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The layered honeycomb magnet α-Li2IrO3 has been theoretically proposed as a candidate to display

unconventional magnetic behaviour associated with Kitaev interactions between spin-orbit entangled jeff = 1/2

magnetic moments on a honeycomb lattice. Here we report single crystal magnetic resonant x-ray diffraction

combined with powder magnetic neutron diffraction to reveal an incommensurate magnetic order in the

honeycomb layers with Ir magnetic moments counterrotating on nearest-neighbor sites. This unexpected type

of magnetic structure for a honeycomb magnet cannot be explained by a spin Hamiltonian with dominant

isotropic (Heisenberg) couplings. The magnetic structure shares many key features with the magnetic order in the

structural polytypes β- and γ -Li2IrO3, understood theoretically to be stabilized by dominant Kitaev interactions

between Ir moments located on the vertices of three-dimensional hyperhoneycomb and stripyhoneycomb lattices,

respectively. Based on this analogy and a theoretical soft-spin analysis of magnetic ground states for candidate

spin Hamiltonians, we propose that Kitaev interactions also dominate in α-Li2IrO3, indicative of universal Kitaev

physics across all three members of the harmonic honeycomb family of Li2IrO3 polytypes.

DOI: 10.1103/PhysRevB.93.195158

I. INTRODUCTION

Magnetic materials in the strong spin-orbit regime are
attracting much interest as candidates to display unconven-
tional magnetic states stabilized by frustration effects from
bond-dependent anisotropic interactions [1]. One of the most
theoretically studied Hamiltonians with bond-dependent inter-
actions is the Kitaev model on the honeycomb lattice, where all
bonds carry an Ising exchange, but the three bonds meeting at
each lattice site have reciprocally orthogonal Ising axes (along
cubic x,y, and z directions). This leads to strong frustration
effects that stabilize an exactly solvable quantum spin liquid
ground state [2], with unconventional forms of magnetic
order predicted to occur when additional magnetic interactions
perturb the pure Kitaev limit [3–6]. A2IrO3 materials (A = Na,
Li) with threefold coordinated, edge-sharing IrO6 octahedra
have been proposed [3,7] as prime candidates to realize such
physics as (i) the combination of strong spin-orbit coupling
and the near-cubic crystal field stabilize a jeff = 1/2 spin-orbit
entangled magnetic moment at the Ir site, (ii) for edge-sharing
bonding geometry superexchange between neighboring Ir
moments is expected to be (to leading order) of Ising
form, coupling only the moment components perpendicular
to the plane of the Ir-O2-Ir square plane of the bond, and
(iii) the three bonds emerging out of each Ir lattice site have
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near-orthogonal Ir-O2-Ir planes. These are key ingredients for
frustrated bond-dependent, anisotropic interactions.

The first material to be explored in search of Kitaev physics
was Na2IrO3, which has a layered crystal structure where
edge-sharing IrO6 octahedra form a honeycomb arrangement.
The Ir moments order magnetically [8] at low temperature
in a zigzag magnetic structure [9–11] (ferromagnetic zigzag
chains ordered antiferromagnetically in the honeycomb plane),
which was proposed to be stabilized by many competing
interactions [6]. Evidence for Kitaev couplings was provided
by the observation of a locking between the spin fluctuations
direction and wave vector [12]. Li2IrO3 can also be prepared
in an isostructural form (α phase, Ref. [13]) with Na+ replaced
by Li+. Furthermore, two other structural polytypes, β- [14]
and γ -Li2IrO3 [15] have also been recently synthesized. Both
latter structures share the same building blocks of threefold
coordinated, edge-sharing IrO6 octahedra, but rather than
being arranged in honeycomb layers, now the IrO6 octa-
hedra form three-dimensionally connected structures, called
hyperhoneycomb and stripyhoneycomb, respectively. All three
polytypes can be systematically understood as members of a
“harmonic honeycomb” structural series [15]. This multitude
of structural polytypes for Li2IrO3 is attributed to the fact that
Li+ and Ir4+ have rather comparable ionic radii (Na+ is a much
larger ion, so only the layered honeycomb structure appears to
form). Both β- and γ -Li2IrO3 show incommensurate magnetic
structures with counterrotating moments [16,17], understood
theoretically to be stabilized by dominant Kitaev interactions
and additional small terms [16,18,19]; surprisingly, the β and
γ magnetic structures are so similar that they can be considered
as “equivalent” [17], leading to proposals of universality of the
magnetism in the family of harmonic honeycomb iridates [20].
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Motivated by those ideas we have performed detailed exper-
imental studies of the magnetic order in the layered polytype
α-Li2IrO3, for which early susceptibility and specific heat
measurements in powder samples [21] have indicated magnetic
long-range ordering below ≃15 K. No experimental studies of
the magnetic structure have been reported so far; however,
many theoretical proposals have been put forward for rather
exotic magnetic structures [4–6,20,22]. On the honeycomb
lattice many distinct types of magnetic orders are symmetry
allowed, especially for the case of an incommensurate propa-
gation vector, so a complete experimental magnetic structure
solution is required in order to provide vital constraints for
candidate theoretical models. Using a sample synthesis method
not applied to iridates before, we have recently obtained
phase-pure, single crystals of α-Li2IrO3 and here we report
magnetic resonant x-ray diffraction (MRXD) measurements
on those crystals, combined with magnetic powder neutron
diffraction measurements and symmetry analysis to deter-
mine a complete magnetic structure solution. We find an
incommensurate magnetic order in the honeycomb layers with
counterrotating Ir moments on every nearest neighbor bond.
We complement the experimental results with a theoretical
soft-spin analysis [20] and propose a minimal nearest-neighbor
spin Hamiltonian with dominant Kitaev interactions and
additional small terms, which naturally explains the stability of
the observed incommensurate structure and the many common
features with the magnetic structures in the β and γ polytypes.
Our results emphasize that Kitaev interactions between spin-
orbit entangled jeff = 1/2 Ir4+ magnetic moments lead to
universal magnetism in all three members of the harmonic
honeycomb Li2IrO3 polytypes.

The paper is organized as follows. Section II A presents
the single-crystal MRXD measurements, which observe mag-
netic diffraction peaks with an incommensurate propagation
vector q = (0.32(1),0,0). The observed diffraction pattern is
analyzed in terms of magnetic basis vectors, and their polar-
ization and relative phase are determined from the azimuth
dependence of the diffraction intensities in Sec. II B. The
absolute value of the ordered magnetic moment is extracted
from neutron powder diffraction data in Sec. III. The obtained
magnetic structure is presented in Sec. IV and similarities with
the magnetic structures in the β- and γ -polytypes are discussed
in Sec. V. Finally, conclusions are summarized in Sec. VI.
The Appendixes contain (A) technical details of the magnetic
symmetry analysis and the decomposition of the magnetic
structure in terms of its Fourier components, (B) description
of the crystal and magnetic structure of α-Li2IrO3 in terms
of the orthorhombic axes common to the β and γ polytypes,
(C) derivation of the direct link between the counterrotation of
magnetic moments and the antiphase behavior of the MRXD
intensity at ±q magnetic satellites, and (D) a theoretical
analysis of the minimal model Hamiltonian that could stabilize
the observed magnetic structure in α-Li2IrO3.

II. MAGNETIC RESONANT X-RAY DIFFRACTION

A. Experimental results

MRXD experiments were performed using the I16 beam-
line at Diamond with photon energies near the L3 edge of

Ir. The sample was a single crystal of α-Li2IrO3 (maximum
dimension ∼200 μm; the crystal synthesis and characteri-
zation is described elsewhere [23]), placed with the (001)
axis approximately surface normal onto on a Si (111) plate,
and cooled using a closed-cycle refrigerator with a Be dome.
With the x-ray energy tuned to resonance at 11.217 keV, and
the sample temperature set to ≈5 K, diffraction peaks were
observed at satellite positions τ ± q of allowed structural
reflections, τ = (h,k,l) with h + k = even, and with the
propagation vector [24] q = (0.32(1),0,0). Throughout we
label wave vectors in reciprocal lattice units of the structural
monoclinic unit cell with space group C2/m (for more details,
see Appendix A). A representative scan is shown in Fig. 1(a)
(solid circles). Also shown are data points collected at high
temperature (17 K, open circles), which illustrate that this
diffraction signal is only present at low temperatures. The
temperature dependence of the integrated peak intensity is
shown in Fig. 1(d), and was found to have a typical order-
parameter behavior with an onset temperature TN = 14.4(2)
K, which essentially coincides with the transition temperature
to magnetic order inferred from earlier specific heat and
susceptibility measurements on powder samples [21]. We

FIG. 1. Magnetic peak at (1,1,6) − q. (a)–(c) Scans along three

different reciprocal space directions (filled/open symbols are at base

temperature/above TN). Solid lines are fits to a Lorentzian-squared

shape [panel (b) shows a side shoulder attributed to the finite

sample mosaic]. (d) Temperature dependence of the integrated peak

intensity (solid line is guide to the eye). (e) Energy scan through the

magnetic peak (thick blue solid symbols) showing a large resonant

enhancement with a maximum at the onset edge of the fluorescence

signal from the sample (black solid line, scaled). In contrast, the same

energy scan through a structural peak (dotted line) shows minimum

intensity near resonance (due to increased x-ray absorption). Data

points in all panels are shown with an estimate of the incoherent

background subtracted off.
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therefore attribute the satellite peaks to x-ray diffraction from
the periodic magnetic order of Ir moments. The satellite
peaks were as sharp as structural peaks in scans along all
three reciprocal space directions [representative scans shown
in Figs. 1(a)–1(c)], indicating coherent, three-dimensional
long-range magnetic order. The magnetic origin of the satellite
reflections is further confirmed by the intensity dependence
on the x-ray energy. Figure 1(e) (blue solid symbols) shows
that the peak intensity has a large resonant enhancement, as
characteristic of magnetic x-ray diffraction. The empirically
observed x-ray resonance energy is similar to values found in
other iridates [9,16,17] and agrees well with the edge of the
measured fluorescence signal from the sample [black solid line
in Fig. 1(e)].

We note that the observed propagation vector q is close to
the commensurate wave vector (1/3,0,0), which corresponds
to an exact tripling of the unit cell along a; however, this
commensurate wave vector is not a special high symmetry
point in the Brillouin zone of the structural C2/m space group,
but has the same symmetry as any general point in the (h0l)
plane. In the following analysis of the magnetic structure we
therefore treat q as a general incommensurate wave vector.
The fact that q has no component along c∗ has a natural
physical interpretation: adjacent honeycomb layers are stacked
ferromagnetically along c.

B. Magnetic basis vectors

Systematic surveys in reciprocal space revealed that satel-
lite peaks occurred only around structural Bragg peaks. For
example, Fig. 2(b) shows a scan along the (h,0,6) direction
where the red solid line highlights the observed magnetic peaks

FIG. 2. (a) Schematic diagram of the (hk6) reciprocal plane with

filled circles, diamonds, and magenta crosses indicating positions

of structural peaks, measured magnetic peaks, and the absence of

peaks, respectively. Lattice points are also labeled by the magnetic

basis vectors that have finite structure factor for magnetic peaks at

satellite ±q positions. (b) Scan along the (h,0,6) direction observing

structural peaks at integer h = 0,2 (intensity scaled by 3 × 10−4 for

clarity), and magnetic peaks at satellite positions h = 0 ± q,2 ± q.

Solid (red) line is the calculated magnetic scattering intensity [25] for

the magnetic structure model depicted in Fig. 5. Data points are raw

counts with an estimate of the incoherent background subtracted off.

at h = 0 ± q and 2 ± q, with no magnetic signal at h = 1 ± q

[magenta crosses in Fig. 2(a); several azimuth values were
tested, not shown]. Therefore, the magnetic structure can be
fully described in terms of Fourier components of magnetic
moments located in the structural primitive cell. α-Li2IrO3

has a monoclinic crystal structure with space group C2/m

with two Ir atoms in the primitive cell, labeled here as Ir1 at
(0,y,0) and Ir2 at (0,−y,0) with y = 0.3332, where the atomic
fractional coordinates are given in the C2/m cell [13,26]. For
a propagation vector q = (q,0,0) symmetry analysis [27] in
the C2/m space group gives two magnetic basis vectors with
Fourier components at the two iridium sites in phase or in
antiphase, in shorthand notation labeled F and A, respectively.
The structure factors for the two basis vectors for a magnetic
reflection at wave vector Q = (h,k,l) ± q are

SF = 2fC cos(2πky),
(1)

SA = 2fC i sin(2πky),

where the prefactor fC = 1 + eiπ(h+k) arises from the C

centering in the ab plane. Using the approximation y ≃ 1/3
implies that F basis vectors can contribute to magnetic
satellites of all structurally allowed peaks (h + k = even),
whereas A basis vectors could contribute only to the subset
of those with k �= 3n, n integer. Below we use those selection
rules and the polarization dependence of the MRXD cross
section to determine which basis vectors are present, their
polarization, and relative phase.

For a σ -polarized incident beam (electric field normal
to the scattering plane) only the projection of the magnetic

moments onto the scattered beam direction, k̂′, contributes to
the diffraction intensity [28]. By rotating the sample around
the scattering vector, Q = k′ − k, by the azimuth angle, �

[see diagram in Fig. 3(a), inset] the projection of the magnetic

moments onto k̂′ changes, giving a clear signature of the
moment direction [in the following we employ a convenient
Cartesian set of axes (x,y,z) derived from the monoclinic
axes, x ‖ a, y ‖ b and z ‖ c∗, to describe magnetic moment
directions]. We have measured the azimuth dependence for
three magnetic peaks close to the sample surface normal, such
that the � rotation is almost around (001). The origin, � = 0,
is defined as the azimuth when the (100) direction is in the
scattering plane and pointing away from the x-ray source.
Figure 3(a) shows the azimuth scan for a pure-F magnetic
Bragg peak, (0,0,7) + q (SA|k=0 = 0). The intensity drops to
essentially zero at � = 0 and ±180◦ and has maxima near
±90◦, uniquely identifying this signal as originating from
diffraction by y-moment components, i.e., moments parallel
to the crystallographic b axis (solid red line). Scattering
from x- and z-moment components (shown by dash-dotted
and dashed lines, respectively) have a qualitatively different
behavior and can be clearly ruled out. This analysis identifies
the presence of a basis vector component Fy and the absence
(within experimental accuracy) of Fx and Fz. Figures 3(b)
and 3(c) show the azimuth dependence of the intensity for the
paired magnetic satellites (1,1,6) ∓ q, where both F and A

basis vectors can contribute. A pure Fy basis vector (dashed
line) cannot explain the observed periodicity of the azimuth
dependence, and fails to predict the observed antiphase
behavior of the intensity of the two satellites. The data is
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FIG. 3. Integrated intensity as a function of azimuth for three

magnetic Bragg peaks: (a) pure-F and (b) and (c) paired satellites of

mixed FA character. Top diagram illustrates the scattering geometry.

Data points (filled circles) are integrated peak intensities from rocking

curve scans corrected for absorption and Lorentz factor. Thick (red)

lines show fits that include all contributions to the MRXD structure

factor [25] for the magnetic structure model (−iAx,Fy, − iAz),

depicted in Fig. 5. Blue/green curves illustrate that other phase

combinations of basis vectors are ruled out.

naturally explained by adding an A basis vector component
to the magnetic ground state with a comparable magnetic
moment magnitude to the Fy component, polarized in the
xz plane, and with a π/2 phase difference. This basis vector
combination, namely (−iAx,Fy, − iAz), was fit to the data
as shown by thick red lines in Figs. 3(a)–3(c), which gives a
good account of the observed angular intensity dependence for
all three azimuth scans. All other basis vector combinations
are ruled out qualitatively by the data as illustrated by various

TABLE I. Irreducible representations and basis vectors for a

magnetic structure with propagation vector q = (q,0,0). The labels in

brackets correspond to the Miller and Love notation convention [29].

Irreducible Basis

representation vectors

Ŵ1(B1) Ax,Fy,Az

Ŵ2(B2) Fx,Ay,Fz

(thin) lines in the figures. The fit gives the relative magnetic
moment magnitudes as Mx : My : Mz = 0.12(2) : 1 : 0.74(4).

We note that the empirically determined basis vector
combination, (−iAx,Fy, − iAz), corresponds to a single ir-
reducible representation, Ŵ1, as listed in Table I. The form
of the magnetic structure is therefore fully consistent with a
continuous transition from paramagnetic to magnetic order
below TN.

The absolute magnitude of the ordered magnetic moments
is difficult to extract reliably from the MRXD data as it requires
accurate determination of scale factors between the magnetic
and structural peaks [the latter being ∼104 more intense;
see Fig. 2(a)]. For this purpose we use neutron diffraction
where the structural and magnetic neutron scattering factors
are comparable, allowing one to reliably extract the magnetic
scattering intensity in absolute units.

III. NEUTRON POWDER DIFFRACTION

Neutron diffraction measurements were performed on a
1.2 g powder sample of α-Li2IrO3 (synthesized as described
in Ref. [21]) using the time-of-flight diffractometer WISH
at ISIS. Powder α-Li2IrO3 is susceptible to absorb moisture
when in contact with air, which leads to a strong background
signal due to incoherent neutron scattering from the absorbed
hydrogen. To minimize this effect the sample was heated
to a temperature of 110 ◦C under a continuously pumped
vacuum (10−5 bars) for over 48 h immediately prior to the
neutron diffraction experiments. The sample was placed in an
aluminium sachet shaped into an annular cylinder (to minimize
neutron absorption) and located inside a thin-walled vanadium
can. Cooling was provided by a closed cycle refrigerator and
the neutron diffraction pattern was collected at a selection of
temperatures from base (5.9 K) to paramagnetic (30 K).

Figure 4 shows the measured diffraction pattern in the
lowest angle bank of detectors and the right inset shows a
zoom of the large d-spacing region where the fundamental
magnetic peak indexed as (000) ± q was clearly observed.
We fit simultaneously four contributions to the diffraction
data: structural peaks of the sample, structural peaks of an
impurity phase identified as IrO2 (nonmagnetic), structural
peaks of the aluminium sachet containing the sample, and
magnetic peaks of the sample. The diffraction pattern did not
allow for a full refinement of the α-Li2IrO3 crystal structure
due to relative peak intensities being affected by neutron
absorption from iridium nuclei. We therefore fixed the internal
atomic positions to those reported by room-temperature x-ray
studies [13], and only refined the lattice parameters and the
atomic displacement parameters. This strategy was found to
be sufficient for scaling the magnetic moment magnitude.
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FIG. 4. Neutron powder diffraction at base temperature (5.9 K,

red circles) and in the paramagnetic regime (30 K, brown circles)

in the lowest-angle detector bank. The four rows of marks below the

pattern show (from top to bottom) positions of structural α-Li2IrO3

peaks, impurity phase IrO2 peaks, aluminium peaks (from the sample

sachet), and magnetic Bragg peaks, respectively, and the blue line

underneath represents the difference between data and fit. Insets:

zoom into the large d-spacing region showing the fundamental

magnetic peak indexed as (000) ± q (right panel). In all panels the

solid black line shows the fit (using FullProf [30]) to the structural

and magnetic contributions as discussed in the text.

The magnetic structure model deduced from the resonant
x-ray data in Sec. II B with the basis vector combination
(−iAx,Fy, − iAz), and fixed magnitude ratios Mx/My and
Mz/My , was fitted to the data with only the magnetic moment
amplitude My free to vary. The overall fit is plotted as a solid
black line in Fig. 4 and shows excellent agreement with the
data, both for the structural pattern (main panel), as well as
for the magnetic pattern (insets). In particular, we note that
the model accounts very well for the observed strong intensity
of the fundamental magnetic peak (right inset) and essentially
zero measurable intensity at the nominal position of the second
allowed magnetic peak (left inset). The obtained ordered
magnetic moment magnitude is 0.40(5)μB when aligned along
the b axis, which is a lower bound owing to attenuation of the
diffraction peak intensity by Ir absorption. The propagation
vector was also fitted and found to be q = (0.319(5),0,0),
consistent with the value deduced from single-crystal x-ray
measurements.

IV. MAGNETIC STRUCTURE

Having determined the magnetic basis vectors, their am-
plitudes, and relative phases, the magnetic structure in real
space is obtained via Fourier transformation as detailed in
Appendix A, Eq. (A2). The resulting magnetic structure for
one honeycomb layer is plotted in Fig. 5(a). We show the
projection along the monoclinic c axis to better visualize the
elliptical envelopes described by the rotation of the magnetic
moments when displaced along the (horizontal) propagation
direction. The elliptical envelopes have aspect ratio near 3:4
with the long axis along b, and they are oriented in a plane
that is almost normal to the ab honeycomb layer (the precise
orientation with respect to the honeycomb layer is obtained by

FIG. 5. (a) Magnetic structure in a honeycomb layer of α-Li2IrO3

viewed along the monoclinic c axis. Three unit cells are shown

horizontally (along the propagation direction) and two vertically, with

unit cell edges indicated by thin gray rectangles. The global phase

of the moment rotation was chosen such as to have the magnetic

moments at the origin pointing straight up along the b axis. Left curly

arrows illustrate counterrotation of the magnetic moments between

consecutive sites along b. In unit cell 2 the light shaded ellipses show

the envelopes of the moment rotation. In unit cell 3 the color coding

of the bonds indicates the anisotropy axes of Kitaev exchange (black,

green, red for x, y, z, respectively). (b) Projection of the magnetic

structure onto the ac plane showing ferromagnetic order between

adjacent layers stacked along c. The magnetic propagation vector is

along the horizontal direction (a∗, dashed arrow). Thin gray lines at

each site give the projection of the elliptical envelopes of moment

rotation. The Cartesian axes (x,y,z) used to describe the magnetic

moment components are shown in blue at the bottom of the figure.

rotation around the b axis by an angle tan−1 Mz

Mx
= 80.8 ± 1.5◦).

This tilt is illustrated in Fig. 5(b), which shows the projection
of the magnetic structure onto the ac plane. An important
feature of the magnetic structure highlighted in Fig. 5(a) is that
nearest-neighbor sites in the honeycomb lattice counterrotate;
this is true both for nearest neighbors of the zigzag chains
along a, as well as for vertically connected sites along b; see
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left curly arrows in the figure. The counterrotation is a direct
consequence of the basis vector combination Fy with iAx,z,
which means that for Ir1 and Ir2 sites in the same primitive
cell the y moment components are parallel, whereas their
perpendicular components in the xz plane are antiparallel,
leading to counterrotation of the moments on the two Ir
sublattices. In Appendix C we show that the counterrotation
of moments has a characteristic signature in the MRXD
intensity via an interference scattering term that alternates
in sign between ±q satellites of the same reciprocal lattice
point, which leads to an antiphase behavior of the intensity
in azimuth scans. For a given azimuth value, at one satellite
the interference term is added and at the other satellite it is
subtracted, so when one magnetic satellite is strong the other
is weak, and vice versa. This effect is directly observed in
our experiments at the paired satellites (116) ∓ q in Figs. 3(b)
and 3(c), which reveal a pronounced antiphase behavior of the
intensity at the two positions; this qualitative behavior of the
intensity cannot be explained by any other type of magnetic
structure (for more details, see Appendix C).

For a direct comparison between the observed magnetic
structure and theoretical models for a two-dimensional honey-
comb lattice we show in Fig. 6(b) a diagram of the reciprocal
space of such a two-dimensional honeycomb, where the blue
stars indicate the location of the empirically determined mag-
netic Bragg peaks of a single honeycomb layer of α-Li2IrO3.
In this case the magnetic propagation vector has components
(q,0) with reference to a rectangular a × b unit cell [dashed
rectangle in Fig. 6(a)] of the honeycomb lattice.

FIG. 6. (a) Honeycomb lattice showing the a × b unit cell

(dashed rectangle). (b) Reciprocal space diagram of the honeycomb

lattice showing the position of the magnetic Bragg peaks (blue stars)

corresponding to the incommensurate magnetic order in α-Li2IrO3.

Labels F and A next to zone center positions τ indicate the character

of the magnetic basis vectors that can contribute to the intensity

of the corresponding magnetic Bragg peaks at τ ± q. The inner

solid line hexagon is the first Brillouin zone of the honeycomb

lattice, and the other symbols are magnetic Bragg peak positions

for other types of magnetic structures such as Néel, “zigzag” with

spins ferromagnetically aligned on the zigzag bonds and antialigned

along the vertical bonds, and “stripy” with spins ferromagnetically

aligned along the vertical bonds and antialigned along the zigzag

bonds.

V. DISCUSSION

Here we discuss the key features of the magnetic structure
and possible spin Hamiltonians that could explain its stability.
Incommensurate magnetic orders on the honeycomb lattice
have been discussed theoretically for various frustrated spin
Hamiltonians [4–6,22,31], however, the observed counterro-
tation of magnetic moments on every nearest-neighbor bond
is a highly nontrivial feature to reproduce theoretically. As
explained in Refs. [16,20] for a pair of spins that counterrotate
the conventional Heisenberg exchange energy is exactly zero at
the mean-field level, i.e., if magnetic moments Si and Sj in the
unit cell are counterrotating in a common plane then 〈Jij Si ·
Sj 〉 = 0, where 〈· · · 〉 means the average over that type of bond
for all unit cells in the crystal. So a spin Hamiltonian based on
dominant Heisenberg exchanges cannot explain the observed
structure. In particular, a Heisenberg model with couplings up
to third nearest neighbor can accommodate incommensurate
moment-rotating ground states in the phase diagram with
propagation vectors along the a axis (the so-called H1 and H3
phases) or the b axis (H2 phase) [31]; however, all those phases
share the key feature that magnetic moments are corotating,
in stark contrast to the experimentally observed magnetic
structure. Similarly, The so-called ICx phase proposed for a
model based on frustrated triplet ferromagnetic dimers [22]
of α-Li2IrO3 does have Bragg peaks with the same selection
rules as plotted in Fig. 6(b) (blue stars), however, the ordered
moments are corotating, so can also be ruled out. The positions
of the magnetic Bragg peaks can rule out other magnetic
structure models, such as a “vertex phase” [6] with Bragg
peaks at the corners of the first Brillouin zone [inner hexagon in
Fig. 6(b)], or an incommensurate magnetic phase [6] continu-
ously connected to the zigzag phase observed in Na2IrO3; such
an incommensurate structure would have the propagation vec-
tor oriented perpendicular to the zigzag chains [of type (0,k),
k < 1] in the diagram in Fig. 6(b), contrary to the observed
wave vector (q,0), oriented parallel to the zigzag chains.

In order to discuss other spin Hamiltonians that could
explain the stability of the observed magnetic structure in
α-Li2IrO3 it is insightful to make a comparison with the
magnetic order observed in the β and γ polytypes of Li2IrO3,
as in all three cases the magnetic order is incommensurate with
magnetic moments counterrotating between nearest-neighbor
sites. As explained in Ref. [20] the crystal structures of all
three polytypes can be described with reference to a common
orthorhombic cell, which coincides with the structural cell for
the β and γ structures. In this description the Ir honeycomb of
the α structure is contained in the diagonal orthorhombic plane
(ao + bo,co), where the subscript o indicates orthorhombic
axes. In Figs. 7(a) and 7(b) we compare the magnetic structures
of the γ and α polytypes by looking at their projection onto
the orthorhombic aoco plane; this is a convenient comparison
as the two iridium lattices are identical in this projection
(see Appendix B for details). For α-Li2IrO3 [panel (b)] a
hypothetical magnetic structure is plotted with the same
magnetic eigenvector as found experimentally and plotted
in Fig. 5, but for a scaled propagation vector f q, where
f ≃ 0.89, chosen such as to have the same periodicity of
the magnetic order as in the γ structure [panel (a)] (for the
scaled propagation vector f q the magnetic moment orientation
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FIG. 7. (a) Magnetic structure in γ -Li2IrO3 projected onto the

orthorhombic aoco plane (from Ref. [16]). (b) For comparison, the

magnetic structure in one honeycomb layer of α-Li2IrO3 is plotted

for a scaled propagation vector, f q, with f = 0.89, such that it

shows the same periodicity of moment rotation as in γ -Li2IrO3. For

both structures left curly arrows indicate counterrotation of moments

between consecutive sites along co and both magnetic structures are

plotted for three orthorhombic cells along the horizontal direction.

In (a) light/dark shaded elliptical envelopes in unit cell 2 illustrate

the alternation of the orientation of the plane of rotation between

adjacent vertically stacked zigzag chains, whereas no such alternation

occurs in the α magnetic structure [panel (b)]. In unit cell 3 the

color of bonds indicates the anisotropy axis of Kitaev exchange with

black/green/red for x,y,z. The Kitaev axes are normal to the Ir-O2-Ir

bond planes and are shown by the unit vectors x̂, ŷ (ẑ into the page),

as defined in Eq. (B2). In (b) the axes labels am, bm, and cm indicate

the “symmetrized” monoclinic axes defined in Eq. (B1).

repeats almost every seven zigzag bonds as opposed to a repeat
almost every six bonds for the actual α magnetic structure).
Direct comparison between the two panels of Fig. 7 shows

that, apart from small variations in the moment amplitudes,
the two magnetic structures are essentially the same up to a
single qualitative difference, which is the fact that the plane
of moment rotation is alternating between vertically stacked
zigzag chains in the γ phase (see light/dark shading of the
elliptical envelopes in unit cell 2), whereas it is not alternating
(it is the same for all zigzag chains) in the α phase. In
other words, the moment components along the Kitaev z axis
(orthorhombic bo axis) are ferromagnetically aligned for every
vertical bond in the γ (and β) structures, whereas they are
antiferromagnetically aligned for every vertical bond in the
α structure. These two scenarios are clearly differentiated by
our experiment. An alternation of the rotation plane would
give rise to strong diffraction intensities at satellite positions
of structurally forbidden reflections, such as (106) ± q, which
were not observed (see Fig. 2).

It has been theoretically proposed that the β and γ magnetic
structures are stabilized by a dominant Kitaev exchange sup-
plemented by additional smaller exchange terms [16,18–20],
with the Kitaev term being crucial in stabilizing the
counterrotation of moments. The strong similarity of this
magnetic structure with the one observed in the α phase
suggests that Kitaev interactions are also responsible for the
counterrotation of moments in the latter case. In the β and
γ structures it is understood that the reason for a tilt of the
rotation plane away from the aoco plane is the presence of a
finite Kitaev interaction along the vertical (z) bonds Kz < 0
(ferromagnetic), which favors an alternating tilt of the plane of
rotation between adjacent zigzag chains [20]. The α magnetic
structure also has the plane of rotation tilted away from the
aoco plane, but there is no alternation between adjacent zigzag
chains.

In Appendix D we perform a soft-spin analysis [20] of
the magnetic ground state of candidate spin Hamiltonians that
could be compatible with the observed magnetic structure in
α-Li2IrO3. We start with a minimal nearest-neighbor model
that can explain the stability of the magnetic structures in
both β and γ phases, with dominant Kitaev interactions Kz

along the vertical bonds and Kx,y along the zigzag bonds
(all ferromagnetic), an additional smaller (antiferromagnetic)
Heisenberg exchange J on all nearest-neighbor bonds, and an
Ising (ferromagnetic) coupling Ic on the vertical bonds for the
spin components along the bond direction. We find two distinct
modifications of the above Hamiltonian that could explain the
observed eigenvector and pattern of the magnetic structure in
α-Li2IrO3. The first modification, model A, has the Kitaev
interaction along the vertical bonds having an opposite sign
(Kz > 0, antiferromagnetic). The second modification, model
B, has uniform Kitaev interactions, but is supplemented by an
additional (ferromagnetic) interaction Id on the zigzag bonds,
with |Id | < |Ic|. In both cases, dominant magnitude Kitaev
terms are required to stabilize the counterrotation of moments.

VI. CONCLUSIONS

To summarize, combining single-crystal magnetic resonant
x-ray diffraction and magnetic powder neutron diffraction on
the layered honeycomb α-Li2IrO3 we have observed an incom-
mensurate magnetic structure with counterrotating moments
for every nearest-neighbor pair of sites. We have discussed that
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the counterrotation of moments cannot be explained by a spin
Hamiltonian with dominant Heisenberg exchange interactions,
and we have compared the observed magnetic structure with
the incommensurate magnetic orders in the three-dimensional
structural polytypes β- and γ -Li2IrO3. These two polytypes
also have counterrotating moments, proposed theoretically
to be stabilized by dominant Kitaev interactions between
spin-orbit entangled jeff = 1/2 Ir4+ magnetic moments. Based
on many striking common features between the magnetic
structures in the three polytypes we have suggested that Kitaev
interactions are the dominant spin couplings that govern the
cooperative magnetism in all three structural polytypes of
Li2IrO3, and using a soft-spin analysis we have proposed
a possible generalization of the spin Hamiltonian used to
describe the β and γ structures that could account for the
observed magnetic structure in α-Li2IrO3.
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APPENDIX A: MAGNETIC SYMMETRY ANALYSIS

Here we give further details of the magnetic symmetry
analysis and the description of the magnetic structure using
basis vectors, following closely the analysis for β-Li2IrO3 in
Ref. [17]. α-Li2IrO3 has a monoclinic crystal structure with
space group [13] C2/m and room-temperature lattice parame-
ters a = 5.1633(2) Å, b = 8.9294(3) Å, c = 5.1219(2) Å, and
β = 109.759(3)◦. The iridium ions occupy a single crystal-
lographic site [26] with multiplicity 4, Wyckoff letter g, and
site symmetry 2. There are two iridium atoms per primitive
cell, which in the monoclinic C-centered cell correspond to
Ir1 at fractional coordinates (0,y,0), and Ir2 at (0,−y,0),
with y = 0.3332. For the magnetic propagation vector q =
(q,0,0) symmetry analysis using BasiReps [27] gives two
types of magnetic basis vectors, F and A, which correspond
to the case where the Fourier components, Mq,n, of the
magnetic moments of the two iridium sublattices (n = 1,2 for
Ir1,2 respectively) are in phase or in antiphase, i.e., Mq,2 =
±Mq,1 with the upper/lower sign for F/A. The irreducible
representations of the magnetic structure and basis vectors are
listed in Table I, where (x,y,z) form a Cartesian set of axes
related to the monoclinic axes as x ‖ a, y ‖ b, and z ‖ c∗.
The magnetic moment distribution in real space is obtained by
Fourier transformation, i.e., the magnetic moment on sublattice
n at a general position r in the crystal is expressed in terms of
the Fourier components as M r,n =

∑

k=±q Mk,ne
−ik·r , where

M−q,n = M∗
q,n as the magnetic moment distribution is real.

The requirement that the magnetic structure is invariant
under symmetry operations of the full group that maps q

into −q (in the present case a twofold axis 2y at the iridium
sites) imposes additional constraints onto the relative phases
between basis vector components. For an incommensurate
propagation vector perpendicular to the twofold axis the
symmetry-allowed magnetic structures can be of the following
two types: (i) collinear, amplitude-modulated (spin-density-
wave type) with magnetic moment either along the y axis
or in a general direction in the perpendicular xz plane,
or (ii) moment-rotating, with an elliptical envelope with a
principal axis along y (no other magnetic structures remain
invariant under the 2y rotation). In particular, for basis vectors
belonging to the Ŵ1 irreducible representation the allowed
phase combinations (verified using the ISODISTORT [33]
software) are (±iAx,Fy, ± iAz) with unconstrained magnetic
moment magnitudes Mx , My , and Mz. The experimentally
determined magnetic structure (−iAx,Fy,−iAz) is indeed one
of those combinations. In this case the Fourier components of
the magnetic structure are

Mq,n =
[

∓i

(

x̂
Mx

2
+ ẑ

Mz

2

)

+ ŷ
My

2

]

e−iϕ0 , (A1)

where the upper (lower) sign is to be used for the n = 1(2)
sublattice, x̂ indicates a unit vector along the x direction and
so on, and ϕ0 is a global phase of the magnetic order. The
magnetic moment at position r belonging to site index n is
obtained via direct Fourier transformation from Eq. (A1) as

M r,n = ∓(x̂Mx + ẑMz) sin(q · r + ϕ0)

+ ŷMy cos (q · r + ϕ0). (A2)

The above equation describes all iridium sites, including those
related by C-centering translations, where r is the actual
position of the ion and n is the site index at the equivalent
position (1,2) in the primitive unit cell. The magnetic structure
near the origin (r = 0) for ϕ0 = 0 is plotted in Fig. 5(a) and
shows magnetic moments rotating between sites displaced
along the (horizontal) propagation direction, and describing
an elliptical envelope with a principal axis along b. We note
that a nonzero global phase ϕ0 is equivalent to a shift in the
origin along the propagation direction and, therefore, in the
incommensurate case, it describes the same global magnetic
structure. The invariance of the magnetic structure with respect
to a 2y rotation is most easily visualized in the extended plot
in Fig. 7(b), which displays many more unit cells sites (scaling
of the propagation vector keeps the symmetry properties
unchanged): here one can see that the magnetic structure is
invariant upon a twofold rotation around a vertical axis located
where the magnetic moment is aligned vertically (the eighth
moment along the horizontal zigzag chain), so the magnetic
structure is indeed compatible with the full symmetry of the
space group.

APPENDIX B: CRYSTAL AND MAGNETIC STRUCTURE

OF α-Li2IrO3 IN THE ORTHORHOMBIC BASIS

As explained in Ref. [20] the crystal structures of all three
polytypes of Li2IrO3 could be described in terms of a common
orthorhombic unit cell, with lattice vectors (subscript o) related
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to the monoclinic axes vectors by

ao = am + cm,

bo = am − cm, (B1)

co = 2bm,

where the subscript m indicates a “symmetrized” monoclinic
cell where the lattice parameters satisfy am : cm = 1 : 1 (in the
actual crystal structure of α-Li2IrO3 this ratio is [13] 1.008 :
1). The orthorhombic description also has the advantage
that the anisotropy (Kitaev) axes associated with each bond
(direction normal to the Ir-O2-Ir planes) are easily visualized,
in particular [15],

x̂ = (âo + ĉo)/
√

2,

ŷ = (âo − ĉo)/
√

2, (B2)

ẑ = b̂o,

where we have assumed an “idealized” crystal structure with
cubic IrO6 octahedra and lattice parameters in ratio ao : bo :

co = 1 :
√

2 : 3. We use SansSerif symbols for the Kitaev axes
(x,y,z) to distinguish them from the italic symbols (x,y,z),
which denote the Cartesian axes used to describe the magnetic
structure. The Kitaev axes are shown in unit cell 3 in Figs. 7(a)
and 7(b) where the color of the bonds indicates the anisotropy
axis of the Kitaev exchange.

The iridium lattices in the Li2IrO3 polytypes can be
thought of as being constructed from zigzag chains that run
along one of the two diagonal directions in the orthorhombic
basal plane ao ± bo, connected by vertical bonds along co.
In the α structure all zigzag chains are in the diagonal
plane (ao + bo,co), and are connected vertically to form a
honeycomb lattice. In the γ structure pairs of zigzag chains
form coplanar honeycomb strips [33′ with 11′ and 22′ with
44′ in Fig. 7(a)] that are then stacked along the vertical
direction co alternating in orientation between the two diagonal
planes (ao + bo,co) and (ao − bo,co); in the β structure single
zigzag chains alternate in orientation between the two diagonal
directions. From this description it follows that the projection
onto the aoco and boco planes is then the same in all three
structures (the projections onto the aobo plane are different).

In the orthorhombic axes notation, the Fourier components
of the magnetic structure in Eq. (A1), with the choice for the
global phase ϕ0 = 0, are

Mq,n = ∓i

(

x̂o

Mxo

2
− ŷo

Myo

2

)

+ ẑo

Mzo

2
, (B3)

where the upper/lower sign is to be used for the sublattices
Ir1/Ir2 (which correspond to sites 1′/2′, respectively, in the γ

structure; see Fig. 7) and Mxo
= Mx cos(β/2) + Mz sin(β/2),

Myo
= −Mx sin(β/2) + Mz cos(β/2), and Mzo

= My . Here
x̂o, ŷo, ẑo are unit vectors along the orthorhombic ao, bo, and
co axes. For the determined magnetic structure the moment
magnitudes are Mxo

: Myo
: Mzo

= 0.67 : 0.33 : 1 and the
moment rotation plane makes an angle φ =
tan−1(Myo

/Mxo
) = 26◦ with the aoco plane. The magnetic

moment expression, Eq. (A2), transforms to

M r,n = ∓
(

x̂oMxo
− ŷoMyo

)

sin q · r + ẑoMzo
cos q · r.

(B4)

APPENDIX C: COUNTERROTATION OF MOMENTS AND

THE INTERFERENCE TERM IN THE SCATTERING

CROSS SECTION

Here we present an intuitive explanation of the antiphase
behavior of the magnetic scattering intensity between the
satellites at (116) ± q illustrated in Figs. 3(b) and 3(c), namely
at azimuth values � where the +q satellite is strong the
−q satellite is weak, and vice versa. We will show that this
qualitative feature of the magnetic scattering can only be
explained by counterrotating moments on the two Ir magnetic
sublattices. In this case the scattering intensity contains an
interference term that changes sign between the two satellite
positions, naturally explaining the observed intensity behavior.

To highlight the main terms in the scattering cross section
we first assume Mx = 0, i.e., we neglect the contribution from
the small moment components along the x direction. In this
case the total magnetic structure factor vector for a magnetic
satellite at Q = (h,k,l) ± q is

F ( Q) = ŷSyMy,±q,1 + ẑSzMz,±q,1, (C1)

where Sy/z are the structure factors of the magnetic basis
vectors along the y/z directions, My/z,±q,1 are the correspond-
ing Fourier components of the magnetic moments on the Ir1
sublattice and (x,y,z) are Cartesian axes fixed with respect
to the crystal axes, as defined previously. Without loss of
generality we take My,±q,1 = My/2 and Mz,±q,1 = e±iϕMz/2,
where My/z are the (real) magnetic moment magnitudes along
the y/z axes and ϕ is the relative phase between the y and
z components, constrained by symmetry to be an integer
multiple of π/2 (see Appendix A).

In the experimental scattering geometry employed, as
indicated in Fig. 3 (inset), the magnetic Bragg peak intensity
depends only on the projection of the total magnetic structure

factor vector F onto the scattered wave vector direction k̂′;
see Ref. [28]. In detail, the intensity is proportional to

|F · k̂′|2 = [|k̂′
yMySy |2 + |k̂′

zMzSz|2

+2k̂′
y k̂

′
zMyMzA]/4, (C2)

where the first two terms are the separate magnetic scattering
intensities from the y and z moments, and the last term is due
to interference scattering between the y and z moments. The
intensity dependence on the azimuth comes exclusively from

the projections k̂′
y and k̂′

z of k̂′ onto the y and z directions,
respectively. The interference term in Eq. (C2) is directly
sensitive to the basis vector combination through the factor

A = R cos ϕ ± I sin ϕ, (C3)

where R and I are the real and imaginary parts of the
product SyS

∗
z and the upper/lower sign corresponds to the ±q

satellite. If the interference factor A cancels, then the azimuth
dependence of the intensity in Eq. (C2) is essentially the same
between paired satellites [up to variations in the geometrical
factors between the two satellites, which are expected to be
small if the two wave vectors are close, i.e., if |(hkl)| ≫
|q|]. To obtain a large intensity difference between paired
satellites the interference term needs to be large and to
alternate in sign between the two satellites, i.e., I sin ϕ �= 0 in
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TABLE II. Properties of the interference factor A in the magnetic

scattering intensity in Eq. (C2) at (hkl) ± q as a function of the

magnetic basis vector combination in the ground state.

Basis Phase Magnetic Interference

vectors ϕ structure factor A

FF 0,π Collinear R cos ϕ

AA SDW

FA 0,π Noncollinear 0

SDW

FF π/2,−π/2 Corotating 0

AA

FA π/2,−π/2 Counterrotating ±I sin ϕ

Eq. (C3). Below we analyze all possible combinations of basis
vectors and relative phases and find that a sign-alternating
interference term occurs only if the basis vectors along the
two directions are of different type and are π/2 out of phase,
which corresponds to magnetic structures with counterrotating
moments on the two sublattices. This follows from the fact
that the magnetic structure factors for the two basis vectors
in Eq. (1) are either purely real (F ) or purely imaginary (A),
so the product SyS

∗
z is purely real (R �= 0 and I = 0) if the

basis vectors along the two directions are the same, or purely
imaginary (R = 0 and I �= 0) if they are different. Based on
this observation we identify the following four distinct cases
summarized in Table II.

(i) Same basis vectors along the two directions with relative
phase ϕ = 0 or π , the magnetic structure is a spin-density wave
(SDW), collinear between the two sublattices, the interference
term factor is finite and has the same sign for paired satellites.

(ii) Different type basis vectors with relative phase ϕ = 0
or π , each sublattice has a spin-density-wave order, but non-
collinear between the two sublattices, there is no interference
term.

(iii) Same basis vectors on the two directions with relative
phase ϕ = π/2 or −π/2, magnetic moments corotate on the
two sublattices (the sign of ϕ gives the absolute sense of
rotation on the Ir1 sublattice), here also there is no interference
term.

(iv) Different basis vectors with relative phase ϕ = π/2 or
−π/2, magnetic moments counterrotate on the two sublattices,
the interference term is finite, sign-alternating between paired
satellites and with the absolute sign determined by whether
the rotation at site Ir1 is clockwise or counterclockwise.

The observation of an antiphase behavior of the intensity
between the paired satellites at (116) ± q [see Figs. 3(b)
and 3(c)] can only be explained by a magnetic structure of
type (iv) above, with counterrotating moments. The effect
can be understood in terms of a sign-alternating interference
scattering term between the y and z magnetic moment
components, coupled in basis vectors of F and A type,
respectively, with a relative phase ϕ = −π/2 [in the main text
we have used the shorthand notation (Fy,e

iϕAz) to denote this
basis vector combination]. Since the wave vector Q is close to
the z axis the azimuth dependence of the geometrical factors
are (to leading order) k̂′

z ≃ sin θ and k̂′
y ≃ − cos θ sin �,

where 2θ is the total scattering angle; so the largest magnitude

interference term in Eq. (C2) (largest contrast between the
intensities of the paired satellites) is expected for � near
±90◦, as indeed observed. The red solid lines in Figs. 3(b)
and 3(c) show the calculated intensity including the full
azimuth dependence of the geometrical factors and also the
effect of the small, but finite Mx moment components.

APPENDIX D: MINIMAL SPIN HAMILTONIAN

FOR α-Li2IrO3

Here we study a range of minimal spin Hamiltonians, based
on nearest-neighbor exchanges only, seeking to capture the
observed incommensurate magnetic structure. The important
features can be qualitatively summarized as follows: (1)
counterrotation between the Ir1/2 sublattice moments and
(2) uniformly tilted plane of rotation. Here by of rotation”
we refer to the plane in the Bloch sphere spanned by
the various magnetic moments across the lattice; using the
orthorhombic axes notation as in Eq. (B4), this is the plane
spanned by the vectors (x̂oMxo

− ŷoMyo
) and ẑo. Feature (1)

has been previously shown [20] to require anisotropic (i.e.,
non-Heisenberg) nearest-neighbor exchange and in particular
is consistent with strong Kitaev exchange. In a minimal
nearest-neighbor model feature (1) can be captured [20] by
(ferromagnetic) Kitaev exchanges on all nearest neighbor
bonds Kz, Kx,y < 0, a smaller (antiferromagnetic) Heisenberg
exchange J > 0 on all those bonds, and a finite (ferromagnetic)
exchange Ic < 0 for the vertical bonds, which couples the
moment components along the bond direction. Here we discuss
modifications that are appropriate for feature (2).

We have found two independent modifications that can
produce feature (2) in a dominant-Kitaev Hamiltonian. In
general, both modifications could occur and could complement
each other. Here we consider them separately. The first
modification, denoted as model A, consists of a sign change
for the Kitaev exchange on “vertical” bonds, i.e., those bonds
which lie parallel to the crystalline co (or equivalently bm) axis,
i.e., Kz > 0. In this model, the bo-axis moment components
would be antialigned along those bonds, straightforwardly
producing the observed tilt pattern.

The second modification, denoted as model B, consists of
an additional weaker exchange on the zigzag bonds, i.e., the
nearest-neighbor bonds that are not parallel to the crystalline
co axis. This exchange, which we denote by Id , is a symmetry-
allowed nearest-neighbor exchange, which couples the spin
components pointing along the bond direction

IdS
r
i S

r
j , Sr ≡ S · r̂, (D1)

where r is the vector connecting sites i and j . This exchange
interaction has a form that is mathematically analogous to
a truncated dipole interaction (though its physical origin is
through superexchange). It is related to the Ŵ spin exchange
term that has been previously discussed in the context of the
layered honeycomb iridates [4,20]. We use the subscripts on
Ic and Id to denote that the value of the exchange can differ
between the “vertical” (along co) and the remaining (zigzag or
“diagonal”) bonds.

Here we start with a model with dominant ferromagnetic
Kitaev exchanges, which for simplicity we take to have the
same magnitude (and sign) on all three nearest-neighbor bonds
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FIG. 8. Phase diagram of model B described in the text, computed

in a soft spin approximation. We find that the observed counterrotating

magnetic order (q = 0.32, light blue line), with a uniformly tilted

plane of rotation, can be captured by adding “truncated-dipole”

superexchange interactions, Id and Ic, within the regime |Ic| > |Id |,
Id/K > 0. These interactions couple spins to the spatial honeycomb

plane, which combines with the counterrotation due to Kitaev

exchange to produce the experimentally observed magnetic order

pattern. The observed spiral phase is shown in a color gradient

corresponding to the magnitude of the propagation vector q, from

0 to 0.5 in units of 2π/a. Comparing to Fig. 6(b), the wave vector

is along the horizontal direction, with units such that q = 1 would

correspond to the white diamond symbol. Labels stripy-XY and

stripy-Z denote antiferromagnetic patterns where spins are aligned

with one of their three nearest neighbors, across a diagonal/vertical

bond for stripy-XY/Z, respectively, and antialigned with the other

two. Label C-spiral denotes an incommensurate counterrotating

order with propagation vector along the Ŵ-M line, e.g., the vertical

(ĉo = b̂m) direction in Figs. 6(a) and 6(b).

(Kz = Kx,y = K < 0), and an additional small antiferromag-
netic Heisenberg exchange J on all those bonds. We find
that adding ferromagnetic Ic and Id exchanges (i.e., of the
same sign as the Kitaev exchange) can stabilize the observed
counterrotating magnetic order with a uniformly tilted plane
of rotation, if Id/K > 0 and |Ic| > |Id |.

A representative soft-spin phase diagram is shown in Fig. 8.
The observed α-Li2IrO3 counterrotating order is seen across
a range of parameters, with a propagation vector that varies

continuously across the parameter space, and which includes
the experimentally observed value (light blue shading). The
lowest energy mode in this phase is seen to have a plane of
rotation that is tilted uniformly. The sign of the tilt agrees with
the sign observed experimentally, namely it is a small tilt, away
from the aoco plane, in the direction away from the plane of
the honeycomb lattice.

Within the soft spin approximation, the magnitude of the
tilt angle is seen to be about half of the experimentally
observed value for typical parameter points with the observed
wave vector, and in general varies across the phase as the
Id interactions are turned on. However, we note that the
soft spin ground state here requires the spins to be soft and
have nonuniform magnitude, representing strong thermal or
quantum fluctuations, and thus it is not expected to capture
the tilt angle quantitatively. For instance, a sample set of
Hamiltonian parameters can be chosen as

K = −10, J = 2, Ic = −5, Id = −3.5 (D2)

(where the energy unit may be taken as ∼0.45 meV in order to
match the observed TN). For those parameters the propagation
vector agrees with the experimental value q = 0.32(1) and the
ordered spin magnitudes, using the orthorhombic axes as per
Eq. (B4), are found to be in the ratio

Sxo
: Syo

: Szo
= 0.56 : 0.15 : 1. (D3)

The qualitative feature of uniform tilt is captured by this
analysis, and may be understood as resulting from the uniform
spatial plane of the honeycomb lattice: the Ic and Id exchanges
couple the spins to the orientation of the bonds on the
honeycomb lattice, and can thereby produce this uniform
tilt. The sign of the tilt, which is set to be away from
the honeycomb plane, is produced by the counterrotation of
adjacent sublattices, which sets the bo components of spins
to be antialigned between neighboring sites [as per Eq. (B4)],
and is thus tilted away from the spatial honeycomb plane by a
small ferromagnetic Id exchange.
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