G_{1} CLASS ELEMENTS IN A BANACH ALGEBRA

S. H. KULKARNI

Abstract

Let A be a complex unital Banach algebra with unit 1. An element $a \in A$ is said to be of G_{1}-class if $$
\left\|(z-a)^{-1}\right\|=\frac{1}{\mathrm{~d}(z, \sigma(a))} \quad \forall z \in \mathbb{C} \backslash \sigma(a)
$$

Here $d(z, \sigma(a))$ denotes the distance between z and the spectrum $\sigma(a)$ of a. Some examples of such elements are given and also some properties are proved. It is shown that a G_{1}-class element is a scalar multiple of the unit 1 if and only if its spectrum is a singleton set consisting of that scalar. It is proved that if T is a G_{1} class operator on a Banach space X, then every isolated point of $\sigma(T)$ is an eigenvalue of T. If, in addition, $\sigma(T)$ is finite, then X is a direct sum of eigenspaces of T.

1. Introduction

Let T be a normal operator on a complex Hilbert space H and λ a complex number not lying in the spectrum $\sigma(T)$ of T. Then it is known that the distance between λ and $\sigma(T)$ is given by $\frac{1}{\left\|(\lambda I-T)^{-1}\right\|}$. It is also known that there are many other operators that are not normal but still satisfy this property. Putnam called such operators as operators satisfying G_{1} condition and investigated properties of such operators in [7], [8]. In particular, he proved that if T is a G_{1} class operator, then every isolated point of $\sigma(T)$ is an eigenvalue of T and every G_{1} class operator on a finite dimensional Hilbert space is normal.

In this note we extend this concept of G_{1} class operators to operators on a Banach space and more generally to elements of a complex Banach algebra and investigate the properties of such elements. The next section contains some preliminary definitions and results that are used throughout. In Section 3, we give definition of a G_{1} class element in a complex unital Banach algebra, give some examples and prove a few elementary properties of such elements. In particular, it is proved that every element of a uniform algebra is of G_{1} class and conversely if every element of a complex unital Banach algebra A is of G_{1} class, then A is commutative, semisimple and hence isomorphic and homeomorphic to a uniform

[^0]algebra. The last section deals with the spectral properties of G_{1} class elements and contains the main results of this note. In particular, it is proved that if T is a G_{1} class operator on a Banach space X, then every isolated point of $\sigma(T)$ is an eigenvalue of T. Further, if, in addition, $\sigma(T)$ is finite, then X is a direct sum of eigenspaces of T. In this sense T is "diagonalizable" and hence this result can be considered to be an analogue of the Spectral Theorem for such operators.

An overall aim of such a study can be to obtain an analogue of the Spectral Theorem for G_{1} class operators. Though at present we are far away from this goal, the present results can be considered a small step in that direction. Next natural step should be to try to prove a similar result for compact operators of G_{1} class. Another way of looking at this study is an attempt to answer the following question:"To what extent does the spectrum of an element determine the element?" This question has a long and interesting history. It has appeared under different names at different times such as "Spectral characterizations", "hearing the shape of a drum",[2] " $T=I$ problem" [12] etc. The results in this note say that the spectrum of a G_{1} class element gives a fairly good information about that element.

We shall use the following notations throughout this article. Let $B(w, r):=\{z \in \mathbb{C}:|z-w|<r\}$, the open disc with the centre at w and radius r, $D\left(z_{0}, r\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\}$, the closed disc with the centre at w and radius r,
$A+D(0, r)=\bigcup_{a \in A} D(a ; r)$ for $A \subseteq \mathbb{C}$ and $d(z, K)=\inf \{|z-k|: k \in K\}$, the distance between a complex number z and a closed set $K \subseteq \mathbb{C}$.
Let $\delta \Omega$ denote the boundary of a set $\Omega \subseteq \mathbb{C}$.
$\mathbb{C}^{n \times n}$ denotes the space of square matrices of order n and $B(X)$ denotes the set of bounded linear operators on a Banach space X.

2. Preliminaries

Since our main objects of study are certain elements in a Banach algebra, we shall review some definitions related to a Banach algebra. Many of these definitions can be found in the book [1]. Some material in this section is also available in the review article [6].

Definition 2.1. Spectrum: Let A be a complex unital Banach algebra with unit 1. For $\lambda \in \mathbb{C}, \lambda .1$ is identified with λ. Let $\operatorname{Inv}(A)=\{x \in A: x$ is invertible in $A\}$ and $\operatorname{Sing}(A)=\{x \in A: x$ is not invertible in $A\}$. The spectrum of an element $a \in A$ is defined as:

$$
\sigma(a):=\{\lambda \in \mathbb{C}: \lambda-a \in \operatorname{Sing}(A)\}
$$

The spectral radius of an element a is defined as:

$$
r(a):=\sup \{|\lambda|: \lambda \in \sigma(a)\}
$$

Its value is also given by the Spectral Radius Formula,

$$
r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=\inf _{n}\left\|a^{n}\right\|^{\frac{1}{n}}
$$

The complement of the spectrum of an element a is called the resolvent set of a and is denoted by $\rho(a)$.

Thus when $A=C(X)$, the algebra of all continuous complex valued functions on a compact Hausdorff space X and $f \in A$, then the spectrum $\sigma(f)$ of f coincides with the range of f.

Similarly when $A=\mathbb{C}^{n \times n}$, the algebra of all square matrices of order n with complex entries and $M \in A$, the spectrum $\sigma(M)$ of M is the set of all eigenvalues of M.

Definition 2.2. Numerical Range Let A be a Banach algebra and $a \in A$. The numerical range of a is defined by

$$
V(a):=\left\{f(a): f \in A^{\prime}, f(1)=1=\|f\|\right\},
$$

where A^{\prime} denotes the dual space of A, the space of all continuous linear functionals on A..

The numerical radius $\nu(a)$ is defined as

$$
\nu(a):=\sup \{|\lambda|: \lambda \in V(a)\}
$$

Let A be a Banach algebra and $a \in A$. Then a is said to be Hermitian if $V(a) \subseteq \mathbb{R}$.

If A is a is a C^{*} algebra(also known as B^{*} algebra), then an element $a \in A$ is Hermitian if and only if it is self-adjoint. [1]

Definition 2.3. Spatial Numerical Range

Let X be a Banach space and $T \in B(X)$. Let X^{\prime} denote the dual space of X. The spatial numerical range of T is defined by

$$
W(T)=\left\{f(T x): f \in X^{\prime},\|f\|=f(x)=1=\|x\|\right\} .
$$

For an operator T on a Banach space X, the spatial numerical range $W(T)$ and the numerical range $V(T)$, where T is regarded as an element of the Banach algebra $B(X)$, are related by the following:

$$
\overline{\mathrm{Co}} W(T)=V(T)
$$

where $\overline{\mathrm{Co}} E$ denotes the closure of the convex hull of $E \subseteq \mathbb{C}$.
The following theorem gives the relation between the spectrum and numerical range.

Theorem 2.4. Let A be a complex unital Banach algebra with unit 1 and $a \in A$. Then the numerical range $V(a)$ is a closed convex set containing $\sigma(a)$. Thus $\overline{C o}(\sigma(a)) \subseteq V(a)$. Hence
$r(a) \leq \nu(a) \leq\|a\| \leq e \nu(a)$.
A proof of this can be found in [1].
Corollary 2.5. Let A be a complex unital Banach algebra with unit 1 and $a \in A$. If a is Hermitian, then $\sigma(a) \subseteq \mathbb{R}$.

We now discuss another important and popular set related to the spectrum, namely pseudospectrum. We begin with its definition.

Definition 2.6. Pseudospectrum Let A be a complex Banach algebra, $a \in A$ and $\epsilon>0$. The ϵ-pseudospectrum $\Lambda_{\epsilon}(a)$ of a is defined by

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(\lambda-a)^{-1}\right\| \geq \epsilon^{-1}\right\}
$$

with the convention that $\left\|(\lambda-a)^{-1}\right\|=\infty$ if $\lambda-a$ is not invertible.
This definition and many results in this section can be found in [5]. The book [10] is a standard reference on Pseudospectrum. It contains a good amount of information about the idea of pseudospectrum, (especially in the context of matrices and operators), historical remarks and applications to various fields. Another useful source is the website [11].

The following theorems establish the relationships between the spectrum, the ϵ-pseudospectrum and the numerical range of an element of a Banach algebra.

Theorem 2.7. Let A be a Banach algebra, $a \in A$ and $\epsilon>0$. Then

$$
\begin{equation*}
d(\lambda, V(a)) \leq \frac{1}{\left\|(\lambda-a)^{-1}\right\|} \leq d(\lambda, \sigma(a)) \quad \forall \lambda \in \mathbb{C} \backslash \sigma(a) \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sigma(a)+D(0 ; \epsilon) \subseteq \Lambda_{\epsilon}(a) \subseteq V(a)+D(0 ; \epsilon) \tag{2}
\end{equation*}
$$

A proof of this Theorem can be found in [5].
The following theorem gives the basic information about the analytical functional calculus for elements of a Banach algebra.

Theorem 2.8. Let A be a Banach algebra and $a \in A$. Let $\Omega \subseteq \mathbb{C}$ be an open neighbourhood of $\sigma(a)$ and Γ be a contour that surrounds $\sigma(a)$ in Ω. Let $H(\Omega)$ denote the set of all analytic functions in Ω and let $P(\Omega)$ denote the set of all polynomials in z with $z \in \Omega$. We recall the definition of $\tilde{f}(a)$ in the analytical functional calculus as

$$
\begin{equation*}
\tilde{f}(a)=\frac{1}{2 \pi i} \int_{\Gamma}(z-a)^{-1} f(z) d z \tag{3}
\end{equation*}
$$

Then the map $f \rightarrow \tilde{f}(a)$ is a homomorphism from $H(\Omega)$ into A that extends the natural homomorphism $p \rightarrow p(a)$ of $P(\Omega)$ into A and

$$
\sigma(\tilde{f}(a))=\{f(z): z \in \sigma(a)\}
$$

A proof of this Theorem can be found in [1].

3. G_{1} CLASS ELEMENTS

In this section, we give definition, some examples and elementary properties of G_{1} class elements. It is possible to view this definition as motivated by considering the question of equality in some of the inclusions given in Theorem 2.7.

Definition 3.1. Let A be a Banach algebra and $a \in A$. We define a to be of G_{1}-class if

$$
\begin{equation*}
\left\|(z-a)^{-1}\right\|=\frac{1}{\mathrm{~d}(z, \sigma(a))} \quad \forall z \in \mathbb{C} \backslash \sigma(a) \tag{4}
\end{equation*}
$$

Remark 3.2. The idea of G_{1}-class was introduced by Putnam who defined it for operators on Hilbert spaces. (See [7],[8].) It is known that the G_{1}-class properly contains the class of seminormal operators (that is, the operators satisfying $T T^{*} \leq T^{*} T$ or $T^{*} T \leq T T^{*}$) and this class properly contains the class of normal operators. Using the Gelfand- Naimark theorem [1], we can make similar statements about elements in a C^{*} algebra.
G_{1}-class operators on a finite dimensional Hilbert space are normal[7].

In particular, normal elements are hyponormal. In general, the equation (4) may hold, for every $z \in \mathbb{C} \backslash \sigma(a)$, for an element a of a C^{*}-algebra even though a is not normal.
For example, we may consider the right shift operator R on $\ell^{2}(\mathbb{N})$. It is not normal but $\Lambda_{\epsilon}(R)=\sigma(R)+D(0 ; \epsilon)=D(0 ; 1+\epsilon) \forall \epsilon>0$. The operator R is, however, a hyponormal operator.

We now deal with a natural question: What are G_{1} class elements in an arbitrary Banach algebra?

The following lemma is elementary and gives a characterization of a G_{1} class element in terms of its pseudospectrum.

Lemma 3.3. Let A be a Banach algebra and $a \in A$. Then

$$
\begin{equation*}
\Lambda_{\epsilon}(a)=\sigma(a)+D(0 ; \epsilon) \quad \forall \epsilon>0 \tag{5}
\end{equation*}
$$

iff a is of G_{1}-class.
A proof of this Lemma can be found in [5].
As one may expect, most natural candidates to be G_{1} class elements are scalars, that is, scalar multiples of the identity 1.

Theorem 3.4. Let A be a complex Banach algebra with unit 1 and $a \in A$.
(i) If $a=\mu$ for some complex number μ, then a is of G_{1} class and $\sigma(a)=\{\mu\}$.
(ii) If a is of G_{1} class, then $\alpha a+\beta$ is also of G_{1} class for every complex numbers α, β.
(iii) If a is of G_{1} class and $\sigma(a)=\{\mu\}$, then $a=\mu$.

A proof of this is straight forward. It also follows easily from 3.3 and Corollary 3.17 of [5]. We include it here for the sake of completeness.

Proof. (i) Let $a=\mu$ for some complex number μ. Then clearly $\sigma(a)=\{\mu\}$. Hence for all $z \in \mathbb{C} \backslash \sigma(a)$, we have $z \neq \mu$. Thus $\left\|(z-a)^{-1}\right\|=\frac{1}{|z-\mu|}=\frac{1}{\mathrm{~d}(z, \sigma(a))}$. This shows that a is of G_{1} class.
(ii) Next suppose that a is of G_{1} class and $b=\alpha a+\beta$ for some complex numbers α, β. We want to prove that b is of G_{1} class. If $\alpha=0$, then it follows from (i). So assume that $\alpha \neq 0$. Let $w \notin \sigma(b)=\{\alpha z+\beta: z \in \sigma(a)\}$. Then $z:=\frac{w-\beta}{\alpha} \notin \sigma(a)$ and since a is of G_{1} class, $\left\|(z-a)^{-1}\right\|=\frac{1}{\mathrm{~d}(z, \sigma(a))}$. Now $\left\|(w-b)^{-1}\right\|=\left\|(\alpha z+\beta-(\alpha a+\beta))^{-1}\right\|=\frac{1}{|\alpha|}\left\|(z-a)^{-1}\right\|=\frac{1}{|\alpha| d(z, \sigma(a)}=\frac{1}{d(\alpha z, \sigma(\alpha a))}=$ $\frac{1}{d(w, \sigma(b))}$. This shows that b is of G_{1} class.
(iii) Suppose a is of G_{1} class and $\sigma(a)=\{\mu\}$. Let $b=a-\mu$. Then by (ii), b is of G_{1} class and $\sigma(b)=\{0\}$. Let $\epsilon>0$ and C denote the circle with the centre at 0 and radius ϵ traced anticlockwise. Then for every $z \in C,\left\|(z-b)^{-1}\right\|=\frac{1}{d(z, \sigma(b)}=$ $\frac{1}{|z-0|}=\frac{1}{\epsilon}$. Also

$$
b=\frac{1}{2 \pi i} \int_{C} z(z-b)^{-1} d z
$$

Hence $\|b\| \leq \frac{1}{2 \pi} 2 \pi \epsilon \epsilon \frac{1}{\epsilon}=\epsilon$. Since this holds for every $\epsilon>0$, we have $b=0$, that is $a=\mu$.

Remark 3.5. The above Theorem has a relevance in the context of a very well known classical problem in operator theory known as " $T=I$? problem". This problem asks the following question: Let T be an operator on a Banach space. Suppose $\sigma(T)=\{1\}$. Under what additional conditions can we conclude $T=I$? A survey article [12] contains details of many classical results about this problem.

From the above Theorem it follows that if T is of G_{1} class and $\sigma(T)=\{1\}$, then we can conclude that $T=I$. In other words " T is of G_{1} class" works as an additional condition in the " $T=I$ problem".

Next we show that every Hermitian idempotent element is of G_{1} class. A version of this result was included in the thesis [4].

Theorem 3.6. Let A be a complex unital Banach algebra with unit 1 and $a \in A$. If a is a Hermitian idempotent element, then a is of G_{1} class. Also, if a is of G_{1} class and $\sigma(a) \subseteq\{0,1\}$, then a is a Hermitian idempotent.

Proof. Supose a is a Hermitian idempotent element. If $a=0$ or $a=1$, then a is of G_{1} class by (i) of Theorem 3.4. Next, let $a \neq 0,1$. Then $\sigma(a)=\{0,1\}$ and by Theorem 1.10.17 of [1], $\|a\|=r(a)=1$. Now Corollary 3.18 of [5] implies that $\Lambda_{\epsilon}(a)=D(0, \epsilon) \cup D(1, \epsilon)$ for every $\epsilon>0$. Hence a is of G_{1} class by Lemma 3.3.

Next suppose a is of G_{1} class and $\sigma(a) \subseteq\{0,1\}$. If $\sigma(a)=\{0\}$, then $a=0$ by (ii) of Theorem 3.4. Similarly, if $\sigma(a)=\{1\}$, then $a=1$. So assume that $\sigma(a)=\{0,1\}$. Then by Lemma 3.3, $\Lambda_{\epsilon}(a)=D(0, \epsilon) \cup D(1, \epsilon)$ for every $\epsilon>0$. Hence by 3.18 of [5], a is a Hermitian idempotent element.

The abundance or scarcity of G_{1} class elements in a given Banach algebra depends on the nature of that Banach algebra. There exist extreme cases, that is, there are Banach algebras in which every element is of G_{1} class. On the other hand, there are also Banach algebras in which the scalars are the only elements of G_{1} class. We shall see examples of both types below. Before that, we need to review a relation between the spectrum and numerical range of an element of G_{1} class. Recall that the numerical range of an element of a Banach algebra is a compact convex subset of \mathbb{C} containing its spectrum, and hence it also contains the closure of the convex hull of the spectrum. The next proposition shows that the equality holds in case of elements of G_{1} class.

Proposition 3.7. Let A be a complex unital Banach algebra and $a \in A$. Suppose a is of G_{1}-class. Then $V(a)=\overline{C o}(\sigma(a))$, the closure of the convex hull of the spectrum of a and $\|a\| \leq e r(a)$.

A proof of this can be found in [5].
Corollary 3.8. Let A be a complex unital Banach algebra. Suppose $a \in A$ is of G_{1}-class and $\sigma(a) \subseteq \mathbb{R}$. Then a is Hermitian.

It is shown in the next theorem that every element in a uniform algebra is of G_{1} class. Also a partial converse of this statement is proved. We may recall that a uniform algebra is a unital Banach algera satisfying $\|a\|^{2}=\left\|a^{2}\right\|$ for every $a \in A$. Every complex uniform algebra is commutative by a theorem of Hirschfeld and Zelazko [1]. Then it follows by Gelfand theory [1] that such an algebra is isomertically isomorphic to a function algebra, that is, a uniformly closed subalgebra of $C(X)$ that contains the constant function 1 and separates the points of X, where X is the maximal ideal space of A.

Theorem 3.9. (See also Theorem 3.15 of [5]) Let A be a complex unital Banach algebra with unit 1.
(i) If A is a uniform algebra, then every element in A is of G_{1} class.
(ii) If every element of A is of G_{1} class, then A is commutative, semisimple and hence isomorphic and homeomorphic to a uniform algebra.

Proof. (i) The Spectral Radius Formula implies that $\|a\|=r(a)$ for every $a \in A$. Now let $a \in A$ and $\lambda \notin \sigma(a)$. Then

$$
\begin{aligned}
\left\|(\lambda-a)^{-1}\right\| & =r\left((\lambda-a)^{-1}\right) \\
& =\sup \left\{|z|: z \in \sigma\left((\lambda-a)^{-1}\right)\right\} \\
& =\sup \left\{\frac{1}{|\lambda-\mu|}: \mu \in \sigma(a)\right\} \\
& =\frac{1}{\inf \{|\lambda-\mu|: \mu \in \sigma(a)\}} \\
& =\frac{1}{d(\lambda, \sigma(a)}
\end{aligned}
$$

. This shows that a is of G_{1} class.
(ii) By Proposition 3.7, $\|a\| \leq \operatorname{er}(a)$ for all $a \in A$. Hence A is commutative by a theorem of Hirschfeld and Zelazko [1]. Also, the condition $\|a\| \leq \operatorname{er}(a)$ for all $a \in A$ implies that A is semisimple and hence the spectral radius $r($.$) is a norm on$ A. Clearly, $r\left(a^{2}\right)=(r(a))^{2}$ for every $a \in A$. Hence A is a uniform algebra under this norm. Also the inequality $r(a) \leq\|a\| \leq \operatorname{er}(a)$ for all $a \in A$ implies that the identity map is a homeomorphism between these two algebras.

Next we consider an example of a Banach algebra in which scalars are the only elements of G_{1} class.

Example 3.10. (See also Example 2.16 and Remark 2.20 of [3])
Let $A=\left\{a \in \mathbb{C}^{2 \times 2}: a=\left[\begin{array}{ll}\alpha & \beta \\ 0 & \alpha\end{array}\right]\right\}$ with the norm given by $\|a\|=|\alpha|+\| \beta \mid$. Suppose $a=\left[\begin{array}{cc}\alpha & \beta \\ 0 & \alpha\end{array}\right] \in A$ is of G_{1} class. Then since $\sigma(a)=\{\alpha\}$, it follows by Theorem 3.4(iii) that $a=\alpha$. (This means $\beta=0$.)

4. Spectral properties of G_{1} Class elements

In this section, we show that G_{1} class elements have some properties that are very similar to the properties of normal operators on a complex Hilbert space. For example, if H is a complex Hilbert space, T is a normal operator on H and λ is an isolated point of $\sigma(T)$, then λ is an eigenvalue of T. We show that a similar property holds for a bounded operator of G_{1} class on a Banach space. For that we need the following theorem about isolated points of the spectrum of a G_{1} class element in a Banach algebra.

Theorem 4.1. Let A be a complex unital Banach algebra with unit 1. Suppose a is of G_{1}-class and λ is an isolated point of $\sigma(a)$. Then there exists an idempotent element $e \in A$ such that $a e=\lambda e$ and $\|e\|=1$.

Proof. If $\sigma(a)=\{\lambda\}$, then by 3.4(iii), $a=\lambda$ and we can take $e=1$.
Next assume that $\sigma(a) \backslash\{\lambda\}$ is nonempty. Let D_{1} and D_{2} be disjoint open neighbourhoods of λ and $\sigma(a) \backslash\{\lambda\}$ respectively. Define

$$
f(z)=\left\{\begin{array}{lll}
1 & \text { if } & z \in D_{1} \\
0 & \text { if } & z \in D_{2}
\end{array}\right.
$$

Then f is analytic in $D_{1} \cup D_{2}$. Let $e=\tilde{f}(a)$. Then since $f^{2}=f$, we have $e^{2}=e$, that is, e is an idempotent element and $\|e\| \geq 1$. To prove other assertions, choose $\epsilon>0$ in such a way that for every $z \in \Gamma_{1}:=\{w \in \mathbb{C}:|w-\lambda|=\epsilon\}, \lambda$ is the nearest point of $\sigma(a)$ and $\Gamma_{1} \subseteq D_{1}$. Then for every such $z, d(z, \sigma(a))=|z-\lambda|=\epsilon$, hence $\left\|(z-a)^{-1}\right\|=\frac{1}{\epsilon}$. Now let Γ_{2} be any closed curve lying in D_{2} and enclosing $\sigma(a) \backslash\{\lambda\}$ and let $\Gamma=\Gamma_{1} \cup \Gamma_{2}$. Then

$$
e=\tilde{f}(a)=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z-a)^{-1} d z=\frac{1}{2 \pi i} \int_{\Gamma_{1}}(z-a)^{-1} d z
$$

Hence

$$
\|e\| \leq \frac{1}{2 \pi} \frac{1}{\epsilon} 2 \pi \epsilon=1
$$

This shows that $\|e\|=1$.
Now define $g(z)=(z-\lambda) f(z)$. Then $|g(z)| \leq \epsilon$ for all $z \in \Gamma_{1}$. Note that

$$
a e-\lambda e=\tilde{g}(a)=\frac{1}{2 \pi i} \int_{\Gamma} g(z)(z-a)^{-1} d z=\frac{1}{2 \pi i} \int_{\Gamma_{1}} g(z)(z-a)^{-1} d z
$$

Hence

$$
\|a e-\lambda e\| \leq \frac{1}{2 \pi} \epsilon \frac{1}{\epsilon} 2 \pi \epsilon=\epsilon
$$

Since this holds for every $\epsilon>0$, we have $a e-\lambda e=0$.

Corollary 4.2. Let X be a complex Banach space, $T \in B(X)$ be of G_{1} class and λ be an isolated point of $\sigma(T)$. Then λ is an eigenvalue of T.

Proof. By Theorem 4.1, there exists an idempotent element $P \in B(X)$ such that $\|P\|=1$ and $T P=\lambda P$. Clearly P is a nonzero projection operator on X. Let $x \neq 0$ be an element of the range $R(P)$ of P. Then $P(x)=x$. Hence $T(x)=T P(x)=\lambda P(x)=\lambda x$. Thus λ is an eigenvalue of T.

Some ideas in the proof of the next theorem can be compared with the proof of Theorem C in [9] that deals with similar results about hyponormal operators on a Hilbert space.

Theorem 4.3. Let A be a complex unital Banach algebra with unit 1. Suppose a is of G_{1}-class and $\sigma(a)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ is finite. Then there exist idempotent elements e_{1}, \ldots, e_{m} such that
(1) $\left\|e_{j}\right\|=1, a e_{j}=\lambda_{j} e_{j}$ for $j=1, \ldots, m, e_{j} e_{k}=0$ for $j \neq k$,

$$
e_{1}+\ldots+e_{m}=1
$$

and

$$
a=\lambda_{1} e_{1}+\ldots+\lambda_{m} e_{m}
$$

(2) If p is any polynomial, then

$$
p(a)=p\left(\lambda_{1}\right) e_{1}+\ldots+p\left(\lambda_{m}\right) e_{m}
$$

(3) In particular,

$$
\left(a-\lambda_{1}\right) \ldots\left(a-\lambda_{m}\right)=0
$$

(4) If λ is a complex number such that $\lambda \neq \lambda_{j}$ for $j=1, \ldots, m$, then

$$
(\lambda-a)^{-1}=\frac{1}{\lambda-\lambda_{1}} e_{1}+\ldots+\frac{1}{\lambda-\lambda_{m}} e_{m}
$$

(5) If a function f is analytic in a neighbourhood of $\sigma(a)$, then

$$
\tilde{f}(a)=f\left(\lambda_{1}\right) e_{1}+\ldots+f\left(\lambda_{m}\right) e_{m}
$$

Proof. If $m=1$, then by Theorem 3.4(iii), $a=\lambda_{1}$. Hence we can take $e_{1}=1$ and all the conclusions follow trivially. Next we assume $m>1$. Let D_{1}, \ldots, D_{m} be mutually disjoint neighbourhoods of $\lambda_{1}, \ldots, \lambda_{m}$ respectively and let $D=\cup_{j=1}^{m} D_{j}$. Now for each $j=1, \ldots, m$, define a function f_{j} on D by

$$
f_{j}(z)=\left\{\begin{array}{lll}
1 & \text { if } & z \in D_{j} \\
0 & \text { if } & z \notin D_{j}
\end{array}\right.
$$

Let $e_{j}=\tilde{f}_{j}(a)$. Then it follows as in Theorem 4.1 that each e_{j} is an idempotent, $\left\|e_{j}\right\|=1$ and $a e_{j}=\lambda_{j} e_{j}$. Since for $j \neq k, f_{j} f_{k}=0$, we have $e_{j} e_{k}=0$.
Further $f_{1}+\ldots+f_{m}=1$ implies $e_{1}+\ldots+e_{m}=1$.
Next

$$
\begin{aligned}
a & =a 1 \\
& =a\left(e_{1}+\ldots+e_{m}\right) \\
& =a e_{1}+\ldots+a e_{m} \\
& =\lambda_{1} e_{1}+\ldots+\lambda_{m} e_{m} .
\end{aligned}
$$

This proves (1).
Now since $e_{j}^{2}=e_{j}$ for each j and $e_{j} e_{k}=0$ for $j \neq k$, we have

$$
a^{2}=\lambda_{1}^{2} e_{1}+\ldots+\lambda_{m}^{2} e_{m}
$$

and in general for any power k,

$$
a^{k}=\lambda_{1}^{k} e_{1}+\ldots+\lambda_{m}^{k} e_{m}
$$

It follows easily from this that for any polynomial p, we have

$$
p(a)=p\left(\lambda_{1}\right) e_{1}+\ldots+p\left(\lambda_{m}\right) e_{m}
$$

Thus (2) is proved.
Now consider the polynomial p given by $p(z)=\left(z-\lambda_{1}\right) \ldots\left(z-\lambda_{m}\right)$. Then $p\left(\lambda_{j}\right)=0$ for each j. Hence $p(a)=0$, that is, $\left(a-\lambda_{1}\right) \ldots\left(a-\lambda_{m}\right)=0$. This completes the proof of (3).
Now suppose λ is a complex number such that $\lambda \neq \lambda_{j}$ for $j=1, \ldots, m$. Let

$$
b=\frac{1}{\lambda-\lambda_{1}} e_{1}+\ldots+\frac{1}{\lambda-\lambda_{m}} e_{m} .
$$

Then in view of (1), we have

$$
\begin{aligned}
(\lambda-a) b & =\left[\left(\lambda-\lambda_{1}\right) e_{1}+\ldots+\left(\lambda-\lambda_{m}\right) e_{m}\right]\left[\frac{1}{\lambda-\lambda_{1}} e_{1}+\ldots+\frac{1}{\lambda-\lambda_{m}} e_{m}\right] \\
& =1
\end{aligned}
$$

Similarly, we can prove $b(\lambda-a)=1$ implying (4).
Next suppose a function f is analytic in a neighbourhood Ω of $\sigma(a)$ and Γ is a closed curve lying in Ω and surrounding $\sigma(a)$. Then

$$
\begin{aligned}
\tilde{f}(a) & =\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z-a)^{-1} d z \\
& =\frac{1}{2 \pi i} \int_{\Gamma} f(z)\left[\frac{1}{z-\lambda_{1}} e_{1}+\ldots+\frac{1}{z-\lambda_{m}} e_{m}\right] d z \\
& =\left(\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{z-\lambda_{1}} d z\right) e_{1}+\ldots+\left(\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{z-\lambda_{m}} d z\right) e_{m} \\
& =f\left(\lambda_{1}\right) e_{1}+\ldots+f\left(\lambda_{m}\right) e_{m}
\end{aligned}
$$

Remark 4.4. Note that the conclusions (2) and (4) of the above Theorem are special cases of (5).

Now we apply the above Theorem to a bounded operator on a Banach space.
Theorem 4.5. Let X be a complex Banach space. Suppose $T \in B(X)$ is of G_{1} class and $\sigma(T)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ is finite. Then
(1) Each λ_{j} is an eigenvalue of T. In fact, there exist projections P_{j} such that for each j, the range of P_{j} is the eigenspace corresponding to the eigenvalue λ_{j} and X is the direct sum of these eigenspaces. In other words, T is
"diagonalizable". Also $\left\|P_{j}\right\|=1$ and $T P_{j}=\lambda_{j} P_{j}$ for each $j, P_{j} P_{k}=0$ for $j \neq k$,

$$
P_{1}+\ldots+P_{m}=I
$$

and

$$
T=\lambda_{1} P_{1}+\ldots+\lambda_{m} P_{m}
$$

(2)

$$
\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{m} I\right)=0
$$

(3) If a function f is analytic in a neighbourhood of $\sigma(T)$, then

$$
\tilde{f}(T)=f\left(\lambda_{1}\right) P_{1}+\ldots+f\left(\lambda_{m}\right) P_{m}
$$

Proof. It follows from Corollary 4.2 that each λ_{j} is an eigenvalue of T. The existence and properties of projections P_{j} follow from Theorem 4.3. Let $X_{j}=$ $R\left(P_{j}\right)$, the range of P_{j}. The property $T P_{j}=\lambda_{j} P_{j}$ implies that X_{j} is the eigenspace of T corresponding to the eigenvalue λ_{j} for each j. Also $P_{j} P_{k}=0$ for $j \neq k$ implies that $X_{j} \cap X_{k}=\{0\}$ for $j \neq k$. It follows from

$$
P_{1}+\ldots+P_{m}=I
$$

that X is the sum of X_{j}. This shows that X is the direct sum of these eigenspaces.

Remark 4.6. Let X and T be as in the above Theorem. Since the conclusion (1) says that X has a basis consisting of eigenvectors of T and T is a linear combination of projections, it can be called Spectral Theorem for such operators. Similarly, the conclusion (2) is an analogue of the Caley-Hamilton Theorem. If, in particular, X is a Hilbert space, then every projection of norm 1 is orthogonal and hence Hermitian(self-adjoint). Thus each P_{j} is self-adjoint and hence T is normal. This result is also proved in [8].

Suppose X is finite dimensional. Then the above Theorem says that every G_{1} class operator on X is diagonalizable.

References

[1] Frank F. Bonsall and John Duncan, Complete normed algebras, Springer-Verlag, New York, 1973. MR 0423029 (54 \#11013)
[2] Mark Kac, Can one hear the shape of a drum, Amer. Math. Monthly, 73, no. 4, (1966), 1-23.
[3] K. Dhara and S. H. Kulkarni, The (n, ϵ)-pseudospectrum of an element of a Banach algebra, J. Math. Anal. Appl. 464 (2018), no. 1, 939-954. MR3794123
[4] Arundhathi Krishnan, Pseudospectrum of an element of a Banach algebra, Ph.D. Thesis, Indian Institute of Technology Madras, India, (2017).
[5] A. Krishnan and S. H. Kulkarni, Pseudospectrum of an element of a Banach algebra, Oper. Matrices 11 (2017), no. 1, 263-287. MR3602643
[6] S. H. Kulkarni, Spectrum and related sets: A survey, The Journal of Analysis (2019), 1-15. DOI 10.1007/s41478-019-00214-z
[7] C. R. Putnam, Almost normal operators, their spectra and invariant subspaces, Bull. Amer. Math. Soc. 79 (1973), 615-624. MR0338818
[8] C. R. Putnam, Operators satisfying a G_{1} condition, Pacific J. Math. 84 (1979), no. 2, 413-426. MR0568659
[9] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117,(1965), 469-476.
[10] L. N. Trefethen and M. Embree, Spectra and pseudospectra The Behavior of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, NJ, 2005.
[11] The web site: PEUDOSPECTRA GATEWAY http://www.cs.ox.ac.uk/pseudospectra/index.html
[12] Xiao-Dong and Zhang, Some aspects of the spectral theory of positive operators, Acta Appl. Math. 27 (1992), no. 1-2, 135-142. MR 1184885 (93j:47056)

Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Palakkad 678557. Kerala. (Formerly Department of Mathematics, Indian Institute of Technology - Madras, Chennai 600036)

Email address: shk@iitpkd.ac.in

[^0]: 2010 Mathematics Subject Classification. 46B99, 47A05.
 Key words and phrases. Banach algebra, spectrum, G_{1} class, pseudospectrum, spectral radius.

