n+ 1)th root in An.

(2) cBn admits an nth root in Bn.

(3) If n is odd, cDn admits an (2n− 2)th root in Dn.

(4) If n is even, cDn admits an (n− 1)th root in Dn.

(5) If n is odd, cI2(n) admits an nth root in I2(n).

(6) If n is even, cI2(n) admits an (n2 )
th

root in I2(n).

3. Key lemmas

This section contains results which we will later use in the proof of The-
orem 4.1. Section 3.1 includes material about the shape of words in Artin
monoids. Section 3.2 contains the technical heart of this paper: Lemma 3.5.

3.1. Artin Monoids. Let G be an irreducible Artin group of finite type.
Denote the monoid of positive words (with respect to the standard presen-
tation) in G by G+. We call this monoid the Artin monoid.

For the benefit of the reader (and the authors!), we briefly recall the notion
of a monoid presentation. Consider the presentation P = 〈g1, . . . , gn | r1 =
r′1, . . . , rm = r′m〉 where ri and r′i are positive words in the gj . Consider
the free monoid on the letters gj ; denote this by F . The monoid associated
to the presentation P is the quotient of F by the smallest equivalence rela-
tion containing the relation {(xriy, xr

′
iy)}x,y∈F,i∈{1,m}; the set of equivalence

classes clearly carries a natural monoid structure.

Proposition 3.1. Let G be an irreducible Artin group of finite type. Let w

and w′ be positive words in the generators of G. Suppose w = w′ in G+. If

a generator xi appears in w, then it must appear in w′ as well.

Proof. By [BS72, Proposition 5.5], the Artin monoid G+ is isomorphic to
the monoid presented by the Artin presentation associated to G via the
obvious isomorphism.

If xi appears as a letter on one side of any of the relations defining G+, it
appears on the other side as well. From this, and the definition of a monoid
presentation, the result follows. �

The following lemma is a direct consequence of the above proposition and
the definition of ∆.

Lemma 3.2. Let G be an irreducible Artin group of finite type. Every

generator of G appears in every positive word representing ∆ or ∆2.

We also have the following lemma about the appearance of generators in
powers of words.

Lemma 3.3. Let G be an irreducible Artin group of finite type. Let x ∈ G+.

If for some n ∈ N a generator xi appears in xn, then it also appears in x.

Proof. Assume that a generator xi does not appear in a word representing
x. Then, it does not appear in a word representing xk. This contradicts
Proposition 3.1. �
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3.2. Roots in Artin groups of finite type. Artin groups of finite type
are, in particular, examples of Garside groups. As there are many good
references for theory of Garside groups we will not define this notion here,
instead directing the reader towards [DP99] (where these objects were first
introduced) for a comprehensive overview. Briefly, however: a Garside group
is a group that can be realized as the group of fractions of a Garside monoid.
Garside monoids, in turn, are a class of cancellative monoids with good
divisibility properties ([DP99, Section 2]).

The fact that Artin groups of finite type are examples of Garside groups
was essentially proved by Brieskorn and Saito in [BS72] (also see [DP99,
Example 1, Section 2]). More precisely, Brieskorn and Saito prove the fol-
lowing: suppose C is a Coxeter matrix such that ḠC is finite. Then, the
Artin monoid G+

C is a Garside monoid with group of fractions GC .
In this paper, we are concerned with root extraction in Artin groups of

finite type. An algorithm for extracting roots in Garside groups was given
by Siebert in [Si02, Algorithm 2.12]. It lies at the core of our proof of the
following proposition.

Proposition 3.4. Let G be an irreducible Artin group of finite type. Suppose

a ∈ Z(G) ∩G+, and n ∈ N. Then, the equation xn = a has a solution in G

if and only if it has a solution in G+.

Proof. This follows from the root extraction algorithm for Garside groups -
see [Si02, Algorithm 2.12]. Understanding how this algorithm works in our
particular context is particularly easy because of our hypotheses on a: the
fact that a ∈ G+ and a ∈ Z(G) leads to a substantial simplification.

However, there is one point that we wish to elaborate. The hypothesis
in [Si02, Algorithm 2.12] requires the Garside group G to be the group
of fractions of a Garside monoid M with finite positive conjugacy classes.
This hypothesis is satisfied in our case, by [Si04, Corollary 2.4] and [Si04,
Criterion B]. �

Lemma 3.5. Let G be an irreducible Artin group of finite type. Let cG
denote the generator of the center of G. The following statements hold:

(1) For k > n+ 1, cAn does not have a kth root in An.

(2) For k > n, cBn does not have a kth root in Bn.

(3) For Dn, the following holds:

(a) If n is even and k > n− 1, cDn does not have a kth root in Dn.

(b) If n is odd and k > 2n− 2, cDn does not have a kth root in Dn.

(4) For I2(n), the following holds:

(a) If n is even and k > n
2 , cI2(n) does not have a kth root in I2(n).

(b) If n is odd and k > n, cI2(n) does not have kth root in I2(n).

Proof. Every Artin group G admits a group homomorphism λ : G → Z

defined by sending each generator in the standard presentation of G to 1;
a moments thought will convince the reader that this map is well-defined.
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λ restricts to a monoid homomorphism λ : G+ → N. We will call the
restriction of λ to G+ the word length function on G+.

We will use ∆n for the element from 2.1 in the groups An, Bn, Dn, and
I2(n): the group we are working in should be clear from the context.

(1): See Table 2: the center of An is generated by ∆2
n. Suppose ∆2

n has
a kth root for k > n+ 1. By Proposition 3.4, there therefore exists x ∈ A+

n

such that xk = ∆2
n. Evaluating both sides by λ, we have

kλ(x) = λ(∆2
n) = n(n+ 1).

As k > n+ 1, this implies that λ(x) < n.
We know from Lemma 3.2 that each xi appears in ∆2

n. Since xk = ∆2
n,

as a consequence of Lemma 3.1 and Lemma 3.3 each xi must also appear in
any word representing x. Since x is a positive word in which each and every
generator appears, λ(x) ≥ n, a contradiction.

(2): See Table 2: the center of Bn is generated by ∆n. Suppose ∆n has a
kth root for k > n. Again by Proposition 3.4, there exists x ∈ B+

n such that
xk = ∆n. Evaluating both sides by λ, we see that

kλ(x) = λ(∆n) = n2.

As k > n, we have λ(x) < n. But x is a root of ∆n. Arguing as in the
previous case, Lemma 3.1, Lemma 3.2 and Lemma 3.3 tell us that λ(x) ≥ n.
This is a contradiction.

(3): In this case we need to be slightly more careful. From Table 2, we
see that Z(Dn) is generated by ∆n when n is even and by ∆2

n when n is odd.
We also have

{

λ(∆n) = n(n− 1) if n is even,

λ(∆2
n) = n(2n− 2) if n is odd.

We consider the cases when n is odd and even separately.
(a) n is even: From Lemma 3.4, if there exists an kth root for cDn in

Dn there is one in Dn
+. Assume that xk = ∆n, for some k > n − 1 and

x ∈ Dn
+. Analogous to earlier cases, we have the following equality:

kλ(x) = λ(∆n) = n(n− 1).

It thus follows that λ(x) < n. By arguments similar to what we have done
above, we derive a contradiction.

(b) n is odd : Let k > 2n− 2. As before, we assume the existence of a kth

root for the generator of the center, and thus the existence of a root in the
positive monoid D+

n , which we denote by x. As earlier we have the following
equality

kλ(x) = λ(∆2
n) = n(2n− 2).

Thus it follows that λ(x) < n. This is a contradiction.
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(4): Gaze once more upon Table 2: Z(I2(n)) is generated by ∆n when n

is even and by ∆2
n when n is odd. We also have

{

λ(∆n) = n if n is even,

λ(∆2
n) = 2n if n is odd.

As in the previous case, we divide it into cases where n is even and odd:
(a) n is even: Let k > n

2 .

Suppose there is a kth root, and thus a positive kth root, for the generator
of the center: let this positive root be x.

kλ(x) = λ(∆n) = n.

Since k > n
2 , this implies that λ(x) < 2. As before, we derive a contradiction.

(b) n is odd : Given k > n, if we assume an kth root for the generator
of the center in I2(n), it follows that there exists a kth root in I2(n)

+ from
Proposition 3.4: call this positive root x. By similar arguments as before,
we obtain the following equality:

kλ(x) = λ(∆2
n).

It thus follows that λ(x) < 2. This is a contradiction. �

4. Elementary Equivalence

Theorem 4.1. The elementary theories of irreducible Artin groups of finite

type can be characterized as follows:

(1) Th(An) = Th(Am) if and only if n = m.

(2) Th(Bn) = Th(Bm) if and only if n = m.

(3) Th(Dn) = Th(Dm) if and only if n = m.

(4) For the family I2(n), the following holds:

(a) If m,n are odd, Th(I2(n)) = Th(I2(m)) if and only if m = n.

(b) If m,n are even, Th(I2(n)) = Th(I2(m)) if and only if m = n.

(c) If n is even, then for any m > n, Th(I2(m)) 6= Th(I2(n)).

Each of the above results continues to hold in the (∀∃∀)1 fragment of the

elementary theory.

Proof. Consider the following family of first order sentence, first introduced
in Section 1:

Φk = ∀x.∃y.∀z.(¬(xz = zy) ∨ (x = yk)).

Φk holds in a group precisely when every element in the center of the group
has an kth root; these are the sentences we will use to distinguish the ele-
mentary theories of the groups under consideration.

Whenever m,n appear in this proof assume that m > n.
(1): The family Ak: Lemma 2.7 implies that ∆2

m has an (m+1)th root in
Am. As Z(Am) is generated by ∆2

m, every element in Z(Am) has an (m+1)th

root. This implies that Φm+1 holds in Am. As m+1 > n+1, Lemma 3.5(1)
tells us that ∆2

n does not admit an (m + 1)th root. This shows that Φm+1

does not hold in An. Thus Th(An) 6= Th(Am).
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(2): The family Bk: Z(Bm) is generated by ∆m. ∆m has an mth root
in Bm by Lemma 2.7, thus every element in Z(Bm) has an mth root. This
implies that Φm holds in Bm. As m > n, we see from Lemma 3.5(2) that
∆n does not admit an mth root. Thus Φm does not hold true in Bn.

(3): The family Dk: We subdivide the problem into following cases:

(i) Both m and n are odd: As Z(Dm) is generated by ∆2
m, Lemma 2.7

shows that Φ2m−2 holds in Dm. As m > n, Lemma 3.5(3(b)) shows
that Φ2m−2 does not hold in Dn.

(ii) Both m and n are even: Here, Z(Dm) is generated by ∆m, by Lemma
2.7. Thus Φm−1 holds in Dm. As m > n it follows from Lemma
3.5(3(a)) that Φm−1 does not hold in Dn.

(iii) One out of m and n is odd and the other is even: Suppose first that
m is odd and n is even. By examining parts 3(i) and 3(ii) of this
proof, we note the following fact: the largest integer l such that Φl

holds in Dm is even while the largest integer j such that Φj holds
in Dn is odd. Thus Th(Dm) 6= Th(Dn). The same argument easily
adapts to the case where m is even and n is odd.

(4): The family I2(n): As in the case of Dn, here we have sub-cases:

(a) Both m and n are odd: By Lemma 2.7, we know that Φn and Φm

are hold in I2(n) and I2(m) respectively. From Lemma 3.5(4(a)), it
follows that Φm does not hold in I2(n).

(b) Both m and n are even: By Lemma 2.7, we see that Φn
2

and Φm
2

are true in I2(n) and I2(m) respectively. From Lemma 3.5(4(b)), it
follows that Φm

2

does not hold true in I2(n).

(c) If n is even and m > n, then by parts 4(a) and 4(b) of this proof, we
see that there is an integer l > n

2 such that Φl holds in I2(m). By
an argument nearly identical to those used above, Φl does not hold
in I2(n).

This completes the proof. �

Corollary 4.2. Two braid groups have the same elementary theory if and

only if they are isomorphic. The result continues to hold even if we only

consider the (∀∃∀)1 fragment of the elementary theory.

Proof. The class {An}n∈N represents braid groups: the group An is the braid
group on n+ 1 strands. �
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