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Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly
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We present an extensive numerical study of the time irreversibility of the dynamics of heavy
inertial particles in three-dimensional, statistically homogeneous and isotropic turbulent flows. We
show that the probability density function (PDF) of the increment, W (τ ), of a particle’s energy over
a time-scale τ is non-Gaussian, and skewed towards negative values. This implies that, on average,
particles gain energy over a period of time that is longer than the duration over which they lose
energy. We call this slow gain and fast loss. We find that the third moment of W (τ ) scales as τ 3,
for small values of τ . We show that the PDF of power-input p is negatively skewed too; we use this
skewness Ir as a measure of the time-irreversibility and we demonstrate that it increases sharply
with the Stokes number St, for small St; this increase slows down at St ≃ 1. Furthermore, we obtain
the PDFs of t+ and t−, the times over which p has, respectively, positive or negative signs, i.e., the
particle gains or loses energy. We obtain from these PDFs a direct and natural quantification of the
the slow-gain and fast-loss of the particles, because these PDFs possess exponential tails, whence we
infer the characteristic loss and gain times tloss and tgain, respectively; and we obtain tloss < tgain,
for all the cases we have considered. Finally, we show that the slow-gain in energy of the particles is
equally likely in vortical or strain-dominated regions of the flow; in contrast, the fast-loss of energy
occurs with greater probability in the latter than in the former.
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I. INTRODUCTION

Heavy inertial particles (or heavy particles) advected
by turbulent flows are found in many natural phenomena
and industrial processes; examples include dust particles
in a storm [1], water droplets in a turbulent cloud [2],
pollutant dispersions, the formation of planetesimals [3],
and turbulent mixing in chemical reactions [4–8]. These
heavy particles cannot be modeled as tracers because
of their finite size and inertia. Many experimental, nu-
merical, and theoretical studies have been carried out
to understand the statistics of these particles in turbu-
lent flows, [see, e.g., 9–11, for reviews]. Such a system
of heavy particles also displays many intriguing features
that are of interest in nonequilibrium statistical mechan-
ics.
Some recent studies have investigated the time ir-

reversibility of fluid turbulence by using the statistics
of Lagrangian-tracer particles [12–16]. Fully-developed
Navier–Stokes turbulence occurs in the limit of infinite
Reynolds number or zero viscosity. The rate of energy
dissipation ε does not go to zero, but it remains constant
even at the highest values of the Reynolds numbers Re
that have been obtained in experiments and numerical
simulations. The hypothesis ε > 0 as Re → ∞, which
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lies at the core of the Kolmogorov theory (K41) of turbu-
lence, is known as the zeroth law of turbulence [17]. Fully
developed forced turbulence is a nonequilibrium, statisti-
cally stationary state, which displays a constant average
flux of energy from large to small length scales, where it is
dissipated by viscosity. Hence, obviously, such turbulence
is irreversible in time. However, this is not immediately
obvious to our eyes, if we look at movies of the advec-
tion of Lagrangian tracers. By following the evolution
of the kinetic energy of a single tracer particle, Ref. [13]
shows that, on average, these tracers decelerate faster
than they accelerate. This phenomenon of slow-gain and
fast-loss of energy has been suggested to be the signature
of irreversible, turbulent dynamics, in the trajectory of
a single Lagrangian tracer; and it has been quantified,
indirectly, in Refs. [12, 13] by the negative third moment
of the probability density function (PDF) of the parti-
cle’s energy increments, and the negative skewness of the
PDF of the power input p to the particles by the flow.
This observation suggests the violation of the principle
of detailed balance in turbulent flows.

It is straightforward to understand this slow-gain and
fast-loss phenomenon qualitatively via the K41 phe-
nomenology of turbulence: The turbulent cascade in the
inertial range conserves energy. The energy is injected
into the fluid at the large, integral length scale and dis-
sipated significantly at the small length scales that lie
below the Kolmogorov dissipation scale. The eddies at
the largest length scales evolve most slowly; and those
at the smallest length scales are the fastest; hence, the
dynamics of a single tracer particle shows the slow-gain

and fast-loss features described above; and the resulting
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irreversibility is, therefore, related to the aforementioned
separation of time-scales in turbulent flows.
We extend these ideas to heavy particles in turbulent

flows by carrying out an extensive numerical study of
the time irreversibility of the dynamics of heavy inertial
particles in three-dimensional (3D), statistically homo-
geneous and isotropic turbulent flows. In addition to
being advected by the time-irreversible turbulent flow,
heavy particles experience a drag force that introduces
an additional source of dissipation. Nevertheless, it is
still impossible to distinguish visually between forward-
in-time and backward-in-time trajectories of individual
particles. We illustrate this in videos V1 [18] and V2 [19]
for representative heavy-particle trajectories in statisti-
cally stationary turbulent flows that are homogeneous
and isotropic; video V1 runs forward in time and V2
runs backwards. However, merely by looking at the two
videos it is not possible to tell which one is which. Fol-
lowing Refs. [12, 13], which consider Lagrangian tracers,
we first characterize the irreversibility of the trajectories
of heavy particles by the following two quantities: (a)
The energy difference of a particle across a time scale τ ,

W (τ) = E(t+ τ)− E(t), (1)

where E(t) is the energy per unit mass of the particle at
time t; and (b) the skewness of the PDF of the power in-
put p to the particle by the flow. We show that the prob-
ability density function (PDF) of the increment, W (τ),
of a particle’s energy over a time-scale τ is non-Gaussian,
and skewed towards negative values. This implies that,
on average, particles gain energy over a period of time
that is longer than the duration over which they lose en-
ergy. We call this slow gain and fast loss. We find that
the third moment of the PDF of W (τ) is negative and
scales as τ3, for small values of τ . Next, we calculate the
PDFs of times over which the power p retains the same
sign. In particular, we show that the PDF of p is neg-
atively skewed; we use this skewness Ir as a measure of
the time-irreversibility and and we demonstrate that it
increases sharply with the particle Stokes number St (see
below), for small St; this increase slows down at St ≃ 1.
Furthermore, we obtain the PDFs of t+ and t−, the times
over which p has, respectively, positive or negative signs,
i.e., the particle gains or loses energy. From these PDFs
we obtain a direct and natural quantification of the slow-
gain and fast-loss feature, because these PDFs possess
exponential tails, whence we infer the characteristic loss
and gain times tloss and tgain, respectively. We obtain
tloss < tgain, for all the cases we have considered. It is
well-known that, in 3D turbulent flows, every point in the
flow can be classified into two topological classes [20, 21]:
vortical regions or saddles, which are strain-dominated,
depending on whether the discriminant of the velocity-
gradient-matrix is positive or negative. By using this dis-
criminant, we show that the slow-gain in energy of the
particles is equally likely in vortical or strain-dominated
regions of the flow; in contrast, the fast-loss of energy
occurs with greater probability in the latter than in the

former.
The remainder of this paper is organized as follows.

In Section II, we introduce the models we use and the
numerical methods we employ to study them. Section III
is devoted to a presentation of our results. We discuss
our results in the concluding Sec. IV.

II. MODEL AND NUMERICAL METHODS

If the flow velocity at the position of the particle is u,
then the motion of a heavy particle is governed by the
following equations:

Ẋ = v, (2a)

v̇ =
1

τp
[u(X)− v] . (2b)

here v(t) and X(t) denote, respectively, the veloc-
ity and position of the particle at time t, and τp =
(2a2ρp)/(9νρf) is the Stokes or response time of the par-
ticle, with a and ρp the radius and material density of
the particle, respectively. Equation (2) is valid if (a) the
radius of the particle a ≪ η, with η the Kolmogorov
dissipation scale of the advecting fluid (or the particle-
scale Reynolds number is very small), (b) interactions
between particles are negligible, (e.g., at low number den-
sities of particles), (c) the particle density ρp ≫ ρf , the
fluid density, (d) typical particle accelerations are much
larger than the acceleration because of gravity, and (e)
the fluid velocity is not affected by the particles.

A. Three-dimensional Navier-Stokes turbulence

We consider the motion of the particles described by
Eqs. (2) in 3D, homogeneous, and isotropic turbulent
flows. The velocity field u(x, t) is obtained by solv-
ing the three-dimensional (3D), incompressible, Navier-
Stokes equation, i.e.,

∂tu+ u ·∇u = ν∇2u−∇p+ f , (3a)

∇ · u = 0, (3b)

where p, f , and ν are the pressure, external force, and
the kinematic viscosity, respectively. To solve Eq. (3))
numerically, we use a pseudo-spectral method [22] with
periodic boundaries and the 2/3 de-aliasing rule. Table I
gives the parameters for our DNSs of the 3D Navier-
Stokes equation [23] The Stokes number that we use is
St = τp/tη.

III. RESULTS

We first allow the flow to develop until it reaches a
statistically stationary turbulent state; and then we in-
troduce the particles. We also ignore the transients until
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TABLE I. Parameters for our 3D runs R1 and R2 with N3 collection points, ν the coefficient of kinematic viscosity, δt the
time step, Np the number of particles, kmax the largest wave number in the simulation, η and τη the dissipation length and
time scales, respectively, λ the Taylor micro-scale, Reλ the Taylor-micro-scale Reynolds number, Il the integral length scale,
and Teddy the large-eddy turnover time.

Run N ν δt Np Reλ kmaxη ǫ η λ Il τη Teddy

R1 256 3.8× 10−3 5× 10−4 40, 000 43 1.56 0.49 1.82× 10−2 0.16 0.51 8.76 × 10−2 0.49

R2 512 1.2× 10−3 2× 10−4 100, 000 79 1.21 0.69 7.1× 10−3 0.08 0.47 4.18 × 10−2 0.41

the heavy particles reach a nonequilibrium statistically
stationary state, which we monitor via the temporal evo-
lution of the total energy of the particles. In this nonequi-
librium state, the PDF of any component vk of the ve-
locity, of a heavy particle, is a Gaussian with zero mean
and a variance

〈v2〉 ≈
u2
rms

1 + StT
, (4)

where StT is the Stokes number defined with respect to
the large-eddy-turnover time. The auto-correlation func-
tion C(t) ≡ 〈vk(0)vk(t)〉/〈v

2
k〉, at large t, decays with a

time scale that is shorter than the large-eddy-turnover
time of the flow (see Appendix 1 for details).
As we have mentioned above, we follow the

Lagrangian-tracer studies of Refs. [12, 13], and we charac-
terize the irreversibility of the dynamical system formed
by the particles by calculating the statistics of the energy
increments W and the power p:

W (τ) ≡ E(t+ τ)− E(t), (5a)

p ≡ v ·
dv

dt
, (5b)

where E ≡ (1/2) | v |2 is the energy-per-unit-mass.

A. Statistics of energy increments

In Fig. (1A), we plot the PDF of the energy increment,
W (τ), across a time-scale τ (normalized by the dissipa-
tion time tη), for several different values of τ and St = 1.
A careful look at this figure shows that this PDF is asym-
metric about zero, with an asymmetry that is most pro-
nounced for small τ . Even for large τ , these PDFs do not
approach a Gaussian distribution, as we demonstrate in
Fig. (1B). In Fig. (1C) we plot the simplest characteri-
zation of the asymmetry of the PDF of W (τ), namely,
its third moment 〈W 3(τ)/E3

flow〉, as a function of τ , for
different values of St, where the characteristic energy of
the flow Eflow ≡ (1/2)〈u2〉 is used to non-dimensionalize
W . As we expect [13], at small τ , the third-moment
scales as τ3, because W (τ) is smooth, so it can be Taylor
expanded at small τ .

B. Statistics of the power input

We now plot in Fig. (2A), the PDF of the power-input
p to the particle per-unit-mass; p is normalized by ε, the
rate-of-energy-dissipation of the flow . A careful look at
the figure shows that the tails of the PDF are negatively
skewed; they fall off more slowly on the negative side than
on the positive side. This can be quantified by plotting
the skewness of these PDFs, which, following Ref. [13],
we define as the irreversibility parameter:

Ir =
〈p3〉

〈p2〉3/2
. (6)

In Fig. (2) we plot Ir as a function of St. As St → 0 we
expect that Ir should approach its value for Lagrangian
tracers. We find that Ir remains negative for all St; in
particular, its magnitude increases sharply, at small St,
but this increase slows down at about St ≃ 1.

C. Time scales of the gain and loss of energy

We now provide a direct and natural quantification of
the slow-gain and fast-loss phenomenon by analyzing the
time series of p as follows: Let t+ (t−) be the time over
which p has a positive (negative) sign, i.e., the particle
gains (loses) energy. These times are the first-passage
times, from positive to negative values or vice versa, of
the random variable p. The PDFs of such first-passage
times are called persistence PDFs; if a persistence PDF
has a power-law tail the exponent of the power-law is
called the persistence exponent [see, e.g., 24, 25, for
the use of persistence in various problems of nonequi-
librium statistical mechanics]. The same idea has been
used to calculate the persistence PDFs of residence times
of tracers [26] and heavy inertial particles in topological
structures in two dimensional [27] and 3D [28] turbulent
flows.
From the time-series of p we calculate the cumula-

tive probability distribution (CDF) of both t+ and t−,
which we denote by Q+ and Q−, respectively [29] These
two CDFs, for St = 1, are plotted in Fig. (3) on log-
lin scales. Clearly both Q+ and Q− have exponential
tails, with characteristic time scales tgain and tloss, re-
spectively. This implies that the corresponding PDFs
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FIG. 1. (Color online) (A) Probability density functions of the energy increments, W (τ ) for the different values of the time
lags, τ , for St = 1. (B) Probability density function of W (τ ) for τ = 20tη and St = 1 (magenta circles), compared with a
normal distribution with zero mean and unit variance (solid black line). (C) The third moment of the PDF of W (τ ) as function
of τ , for different values of St.
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FIG. 2. (Color online) (A) The PDF of the non-
dimensionalized power input p/ε to the particle by flow. (B)
The measure of time irreversibility Ir, defined in Eq. (6), as a
function of St.

also possess exponential tails, with the same character-
istic time scales. These two time scales are plotted, as
functions of St, in the inset of Fig. (3), from which we
infer that, for all St, tgain < tloss, which is a natural
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FIG. 3. (Color online) The two cumulative PDFs, Q+ and
Q−, of the times for which the p remains respectively posi-
tive (red) and negative (blue), for St = 1. The two straight
lines are linear fits to the tail of the data. The slope of
these straight lines are tgain and tloss. These are plotted as a
function of St in the inset, tgain (red circles) and tloss (blue
squares). These time scales are scaled by large eddy turn over
time of the flow Teddy.

quantification of the slow-gain and fast-loss feature.

D. Irreversibility and the topology of the flow

The topology of a 3D vector field can be character-
ized by its gradient-matrix. A 3× 3 matrix, B has three
invariants, namely, its trace TrB = λ1 + λ2 + λ3, Q ≡
λ1λ2+λ2λ3+λ3λ1, and its determinant DetB = λ1λ2λ3,
where λ1, λ2, and λ3 the are three eigenvalues of B. If
the vector field is incompressible, like our flow velocity
field, there are only two invariants, because the trace
of the velocity-gradient matrix is zero everywhere. We
consider incompressible turbulent flows, so the velocity-



5

gradient matrix is a random matrix with zero trace; it
is conventional [21] to denote its two invariants by the
symbols Q and R ≡ −DetB. Depending on the val-
ues of Q and R, four different types of flow topologies
are possible: two are elliptic (or vortical) points, with
a third stable/unstable direction, and two are saddles,
with axial or bi-axial strain. Whether the flow at a point
is a topological vortex or a saddle depends on the sign of
the discriminant, ∆ ≡ (27/4)R2+Q3, of the characteris-
tic equation of the velocity-gradient matrix; it is positive
in vortical regions and negative in strain-dominated sad-
dles. We have argued above that the particles lose energy
to fast, small-length-scale eddies and gain energy from
large-length-scale eddies. The topological structures are
small-length-scale properties; hence, by the usual as-
sumption of length-scale-separation in turbulence, we ex-
pect that the gain in energy, which occurs in large-scale
eddies, does not depend on the topology of the flow. By
contrast, the loss in energy occurs in small-length-scale
eddies, which are intimately connected with the topo-
logical structures we have described above. It has been
established recently that heavy particles, in 3D turbulent
flows, spend more time in strain-dominated regions than
in vortical regions [28]; consequently, we expect that the
loss of energy occurs more in strain-dominated regions
than in vortical regions in the flow. To check the validity
of this expectation, we plot, in the top panel of Fig. (4),
the PDFs of p, obtained separately from regions with
saddles and vortices. There is no distinction between
these two PDFs for positive p, i.e., when the particles
gain energy. By contrast, when p is negative, i.e., when
the particles lose energy, this loss is more likely to occur
in strain-dominated flow regions than in vortical ones.
This is also confirmed in the bottom panel of Fig. (4),
where we plot the contribution to the irreversibility pa-
rameter Ir, obtained separately from vortical and strain-
dominated regions, for several different values of St; in
particular, the contribution from the vortices is signifi-
cantly smaller than that from the saddles, which shows
that the dominant contribution to the skewness of the
PDF of the power comes from the saddles.

IV. CONCLUSIONS

We have carried out a detailed numerical study of the
time irreversibility of the dynamics of heavy particles
in 3D, statistically homogeneous and isotropic turbulent
flows. We have shown that these particles, which fol-
low Eq. (2), reach nonequilibrium statistically stationary
states. We have characterize these states by calculating
variety of PDFs and auto-correlation functions. The sim-
plest of these are PDFs and auto-correlation functions
of the velocity components; we have shown that these
PDFs are close to Gaussian. We have also computed the
PDFs of the increments of the particle’s energy W (τ),
for different values of τ , and shown that these PDFs
are non-Gaussian and skewed towards negative values.
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FIG. 4. (Color online) (top panel) The PDFs of the non-
dimensionalized power input p/ε obtained separately from
vortical (red) and strain-dominated (blue) regions of the flow,
for St = 1. (bottom panel) Contributions to the irreversibility
parameter Ir from vortical (red) and strain-dominated (blue)
regions of the flow.

This implies that, on average, particles gain energy over
a period of time that is longer than the duration over
which they lose energy. For passive Lagrangian tracers,
this phenomenon, has been called a flight-crash effect in
Ref. [13]; we simply refer to it as slow gain and fast loss.
We have also found that the third moment ofW (τ) scales
as ∼ τ3, at small values of τ .
We have computed the PDFs of the scaled power input

p, for different values of St, and shown that it is nega-
tively skewed. This negative skewness provides us a mea-
sure of the time irreversibility Ir. We have demonstrated
that the magnitude of Ir increases with St, sharply for
small St, but more slowly thereafter (at about St ≈ 1).
These qualitative features can also be captured by mod-
els in which the flow velocity is obtained from stochastic
models with non-zero correlation time [30].
Our study has led to a direct and natural measure of

the slow-gain and fast-loss of energy. Specifically, we have
calculated the PDFs of t+ and t−, the times over which p
has, respectively, positive or negative signs. These PDFs
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have exponential tails, from which we have inferred the
characteristic loss and gain times tloss and tgain, respec-
tively. We have shown tloss < tgain, for all the values
of St we have considered. Furthermore, we have shown
that the slow-gain in energy of the particles is equally
likely in vortical or strain-dominated regions of the flow;
in contrast, the fast-loss of energy occurs with greater
probability in the latter than in the former.
Time irreversibility for Lagrangian tracers, advected

by turbulent flows, arises solely because of the time-
irreversible nature of such flows. In contrast, for the case
of heavy particles, time irreversibility arises because of
two reasons: (a) turbulent flows, which advect such par-
ticles, are irreversible; and (b) the Stokes drag, exerted
by the flow on the particle, is dissipative. The separa-
tion of the effects of particle inertia and turbulence on
time irreversibility is non-trivial. Our study has shown
how the effect of inertia can be captured clearly by the
dependence of Ir on St, which we have shown in Fig. 2.
The time irreversibility for Lagrangian tracers, ad-

vected by turbulent flows, has been studied theoretically,
numerically, and experimentally (see, e.g., Refs. [12, 13]).
Our study has carried out analogous theoretical and nu-
merical studies for heavy particles advected by turbulent
flows; and we have obtained clear signatures for such ir-

reversibility, which can be measured in heavy-particle-
laden flows. We hope, therefore, that our studies will
stimulate experimental investigations of time irreversibil-
ity in such heavy-particle-laden flows.
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1. Characterization of the statistically stationary
turbulent state

In Fig. 5 we show plots, of PDFs of x component vx of
the velocity of the particle (left panel). These PDFs are
close to a Gaussian distribution. (middle panel) Shows
the mean of v2 plotted as a function of the Stokes-number
defined, by Teddy, as StT = τp/Teddy; the black solid
line shows the plot of 〈u2〉/(1 + StT) as a function of
StT. (right panel) of Fig. (5) shows the auto-correlation
function

C(t) ≡
〈vx(t)vx(0)〉

〈v2x〉
(7)

of the x component of v. The auto-correlation functions
decay at large times. The characteristic decay time de-
creases with St.
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FIG. 5. (Color online) (left panel) The PDFs of the x component of the velocity of the particle. The black solid line shows a
normal distribution with mean zero and standard deviation unity. (middle panel) The mean of v2 plotted as a function of the
Stokes-number defined, by Teddy, as StT = τp/Teddy; the black solid line shows the plot of 〈u2〉/(1 + StT) as a function of StT.
(right panel) The auto-correlation function Cvx of the x component of the velocity of the particle.


